
480 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Task Co-Offloading for D2D-Assisted Mobile
Edge Computing in Industrial Internet of Things

Xingxia Dai , Zhu Xiao , Senior Member, IEEE, Hongbo Jiang , Senior Member, IEEE,
Mamoun Alazab , Senior Member, IEEE, John C. S. Lui , Fellow, IEEE,
Schahram Dustdar , Fellow, IEEE, and Jiangchuan Liu , Fellow, IEEE

Abstract—Mobile edge computing (MEC) and device-to-
device (D2D) offloading are two promising paradigms in
the industrial Internet of Things (IIoT). In this article, we
investigate task co-offloading, where computing-intensive
industrial tasks can be offloaded to MEC servers via cel-
lular links or nearby IIoT devices via D2D links. This co-
offloading delivers small computation delay while avoiding
network congestion. However, erratic movements, the self-
ish nature of devices and incomplete offloading informa-
tion bring inherent challenges. Motivated by these, we pro-
pose a co-offloading framework, integrating migration cost
and offloading willingness, in D2D-assisted MEC networks.
Then, we investigate a learning-based task co-offloading
algorithm, with the goal of minimal system cost (i.e., task
delay and migration cost). The proposed algorithm enables
IIoT devices to observe and learn the system cost from can-
didate edge nodes, thereby selecting the optimal edge node
without requiring complete offloading information. Further-
more, we conduct simulations to verify the proposed co-
offloading algorithm.

Index Terms—Device-to-device (D2D) offloading, indus-
trial Internet of Things (IIoT) devices, mobile edge comput-
ing (MEC), multiarmed bandit (MAB).

Manuscript received 12 December 2021; revised 6 February 2022
and 28 February 2022; accepted 9 March 2022. Date of publication 15
March 2022; date of current version 8 November 2022. This work was
supported in part by the National Natural Science Foundation of China
under Grant U20A20181, in part by the Key Research and Develop-
ment Project of Hunan Province of China under Grant 2022GK2020,
in part by Hunan Natural Science Foundation of China under Grant
2022JJ2059, and in part by the Funding Projects of Zhejiang under
Grant 2021LC0AB05. Paper no. TII-21-5505. (Corresponding authors:
Zhu Xiao; Hongbo Jiang.)

Xingxia Dai, Zhu Xiao, and Hongbo Jiang are with the College of Com-
puter Science and Electronic Engineering, Hunan University, Changsha
410082, China (e-mail: xingxdai718@gmail.com; zhxiao@hnu.edu.cn;
hongbojiang2004@gmail.com).

Mamoun Alazab is with the College of Engineering, IT, and Environ-
ment, Charles Darwin University, Darwin, NT 0810, Australia (e-mail:
mamoun.alazab@cdu.edu.au).

John C. S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

Schahram Dustdar is with TU Wien, 1040 Vienna, Austria (e-mail:
dustdar@infosys.tuwien.ac.at).

Jiangchuan Liu is with the School of Computing Science, Simon
Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail: jcliu@
cs.sfu.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3158974.

Digital Object Identifier 10.1109/TII.2022.3158974

I. INTRODUCTION

R ECENT years have witnessed that industrial Internet of
Things (IIoT) has drawn ever-increasing attention, boost-

ing the development of smart factories. IIoT devices in smart fac-
tories are required to continuously and timely process tasks for
effective industrial services, involving industrial control, smart
transportation, and virtual reality (VR) [1]. However, taking
VR as an instance, this service needs to consume enormous
computing resources for rendering tasks, while constrained
computing capabilities and limited battery lifetime of IIoT de-
vices impede continuous local rendering [2]. As a current solu-
tion, these computing-intensive industrial tasks are offloaded
to cloud servers to seek abundant computing resources [3].
Unfortunately, such a solution suffers from large transmission
delay due to long network distance, and hence degrades service
performance.

In response, mobile edge computing (MEC) provides a
promising solution to sink cloud computing to the network edge,
thereby shortening task transmission delay [4]. In MEC, edge
servers offer computing resources for multiple IIoT devices
within the communication coverage by creating a serial of virtual
machines. As such, computing-intensive industrial tasks can
be offloaded to MEC servers to pursue less computing delay
in the meantime keeping low transmission delay. Nevertheless,
both the communication capabilities and computing resources
of MEC servers are limited. Once IIoT devices are out of
the edge communication coverage, they are not supported by
task offloading. Additionally, when an MEC delivers offloading
services for numerous IIoT devices simultaneously, network
congestion is typically inevitable, especially for tasks with a
huge volume of data bits. This incurs large queue delay, even
may cause task failure.

Facing these issues, device-to-device (D2D) offloading [5]
serves as a promising solution to expand the communication
coverage and address the network congestion problem. In D2D
offloading, IIoT devices enable to establish short-range D2D
communication links. According to the Cisco Annual Inter-
net Report (2018–2023), the D2D (or the interchanged term
“machine-to-machine”) links are expected to add up to 14.7
billion by 2023 [6]. These links expand the network coverage
since one IIoT device can communicate to another IIoT device
out of MEC communication range. Furthermore, these links
allow an IIoT device to offload computing-intensive tasks to
its nearby IIoT devices with surplus computing resources. For

1551-3203 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5540-9418
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0002-1928-3704
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6592-1984
mailto:xingxdai718@gmail.com
mailto:zhxiao@hnu.edu.cn
mailto:hongbojiang2004@gmail.com
mailto:mamoun.alazab@cdu.edu.au
mailto:cslui@cse.cuhk.edu.hk
mailto:dustdar@infosys.tuwien.ac.at
mailto:jcliu@penalty -@M cs.sfu.ca
mailto:jcliu@penalty -@M cs.sfu.ca
https://doi.org/10.1109/TII.2022.3158974


DAI et al.: TASK CO-OFFLOADING FOR D2D-ASSISTED MEC IN IIoT 481

these reasons, D2D offloading, serving as a supplement of MEC,
effectively promotes industrial service performance.

In this article, we strive to propose a co-offloading scheme
in D2D-assisted MEC networks. Different from previous
works [7]–[20], which investigate MEC and D2D offloading
separately. Our work concentrates on a joint MEC and D2D
offloading scheme. Within our proposed scheme, IIoT devices
are divided into two categories, i.e., service devices (SeDs) and
user devices (UDs). SeDs are capable of processing tasks locally
within the stipulated task deadline, exploring their underutilized
computing resources and performing edge computing for UDs.
As such, computing-intensive industrial tasks generated by UDs
can be offloaded to MEC servers and SeDs based on industrial
task features, i.e., computation demands and data bits. This co-
offloading empowers to deliver small computation delay while
avoiding network congestion, effectively avoiding suboptimal
offloading performance.

However, when designing a co-offloading scheme in D2D-
assisted MEC networks, we are facing several challenges. 1)
Erratic movement. UDs move erratically that they may roam
throughout communication coverage supported by different
MEC servers and SeDs. In this case, offloading decisions fol-
lowing the movement are beneficial for small transmission delay,
while additional migration cost arises in return, such as service
interruption delay caused by service data roaming and service
virtual machine set up [21]. 2) Selfish nature. SeDs tend to
act in a selfish manner that they usually have a low will for
computing resource sharing. The reason is that task offloading
consumes considerable computing resources, while the primary
concern of SeDs is to maintain their own performance given
the limited computing resources. Therefore, it is challenging
to measure the offloading willingness and stimulate comput-
ing resource sharing among IIoT devices [22]. 3) Incomplete
information. Another key challenge for task co-offloading is
the lack of complete information. Erratic movement and dy-
namic environment lead to the varying of network topology
and channel state. Such information is intractable to model or
predict before task offloading. Consequently, UDs are required
to make co-offloading decisions based on incomplete offloading
information [23].

To address the above-mentioned challenges, we design a
co-offloading framework integrating MEC and D2D offload-
ing, where computing-intensive industrial tasks are offloaded
to MEC servers and SeDs based on task features and incom-
plete offloading information. This framework jointly considers
migration cost and offloading willingness of SeDs with the goal
of minimal system cost, i.e., the sum of task delay and migration
cost. Our contributions are highlighted as follows.

1) We propose a co-offloading framework in D2D-assisted
MEC networks, where MEC servers and SeDs enable
offloading services for computing-intensive industrial
tasks. In this framework, migration cost is considered to
avoid frequent migration while keeping small transmis-
sion delay, detailed in Section III-B. Besides, we design a
willingness metric, detailed in Section III-C, to quantify
the possibility of D2D offloading and stimulate resource
sharing among IIoT devices.

2) We investigate a learning-based industrial task co-
offloading algorithm based on multiarmed bandit (MAB)
theory, detailed in Section IV. This algorithm involves
twice learning in the SeD willingness and the system cost.
A UD first finds out the SeD with the largest willingness,
and the selected SeD serves as a candidate edge node to
perform edge computing. Then, the UD learns task delay
and migration cost from the candidate edge nodes, target-
ing the edge node with minimal system cost. After several
learning times, the optimal co-offloading decisions can be
made without requiring complete offloading information.

3) We conduct extensive simulations, detailed in Section V,
to validate the effectiveness of our proposed learning-
based algorithm. The simulation results demonstrate the
superiority of the proposed algorithm compared with
other learning-based algorithms under various system
parameters, such as task computation demands, data bits,
and learning times.

The rest of this article is organized as follows. Section II
presents the related works followed by the system model and
problem formulation in Section III. Section IV is learning-based
task co-offloading. In Section V, we conduct evaluations. Fi-
nally, Section VI concludes this article.

II. RELATED WORKS

In this section, we classify the existing task offloading into
the following three categories.

One is the MEC-enabled task offloading, where computing-
intensive tasks can be offloaded to MEC serves (e.g., base
stations, access points, and roadside units) for low computation
delay and small local energy consumption [7]–[14]. Ma et al. [7]
presented a framework combining service caching and workload
scheduling in MEC. To achieve minimal service delay and out-
sourcing traffic, an iterative algorithm based on Gibbs sampling
is proposed. Gao et al. [8] jointly optimize the access network
selection and service placement in MEC. Each user selects an
access point for service offloading with the goal of small service
delay and switching cost. Yang et al. [9] investigated a task
offloading strategy in MEC, where edge servers are heteroge-
neous and users have different locations. The strategy is analyzed
based on a Markov decision process (MDP) and realizes small
offloading time. Chen et al. [10] developed a task processing and
caching solution in MEC. By rationally adjusting communica-
tion, computation, and caching settings, mobile devices enable
to acquire minimal mean delay. Liu et al. [11] considered a task
offloading problem in MEC, aiming at the long-term minimal
task delay and energy consumption. This optimization problem
is achieved by finding out the optimal offloading strategies, CPU
frequency and transmission power. Xu et al. [12] proposeed
trust-aware task offloading in MEC-enabled internet of vehi-
cles. To achieve minimal service response time, an improving
strength Pareto evolutionary algorithm is derived. Lai et al. [13]
addressed user allocation problems in MEC, where a vendor
determines, which MEC servers to serve for a specific user.
This problem is formulated as a potential game based on user’s
quality of service. Correspondingly, a game-theoretic approach

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



482 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

is proposed, and its performance is theoretically and empirically
evaluated. Zhou et al. [14] offloaded computing-intensive tasks
to nearby BSs for task processing on the internet of health
things (IoHT), The goal of this work is to minimize the total
long-term energy consumption of IoHT devices under task delay
and reliability requirements.

Another is the D2D-assisted task offloading, where
computing-intensive tasks can be offloaded to other devices with
underutilized computing resources to maintain service perfor-
mance [15]–[20]. Cheng et al. [15] advocated a D2D-assisted
computation offloading framework in cognitive radio networks.
In this framework, the primary user offloads computation tasks
to the secondary user by D2D communications. To minimize en-
ergy consumption, offloading decisions and transmission power
are jointly optimized under the limitation of deadline and power
control. Budhiraja et al. [16] propose a Tactile Internet-driven
delay assessment in a D2D-enabled communication framework.
In this framework, Tactile Internet communication and a pricing-
based 3-D matching method are derived, targeting improving
transmission speed and throughput of cell edge users. Zhou
et al. [17] investigated offloading willingness of mobile nodes
in D2D offloading. An inventive-driven method is proposed to
simulate mobile nodes to participate in D2D offloading. On this
basis, an integer nonlinear programming problem is formulated
to maximize the saving energy. Hamdi et al. [18] studied a joint
task assignment and power control problem in D2D offloading
with the assistance of energy harvesting technology. This work
assumes that energy consumption conducted by D2D links can
be compensated by the harvested energy. Guided by this assump-
tion, energy efficiency is maximized under the constraint of task
delay and energy causality. Saleem et al. [19] studied a D2D-
enabled cooperative MEC network, where resource-limited de-
vices enable to offload their tasks to the devices with surplus
resources, with the goal of minimal total task execution delay.
This optimization is achieved by adjusting task assignment and
power allocation. Peng et al. [20] considered a joint multiuser
cooperative partial offloading, transmission scheduling, and
computation allocating problem in D2D-assisted MEC. In this
article, idle mobile terminals serve as relay nodes for active
mobile terminals, targeting minimal task response latency, and
energy consumption.

The last one is the co-offloading integrating MEC and D2D
offloading, where MEC servers and devices with excessive
computing resources are both served as candidate edge nodes for
task processing. IIoT devices offload computing-intensive tasks
to these edge nodes for small computation delay and local energy
consumption while keeping low queue delay [24]–[29]. Wang
et al. [24] investigated a co-offloading problem in D2D enabled
MEC networks by integrating task traffic and computation.
Mobile devices make offloading decisions based on the locations
and offloading willingness. Tang et al. [25] presented a frame-
work integrating MEC and cache-enabled D2D communications
with the goal of minimal energy cost. File popularity and user
preference are paid particular attention in this framework. A
reinforcement learning-based method is proposed to determine
file popularity and user preference. Sun et al. [26] formalized
a resource management problem in D2D-aided MEC networks.

One device can offload tasks to MEC servers or other devices
with surplus resources under the energy harvesting system.
By jointly optimizing computation offloading decisions, energy
transmission power, and CPU processing speed, the optimal
solution with maximal long-term utility energy efficiency can be
realized. He et al. [27] considered D2D communications with
MEC, where each device can offload its task to an edge node
by cellular link or a nearby device with abundant resources via
D2D link. The goal of this work is to maximize the number
of devices supported by the cellular networks under a series
of constraints in both communication and computation. Tan et
al. [28] optimized offloading decisions, collaboration decisions,
and resource allocation in the multiuser collaborative MEC
network. In this network, delay-sensitive tasks can be processed
locally, offloaded to the nearby mobile devices or MEC servers,
aiming to the minimal total energy consumption of mobile
users meanwhile guaranteeing the task delay constraint. Li and
Cai [29] investigated an online truthful mechanism integrating
resource allocation, where a requester can offload its tasks to the
collaborators and BS. Based on data bits, task delay, and task
preference, the authors derive a social welfare-maximization
optimization problem by jointly considering collaborator selec-
tions, resource allocation, time scheduling decisions, and pricing
policy designs.

As these works mentioned, D2D-assisted MEC offloading
facilitates small task delay and local energy consumption. How-
ever, this co-offloading also produces additional migration cost
due to erratic movement, and derives offloading willingness
dilemma due to the selfish nature of devices. What’s worse,
intractable networks hamper the acquisition of transmission rate,
and hence co-offloading has to rely on incomplete offloading
information. However, most of the existing works overlook
these issues, thus the system performance is easily trapped
by suboptimal co-offloading strategies. Different from these
works, we study industrial task co-offloading in D2D-assisted
MEC networks by jointly considering migration cost, offloading
willingness and incomplete offloading information. To the best
of our knowledge, this co-offloading has not been studied before.

III. SYSTEM MODELS AND PROBLEM FORMULATION

Fig. 1 presents the proposed system model, involving two
entities, i.e., MEC servers and IIoT devices. The IIoT devices
are classified by UDs and SeDs. For a UD, there are multiple
edge nodes, i.e., MEC servers and SeDs, enabling offloading
services for it. In this work, we discretize the timeline intoT time
slots. At each time slot, a UD generates one computing-intensive
industrial task and offloads its task to a single edge node.
For simplify, we assume that tasks generated by the same UD
across time slots hold sequential relationship and are executed
in order [30]. Besides, we list the key notations as Table I for
better readability.

A. Co-Offloading Model

UDs enable to offload tasks to MEC servers and SeDs for
processing, which is referred to as task co-offloading in this
article. The co-offloading decision of task n at time slot t is

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: TASK CO-OFFLOADING FOR D2D-ASSISTED MEC IN IIoT 483

Fig. 1. Industrial task co-offloading in D2D-assisted MEC networks.
Computing-intensive industrial tasks are offloaded to MEC servers and
SeDs by joint considering SeD willingness and migration cost, targeting
minimal system cost, i.e., the sum of task delay and migration cost.

TABLE I
SUMMARY OF THE KEY NOTATIONS

denoted as xt
n = {xt,n

m ,m ∈ M}, where xt,n
m ∈ {0, 1}, M is

an edge node set consisting of MEC set MMEC and SeD set
MSeD, i.e., M = MMEC ∪MSeD. We assume that the optimal
edge node will not change at each time slot, but can be changed
across time slots.

1) MEC Offloading: When xt,n
m = 1,m ∈ MMEC, task n is

offloaded to MEC server m at time slot t. In MEC offloading,
each UD is assigned one subchannel of cellular links for trans-
mitting the offloaded task to the target MEC server. We define
ht,mec
n,m and pt,mec

n,m as the channel power gain and transmission
power between UD n and MEC server m at time slot t. Ad-
ditionally, we assume the wireless bandwidth and noise power
keep fixed during T time slots in MEC offloading, denoted as
Bmec and δ2

mec, respectively. As such, the communication rate
between UDn and MEC serverm at time slot t can be expressed
as

rt,mec
n,m =Bmec log2

(
1+

pt,mec
n,m | ht,mec

n,m |2
δ2

mec

)
,m ∈ MMEC. (1)

Correspondingly, we obtain the communication delay when
task n is transmitted to MEC m at time slot t, expressed as

T t,trans
n,m,mec =

btn
rt,mec
n,m

,m ∈ MMEC (2)

where btn represents the data bits of task n at time slot t. Since a
UD moves erratic, the UD may be incapable of communicating
with MEC server m directly. In this case, task n is required to
be propagated to the target MEC m through edges-relay in local
area network, and thus network propagation delay of tt,pro

n,m is
produced. Guided by this, we define the task transmission delay
as

T t,trans
n,m,mec =

⎧⎨
⎩btn/r

t,mec
n,m , lt,mec

m,n ≤ Rmec

btn/r
t,mec
n,m + tt,pro

n,m, lt,mec
m,n > Rmec

(3)

where lt,mec
m,n is the distance between MEC m and UD n at

time slot t. The parameter Rmec is a fixed value, denoting the
communication range of an MEC server.

Then, we use an M/M/1 queuing model to characterize the
queue delay caused by network congestion in MEC offloading

T t,queue
n,m,mec =

texp

1 − texpc0
,m ∈ MMEC (4)

where texp is the expected delay for sending and receiving data
without network congestion, and c0 is the normalized computa-
tion tasks processed by MEC cooperation [31].

After that, task n can be processed by MEC m with the
allocated computing resources. Since an MEC server serves for
multiple UDs, we use f t,mec

m,n to denote the allocated computing
resources of MEC m for processing task n. Based on this, we
calculate the computing delay of task n as

T t,compute
n,m,mec =

ctn
f t,mec
m,n

,m ∈ MMEC (5)

where ctn is the computation demands of task n. Overall, the
total delay of task n for MEC offloading is formulated as

T t,n
mec = T t,trans

n,m,mec + T t,queue
n,m,mec + T t,compute

n,m,mec ,m ∈ MMEC. (6)

2) D2D Offloading: When xt,n
m = 1,m ∈ MSeD, task n is

offloaded from a UD to SeD m via the D2D link at time slot
t. We define ht,d2d

n,m and pt,d2d
n,m as the channel power gain and

transmission power between UD n and SeD m at time slot t.
Given fixed bandwidth of Bd2d and noise power of δ2

d2d in D2D
offloading, we obtain the communication rate between UD n
and SeD m at time slot t, expressed as

rt,d2d
n,m = Bd2d log2

(
1 +

pt,d2d
n,m | ht,d2d

n,m |2
δ2
d2d

)
,m ∈ MSeD. (7)

Correspondingly, when task n is transmitted to the target SeD
m, the communication delay is expressed as

T t,trans
n,m,d2d =

btn

rt,d2d
n,m

,m ∈ MSeD. (8)

Since the communication coverage conducted by D2D links
is small, we assume that each SeD delivers offloading service

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



484 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

for at most one UD to avoid queue delay [19]. Then, we use
f t,d2d
m,n ,m ∈ MSeD, to denote the computing resources of SeD
m for processing task n. Therefore, the computation delay is
expressed as follows:

T t,compute
n,m,d2d =

ctn

f t,d2d
m,n

,m ∈ MSeD. (9)

It is noted that the computation results need to be feedback
from the target edge node m ∈ M to the UD. If direct commu-
nication is not available for result feedback, the results will be
transmitted to the UD via edges-relay. Because the output result
size is much smaller compared with the input task, we neglect
the result feedback delay in both MEC and D2D offloading [32].
As such, the total delay of taskn at time slot t for D2D offloading
is expressed as

T t,n
d2d = T t,trans

n,m,d2d + T t,compute
n,m,d2d ,m ∈ MSeD. (10)

B. SeD Willingness Model

SeDs tend to act in a selfish manner that they usually have
a low will for computing resource sharing. The reason is that
processing tasks offloaded by UDs consume considerable com-
puting resources, while the primary concern of SeDs is to
maintain their own service performance given the limited com-
puting resources. Under the selfish nature, massive computing
resources of SeDs are wasted, while a variety of tasks generated
by UDs will suffer from the prolonged delay due to lacking
computing resources. In addition, varying roles of IIoT devices
indicate that a SeD could serve as a UD at the next time slot
and seek task offloading services. Therefore, SeDs acting for
their interests will impact their own performance and ultimately
degrade the whole system performance.

Motivated by the challenges mentioned above, a promising
solution is to stimulate computing resource sharing among IIoT
devices. For a SeD m ∈ MSeD, we present a function to depict
its offloading willingness for task n at time slot t

W t
m,n = γItnf

t,d2d
m,n

√
σt
m,m ∈ MSeD (11)

where γ is a normalized coefficient to make the willingness
range from 0 to 1. Itn is an incentive factor, recording the times
that the UD serves as a SeD and process tasks offloaded by
other devices up to time slot t; f t,d2d

m,n and σt
m are performance

factors, paying attention to SeD performance. We define σt
m =

ctm(c− ctm), where ctm represent the task computation demands
of SeD m at time slot t, c ∈ (ctm, 2ctm). When SeD m is with
heavy computation demands, σt

m will drop sharply and hence
go against large willingness. Based on the willingness function
shown in (11), the willingness of SeD m at time slot t is jointly
determined by the incentive factor, i.e., Itn, and the performance
factors, i.e., f t,d2d

m,n and σt
m. For example, suppose that 1) UD

n has a large incentive value Itn, indicating this UD had played
as the SeD role and shared computing resource for other IIoT
devices; 2) the requested SeD m has small own computation
demands and large computing resources. Then, the SeD will
perform a large willingness for processing tasks offloaded by
UD n.

In a nutshell, the proposed willingness function is benefi-
cial for effective D2D offloading via resolving the “selfishness
dilemma.” On the one hand, recall Itn in (11), UD n broadcasts
its incentive value to SeDs. A large Itn would reap a higher
willingness W t

m, and hence increasing the chance that SeDs
deliver offloading services for UDn. Furthermore, this incentive
factor will in turn stimulates SeDs to share their resource, as
SeDs could turn into UDs and would strive to a large Itn for
seeking task offloading services. On the other hand, f t,d2d

m,n and
σt
m in the willingness function ensure performance-guaranteed

offloading for the SeDs, since a SeD with large computing
resources and low computation demands tends to contribute its
computing resources in D2D networks.

C. Migration Cost Model

Since a UD may roam throughout several areas supported
by different edge nodes, dynamic service migration should be
considered to maintain effective task co-offloading [33]. For
example, a UD offloads its task to an MEC at time slot t via the
direct cellular link between them. At the next time slot, the UD
roams to the communication coverage served by another edge
node. In this case, the UD holds two co-offloading decisions.
One is that the UD offloads its task to the same edge node
selected at time slot t for keeping task processing continuity. As a
result, long transmission delay may incur as the UD movements
extend network distance and the propagation delay caused by
edges-relay needs to be considered. The other is that the UD
makes its co-offloading decision following UD’s movements
and the task will be processed by another edge node different
from the former MEC. Guided by this co-offloading decision,
the transmission network distance is greatly reduced, while ad-
ditional migration overhead incurs, such as service interruption
delay and service virtual machine set up. Overall, co-offloading
decisions following UD’s movements are beneficial for small
transmission delay, while additional migration overhead arises
in return. It is therefore important to investigate the impact of
dynamic service migration in task co-offloading. To this end, we
introduce a parameter cmig to denote the migration cost between
different edge nodes. The migration cost for UD generating task
n at time slot t is expressed as

Gt
n = cmigI{xt−1,n−1

i = 1, xt,n
j = 1, i �= j}, i, j ∈ M (12)

where I{x} is an indicator function. When event x is true,
I{x} = 1; if event x is false, I{x} = 0.

D. Problem Formulation

Task delay reflects service performance directly, especially
for time-critical industrial tasks. For that reason, our objective
is to minimize task delay in this article. To achieve small delay,
frequent service migration is typically inevitable for the sake of
less network distance and transmission delay. However, frequent
migration produces additional data roaming and virtual machine
set-up delay, leading to degraded offloading performance. As
such, we define the optimization objective as the system cost
of task n conducted by edge node m processing at time slot t,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: TASK CO-OFFLOADING FOR D2D-ASSISTED MEC IN IIoT 485

expressed as

Ξt
m,n = αT t

n + (1 − α)Gt
n,m ∈ M (13)

which integrates task delay and service migration cost. The
weighting factor α ∈ [0, 1] is introduced to balance these two
conflicting objectives. T t

n = xt
n(T

t,n
mec + T t,n

d2d),m ∈ M, indi-
cating the delay of task n. Mathematically, we formulate the
co-offloading problem as

min
xt
n

1
T

T∑
t=1

∑
n∈N

Ξt
m,n,m ∈ M (14)

s.t. xt,n
m ∈ {0, 1} (15a)

M∑
m=1

xt,n
m = 1 (15b)

f t
m,n ≤ Fm (15c)

where constraint (15a) denotes that offloading decisions are
bounded by integer zero and one, constraint (15b) implies that
each task is required to be offloaded to a single edge node for
task continuity, and constraint (15c) indicates that the allocated
computing resources cannot exceed the maximum computing
capabilities of the edge node.

To solve the formulated problem, global offloading informa-
tion, including the task computation demands, allocated comput-
ing resources, and channel states, are required. Unfortunately,
computation demands change with varying task requests, and
computing capacities of edge nodes are heterogeneous. What’s
worse, the transmission rate between a UD and edge nodes is
hard to model or predict due to UD movements and varying
network topology. These challenges call for a learning-based op-
timization approach that can efficiently perform industrial task
co-offloading without relying on overall offloading information.

IV. LEARNING-BASED TASK CO-OFFLOADING

In this section, we investigate a learning-based approach to
find out the optimal offloading decision. Following that, we pro-
pose a learning-based task co-offloading algorithm and analyze
the learning regret.

A. Learning-Based Co-Offloading Approach Based
on MAB

When a UD only holds incomplete offloading information,
i.e., lacking information of the allocated computing resources
and channel states, finding out the optimal edge node for task
processing directly is difficult. Under the circumstances, the
UD needs to observe and learn edge performance while of-
floading their tasks. As such, we propose a learning-based task
co-offloading approach based on MAB theory, with the goal of
minimal task delay and service migration cost.

MAB focuses on the exploration-exploitation dilemma in
reinforcement learning [34]. The gambler does not have any
prior information about k arms in a k-armed bandit problem,
choosing an arm per time slot and correspondingly obtaining
a reward. The purpose of the game is to maximize the reward

value via “learning while choosing.” In this classical situation,
the gambler wants to choose a new arm to pursue a higher reward
(i.e., exploration), yet he is unwilling to undertake the related
risk (the reward of the new arm is less than the former one). For
that reason, the arm with the largest reward currently may be
selected (i.e., exploitation). Apparently, MAB theory enables to
be adopted in our industrial task co-offloading problem, where
the candidate edge nodes are considered as arms with different
reward values. In our work, the reward is determined by task
delay and service migration cost as shown in (14). The UD may
select the current optimal edge node or search for new edge
nodes for possible better rewards.

Despite the above analysis, we emphasize there are three
main differences of our proposed industrial task co-offloading
approach compared with the classical MAB. 1) The optimization
objective. Different from MAB, our goal is to minimize task
delay and migration cost rather than seeking the largest value.
2) States of arms. Candidate edge nodes are varying due to UD
movements and changing computation demands, while “arms”
keep fixed in classical MAB. 3) Learning process. The proposed
learning-based approach involves twice learning at each iteration
instead of once learning in classical MAB.

It is noted that the proposed approach is easy to implement
in the real world since network information (i.e., channel states,
transmission rate), and computing resources information (i.e.,
computation demands and allocated computing resources), are
not required prior.

B. Learning-Based Co-Offloading Algorithm

We propose a learning-based task co-offloading algorithm as
shown in Algorithm IV-A, which consists of two stages, i.e.,
SeD choosing (lines 2 ∼ 13) and co-offloading decision making
(lines 14 ∼ 27). The former stage selects a SeD with the largest
willingness, and the latter finds out the edge node with minimal
task delay and service migration cost.

In the SeD choosing stage, we first initialize SeD set by
selecting each SeD once at least. We define N t

m1
,m1 ∈ MSeD,

to denote the selected times of SeD m1 up to time slot t. After
each SeD has been selected at least once, we find out the SeD
π1 with maximum index value based on t times learning

πt
1 = argmax

{
W̄ t−1

m1,n
+

√
2 ln t
N t−1

m1

}
,m1 ∈ MSeD (16)

where W̄ t−1
m1,n

represents the empirical (sample-mean) estima-

tion of SeD willingness up to time slot t− 1, and
√

2 ln t
Nt−1

m
is

the confidence bound used to realize an exploration-exploitation
tradeoff in SeD choosing. Then, SeD π1 is selected at time slot
t, and hence the selected times of SeD π1 plus one. Correspond-
ingly, we update the average willingness of SeD π1 as follows:

W̄ t
π1

=
N t−1

π1
W̄ t−1

π1,n
+W t

π1,n

N t
π1

, π1 ∈ MSeD. (17)

In the co-offloading decision making stage, we first update
the candidate edge node set by adding SeD π1 to the MEC set
to form a new set of Mcand. If edge node m ∈ Mcand has not

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



486 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

been selected up to tth learning, it will be selected at time slot
t. We use J t

m2
and Ξ̄t

m2,n
to denote the chosen number and the

empirical (sample-mean) estimation of edge nodem ∈ Mcand at
time slot t, respectively. On this basis, we define the index-based
decision making function as

πt
2 = argmin

{
Ξ̄t−1
m2,n

−
√

2 ln t
J t−1
m2

}
,m2 ∈ Mcand. (18)

Correspondingly, we update the average task delay and ser-
vice migration cost of edge node π2 as follows:

Ξ̄t
π2

=
J t−1
π2

Ξ̄t−1
π2

+ Ξt
π2

J t
π2

, π2 ∈ Mcand. (19)

It is noted that the proposed learning-based task co-offloading
algorithm is required to learn twice. First, the SeD with the
highest willingness is picked out. Then, we combine the selected
SeD and MECs to form a new candidate edge node set. The
second learning aims to find out the edge node from the candidate

edge node set with the goal of minimal task delay and service
migration cost.

Computational Complexity: Line 9 shows a maximum will-
ingness seeking problem, occupying O(MSeD), where MSeD =|
MSeD | denotes the number of SeDs. Line 22 represents a mini-
mal system cost seeking problem, the computational complexity
isO(Mcand), whereMcand =| Mcand | is the number of candidate
edge nodes. The update behaviors, such as lines 11, 12, 24, and
25 have a computational complexity of O(1). Therefore, we
conclude that the computational complexity of our proposed
algorithm is O(MSeD +Mcand) for processing a single task.
Based on this, we obtain the total computational complexity
is O(N(MSeD +Mcand)), where N indicates the total offloaded
tasks.

C. Regret Analysis

In this section, we analyze the learning regret conducted by
Algorithm IV-A. Learning regret is commonly used to mea-
sure the performance loss in MAB algorithm [35]. Different
from some classical MAB algorithms, such as UCB1, our pro-
posed algorithm contains twice learning at each iteration, i.e.,
SeD choosing and co-offloading decision making. As such, the
learning regret refers to willingness choosing regret (WR) and
decision making regret (DR) in this article. On this basis, we
define the learning regret at time slot t as the expected perfor-
mance difference between our proposed Algorithm IV-A and the
optimization algorithm with global offloading information

Rt = E((W t
∗1,n

−W t
m1,n

)︸ ︷︷ ︸
WR

+(Ξt
m2,n

− Ξt
∗2,n

)︸ ︷︷ ︸
DR

) (20)

where m1 ∈ MSeD and m2 ∈ Mcand. The variable W t
∗1,n

de-
notes the largest willingness of SeD ∗1 ∈ MSeD for processing
task n, and Ξt

∗2,n
is the minimal system cost of the edge node

∗2 ∈ Mcand for processing task n. Additionally, we introduce
νm1 as the willingness expectation of SeD m1, and μm2 as
the system cost expectation of edge node m2. Additionally, we
define the expectation of optimal willingness and system cost as:
ν∗1 = max νm1 , m1 ∈ MSeD, μ∗2 = minμm2 , m2 ∈ Mcand.

Based on this, the learning regret up to time slot T can be
transferred to the following equivalent expression:

WRT =
∑

νm1<ν∗1

(ν∗1 − νm1)E(NT
m1

),m1 ∈ MSeD (21)

DRT =
∑

μm2<μ∗2

(μm2 − μ∗2)E(JT
m2

),m2 ∈ Mcand. (22)

Then, we present the total learning regret conducted by Al-
gorithm IV-A by combining WRT and DRT , expressed as

RT ≤
∑

νm1<ν∗1

∑
μm2<μ∗2(

8 lnT
(ν∗1 − νm1)

2
+

8 lnT
(μ∗2 − μm2)

2
+ 2 +

2π2

3

)
m1 ∈ MSeD,m2 ∈ Mcand.

(23)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: TASK CO-OFFLOADING FOR D2D-ASSISTED MEC IN IIoT 487

TABLE II
PARAMETER SETTINGS

Proof: ∀τ be a positive integer, we obtain the upper bound of
NT

m1
based on [34], expressed as follows:

τ +

∞∑
t=1

t−1∑
Nt∗1

=1

t−1∑
Nt

m1
=1

I

{
W̄ t

∗1,n
+

√
2 ln t
N t∗1

≤ W̄ t
m1,n

+

√
2 ln t
N t

m1

}
. (24)

We apply Chernoff–Hoeffding bound to (24), and we obtain
the following two inequalities:

P

{
W̄ t

∗1,n
≤ ν∗1 −

√
2 ln t
N t∗1

}
≤ t−4 (25)

P

{
W̄ t

m1,n
≥ νi +

√
2 ln t
N t

m1

}
≤ t−4 (26)

Summarizing the above analysis, we have

WRT =
∑

νm1<ν∗1

(
8 lnT

(ν∗1 − νm1)
2
+ 1 +

π2

3

)
,m1 ∈ MSeD.

(27)
Similar to the analysis of WRt, we obtain DRT

DRT =
∑

μm2<μ∗2

(
8 lnT

(μ∗2 − μm2)
2
+ 1 +

π2

3

)
,m2 ∈ Mcand.

(28)
By adding (27) and (28), we can obtain the total learning

regret as shown in (23).

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the pro-
posed learning-based task co-offloading algorithm.

A. Simulation Setup

We conduct simulations on a desktop computer with an 11th
Gen Intel(R) Core(TM) i7-11700F @2.50 GHz, 16 GB memory
and Win10 OS. The parameter settings are listed, shown in
Tabel II.

We compare the proposed learning-based task co-offloading
algorithm with the following methods: 1) Task co-offloading

Fig. 2. Performance under different task computation demands.

Fig. 3. Performance under different task data bits.

with global information (GI): Without learning, this co-
offloading algorithm enables task offloading directly based on
global offline information [36]. 2) Task offloading in MEC net-
works (MEC): Computing-intensive tasks can only be offloaded
to MEC servers under this scheme [7]. 3) Task offloading in
D2D networks (D2D): Computing-intensive tasks can only be
offloaded to the nearby SeDs with surplus computing resources
via D2D communication [16].

B. Comparison Analysis

1) Comparison Analysis on Task Computation Demands:
Fig. 2 shows the comparison between the proposed algorithm
and the D2D algorithm under different task computation de-
mands. When the computation demands are small, these two
algorithms have similar performance. As computation demands
grow, the proposed algorithm incurs less system cost than that of
D2D. This result demonstrates that tasks with large computation
demands are inclined to offload to MEC servers to seek less
computation delay.

2) Comparison Analysis on Task Data Bits: Fig. 3 shows
the comparison between the proposed algorithm and the MEC
algorithm under different task data bits. From the results, we
can find that a task is offloaded to the MEC server when the
task data bits are small. In this case, the proposed algorithm and

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



488 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Fig. 4. Performance under different SeV capabilities in CPU cycles.

Fig. 5. Performance under different MEC capabilities in CPU cycles.

MEC algorithm have the same system cost. However, when data
bits enlarges, MEC offloading inevitably incurs excessive queue
delay, and therefore our proposed algorithm intends to seek D2D
offloading to avoid network congestion.

3) Comparison Analysis on SeV Capabilities: Fig. 4 shows
the comparison between the proposed algorithm and the D2D
algorithm under different SeV capabilities in CPU cycles. When
SeV capabilities are small, UDs tend to offload tasks to MEC
servers rather than SeDs. As such, the proposed co-offloading al-
gorithm performs much better than the D2D algorithm. Because
SeD capabilities do no affect MEC offloading, the performance
of the co-offloading algorithm keeps fixed in this case. As SeD
capabilities grow, D2D offloading achieves less computation
delay and thus reduces system cost. When the SeD capabilities
add up to 2.5 GHz, UDs will offload tasks to SeDs in our
simulations.

4) Comparison Analysis on MEC Capabilities: Fig. 5 shows
the comparison between the proposed algorithm and the MEC al-
gorithm under different MEC capabilities in CPU cycles. For the
MEC algorithm, its system cost decreases with MEC capabilities
growing. Since the proposed algorithm enables co-offloading, it
seeks D2D offloading when MEC capabilities are low; while
it pursues MEC offloading when MEC capabilities enlarge.
Correspondingly, the proposed algorithm’s curve is invariable
in D2D offloading and keeps the same as the MEC algorithm
with increasing MEC capabilities.

Fig. 6. Performance under different methods.

Fig. 7. Performance under different learning times.

Fig. 8. Regret under different learning times.

5) Comparison Analysis on Different Methods: Fig. 6 shows
the performance comparison between different methods. Since
GI has global offline offloading information, GI maintains the
optimal offloading decisions and produces no learning regret.
Compared with MEC and D2D, our proposed co-offloading
algorithm shows superiority in system cost and learning regret.
This is because the proposed co-offloading scheme enables to
adjust offloading decisions dynamically based on task features
in computation demands and data bits.

6) Comparison Analysis on Learning Times: Figs. 7 and 8
show the impact of learning times on system performance and
learning regret. Our proposed algorithm is implemented via

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: TASK CO-OFFLOADING FOR D2D-ASSISTED MEC IN IIoT 489

“offloading while learning.” The optimal edge node cannot be
obtained before task offloading, and the offloading efficiency of
each edge node is learned based on its system cost. From the
results presented in Fig. 7, we find that when learning times are
small, the proposed algorithm suffers from bad performance.
As learning times grow, the optimal edge node can be selected.
Correspondingly, the learning regret converges to a fixed value
after finding out the optimal edge node as shown in Fig. 8. In
our simulation, our proposed learning-based algorithm gradually
converges after 12 times of learning.

VI. CONCLUSION

In this article, we investigated industrial task co-offloading in
D2D-assisted MEC networks. Specifically, computing-intensive
industrial tasks can be jointly served by MEC and D2D offload-
ing, thereby achieving small computation delay meanwhile re-
solving the network congestion problem. To this end, we perform
a co-offloading framework in D2D-assisted MEC networks. In
this framework, we consider migration cost caused by erratic
movements of IIoT devices, and design a willingness metric to
stimulate resource sharing among IIoT devices. Beyond that,
we investigate a learning-based task co-offloading algorithm for
minimal task delay and migration cost. The proposed algorithm
enables IIoT devices to observe and learn the system cost from
the candidate edge nodes, thereby selecting the optimal edge
node. Since the proposed algorithm does not require complete
offloading information, it is easily implemented in the real world.
Furthermore, we carry out simulations to evaluate the perfor-
mance of the proposed algorithm. The results demonstrate that
the proposed algorithm conducts a better performance compared
with that of other algorithms, in various parameters, such as
task computation demands, data bits, and learning times. In the
future, we will extend our work by taking privacy protection into
consideration for co-offloading in D2D-assisted MEC networks.

REFERENCES

[1] Z. Xu et al., “Collaborate or separate? distributed service caching in mobile
edge clouds,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 2066–
2075.

[2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5G mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun. Surv.
Tut., vol. 23, no. 2, pp. 1160–1192, Apr./Jun. 2021.

[3] A. Rahman, J. Jin, A. L. Cricenti, A. Rahman, and A. Kulkarni,
“Communication-aware cloud robotic task offloading with on-demand
mobility for smart factory maintenance,” IEEE Trans. Ind. Informat.,
vol. 15, no. 5, pp. 2500–2511, May 2019.

[4] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task
offloading and resource allocation for energy-constrained mobile
edge computing,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2022.3150432.

[5] D. Chatzopoulos, C. Bermejo, E. U. Haq, Y. Li, and P. Hui, “D2D task
offloading: A. dataset-based Q and A,” IEEE Commun. Mag., vol. 57, no. 2,
pp. 102–107, Feb. 2019.

[6] San Jose, USA CA, White Paper C11-741490-01, “Cisco Annual
Internet Report (2018-2023),” Website, 2020. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.pdf

[7] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 2076–2085.

[8] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online frame-
work for joint network selection and service placement in mobile
edge computing,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2021.3064847.

[9] G. Yang, L. Hou, X. He, D. He, S. Chan, and M. Guizani, “Offloading time
optimization via markov decision process in mobile-edge computing,”
IEEE Internet Things J., vol. 8, no. 4, pp. 2483–2493, Feb. 2021.

[10] C.-L. Chen, C. G. Brinton, and V. Aggarwal, “Latency minimization for
mobile edge computing networks,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2021.3117511.

[11] T. Liu, Y. Zhang, Y. Zhu, W. Tong, and Y. Yang, “Online computation
offloading and resource scheduling in mobile-edge computing,” IEEE
Internet Things J., vol. 8, no. 8, pp. 6649–6664, Apr. 2021.

[12] X. Xu, Q. Wu, L. Qi, W. Dou, S.-B. Tsai, and M. Z. A. Bhuiyan, “Trust-
aware service offloading for video surveillance in edge computing enabled
internet of vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3,
pp. 1787–1796, Mar. 2021.

[13] P. Lai et al., “Quality of experience-aware user allocation in edge com-
puting systems: A potential game,” in Proc. IEEE 40th Int. Conf. Distrib.
Comput. Syst., 2020, pp. 223–233.

[14] Z. Zhou et al., “Learning-based URLLC-Aware task offloading for internet
of health things,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 396–410,
Feb. 2021.

[15] Y. Cheng, C. Liang, Q. Chen, and R. Yu, “Energy-efficient D2D-Assisted
computation offloading in NOMA-Enabled cognitive networks,” IEEE
Trans. Veh. Technol., vol. 70, no. 12, pp. 13441–13446, Dec. 2021.

[16] I. Budhiraja, S. Tyagi, S. Tanwar, N. Kumar, and J. J. P. C. Ro-
drigues, “DIYA: Tactile internet driven delay assessment NOMA-Based
scheme for communication,” IEEE Trans. Ind. Informat., vol. 15, no. 12,
pp. 6354–6366, Dec. 2019.

[17] H. Zhou, T. Wu, H. Zhang, and J. Wu, “Incentive-driven deep reinforce-
ment learning for content caching and D2D offloading,” IEEE J. Sel. Areas
Commun., vol. 39, no. 8, pp. 2445–2460, Aug. 2021.

[18] M. Hamdi, A. B. Hamed, D. Yuan, and M. Zaied, “Energy-efficient
joint task assignment and power control in energy harvesting D2D of-
floading communications,” IEEE Internet Things J., to be published,
doi: 10.1109/JIOT.2021.3110319.

[19] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile edge
computing,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 360–374,
Jan. 2021.

[20] J. Peng, H. Qiu, J. Cai, W. Xu, and J. Wang, “D2D-Assisted multi-user
cooperative partial offloading, transmission scheduling and computation
allocating for MEC,” IEEE Trans. Wireless Commun., vol. 20, no. 8,
pp. 4858–4873, Aug. 2021.

[21] Z. Ning et al., “Distributed and dynamic service placement in pervasive
edge computing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 6, pp. 1277–1292, Jan. 2021.

[22] Y. Yang, C. Long, J. Wu, S. Peng, and B. Li, “D2D-Enabled mobile-edge
computation offloading for multiuser IoT network,” IEEE Internet Things
J., vol. 8, no. 16, pp. 12490–12504, Aug. 2021.

[23] Y. Sun, S. Zhou, and Z. Niu, “Distributed task replication for vehicular edge
computing: Performance analysis and learning-based algorithm,” IEEE
Trans. Wireless Commun., vol. 20, no. 2, pp. 1138–1151, Feb. 2021.

[24] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic and
computation co-offloading with reinforcement learning in fog computing
for industrial applications,” IEEE Trans. Ind. Informat., vol. 15, no. 2,
pp. 976–986, Feb. 2019.

[25] J. Tang et al., “Energy minimization in D2D-Assisted cache-enabled
Internet of Things: A. deep reinforcement learning approach,” IEEE Trans.
Ind. Informat., vol. 16, no. 8, pp. 5412–5423, Aug. 2020.

[26] M. Sun, X. Xu, Y. Huang, Q. Wu, X. Tao, and P. Zhang, “Resource
management for computation offloading in D2D-Aided wireless powered
mobile-edge computing networks,” IEEE Internet Things J., vol. 8, no. 10,
pp. 8005–8020, May 2021.

[27] Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet mobile edge
computing for enhanced computation capacity in cellular networks,” IEEE
Trans. Wireless Commun., vol. 18, no. 3, pp. 1750–1763, Mar. 2019.

[28] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-efficient joint task offload-
ing and resource allocation in OFDMA-based collaborative edge com-
puting,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1960–1972,
Mar. 2022.

[29] G. Li and J. Cai, “An online incentive mechanism for collaborative task
offloading in mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 624–636, Jan. 2020.

[30] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Commun. Surv.
Tut., vol. 19, no. 4, pp. 2322–2358, Oct.–Dec. 2017.

[31] Z. Xiao et al., “Vehicular task offloading via heat-aware MEC cooperation
using game-theoretic method,” IEEE Internet Things J., vol. 7, no. 3,
pp. 2038–2052, Mar. 2020.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TMC.2022.3150432
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://dx.doi.org/10.1109/TMC.2021.3064847
https://dx.doi.org/10.1109/TMC.2021.3117511
https://dx.doi.org/10.1109/JIOT.2021.3110319


490 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

[32] S. Jošilo and G. Dán, “Wireless and computing resource allocation for
selfish computation offloading in edge computing,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 2467–2475.

[33] O. Tao, X. Chen, Z. Zhou, L. Li, and X. Tan, “Adaptive user-managed
service placement for mobile edge computing via contextual multi-
armed bandit learning,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2021.3106746.

[34] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256,
2002.

[35] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, “Blockchain and
learning-based secure and intelligent task offloading for vehicular fog com-
puting,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4051–4063,
Jul. 2021.

[36] C. Liu, K. Liu, S. Guo, R. Xie, V. C. S. Lee, and S. H. Son, “Adaptive
offloading for time-critical tasks in heterogeneous Internet of Vehicles,”
IEEE Internet Things J., vol. 7, no. 9, pp. 7999–8011, Sep. 2020.

Xingxia Dai received the B.S. degree in com-
munication engineering from Xiangtan Univer-
sity, Xiangtan, China, in 2018. She is currently
working toward the Ph.D. degree in computer
science and technology with Hunan University,
Changsha, China.

Her current research interests include internet
of vehicles and mobile edge computing.

Zhu Xiao (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in communication
and information system from Xidian University,
China, in 2007 and 2009, respectively.

From 2010 to 2012, he was a Research
Fellow with the Department of Computer Sci-
ence and Technology, University of Bedford-
shire, Bedfordshire, U.K. He is currently an
Associate Professor with the College of Com-
puter Science and Electronic Engineering, Hu-
nan University, Hunan, China. His research in-

terests include mobile communications, wireless localization, Internet of
Vehicles, and trajectory data mining.

Hongbo Jiang (Senior Member, IEEE) received
the Ph.D. degree in computer science from
Case Western Reserve University, Cleveland,
OH, USA, in 2008.

He is currently a Full Professor with the
College of Computer Science and Electronic
Engineering, Hunan University, Zhuzhou, Hu-
nan, China. He ever was a Professor with the
Huazhong University of Science and Technol-
ogy. His research interests include computer
networking, especially algorithms and protocols

for wireless and mobile networks.
Prof. Jiang was the Editor for the IEEE/ACM TRANSACTIONS ON NET-

WORKING, an Associate Editor for the IEEE TRANSACTIONS ON MOBILE
COMPUTING, and an Associate Technical Editor for the IEEE COMMUNI-
CATIONS MAGAZINE. He is an elected Fellow of IET, Fellow of BCS.

Mamoun Alazab (Senior Member, IEEE) re-
ceived the Ph.D. degree in computer science
from the School of Science, Information Tech-
nology, and Engineering, Federation University,
Ballarat, Australia, in 2012.

He is currently an Associate Professor with
the College of Engineering, IT and Environment,
Charles Darwin University, Australia. He is a
Cyber Security Researcher and a Practitioner
with industry and academic experience. He has
more than 200 research papers in many inter-

national journals and conferences. His research is multidisciplinary that
focuses on cyber security and digital forensics of computer systems with
a focus on cybercrime detection and prevention.

Dr. Alazab is the Founding Chair of the IEEE Northern Territory (NT)
Subsection.

John C. S. Lui (Fellow, IEEE) was born in Hong
Kong. He received the Ph.D. degree in computer
science from the University of California, Los
Angeles, CA, USA, in 1992.

He is currently the Choh-Ming Li Professor
with the Department of Computer Science and
Engineering, The Chinese University of Hong
Kong (CUHK), Hong Kong. He was the Chair-
man of the department from 2005 to 2011. His
current research interests are in communication
networks, network/system security (e.g., cloud

security, mobile security, etc.), network economics, network sciences
(e.g., online social networks, information spreading, etc.), cloud comput-
ing, large-scale distributed systems, and performance evaluation theory.

Prof. Lui is an elected member of the IFIP WG 7.3, a Fellow of the As-
sociation for Computing Machinery (ACM), a Senior Research Fellow of
the Croucher Foundation, and was the Chair of the ACM SIGMETRICS.
He has been serving in the Editorial Board of the IEEE/ACM TRANS-
ACTIONS ON NETWORKING, IEEE TRANSACTIONS ON COMPUTERS, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, Performance
Evaluation, and the International Journal of Network Security. He was a
recipient of various departmental teaching awards and the CUHK Vice-
Chancellors Exemplary Teaching Award. He is also a co-recipient of the
Best Paper Award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP
NOMS 2006, and SIMPLEX 2013

Schahram Dustdar (Fellow, IEEE) received the
Ph.D. degree in business informatics from the
University of Linz, Linz, Austria, in 1992.

He is currently a Full Professor of computer
science (informatics) with a focus on internet
technologies heading the Distributed Systems
Group, TU Wien, Wein, Austria. He has been
the Chairman of the Informatics Section of the
Academia Europaea, since December 2016.

Prof. Dustdar has been a member of the IEEE
Conference Activities Committee (CAC), since

2016, the Section Committee of Informatics of the Academia Europaea,
since 2015, and the Academia Europaea: The Academy of Europe,
Informatics Section, since 2013. He was a recipient of the ACM Distin-
guished Scientist Award in 2009 and the IBM Faculty Award in 2012.
He is an Associate Editor for the IEEE TRANSACTIONS ON SERVICES
COMPUTING, ACM Transactions on the Web, and ACM Transactions on
Internet Technology. He is on the Editorial Board of IEEE.

Jiangchuan Liu (Fellow, IEEE) received the
B.Eng. degree (cum laude) from Tsinghua Uni-
versity, Beijing, China, in 1999, and the Ph.D.
degree from The Hong Kong University of Sci-
ence and Technology, Hong Kong, in 2003, both
in computer science.

He is currently a University Professor with
the School of Computing Science, Simon Fraser
University, British Columbia, Canada. In the past
he worked as an Assistant Professor with The
Chinese University of Hong Kong, Hong Kong,

and as a Research Fellow with Microsoft Research Asia. His re-
search interests include multimedia systems and networks, cloud and
edge computing, social networking, online gaming, and Internet of
things/RFID/backscatter.

Prof. Liu is a Fellow of The Canadian Academy of Engineering, and
an NSERC E.W.R. Steacie Memorial Fellow. He was an EMCEndowed
Visiting Chair Professor of Tsinghua University (2013–2016). He is a
corecipient of the inaugural Test of Time Paper Award of IEEE IN-
FOCOM (2015), ACM SIGMM TOMCCAP Nicolas D. Georganas Best
Paper Award (2013), and ACM Multimedia Best Paper Award (2012).
He has served on the editorial boards of IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON BIG DATA, IEEE TRANSACTIONS ON
MULTIMEDIA, IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, AND IEEE
INTERNET OF THINGS JOURNAL. He is a Steering Committee member
of IEEE Transactions on Mobile Computing and Steering Committee
Chair of IEEE/ACM IWQoS (2015-2017). He is TPC Co-Chair of IEEE
INFOCOM’2021.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 14,2022 at 10:18:29 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TMC.2021.3106746


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


