
662 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Task Offloading for Cloud-Assisted Fog
Computing With Dynamic Service Caching

in Enterprise Management Systems
Xingxia Dai , Student Member, IEEE, Zhu Xiao , Senior Member, IEEE,

Hongbo Jiang , Senior Member, IEEE, Mamoun Alazab , John C. S. Lui , Fellow, IEEE,
Geyong Min , Member, IEEE, Schahram Dustdar , Fellow, IEEE, and Jiangchuan Liu , Fellow, IEEE

Abstract—In enterprise management systems (EMS),
augmented Intelligence of Things (AIoT) devices generate
delay-sensitive and energy-intensive tasks for learning ana-
lytics, articulate clarifications, and immersive experiences.
To guarantee effective task processing, in this work, we
present a cloud-assisted fog computing framework with
task offloading and service caching. In the framework,
tasks make offloading decisions to determine local pro-
cessing, fog processing, and cloud processing with the
goal of minimal task delay and energy consumption, con-
ditioned on dynamic service caching. To this end, we first
propose a distributed task offloading algorithm based on
noncooperative game theory. Then, we adopt the 0–1 knap-
sack method to realize dynamic service caching. At last,

Manuscript received 30 March 2022; revised 20 May 2022 and 11
June 2022; accepted 22 June 2022. Date of publication 27 June 2022;
date of current version 8 November 2022. This work was supported
in part by the National Natural Science Foundation of China under
Grant U20A20181, in part by the Key Research and Development
Project of Hunan Province of China under Grant 2022GK2020, in
part by the Hunan Natural Science Foundation of China under Grant
2022JJ2059, in part by the Funding Projects of Zhejiang Lab under
Grant 2021LC0AB05, and in part by the Open Research Funds from
Guangdong Laboratory of Artificial Intelligence and Digital Economy
(SZ) under Grants GML-KF-22-22 and GML-KF-22-23. Paper no. TII-
22-1346. (Corresponding authors: Zhu Xiao; Hongbo Jiang.)

Xingxia Dai is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan 410082, China, and
also with the Guangdong Laboratory of Artificial Intelligence and Dig-
ital Economy (SZ), Shenzhen 518060, China, (e-mail: xingxdai718@
gmail.com).

Zhu Xiao and Hongbo Jiang are with the College of Computer Sci-
ence and Electronic Engineering, Hunan University, Changsha, Hu-
nan 410082, China (e-mail: zhxiao@hnu.edu.cn; hongbojiang2004@
gmail.com).

Mamoun Alazab is with the College of Engineering, IT and Environ-
ment, Charles Darwin University, Darwin, NT 0810, Australia (e-mail:
mamoun.alazab@cdu.edu.au).

John C. S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong (e-mail: cslui@cse.cuhk.edu.hk).

Geyong Min is with the Department of Mathematics and Com-
puter Science, University of Exeter, EX4 4PY Exeter, U.K. (e-mail:
gmin@exeter.ac.uk).

Schahram Dustdar is with TU Wien, 1040 Vienna, Austria (e-mail:
dustdar@infosys.tuwien.ac.at).

Jiangchuan Liu is with the School of Computing Science, Si-
mon Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail:
jcliu@cs.sfu.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3186641.

Digital Object Identifier 10.1109/TII.2022.3186641

we adjust the offloading decisions for the tasks offloaded
to the fog server but without caching service support. In
addition, we conduct extensive experiments and the results
validate the effectiveness of our proposed algorithms.

Index Terms—Augmented Intelligence of Things (AIoT),
enterprise management systems (EMS), game theory,
service caching, task offloading.

I. INTRODUCTION

ENTERPRISE management systems (EMS) as the combi-
nation of industrial Internet of Things and Intelligence of

Things, has drawn ever-increasing attention from academia to
industry, boosting the development of smart society [1], [2].
To improve the interrelation with human beings, augmented
intelligence is used to develop a human-centered partnership
model for smart EMS. The augmented Intelligence of Things
(AIoT) supports learning analytics, articulate clarifications and
immersive experiences. To this end, AIoT devices generally
generate massive data and require fast task processing. For
example, to implement real-time vision applications in EMS,
AIoT devices need to capture massive video data, then perform
complicated task processing for each frame under strict delay
constraints [3], [4]. However, due to limited local computing
capability and energy budget, operating these applications in
AIoT devices will inevitably incur large task computing delay
and thus suffer from degraded processing efficiency.

Fog computing emerges as a promising solution, by which
sufficient computation resources are pushed from a cloud server
to the network edge [5]–[8]. This enables fog servers the pro-
vision of computing resources in the manner of proximity to
AIoT devices. In this way, delay-sensitive and energy-intensive
tasks can be offloaded from AIoT devices to fog servers, thereby
facilitating low task delay and energy consumption [9].

A problem arising in fog computing is the service caching
issue [10], [11]. Specifically, task processing requires com-
putation services (e.g., video streaming analysis) and related
databases/libraries (e.g., online deep learning frameworks).
Without service support, the tasks cannot be processed on the
platform. But, a fog server is unable to cache overall services
requested by the diverse tasks due to limited storage space. As
a result, if the requested services are not available in the fog

1551-3203 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5540-9418
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0002-4106-2369
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6592-1984
mailto:xingxdai718@gmail.com
mailto:xingxdai718@gmail.com
mailto:zhxiao@hnu.edu.cn
mailto:hongbojiang2004@gmail.com
mailto:hongbojiang2004@gmail.com
mailto:mamoun.alazab@cdu.edu.au
mailto:cslui@cse.cuhk.edu.hk
mailto:gmin@exeter.ac.uk
mailto:dustdar@infosys.tuwien.ac.at
mailto:jcliu@cs.sfu.ca
https://doi.org/10.1109/TII.2022.3186641

DAI et al.: TASK OFFLOADING FOR CLOUD-ASSISTED FOG COMPUTING WITH DYNAMIC SERVICE CACHING IN EMS 663

server, these tasks are not supported by fog processing. Thus,
how to make use of the limited fog storage space is a question
worth considering for efficient task offloading.

However, previous related studies fail to consider the service
caching issue effectively in task offloading [12]–[16]. In these
works, a fog server is assumed to have infinite computation
services, or assumed to follow fixed service caching strategies
in task offloading. Clearly, the former assumption does not hold
in the real world, since fog server is inherently constrained by
limited storage space. Under the unsuitable assumption, task
offloading is easily trapped by suboptimal offloading solutions.
Additionally, the latter assumption inevitably degrades task of-
floading efficiency. Specifically, AIoT devices generate diverse
tasks, and the requested computation services are changing.
If the fog server follows a fixed service caching strategy, its
available computation services will keep invariable. As a result,
fog offloading is only available for specific tasks during the
whole offloading. The fixed service caching degrades offloading
efficiency, especially when the tasks are requested by AIoT
devices frequently while the computation services are not cached
in the fog server.

As a remedy, several studies jointly consider task offloading
and service caching issues, such as [17]–[19]. However, they
do not consider the issues for cloud-assisted fog computing. As
such, tasks not supported by fog computing have to be processed
locally, and thus incur large computation delay, especially for
computing-intensive tasks. Actually, cloud computing, due to
abundant resources, enables low computation delay, especially
for tasks with large computation workloads and small data bits.
Thus, cloud-assisted fog computation has been proposed in [6],
[20]–[24]. But, these works neglect service caching issues for
cloud-assisted fog computing.

To bridge the gap, we jointly formulate the task offloading
and service caching problems for cloud-assisted fog computing
in EMS. To find out feasible solutions to the problem, we are
facing several challenges: 1) Service caching couples with task
offloading decisions. Tasks are unable to seek fog computing
when the computation services are not cached in the fog server;
and in return, task offloading results reflect the performance of
service caching. To achieve effective task processing, the inter-
play between offloading decisions and service caching needs to
be taken into consideration. 2) The formulated problem is non
deterministic polynomial (NP)-hard since both the offloading
decisions and service caching strategies are discretized and
combinational. Additionally, AIoT devices are distributed and
deployed in the real world, and the global information is hard
to obtain for decision-making due to lacking a centralized con-
troller.

To address the aforementioned challenges, we derive an
approach which jointly considers task offloading and service
caching for cloud-assisted fog computing. Specifically, tasks
can be offloaded to a fog server for less task delay and local
energy consumption. Then, the fog server seeks dynamic service
caching for a cloud server based on the task popularity. Due to
the constrained fog storage space, the fog server caches limited
computation services. When the requested service caching is
not cached in the fog server, the tasks can be offloaded to the

cloud server or processed locally. Guided by the approach, both
offloading efficiency and service caching are emphasized for
cloud-assisted fog computing. Our contributions are summa-
rized as follows.

1) We jointly consider task offloading and service caching
issues for cloud-assisted fog computing in EMS. To
achieve minimal system cost, i.e., the weighted sum of
task delay and local energy consumption, tasks make
offloading decisions. Considering limited fog storage, a
dynamic service caching is derived, where the fog server
flexibly requests computation services from the cloud
server based on the task popularity.

2) We propose an algorithm supporting task offloading
and service caching for cloud-assisted fog computation
(TO&SC-CF), detailed in Section IV. Specifically, we
first propose a distributed task offloading algorithm based
on noncooperative game theory. Based on the offloading
decisions, we adopt the 0–1 knapsack method to realize
dynamic service caching. Guided by the service caching,
we adjust the offloading decisions for tasks offloaded to
the fog server and without service supports.

3) We conduct extensive experiments, detailed in Section V,
to validate the effectiveness of our proposed algorithms.
The simulation results demonstrate the superiority of
the proposed algorithm compared with other algorithms
under various system parameters, such as required CPU
cycles, task data bits, task number, and fog storage units.

The rest of the article is organized as follows. Section II
presents the related works followed by the system model and
problem formulation in Section III. Section IV is TO&SC-CF.
In Section V, we conduct evaluations. Finally, Section VI con-
cludes this article.

II. RELATED WORKS

Fog computing has emerged as an attractive paradigm for
task processing, by which computing-intensive tasks can be
offloaded to the fog server for pursuing less task delay and
local energy consumption [12]–[16]. In [12], the authors for-
mulated two optimization problems in fog computing, where
smart terminals enable task offloading to the nearby fog server.
By jointly considering communication and computation states,
the optimal offloading solutions can be found with the goal of
minimal local energy consumption. Based on the solutions, the
authors study a task assignment problem to further minimize
energy consumption. In [13], the authors considered offloading
the computation tasks to an edge server or a third-part fog
node. Based on the offloading requests, both computation and
communication resources are managed in the fog computing
system, aiming at the maximum network management profit.
In [14], the authors performed a dynamic resource allocation
framework in the fog computation system, where users enable
to offload tasks to the fog server and need to pay for the
allocated computation resources. The problem is formulated as
a mixed-integer nonlinear programming problem, targeting the
minimal task delay, energy consumption, and price cost. In [15],
the authors studied the provisioning problem of the virtualized

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

network function services in fog computing. By considering the
mobility and delay requirements, an optimization problem max-
imizing network utility and throughput is formulated. In [16],
the authors proposed a secure task-offloading framework, where
tasks are offloaded to the fog node. The selected node enables
secure task offloading that it offloads tasks to a neighboring fog
node based on smart contracts.

To maintain effective processing, service caching deserves
particular attention in task offloading. There are several studies
that jointly consider task offloading and service caching [17]–
[19]. In [17], the authors formulated a mixed-integer nonlinear
programming problem, in which a mobile user offloads its tasks
to the fog server and the server dynamically caches services
for task processing. By optimizing offloading decisions, service
caching and resource allocation, minimal task delay and local
energy consumption can be realized. In [18], the authors studied
the dependent task offloading problem under the limited fog
storage constraint. Only services are cached in the fog server,
the tasks enable fog processing. To solve the problem, the
authors design an efficient convex programming algorithm to
optimize task offloading and service caching. In [19], the authors
addressed task offloading and service caching problems under
the constraints of communication resources and task delay, tar-
geting maximum system utility. Based on this, the authors derive
effective algorithms under the circumstances of homogeneous
and heterogeneous service caching.

Compared with a cloud server, the fog server only has lim-
ited resources. Consider this, several works investigate cloud-
assisted fog computation [6], [20]–[24]. In [6], the authors de-
signed a cloud-assisted fog computing framework, where tasks
are mostly offloaded to the fog node. Considering limited fog
resources in computation and storage, the selected fog node can
be further offloaded tasks to its neighboring fog nodes and/or
the cloud server. In this framework, the authors investigate
a delay-driven task offloading problem. In [20], the authors
considered a task offloading and resource allocation problem in
a fog-cloud computing environment. Based on the Lyapunov op-
timization technique, the authors propose an online algorithm to
solve the problem, aiming at minimizing the average task delay.
In [21], the authors designed a framework with multiple devices,
multiple fogs servers, and a cloud server, targeting minimal task
delay and local energy consumption. On this basis, the authors
propose a placement technique algorithm and a lightweight
prescheduling algorithm for concurrent applications. In [22], the
authors proposed a mincost offloading partitioning algorithm.
The algorithm enables the minimal partitioning cost under dif-
ferent cost models and mobile environments. This is achieved
by optimizing application partitioning decisions to determine
whether to process the applications locally or offload them to
cloud and fog servers. In [23], the authors proposed an effective
task offloading solution for real-time traffic management in
fog-based Internet of vehicles (IoV) systems. To this end, the
authors leverage queue theory to model vehicle states and derive
an approximate method to achieve task offloading optimization.
In [24], the authors considered an online deadline-aware task
dispatching and scheduling in fog computing. By optimizing
the network bandwidth and computing resources, the authors

Fig. 1. System model. Combining TO&SC, tasks make offloading
decisions.

aim to the maximum number of tasks completed within the
deadline.

As these works mentioned, fog offloading and service caching
are both essential for effective task processing. However, most of
the existing works consider task offloading and service caching
separately, which is not realistic and easily trapped by supop-
timal offloading and caching solutions. Additionally, existing
works mostly neglect tasks for which the requested services
are not available in fog computing or assume these tasks are
processed locally without cloud-assisted offloading. This leads
to degraded offloading efficiency. Different from these works,
we study task offloading and service caching jointly in this
work. Furthermore, we present a cloud-assisted framework that
efficiently overcomes deficient fog service resources. Guided
by this, we derive a joint task offloading and service caching
algorithm for cloud-assisted fog computation.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Fig. 1 presents the system model of (TO&SC-CF. The model
comprises a cloud server, a fog server and multiple AIoT devices.
Each AIoT device generates one task to be processed. Let
N = {1, . . ., N} denote the task set. In EMS, AIoT devices
typically offload their tasks to the fog server since fog computing
facilitates low computation delay while keeping small transmis-
sion delay. As such, in task offloading phase, AIoT devices either
process their tasks locally or offload tasks to the fog server.
In addition, the fog server needs to equip diverse computation
services to support task processing. However, constrained by the
storage space, the fog server only can cache limited computation
services. Different from fog computing, cloud computing has
abundant computation services. Thus, we derive dynamic service
caching for fog computing, where the fog server enables to
flexibly request computation services from the cloud server
based on the task popularity. While dynamic caching ensures that
popular computation services are cached, several services are

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: TASK OFFLOADING FOR CLOUD-ASSISTED FOG COMPUTING WITH DYNAMIC SERVICE CACHING IN EMS 665

TABLE I
SUMMARY OF THE KEY NOTATIONS

still not available in the fog server. Once the requested services
are not cached in the fog server, AIoT devices need to adjust
the offloading decisions, i.e., to determine whether the tasks are
processed locally or offloaded to the cloud server. We list the
key notations as Table I for better readability.

A. Task Offloading Model

The offloading decision of task n is denoted as a vector
xn = {xl

n, x
f
n, x

c
n}, in which each element is a binary variable.

1) Local Processing: When xl
n = 1 and xf

n = xc
n = 0, task

n is processed locally. The local computation delay is
expressed as

T l
n = cn/fn (1)

where cn denotes the required CPU cycles of taskn and fn is the
local CPU cycle frequency. Local processing also incurs energy
consumption

El
n = �cn(fn)

2 (2)

where � is the energy coefficient related to the chip architecture
of the AIoT device.

2) Fog Processing: When xf
n = 1 and xl

n = xc
n = 0, task

n will be offloaded to the fog server for processing [25]. The
task offloading goes through three phases: 1) data transmission;
2) task processing; 3) result feedback.

When task n is transmitted from the AIoT device to the fog
server, the transmission delay is

T f,n
trans = bn/r

f
n (3)

where bn represents the data bits of task n, rfn reflects the
transmission rate between the fog server and the AIoT device
generating task n [26]. Given the transmission power pfn of the
AIoT [27], [28], we obtain the transmission energy consumption

Ef,n
trans = pfnT

f,n
trans. (4)

After receiving the offloaded tasks from AIoT devices, the
tasks will be processed by the fog server. We use ff

n to denote
the allocated fog computing resources for processing task n.
Guided by this, we calculate the computing delay of task n for

fog processing

T f,n
comp = cn/f

f
n . (5)

In this manner, the computation energy consumption is con-
ducted by the fog server [29]. Note that, in this work, we focus
on the local energy consumption rather than that of fog. Addi-
tionally, to complete the fog offloading, the processing results
are required to feedback from the fog server to the AIoT devices.
Since the data bits of the results are much smaller than that of
offloaded tasks, we ignore the delay and energy consumption of
result feedback in task offloading [30].

3) Cloud Processing: When xc
n = 1 and xl

n = xf
n = 0, task

n will be offloaded to the cloud server for processing. Different
from fog offloading, cloud server has more powerful computing
capabilities [18], and thus we overlook the cloud processing
delay and focus on data transmission. The transmission delay
for pursuing cloud processing is

T c,n
trans = bn/r

c
n (6)

where rfn is the transmission rate between the could server
and AIoT generating task n. Correspondingly, we obtain the
transmission energy consumption, expressed as

Ec,n
trans = pcnT

c,n
trans. (7)

B. Service Caching Model

In EMS, the dedicated set of computation services and their
related databases/libraries are cached in the fog server to support
task processing. Due to the constrained storage space, a fog
server caches limited computation services. But, AIoT devices
generate different tasks, and thus the requested computation
services are changing. If the fog server follows a fixed caching
strategy, its available computation services will be invariable.
As a result, when the fog server does not cache the computation
services initially, fog offloading is not supported for the specific
tasks during the whole offloading. The fixed service caching
inevitably degrades offloading efficiency, especially when the
tasks are requested by AIoT devices frequently while the com-
putation services are not cached. To bridge the gap, inspired
by [31], we design a dynamic service caching scheme in this
work. Specifically, the fog server flexibly requests computation
services from the cloud server based on diverse tasks. In this way,
service caching policies can be dynamically adjusted rather than
keep fixed, which facilitates task offloading efficiency.

As presented in Fig. 2, we elaborate on the operational flow
of the dynamic service caching as follows.

1) For tasks to be offloaded to the fog server, the AIoT
devices first inform the fog server of the requested service
information before task transmission.

2) After receiving the information, the fog determines the
popularity of each service based on the requested number.
Services with large numbers have high popularity, and
thus hold more chances to be cached in the fog server.

3) Considering the popularity and limited storage space, the
fog server downloads services from the cloud to cache.
We introduce a binary variable αf

n = {0, 1} to illustrate
whether the services requested by task n is cached (αf

n =

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Fig. 2. Dynamic service caching in task offloading.

1) or not (αf
n = 0) in the fog server. If the service is cached

in the fog server, the tasks can be processed in the fog.
4) When the requested services are not cached in the fog

server, the AIoT devices have to adjust the offloading
decisions for these tasks, i.e., to determine whether to
offload the task to the cloud or process it locally. It is
noted that the service download from cloud to fog and
the task transmission from AIoT devices to the fog server
are concurrent. We assume that the download delay is no
more than the transmission delay due to the high-speed
wired links between the fog and cloud. As such, this
dynamic service caching will not incur additional delay.

C. Problem Formulation

Tasks to be offloaded are delay-sensitive and energy-intensive,
which motivate us to achieve the minimal system cost, i.e.,
the weighted sum of task delay and local energy consumption.
Considering the allocated CPU cycles, data transmission rate,
and power, each AIoT device makes offloading decisions to
determine whether to process its task locally or at a fog server.
Due to limited storage capabilities, the fog cannot cache overall
computation services requested by tasks. For tasks of which
the services are not cached in the fog server, these tasks need
to adjust the offloading decisions, i.e., to determine whether to
process its task locally or at the cloud server for less system cost.

Combining offloading decision and service caching, we ob-
tain the delay of task n, expressed as

Tn = xl
nT

l
n + αf

nx
f
n(T

f,n
trans + T f,n

comp) + xc
nT

c,n
trans. (8)

The local energy consumption of task n, expressed by

En = xl
nE

l
n + αf

nx
f
nE

f,n
trans + xc

nE
c,n
trans. (9)

Mathematically, we formulate the problem as

min
xn

∑

n∈N
βTn + (1 − β)En (10)

s.t. αf
n ∈ {0, 1} (11a)

sfn ≤ smax (11b)

xc
n, x

l
n, x

f
n ∈ {0, 1} (11c)

fn ≤ fmax
n , ff

n ≤ fmax (11d)

Fig. 3. Workflow of the TO&SC-CF algorithm.

where the constraint (11a) implies that a service only has two
states: 1) cached; 2) not in the fog server, the constraint (11b)
reflects that the cached services cannot exceed the storage space
of the fog server, the constraint (11c) denotes that each task can
be only offloaded to a single processor for continuity, and the
constraint (11d) indicates that the allocated computing resources
need to be less than the maximum computing resources of the
AIoT device and fog server.

However, it is not a trivial issue to find the optimal solution
to the formulated problem. Firstly, this is a nonconvex problem,
since the offloading decisions and service caching strategies are
all discretized solutions. Worse still, there are combinational
features of task offloading and service caching, making the
formulated problem difficult to solve directly. Secondly, the
AIoT devices are hard to obtain global information in the real
world, since the centralized controller is generally lacking in the
real world.

IV. TASK OFFLOADING AND SERVICE CACHING FOR

CLOUD-ASSISTED FOG COMPUTING

To tackle the difficulties in solving the formulated problem,
in this section, we derive a joint TO&SC-CF. As presented in
Fig. 3, we formulate a noncooperative game to determine task
offloading decisions firstly. Then, we adopt the 0–1 knapsack
method to determine the dynamic service caching strategies.
Guided by the caching solutions, we adjust the task offloading
decisions.

A. Noncooperative Game for Task Offloading

In EMS, AIoT devices typically offload their tasks to the
fog server since fog computing facilitates low computation
delay while keeping small transmission delay. As such, in the
task offloading phase, AIoT devices either process their tasks
locally or offload tasks to the fog server. Considering scattered
locations of AIoT devices, we formulate a noncooperative game
for achieving effective task offloading. In the game, each AIoT
makes offloading decisions without requiring a centralized con-
troller. This distributed method guarantees the system utility
while paying attention to the individual interests [32], [33]. We
present the game as

G = (N ,A,U(A)) (12)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: TASK OFFLOADING FOR CLOUD-ASSISTED FOG COMPUTING WITH DYNAMIC SERVICE CACHING IN EMS 667

where N represents the finite task set, A denotes all feasible
task offloading decision set, and U(A) indicates the utilities
performed by the task offloading decisions A. Give the ith
allocation strategy of Ai, we define the utility function as

U(Ai) = F − f(Ai), i ∈ A (13)

where F is a large value to ensure positive U(Ai), f(Ai) is the
optimization objective in (10), expressed as

f(Ai) = βT (Ai) + (1 − β)E(Ai). (14)

T (Ai) and E(Ai) are the total task delay and local energy con-
sumption performed by the policy Ai. Note that the expressions
of (10) and (14) reflect the weighted sum of task delay and
local energy consumption from the task and the offloading policy
perspectives, respectively.

Based on the “regret-matching” approach in the noncoopera-
tive game, we attempt to find out the optimal offloading strategy
A∗ (i.e., achieving minimal system cost) by maximizing the
utility value U(A∗). We use R(Ai,Aj) to measure the regret
degree for applying the strategy Aj instead of Ai, expressed as

R(Ai,Aj) = max{U(Ai,A−i)− U(Aj ,A−j), 0}. (15)

If R(Ai,Aj) > 0, the strategy Aj will be replaced by Ai to
improve the utility value. As such, the probability distributions
of strategy Ai and Aj at the next iteration are

P (Ai) =
1
τ
R(Ai,Aj), i �= j (16)

P (Aj) = 1 −
∑

Ai∈A
P (Ai), j �= i (17)

where τ is a large value for ensuring positive P (Aj).
The proposed task offloading algorithm is summarized in Al-

gorithm 1. After I times iteration, we obtain the time complexity
of Algorithm 1 is O(AI), where A =| A | is the total number
of the feasible offloading strategies.

Let ρξ(·) denote the empirical distribution for all feasible
allocation policies of A for the fog computation resources.
Sξ(Ai) is the occurrence for the strategy Ai up to ξ iterations.
As such, we obtain the adopted frequency of the strategy Ai

during the period

ρξ(Ai) =
Sξ(Ai)

ξ
. (18)

Based on the analysis in [32] and [34], we conclude that ρξ(Ai)
converges to correlated equilibrium when ξ intends to infinity.

B. 0–1 Knapsack-Based Service Caching

Service caching is critical for avoiding infeasible task offload-
ing decisions [18], [35]. In EMS, the fog server has constrained
storage capabilities, and thus enables several dedicated and
limited service supports. If the services frequently requested by
AIoT devices are not available in the fog server, the efficiency
of fog processing will be significantly degraded.

To guarantee effective task offloading, we propose a dynamic
service caching algorithm to determine which services need
to be cached in the fog server. The algorithm enables the fog
server to flexibly requests computation services k ∈ K from the
cloud server based on diverse tasks. Let λk

n ∈ {0, 1} denote
the requested service by task n. When λk

n = 1, service k is
requested by task n; if λk

n = 0, service k is not available in the
fog server. On this basis, we define Lk as the popularity degree
of computation service k based on the requested times

Lk =
∑

n∈N
λk
n. (19)

In addition, each service occupies sk storage space for the
cache. The total cached services in the fog server cannot exceed
the maximum fog storage space smax

fog . As such, dynamic service
caching aims to achieve maximum service popularity under the
fog storage constraint. These features enable us to formulate the
service caching as a 0–1 knapsack problem. Specifically, if a
service occupies excessive storage space, the service will not be
cached in the fog server. When a service satisfies the fog storage
constraint and produces larger popularity, it will be cached in
the fog server. On this basis, we derive the 0–1 knapsack-based
dynamic service caching algorithm detailed in Algorithm 2. The
time complexity is O((S + 1)(K + 1)), where S =| smax

fog | is
the maximum fog storage capabilities and K =| K | is the total
number of the requested services.

C. TO&SC-CF Algorithm

After determining service caching policies, we need to adjust
the task offloading decisions. The reason is that task offloading
decisions may not be supported by service caching policies.
Specifically, tasks are offloaded to the fog server or processed
locally with the goal of the minimal system cost after implement-
ing Algorithm 1. Note that the offloading decisions are based on
the infinite computation services in the fog server. However,
the fog server has limited storage space and the limited storage
hinders the cache for the overall requested computation service.
As such, we derive Algorithm 2 to implement dynamic service

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

caching, where a fog server flexibly caches computation services
from the cloud server based on the task popularity. To guarantee
effective task offloading, the computation services frequently
requested by AIoT devices have a large chance to be cached
in the fog server. While dynamic caching ensures that popular
computation services are cached, several services are still not
available in the fog server. Suppose a task should be processed by
the fog server guided by Algorithm 1, but the requested services
are not available in the fog server after implementing Algorithm
2. In this case, the task has to adjust its offloading decisions since
fog offloading is not supported for the task. As a result, the task
needs to change its offloading decisions, i.e., determine whether
to process the task locally or offload the task to the cloud server
targeting less system cost.

To achieve effective TO&SC-CF in EMS, we propose the
TO&SC-CF algorithm, detailed in Algorithm 3. The algorithm
decouples task offloading decisions and service caching policies,
while ensuring task processing with minimal system cost under
the service caching constraint. The time complexity of Algo-
rithm 3 is O(AI + (S + 1)(K + 1) +N), where N =| N | is
the total number of the tasks.

TABLE II
PARAMETER SETTINGS

V. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the pro-
posed TO&SC-CF algorithm.

A. Simulation Setup

We conduct experiments on a desktop computer with an 11th
Gen Intel(R) Core(TM) i7-11700F @2.50 GHz, 16 GB memory
and Win10 OS. In our experiments, we consider five AIoT
devices for cloud-assisted fog computing. Each AIoT device
generates a task to be processed. The parameter settings are
listed, shown in Table II. We compare the proposed algorithm
with the following algorithms.

1) Task offloading with dynamic service caching (TO&SC)
[31]: The algorithm enables offloading decisions based
on dynamic service caching in fog computing, without
considering the cloud-assisted fog computing scheme.

2) Task offloading for cloud-assisted fog computing
(TO&CF) [36]: The algorithm follows fixed service
caching rules. When the requested services are not cached
in the fog server, the tasks can be offloaded to the cloud
server for less task delay and local energy consumption.

3) Task offloading in fog computing (TO) [37]: Guided by
the fixed service caching scheme, the algorithm makes
task offloading decisions. If the requested services are not
available in the fog server, the tasks have to be processed
locally.

4) Local task processing (LP): Offloading is not available
and tasks are processed locally in the algorithm.

B. Comparison Analysis

1) Comparison Analysis on Required CPU Cycles: Fig. 4
shows the comparison of system cost between different algo-
rithms under various CPU cycles. As the required CPU cycles
grow, the system cost increases. The reason is that large CPU
requirements enlarge task computation delay and computing en-
ergy consumption. Additionally, we noticed that the growth rate
of LP, TO, and TO&SC are similar with increasing CPU cycles.
The reason is that the service with varying CPU cycles does not
have to be cached in the fog server in our setting, then TO and
TO&SC need to process the task with large CPU cycles locally.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: TASK OFFLOADING FOR CLOUD-ASSISTED FOG COMPUTING WITH DYNAMIC SERVICE CACHING IN EMS 669

Fig. 4. Performance of different algorithms under various CPU
requirements.

Fig. 5. Performance of different algorithms under different task data
bits.

Benefitting from the cloud-assisted scheme, the proposed algo-
rithm and TO&CF enable to offload the computing-intensive
tasks to the cloud server. Since the system cost is determined
by transmission energy consumption in cloud processing, the
system cost keeps fixed with different CPU cycles when the task
is offloaded to the cloud server. Furthermore, the system cost
conducted by the proposed algorithm and TO&CF is similar for
small fog storage units in the setting. Once we enlarge the stor-
age, the performance difference between these two algorithms
becomes even more pronounced, as shown in Fig. 7.

2) Comparison Analysis on Task Data Bits: Fig. 5 shows the
comparison of system cost between different algorithms under
various task data bits. Task data bits affect the system cost by
changing transmission delay and energy consumption. Large
data bites incur large system cost. But we find that the system
cost of LP, TO, and TO&SC remain fixed. The reason is that
LP is independent of task data bits; for TO and TO&SC, they
will process the tasks locally when the service requested by
the task with various data bits is not cached in the fog server.
Since TO&SC enables dynamic service caching, this ensures
frequently requested services have a high priority in fog caching,

Fig. 6. Performance of different algorithms under different task
number.

and thus TO&SC achieves less system cost than TO; fog pro-
cessing is supported in TO, then TO performs better than LP. For
the proposed algorithm and TO&CF, the task will be offloaded
to the cloud server when the data bits are small and the requested
service is not cached in the fog server. Larger data bits incur more
transmission energy consumption, thus increasing the system
cost. As the data bits grow, the system cost conducted by the
cloud server will exceed that conducted by local processing.
In this case, the task will be processed locally, and thus the
system cost conducted by the proposed algorithm is near to
that conducted by TO&SC. Furthermore, TO&CF follows fixed
service caching rules, and several frequently requested services
may not be cached in the fog server. Therefore, TO&CF holds a
large convergent value compared with the proposed algorithm.

3) Comparison Analysis on Task Number: Fig. 6 shows the
impact of task number on system cost. More tasks lead to
larger task delay and energy consumption and thus increasing
the system cost. Since LP does not support fog processing,
the system cost sharply increases as the task number grows.
TO, due to fixed service caching and without the cloud-assisted
scheme, its system cost is more than that of TO&CF, TO&SC,
and the proposed algorithm. The proposed algorithm follows
the dynamic service caching in cloud-assisted fog computing
networks, and thus produces less system cost.

4) Comparison Analysis on Fog Storage Space: Fig. 7
shows the comparison of the system cost between different
algorithms under various fog storage spaces. Large storage units
mean the fog server enables to delivery computation services for
more tasks. The system cost of LP remains fixed with changing
fog storage units due to local processing. Different from the
LP, the remaining algorithms involve fog processing. As the
storage increases, their system cost decreases. Furthermore,
since TO and TO&SC do not consider cloud processing, fog
storage units have a more significant impact on the system costs.
When the fog has cached the requested services, the system
costs remain fixed. In addition, we noticed that the system cost
performed by the proposed algorithm and TO&CF decreases
slowly. The reason is that these two algorithms can offload tasks

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Fig. 7. Performance of different algorithms under different fog storage
units.

to the cloud server when the requested services are not cached
in the fog server. When the fog storage is small and the task
CPU is large, TO&SC typically performs worse than TO&CF;
when the fog storage is large, TO&SC typically performs better
than TO&CF. Furthermore, since the fog server incapacitates
dynamically adjusting service caching strategies, TO&CF incurs
a large system cost than the proposed algorithm.

VI. CONCLUSION

In this article, we jointly investigated task offloading and
service caching issues for cloud-assisted fog computing in EMS.
Specifically, AIoT devices generate delay-sensitive and energy-
intensive tasks. The tasks can be processed locally, and offloaded
to the fog server, with the goal of minimal system cost, i.e.,
the weighted sum of task delay and local energy consumption.
Considering dynamic service caching in the cloud-assisted fog
computing framework, tasks without service support in the fog
server can be further offloaded to the cloud server. To find out
satisfactory solutions for task offloading and dynamic service
caching, we first proposed a distributed task offloading algorithm
based on noncooperative game theory, where tasks are processed
in local AIoT devices or in the fog server. Then, we leveraged
the 0–1 knapsack method to realize dynamic service caching
based on task popularity. Guided by service caching, we adjusted
offloading decisions. If tasks are offloaded to the fog server and
lack computation service, the tasks will be offloaded to the cloud
server or processed locally. Additionally, we conducted exten-
sive experiments to validate the proposed algorithms, and the
results show suppositories of our proposed algorithms compared
with that of other algorithms. In the future, we will extend our
work by adding the number of fog servers to consider migration
cost in cloud-assisted fog computing networks.

REFERENCES

[1] M.-Z. Pan and J.-Y. Mao, “Cross boundary mechanisms for knowledge
management by user representatives in enterprise systems implementa-
tion,” IEEE Trans. Eng. Manag., vol. 63, no. 4, pp. 438–450, Nov. 2016.

[2] M. Aldabbas, X. Xie, B. Teufel, and S. Teufel, “Future security challenges
for smart societies: Overview from technical and societal perspectives,” in
Proc. Int. Conf. Smart Grid Clean Energy Technol., 2020, pp. 103–111.

[3] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous edge
clouds,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1270–1278.

[4] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 1421–1429.

[5] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-
aware placement of industry 4.0 applications in fog computing envi-
ronments,” IEEE Trans. Ind. Inform., vol. 16, no. 11, pp. 7004–7013,
Nov. 2020.

[6] M. Mukherjee et al., “Latency-driven parallel task data offloading in fog
computing networks for industrial applications,” IEEE Trans. Ind. Inform.,
vol. 16, no. 9, pp. 6050–6058, Sep. 2020.

[7] C. C. Byers, “Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled IoT networks,”
IEEE Commun. Mag., vol. 55, no. 8, pp. 14–20, Aug. 2017.

[8] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing,” IEEE Trans.
Ind. Inform., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter 2017.

[10] Z. Zhang, H. Zhou, and D. Li, “Joint optimization of multi-user computing
offloading and service caching in mobile edge computing,” in Proc.
IEEE/ACM 29th Int. Symp. Qual. Serv., 2021, pp. 1–2.

[11] Z. Xu et al., “To cache or not to cache: Stable service caching in mobile
edge-clouds of a service market,” in Proc. IEEE 40th Int. Conf. Distrib.
Comput. Syst., 2020, pp. 421–431.

[12] Y. Wu, B. Shi, L. P. Qian, F. Hou, J. Cai, and X. S. Shen, “Energy-efficient
multi-task multi-access computation offloading via NOMA transmission
for IoTs,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4811–4822,
Jul. 2020.

[13] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-device
communication assisted fog computing,” IEEE Trans. Mobile Comput.,
vol. 20, no. 3, pp. 1076–1091, Mar. 2021.

[14] X. Deng, Z. Sun, D. Li, J. Luo, and S. Wan, “User-centric computation
offloading for edge computing,” IEEE Internet Things J., vol. 8, no. 16,
pp. 12559–12568, Aug. 2021.

[15] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-aware and delay-
sensitive service provisioning in mobile edge-cloud networks,” IEEE
Trans. Mobile Comput., vol. 21, no. 1, pp. 196–210, Jan. 2022.

[16] R. Roshan, R. Matam, M. Mukherjee, J. Lloret, and S. Tripathy, “A secure
task-offloading framework for cooperative fog computing environment,”
in Proc. IEEE Glob. Commun. Conf., 2020, pp. 1–6.

[17] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge computing
systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4947–4963,
Jul. 2020.

[18] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks with
dependency and service caching in mobile edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792, Nov. 2021.

[19] S.-W. Ko, S. J. Kim, H. Jung, and S. W. Choi, “Computation offload-
ing and service caching for mobile edge computing under personalized
service preference,” IEEE Trans. Wireless Commun., to be published,
doi: 10.1109/TWC.2022.3151131.

[20] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal ap-
proach for online task offloading and resource allocation in edge-cloud
orchestrated computing,” IEEE Trans. Mobile Comput., vol. 21, no. 8,
pp. 2687–2700, 2022.

[21] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[22] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application parti-
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 7, pp. 1464–1480, Jul. 2019.

[23] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-
enabled real-time traffic management system,” IEEE Trans. Ind. Inform.,
vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[24] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online task
dispatching and scheduling with bandwidth constraint in edge computing,”
in Proc. IEEE Conf. Comput. Commun., 2019, pp. 2287–2295.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TWC.2022.3151131

DAI et al.: TASK OFFLOADING FOR CLOUD-ASSISTED FOG COMPUTING WITH DYNAMIC SERVICE CACHING IN EMS 671

[25] X. Dai et al., “Task co-offloading for D2D-assisted mobile edge computing
in industrial Internet of Things,” IEEE Trans. Ind. Inform., to be published,
doi: 10.1109/TII.2022.3158974.

[26] H. Jiang, Z. Xiao, Z. Li, J. Xu, F. Zeng, and D. Wang, “An energy-efficient
framework for Internet of Things underlaying heterogeneous small cell
networks,” IEEE Trans. Mobile Comput., vol. 21, no. 1, pp. 31–43,
Jan. 2022.

[27] F. Zeng, Q. Li, Z. Xiao, V. Havyarimana, and J. Bai, “A price-based
optimization strategy of power control and resource allocation in full-
duplex heterogeneous macrocell-femtocell networks,” IEEE Access, vol. 6,
pp. 42004–42013, 2018.

[28] Z. Xiao et al., “A joint information and energy cooperation framework for
CR-Enabled macro-femto heterogeneous networks,” IEEE Internet Things
J., vol. 7, no. 4, pp. 2828–2839, Jul. 2020.

[29] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offload-
ing and resource allocation for energy-constrained mobile edge com-
puting,” IEEE Trans. Mobile Comput., to be published, doi: 10.1109/
TMC.2022.3150432.

[30] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and
edge computing: Scheduling and trajectory optimization,” IEEE Trans.
Wireless Commun., vol. 18, no. 10, pp. 4738–4752, Oct. 2019.

[31] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 207–215.

[32] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150,
2010.

[33] Z. Xiao et al., “Spectrum resource sharing in heterogeneous vehicular
networks: A noncooperative game-theoretic approach with correlated
equilibrium,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9449–9458,
Oct. 2018.

[34] Z. Xiao et al., “Vehicular task offloading via heat-aware MEC cooperation
using game-theoretic method,” IEEE Internet Things J., vol. 7, no. 3,
pp. 2038–2052, Mar. 2020.

[35] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1279–1287.

[36] R. Jindal, N. Kumar, and H. Nirwan, “TFCT: A task offloading approach
for fog computing and cloud computing,” in Proc. 10th Int. Conf. Cloud
Comput. Data Sci. Eng., 2020, pp. 145–149.

[37] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Stackelberg
game for service deployment of IoT-enabled applications in 6G-Aware
fog networks,” IEEE Internet Things J., vol. 8, no. 7, pp. 5185–5193,
Apr. 2021.

Xingxia Dai (Student Member, IEEE) received
the B.S. degree in communication engineering
from Xiangtan University, Xiangtan, China, in
2018. She is currently working toward the Ph.D.
degree in computer science and technology with
Hunan University, Changsha, China.

Her current research interests include internet
of vehicles and mobile edge computing.

Zhu Xiao (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in communication and
information system from Xidian University, Xi’an,
China, in 2007 and 2009, respectively.

From 2010 to 2012, he was a Research Fel-
low with the Department of Computer Science
and Technology, University of Bedfordshire, Lu-
ton, U.K. He is currently an Associate Professor
with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Chang-
sha, China. His research interests include mo-

bile communications, wireless localization, Internet of Vehicles, and
trajectory data mining.

Hongbo Jiang (Senior Member, IEEE) received
the Ph.D. degree in computer science from
Case Western Reserve University, Cleveland,
OH, USA, in 2008.

He is currently a Full Professor with the Col-
lege of Computer Science and Electronic En-
gineering, Hunan University, Changsha, China.
He was a Professor with the Huazhong Univer-
sity of Science and Technology, Wuhan, China.
His research interests include computer net-
working, especially algorithms and protocols for

wireless and mobile networks.
Dr. Jiang was the Editor for IEEE/ACM TRANSACTIONS ON NETWORK-

ING, the Associate Editor for IEEE/ACM TRANSACTIONS ON MOBILE
COMPUTING, and the Associate Technical Editor for IEEE Communi-
cations magazine. He is an elected member of Academia Europaea,
Fellow of Institution of Engineering and Technology (IET), Fellow of The
British Computer Society (BCS), and Fellow of The Asia-Pacific Artificial
Intelligence Association (AAIA).

Mamoun Alazab received the Ph.D. degree in
computer science from the School of Science,
Information Technology and Engineering, Fed-
eration University Australia, Ballarat, Australia,
in 2012.

He is currently an Associate Professor with
the College of Engineering, IT and Environment,
Charles Darwin University, Darwin, Australia. He
is a Cyber Security Researcher and a Practi-
tioner with industry and academic experience.
He has authored or coauthored more than 200

research papers in many international journals and conferences. His
research is multidisciplinary that focuses on cyber security and digital
forensics of computer systems with a focus on cybercrime detection and
prevention.

Dr. Alazab is the Founding Chair of the IEEE Northern Territory (NT)
Subsection.

John C. S. Lui (Fellow, IEEE) was born in Hong
Kong. He received the Ph.D. degree in computer
science from the University of California, Los
Angeles, CA, USA, in 1992.

He is currently the Choh-Ming Li Professor
with the Department of Computer Science and
Engineering, The Chinese University of Hong
Kong (CUHK), Hong Kong, China, where he
was the Chairman of the department from 2005
to 2011. His current research interests include
communication networks, network/system se-

curity (e.g., cloud security, mobile security, etc.), network economics,
network sciences (e.g., online social networks, information spreading,
etc.), cloud computing, large-scale distributed systems, and perfor-
mance evaluation theory.

Dr. Lui is an elected member of the International Federation for In-
formation Processing Working Group (IFIP WG) 7.3, a Fellow of the
Association for Computing Machinery (ACM), a Senior Research Fellow
of the Croucher Foundation, and was the Chair of the ACM SIGMET-
RICS. He has been serving in the Editorial Board of the IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, Perfor-
mance Evaluation, and the International Journal of Network Security. He
is the recipient of various departmental teaching awards and the CUHK
Vice-Chancellors Exemplary Teaching Award. He is also a corecipient of
the Best Paper Award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP
Network Operations and Management Symposium (NOMS) 2006, and
SIMPLEX 2013.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TII.2022.3158974
https://dx.doi.org/10.1109/penalty -@M TMC.2022.3150432
https://dx.doi.org/10.1109/penalty -@M TMC.2022.3150432

672 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Geyong Min (Member, IEEE) received the
B.Sc. degree from the Huazhong University of
Science and Technology, Wuhan, China, and
the Ph.D. degree from the University of Glas-
gow, Glasgow, Scotland, U.K., in 1995 and
2003, respectively, both in computer science.

He is a Professor of high performance com-
puting and networking with the Department of
Computer Science within the College of Engi-
neering, Mathematics, and Physical Sciences,
University of Exeter, Exeter, U.K. His research

interests include future internet, computer networks, wireless com-
munications, multimedia systems, information security, high perfor-
mance computing, ubiquitous computing, modeling and performance
engineering.

Schahram Dustdar (Fellow, IEEE) received the
Ph.D. degree in business informatics from the
University of Linz, Linz, Austria, in 1992.

He is currently a Full Professor of computer
science (informatics) with a focus on internet
technologies heading the Distributed Systems
Group, TU Wien, Wein, Austria. Since Decem-
ber 2016, he has been the Chairman of the
Informatics Section of the Academia Europaea.

Dr. Dustdar has been a Member of the IEEE
Conference Activities Committee (CAC), since

2016, the Section Committee of Informatics of the Academia Europaea,
since 2015, and the Academia Europaea: The Academy of Europe, In-
formatics Section, since 2013. He was a recipient of the Association for
Computing Machinery (ACM) Distinguished Scientist Award in 2009 and
the International Business Machines Corporation (IBM) Faculty Award
in 2012. He is an Associate Editor for IEEE TRANSACTIONS ON SERVICES
COMPUTING, ACM Transactions on the Web, and ACM Transactions on
Internet Technology. He is on the Editorial Board of IEEE.

Jiangchuan Liu (Fellow, IEEE) received the
B.Eng. degree (cum laude) from Tsinghua Uni-
versity, Beijing, China, and the Ph.D. degree
from the Hong Kong University of Science and
Technology, Hong Kong, China, in 1999 and
2003, respectively, both in computer science.

He is a University Professor with the School
of Computing Science, Simon Fraser University,
British Columbia, Canada. He was as an Assis-
tant Professor with The Chinese University of
Hong Kong, Hong Kong, China, and a Research

Fellow with Microsoft Research Asia. His research interests include
multimedia systems and networks, cloud and edge computing, social
networking, online gaming, and Internet of Things/RFID/backscatter.

Dr. Liu is a Fellow of The Canadian Academy of Engineering and
a Natural Sciences and Engineering Research Council of Canada
(NSERC) E.W.R. Steacie Memorial Fellow. He was an EMC Endowed
Visiting Chair Professor of Tsinghua University (2013–2016). He is a
corecipient of the inaugural Test of Time Paper Award of IEEE Interna-
tional Conference on Computer Communications (INFOCOM) (2015),
Association for Computing Machinery (ACM) Special Interest Group
on Multimedia (SIGMM) Transaction on Multimedia Computing, Com-
munication and Applications (TOMCCAP) Nicolas D. Georganas Best
Paper Award (2013), and ACM Multimedia Best Paper Award (2012).
He has served on the editorial boards of IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON BIG DATA, IEEE TRANSACTIONS
ON MULTIMEDIA, IEEE Communications Surveys and Tutorials, and IEEE
Internet of Things journal. He is a Steering Committee member of IEEE
TRANSACTIONS ON MOBILE COMPUTING and Steering Committee Chair
of IEEE/ACM International Symposium on Quality of Service (IWQoS)
(2015–2017). He is TPC Cochair of IEEE International Conference on
Computer Communications (INFOCOM)’2021.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 08:16:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

