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Abstract—Current spatial-keyword publish/subscribe systems need to handle spatial-keyword skyline queries over geo-textual

streams to continuously obtain good results. The skyline queries in such systems face two main problems: (1) query problems,

because the powerful query capability is required for the strict limit of the response time and the large number of items concerned by

the users, and (2) scalability issue, because millions of active users are maintained simultaneously with many network-connected

machines. Unfortunately, the current approach is towards static data. Thus, this paper first proposes a distributed skyline query

processing framework. Then, we optimize the skyline computing by introducing MF-Rt-tree, which is an update-efficient and space-

saving indexing structure and a fast approach for processing a continuous spatial-keyword skyline query called eager�. Finally, a spatial

and textual signature-based communication optimization method is proposed to support scalability. The experimental results indicate

that (1) MF-Rt-tree can significantly reduce update costs, while maintaining a low storage cost, and a query performance comparable

to IL-Quadtree, (2) eager� can averagely accelerate 79.72 � faster than the method based on BNL, (3) the communication optimization

method significantly reduces the communication cost, and (4) the distributed framework can efficiently support large-scale skyline

queries.

Index Terms—Publish/subscribe systems, spatial-keyword skyline query, geo-textual streaming data, indexing structure,

communication cost
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1 INTRODUCTION

Amassive amount of geo-textual data that contain both
textual information and geographical location informa-

tion are being generated at an unprecedented speed due to
the proliferation of GPS-equipped mobile devices, embed-
ded systems [1], and social-media services. For instance,
millions of social-media users are uploading photos to

Instagram with both location and textual tags, posting geo-
tagged tweets on Twitter, and creating location-aware
events on Facebook using their smart phones [2]. These geo-
textual data have been generated in a stream fashion and
contain valuable information for users. Moreover, users
may focus on events in particular regions, and they hope to
receive up-to-date geo-textual data related to such events.

The spatial-keyword publish/subscribe systems (e.g, [3],
[4], [5] ) have provided the basic primitives with which to
support the above-mentioned information processing para-
digms. However, most of them are geared towards Boolean
matching query [6] such that too many results satisfy these
two constraints for users in terms of locations and key-
words. Thus, users would prefer to gain ”better” results by
using preference queries. Top-k and skyline queries are two
kinds of preference queries [7]. Recently, two methods of
top-k queries [3], [6] in spatial-keyword publish/subscribe
systems have been proposed. However, according to the
description in [7], users cannot get a measuring standard to
obtain the top-k answers, because the weights of the dimen-
sions of top-k queries may be unknown. In this case, skyline
queries can help users become aware of all the good results.

The challenges associated with the skyline queries in spa-
tial-keyword publish/subscribe systems over streams fall
into two categories:

1) The query problem. The geo-textual data are gener-
ated in a stream fashion. Thus, multiple skyline
queries lie in the continuous query processing. The
strict limit of the response time and the large number
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of items that concern the users (i.e., the size of the
sliding window in our setting) make the query more
challenging and demand more powerful query
capability.

2) The scalability problem. The limited computational
resources in a single machine often become a bottle-
neck. Thus, the spatial-keyword publish/subscribe
systems often are very large scale, with many net-
work-connected machines, and millions of active
users consequently need to be maintained simulta-
neously. Thus, the main challenge here lies in how to
achieve a small communication cost among these
machines.

Unfortunately, only [7] and [8] have discussed how to
deal with spatial-keyword skyline queries over static geo-
textual data. There are no existing solutions to our prob-
lems. Therefore, in this study, we first present a distributed
skyline query processing framework for the spatial-key-
word publish/subscribe systems. Furthermore, we propose
optimization methods for the performance and scalability
of our framework. The principal contributions of the paper
are as follows:

1) We proposed a distributed skyline query processing
framework for large-scale spatial-keyword publish/
subscribe systems by modifying a distributed top-k
spatial-keyword query processing framework [6].

2) We proposed an update-efficient and space-saving
indexing structure Memo-and-Filter-based Rt-tree
(MF-Rt-tree) to efficiently index geo-textual stream-
ing data tuples in the framework, by fusing and
improving the features of Rt-tree [9], cuckoo filter
[10], and RUM-tree [11].

3) We proposed a fast processing approach for a con-
tinuous spatial-keyword skyline query to suit our
streaming setting, by modifying a skyline comput-
ing scheme for streaming data [12] based on a spa-
tial-keyword skyline computing algorithm for
static data [7].

4) We proposed a novel communication optimization
method to significantly reduce the communication
cost of our distributed framework, by providing a
spatial cuckoo filter based on the spatial coding tech-
nique for space pruning and by employing a one-
permutation min-wise signature method for key-
word pruning.

To the best of our knowledge, the proposed skyline query
method is the first spatial-keyword skyline query processing
method for distributed publish/subscribe systems.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the related research work. Section 3 proposes
the skyline query processing framework and optimization
methods. Section 4 proposes the method of optimizing the
communication cost of the framework. Section 5 presents
the experiments and results. Section 6 concludes this paper
with a summary.

2 RELATED WORK

This section describes the most salient studies of skyline
computing over streaming data, continuous spatial-keyword

query, indexing geo-textual objects, and distributed skyline
computing.

2.1 Skyline Over Streaming Data

Computing the skyline over data streams is a substantial
challenge, due to the unbounded stream length [13]. The
sliding window has been widely employed to process sky-
line over a data stream. For instance, in [14] the skyline was
computed over a count-based window of the last n received
tuples. Subsequently, a time-based window method was
used for continuous skyline queries in [15], with the algo-
rithm LookOut. In [12], the authors proposed the lazy and
eager sequential algorithms for computing the skyline over
streams with a time-based sliding window. In [16], authors
presented an energy-efficient continuous skyline query
method over a sensor data stream in WSNs, called EECS, to
reduce communication cost on processing skyline query.
The above-mentioned methods aim to compute the skyline
over the precise streaming data. Due to the fact that stream-
ing data values are inherently uncertain and imprecise [17],
some approaches for computing skyline over uncertain
streaming data have been proposed. In [18], Zhang et al.
proposed efficient techniques for finding probabilistic sky-
line objects based on sliding windows. Unlike the work in
[18], which proposed techniques only for the case in which
each object has a single instance, Ding et al. [19] proposed a
skyline computing method for dealing with the case in
which each uncertain object contains multiple instances.
However, these skyline query methods were not considered
over geo-textual streaming data. In this paper, we employed
the sliding window to process skyline queries over geo-tex-
tual streaming data.

2.2 Continuous Spatial-Keyword Queries

Continuous spatial-keyword queries are issued once and
then logically execute continuously to retrieve objects which
satisfy both spatial and keyword constraints over geo-tex-
tual streams. The queries can be roughly classified into two
categories [7], i.e., Boolean matching and preference match-
ing. The representative methods based on Boolean matching
include IQ-tree [20] and AP-tree [5]. However, Boolean
matching query methods may incur too many results to sat-
isfy the two constraints for users in terms of locations and
keywords. Thus, preference queries (e.g., top-k query and
skyline query) can be used to gain ”better” results. Cur-
rently, preference matching focuses on top-k query. For
instance, the authors of [3] proposed an efficient solution to
process a large number of top-k queries over a stream of
geo-textual objects. In [21], to deal with continuous top-k
spatial-keyword queries on road networks, the authors pro-
posed two methods that can monitor such moving queries
in an incremental manner and reduce repetitive traversing
of network edges for better performance. In [6], the authors
investigated top-k spatial-keyword publish/subscribe over
a sliding window in both a single machine and a distributed
cluster. In this paper, we focus on skyline queries.

2.3 Indexing Geo-Textual Objects

To support fast spatial-keyword query, extensive efforts have
been made to index geo-textual objects. The representatives
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of conventional indexes includes IR-tree [22], Inverted-KD
tree [7], I3 [23] that is an integrated inverted index, which
adopts the quadtree to hierarchically partition the data space
into keyword cells, and IL-Quadtree [24] that is an inverted
linear quadtree. These indexingmethods can directly applied
to our setting. However, the high update cost is an issue in
the case of streams, because they are toward static geo-textual
objects. Meanwhile, most of the conventional indexing struc-
tures may incur high space costs due to holding numerous
keywords.

In recent years, the indexing structures mainly focus on
supporting fast complex spatial-keyword queries, e.g., col-
lective spatial-keyword ones and sematic spatial-keyword
ones. For example, LIR-tree [25], which is extended from IR-
tree, is designed for level-aware collective spatial-keyword
queries. In [26], authors provided a two-layer hybrid index
structure called Quad-cluster Dual-filtering R-Tree (QDR-
Tree) to support Attributes-Aware Spatial-Keyword Query
(ASKQ). In [27], LHQ-tree was proposed to support sem-
atic-aware top-k Spatial-keyword queries. LHQ-tree is a
three layered hybrid indexing structure that first uses a
quadtree to index objects based on their locations, then cre-
ates a set of n-gram inverted list for textual information and
holds topic-based sematic information with LSH, respec-
tively, for every quadtree leaf node. As we can see, com-
pared with conventional indexing structures, the indexing
structures for complex spatial-keyword queries are more
complex, resulting in worse update performances, in the
case of streams.

Moreover, to support dynamic geo-textual objects,
recently, a gird-based index [28] was proposed to manage
dynamic both top-k spatial-keyword queries and dynamic
spatial-keyword objects. However, the gird-based index
only bounds the maximum and minimum weights of
objects’ textual attributes related to queries, instead of
indexing the keyword sets of objects. When computing sky-
line, we need employ an indexing structure to quickly
match keywords between geo-textual objects. Therefore,
this indexing method is not suitable for our setting.

2.4 Distributed Skyline Computing

Because the limited computational resources in a single
machine often become a bottleneck when processing large-
scale skyline queries, some studies of distributed skyline
computing have been conducted. For instance, in [29], the
authors proposed a collaboration approach for continuous
skyline computing in a two-tier streaming environment
with a server as query interface and multiple data sites. In
[30], the authors proposed a distributed parallel framework
to address the parallel skyline query problem over uncer-
tain data streams with a sliding window streaming model.
In [31], a two-level distributed skyline query processing
method was presented over uncertain data streams.

Additionally, the MapReduce framework has been
widely used to process skyline queries (e.g, MR-GPMRS
[32], MR-BNL [33], PPF-PGPS [34], SKY-MR [35] and SKY-
MRþ [36]). The above-mentioned skyline computing meth-
ods are not designed for the publish/subscribe case. In [37],
the MapReduce framework was used to deal with continu-
ous skyline queries in dynamically weighted road networks.

However, the method is not towards spatial-keyword sky-
line queries.

In contrast to existing skyline computing methods, this
paper targets continuous spatial-keyword skyline query
processing over geo-textual streaming data in distributed
publish/subscribe systems. To the best our knowledge,
only [7] and [8] have proposed how to deal with spatial-key-
word skyline queries. However, the method about spatial-
keyword skyline query in [7] is toward static geo-textual
objects, while in [8] the authors proposed secure spatial-
keyword skyline query approaches for static geo-textual
objects as well, through an encrypted IR-tree. There are no
existing solutions to our problem.

3 THE DISTRIBUTED SPATIAL-KEYWORD SKYLINE

QUERY PROCESSING FRAMEWORK

This section first formulates this problem. It then describes
the details of distributed spatial-keyword skyline query
processing framework.

3.1 Problem Formulation

We assume that the space is a 2D space. Then, we formulate
the problem.

Definition 1(a geo-textual streaming data tuple or a
message1) Is described as dt = (d; w; l; ta; te), where d is a geo-
textual object related to the tuple, w is a set of keywords, dt:l is a
spatial point with longitude and latitude, ta is the time when the
tuple arrives at the sliding window, and te is its expiration time.

Definition 2(sliding Window). Defined as W , is a time-
based window over a stream in time order and covers |W|
geo-textual data tuples. That means the expiration time is dt:te
= dt:ta + |W| for a streaming data tuple dt.

Definition 3 (a continuous spatial-keyword query or a
subscription2). Is denoted as q ¼ ðw; rÞ, where q:w is a set of
query keywords and q:r is a spatial range in the form of a rect-
angle. Meanwhile, we denote q:r:c as the centroid of the range
q:r, and q:r:d as half the length of the diagonal line of q:r.

Definition 4 (Text Relevance). For a continuous spatial-key-
word query q and a geo-textual streaming data tuple dt, the
text relevance between q and dt is denoted as RT ðq; dtÞ. It is the
set resemblance between q:w and dt:w and can be computed as

RT ðq; dtÞ ¼ jq:w \ dt:wj
jq:w [ dt:wj : (1)

Definition 5(Spatial Relevance). For a continuous spatial-
keyword query q and a geo-textual streaming data tuple dt, the
spatial relevance between q and dt is denoted as RSðq; dtÞ. It
can be estimated as

RSðq; dtÞ ¼
0 ifðdt:l is not in q:rÞ
1� eDisðdt:l; q:r:cÞ

q:r:d otherwise

(
: (2)

where eDisðdt:l; q:r:cÞ is the distance between dt:l and q:r:c.

1. In publish/subscribe systems, a message is a streaming data
tuple.

2. In publish/subscribe systems, a subscription is a continuous
query.
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Definition 6 (Coincidence With Respect to q). Given a
spatial-keyword query q and two geo-textual streaming data
tuples dt1 and dt2, dt1 is coincident with dt2 with respect to q,
denoted as dt1�dt2jq, iff : (RT ðq; dt1Þ = RT ðq; dt2Þ^
RSðq; dt1Þ = RSðq; dt2Þ) ^ (RT ðq; dtiÞ > 0 ^ RSðq; dtiÞ > 0 |
i ¼ 1; 2). Otherwise, dt1 is not coincident with dt2 with
respected to q, denoted as dt1 6�dt2jq.

Definition 7 (Dominance With Respect to q). Given a spa-
tial-keyword query q and two geo-textual streaming data tuples
dt1 and dt2, dt1 dominates dt2 with respected to q, denoted as
dt1�dt2|q, iff : RSðq; dt1Þ � RSðq; dt2Þ ^ RT ðq; dt1Þ �
RT ðq; dt2Þ ^ dt16�dt2jq.

Definition 8 (Skyline With Respect to q). Given a continu-
ous spatial-keyword query q and a set of geo-textual streaming
data tuples P , the skyline over P with respect to q, denoted as
SKY ðP jqÞ, is the set of data tuples. SKY ðP jqÞ = {p 2 P|
6 9k2 P : k�p|q}.
For a set of continuous spatial-keyword queries Q, the

objective in this paper is to efficiently compute each
SKY ðPijqiÞ ðqi 2 QÞ overW in a distributed manner.

3.2 The Framework

We first describe the framework, then present an indexing
approach for streaming data tuples, and finally propose a
method for skyline processing over geo-textual streaming
data.

3.2.1 The Architecture of Framework

Like a distributed top-k spatial-keyword query process-
ing framework DSkype [6], our framework (illustrated in
Fig. 1) is based on Apache Storm [38], and it also con-
sists of six components: 1) query spouts, 2) tuple spouts,
3) distribution bolts, 4) query bolts, 5) tuple bolts, and 6)
aggregation bolts.

The query spouts are responsible for receiving new query
requests, whereas the tuple spouts input geo-textual stream-
ing data tuples from external data sources, such as Twitter
API.

The distribution bolts have three functions:

Function 1:
Distributing queries from query spouts to query bolts.
Function 2:

Navigating streaming data tuples from tuple spouts to query
bolts.

Function 3:
Routing the new tuples remaining after pruning by spatial
signatures and textual signatures to tuple bolts to ensure an
up-to-date sliding window.

Furthermore, the query bolts have four functions:

Function 1:
Establishing an index of queries based on a Quadtree struc-
ture with inverted files for filtering incoming tuples.

Function 2:
Receiving and outputting skylines from aggregation bolts and
maintaining the result buffers of skyline queries.

Function 3:
Sending the requests of skyline revaluation to tuple bolts
when tuples are expired in result buffers.

Function 4:
Creating spatial signatures and textual signatures from
queries and sending them to distribution bolts.

Note that, unlike the subscription bolts in [6], our query
bolts have one new function (i.e., function 4). Function 4 can
generate spatial signatures and textual signatures of
queries. Query bolts send the two kinds of signatures to dis-
tribution bolts to significantly reduce the communication
costs between them. The details are proposed in Section 4.

The tuple bolts and aggregation bolts cooperatively exe-
cute skyline computing once query bolts send requests as
new tuples arrive or old tuples expire. Concretely, the
tuple bolts maintain the sliding window in a distributed
manner. Each tuple bolt maintains a geo-textual index over
the local sliding window and generates a partial skyline
result over the local sliding window. Then, the
aggregation bolts are responsible for computing the global
skyline based on partial skyline results from all tuple bolts,
and they send the final result to the query bolts.

3.2.2 Indexing Streaming Data Tuples

Both tuple bolts and aggregation bolts need efficiently pro-
cess skyline queries over sliding window. For fast skyline
processing, an efficient indexing structure over sliding win-
dow is an essential block.

In [6], the authors used IR-tree [22] to index streaming
data tuples. Nevertheless, IR-tree is designed for static data
and unsuitable to streaming data. On the other hand, IR-
tree has to hold a number of keywords to incur a high space
cost, which may degrade its performance in terms of both
queries and updates. Therefore, we propose an update-effi-
cient and space-saving indexing structure called MF-Rt-tree
to index geo-textual streaming data tuples by fusing the
advantages of the RUM-tree [11], cuckoo filter [10] and Rt-
tree [9]. The indexing structure is illustrated in Fig. 2. First,
we employ Rt-tree to index geo-textual tuples in one sliding
window. This means that the tuples are indexed by a R-tree
based on their locations. Then, each R-tree node stores the
keywords of its descendant tuples for the purpose of textual

Fig. 1. The framework for processing spatial-keyword skyline queries in
the distributed publish/subscribe system.
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filtering. To improve the update performance of Rt-tree over
the streaming data tuples, we incorporate an update memo
in [11] into Rt-tree. We call it M-Rt-tree. The primary feature
of M-Rt-tree is that the old entry in the tree is allowed to
coexist with newer entries before it is removed later, rather
than deleting it when updating tuples. In M-Rt-tree, each
index entry in one leaf is assigned a stamp by the timestamp
of a tuple when the tuple is inserted into the tree. To distin-
guish the latest entries from the obsolete entries, an update-
memo structure is used as in [11]. Specially, the update-
memo structure is a hash table, which contains multiple
<key, value> pairs. Each entry is formed with <H(d:id),
V>, where d:id is the identifier of a geo-textual object
related to one tuple, H(d:id) is the hash value of d:id, and V
= (d:id, Slatest, Nold) represents one entry in the update
memo, in which Slatest is the stamp of the latest entry of the
geo-textual object and Nold stands for the maximum number
of obsolete entries. The deletion of a tuple in the M-Rt-tree
is equivalent to marking the latest entry of the geo-textual
object as obsolete. The deletion does not actually go through
the Rt-tree. It affects only the update memo entry for the
data tuple to be deleted, by changing Slatest to the next value
assigned by the stamp counter, and incrementing Nold by 1.

Furthermore, to achieve a good query performance, we
employ a lookup table to organize all tuples including old
tuples in one leaf node. The lookup table is essentially a
map whose key is the identifier of one geo-textual object,
and the value is a stack list for storing index entries for the
object in descending order of stamp. A new tuple can be
pushed into the top of a stack list with an object identifier.
The lookup table can improve the query performance of M-
Rt-tree because we only need to check the top entry in a
stack list, since the top entry is the latest one in the list. This
method can avoid scanning numerous obsolete entries. For
example, in Fig. 2, in the stack list for d1, we only check the
entry (d1, s5) and ignore (d1, s4) and (d1, s3). Meanwhile, this
map structure also can improve the update performance of
our indexing structure by removing the whole list when the
top entry in a stack list is obsolete, instead of removing each
entry one by one.

However, like IR-tree, M-Rt-tree has the issue of high
space cost. M-Rt-tree has to store the large number of key-
words in indexing nodes, especially for nodes in higher lev-
els due to the aggregation of keywords. To solve this
problem, we employed a space-saving data structure to rep-
resent keywords in M-Rt-tree, following the idea in [39]. In
[39], the authors proposed a Bloom-filter-based R-tree (BR-

tree), which integrates counting Bloom filters [40] into R-
tree nodes. A counting Bloom filter is used to represent the
item set in each BR-tree node to facilitate fast approximate
membership query and dynamic update of items. The par-
ent node can compute its counting Bloom filter by taking
the union operation of the Bloom filters in its children.
However, a counter consists of four or more bits such that a
counting Bloom filter requires four times more space than a
standard Bloom filter. Thus, we incorporate a more space-
efficient data structure cuckoo filter [10] into M-Rt-tree. The
cuckoo filter takes 	 1 time space cost than a standard
Bloom filter with deletion support. Furthermore it only uses
two hashing functions and can achieves a query perfor-
mance with O(1) time complexity. Concretely speaking, a
cuckoo filter is a cuckoo hash table, which consists of an
array of buckets, where a bucket can have multiple entries.
Each entry stores the fingerprint of one item x. Each item x
has two candidate buckets determined by hash function
h1ðxÞ ¼ hashðxÞ, and h2ðxÞ ¼ h1ðxÞ 
 hashðx0sfingerprintÞ.
With h1ðxÞ and h2ðxÞ, the cuckoo filter can add, delete and
lookup items dynamically.

We refer the cuckoo filter-based M-Rt-tree as the MF-Rt-
tree. As Fig. 2 shows, we used a cuckoo filter (i.e., a cuckoo
hash table) to represent the set of keywords in each MF-Rt-
tree node. The lookup and maintenance operations over
cuckoo filters (see the details in [10]) can be employed to
search and maintain keywords.

In [11], garbage cleaners were used to remove old index
entries in RUM-tree lazily. The garbage cleaners can work
in two ways: cleaning in batches in idle time and cleaning
upon touch whenever a leaf node is accessed during an
update operation. Because our study addresses streaming
processing, we apply the clean-upon-touch scheme for MF-
Rt-tree. However, the original clean-upon-touch scheme in
[11] is easy to incur a high update cost for frequent update
operations. Therefore, we optimized the cleaning scheme
with lookup tables in leaf nodes (see Fig. 2). The main idea
is that a garbage cleaner only runs deletion operations over
some obsolete stack lists whose lengths are greater than a
cleaning threshold Tclean, instead of obsolete tuples in all
stack lists, when the lookup table in a leaf node is accessed
by an update operation. Thus, we can avoid numerous dele-
tion operations.

However, how to gain Tclean is an issue. In our setting, the
update access frequency of a leaf node is mainly related to
two factors: the arrival rate of incoming streaming tuples
(denoted as arrR) and the height of MF-Rt-tree (denoted as
h). If h is fixed, the higher arrR will cause a leaf node to be
accessed by more update operations. Therefore, a larger
Tclean is needed. On the other hand, supposed that arrR is
fixed, the larger h will lead to less update operations over a
leaf node. Thus, a smaller Tclean can be used. Therefore,
Tclean is defined as:

Tclean ¼ b� arrR

MAXarrR
þ ð1 �bÞ � ð1� h

MAXh
Þ

� �
� C

� �
þr:

(3)

Where, MAXarrR is the maximum arrival rate in the sys-
tem and MAXh is the maximum height of MF-Rt-tree. b (2
[0, 1]) is a parameter used to balance arrival rate and the

Fig. 2. The tuple data index.
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height of indexing tree. C means the capacity of one leaf
node. To ensure the update performance, the value of Tclean

is at least r that is a positive integer (� 2), when arrR! 0 ^
h!MAXh.

3.2.3 The Skyline Processing Method

Based on the proposed MF-Rt-tree, we propose a spatial-
keyword skyline processing method by combining the sky-
line operation for static geo-textual data proposed in [7] and
a skyline computation method over a sliding window pro-
posed in [12]. Given a query q and a set of streaming data
tuples DT whose positions fall in q:r, the skyline processing
method is illustrated in Fig. 3. The skyline computing proce-
dure follows three steps:

Step 1: The space of q (i.e., q:r) is partitioned into two
regions, that is, the inner region denoted as
region1 and exterior one denoted as region2,
where region1 [ region2 = q:r ^ region1 \
region2 = ;. To achieve the partition of q:r, let d be
half the length of the diagonal line of region1, and
c be the centroid of the region1. region1 can be
drawn by setting its c as q:r:c (see Definition 3 for
q:r:c) and its d as g � q:r:d (see Definition 3 for
q:r:d), where the value of g should be around 0.2
according to the description in [7]. Thus, region2
is the difference part between q:r and region1.
Finally, the data tuples in DT are divided into the
two regions.

Step 2: A set of skyline points are first obtained, denoted
as S1, labelled by black circles in region1. The max-
imum text relevance among S1 is referred to M,
and all the points are then removed with their text
relevances 	 M in region2, labelled by gray

pentagrams, because it is not possible for these
points to become skyline points.

Step 3: Finally, the skyline points are gained, denoted as S2,
labelled by gray circles, among the rest of the points
in region2. The final skyline points = S1 [ S2.

However, the block nested loops (BNL) algorithm for
static data was used for skyline computation of S1 and S2 in
[7]. To suit the streaming data environment, we proposed a
skyline processing algorithm over streaming data called
eager� based on the eager algorithm proposed in [12],
instead of BNL algorithm. In [12], the eager algorithm has
two main behavior features: 1) minimizing the memory con-
sumption by keeping only tuples that are or may become
part of the skyline in the future, and 2) reducing the cost of
the maintenance of the skyline result by performing addi-
tion work in the preprocessing procedure (i.e, establishing
and maintaining an event list). Concrete speaking, the eager
algorithm depends on the following concept:

Definition 9 ðskyline influence timeÞ. Given a steam data
tuple p over a sliding window W , the skyline influence time of
p, denoted as SITP , is the expiring time of the youngest data
tuple r who dominates p 2 W . The data tuple r is called the
critical dominator of p, denoted as CDr

p.

The eager algorithm maintains an event list EL. Two
types of events are supported:

Event 1: Skytime event, denoted as skytimeðp; tÞ, reflects
that the data tuple p will enter the skyline at time
t, where time t is determined by the following for-
mula

t ¼ SITP ifðCDr
p existsÞ

Current time otherwise

�
: (4)

Event 2: Expire event, denoted as expireðp; tÞ, reflects the
exit of the data tuple p from the skyline at time t,
where t = p:te (i.e., the expiration time of p).

Nevertheless, the eager algorithm ignores the dynamic
nature of the data’s properties. In our environment, one
data tuple records the two properties (i.e., geo-location and
textual string) of a geo-textual object. Because the values of
the two properties may change over time, streaming data
tuples in W may be updated before they expires. The
updates may lead to a change of skyline results. Therefore,
we enhance the eager algorithm by appending a new type
of event called the update event. The update event is pre-
sented as follows:

Event 3: Update event, denoted as updateðp; tuÞ, reflects
that the data tuple p is updated at time tu. Because
an update can be treated as a combination of a
separate deletion and a separate insertion, we first
triggers an event expireðp; tuÞ, where tu = the
update time of p, and then treat the update point
of p, defined by p0, as a new incoming point.

We refer to the enhanced eager as eager�, which is shown
in algorithm 1. The algorithm first inputs all points in W
into a queue Q (line 4), and then respectively initializes a

Fig. 3. The skyline processing method.
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MF-Rt-tree T (line 6) and a skyline result set (line 7) through
inserting a point CurP from the front of Q. Furthermore, an
event list EL is initialized with an expire event concerning
CurP (line 8). After initialization, the procedure of checking
EL does not stop until EL = ; (lines 9-26). During this
checking procedure, the front point of Q is continuously
popped. Each popped point is used to prune all points dom-
inated by the popped point from the set sky (lines 10-11),
denoted as F . Then, we delete the points in F from the
result set sky (line 12) and index tree T (line 13), respec-
tively. The events related to the points in F are removed as
well (line 14). Then, we insert a skytime event (line 17) or an
expire event (line 20) into EL. Subsequently, we deal with
an update event (lines 22-23), expire event (lines 24), or sky-
time event (lines 25) when these events happen.

Algorithm 1. The eager� Algorithm

1 ComputingSyline_Procedure(W)
/ * Initialization * /

2 Initialize a skyline result set sky= ;
3 Initialize an event list EL = ;
4 Initialize a queue Q W
5 CurP  Q:popðÞ
6 Initialize a MF-Rt-tree T by inserting CurP
7 sky CurP
8 Add an event expireðCurP; CurP:teÞ into EL
/* Checking the event list * /

9 while EL 6¼ ; do
10 CurP  Q:popðÞ

/ * Pruning Phase * /

11 F  points � CurP in skywith T
12 sky sky=F
13 Delete the points in F from T
14 Clear events related to points in F from EL

/ * Insertion Phase * /

15 Insert CurP into T
/* Search Phase * /

16 if CDr
CurP 6¼ ; then

17 Insert an event skytime(CurP , SITCurP ) into EL
18 end
19 else
20 Insert an event expire(Curp, CurP:te) into EL
21 end

/ * Process update events * /

22 if a point p is updated in W then Insert an event expire(p,
p:tu)

23 append p0 intoW and Q.push(p0)
/* Process expire events */

24 if An event expire(p, t) happens then Delete p from Q, W ,
sky and T , respectively
/* Process skytime events * /

25 if An event skytime(p, t) happens then Add p into sky
26 end
27 return sky

4 REDUCING THE FRAMEWORK’S

COMMUNICATION COST

We first describe the basic idea of our method, and then the
two optimization schemes are proposed based on spatial
and textual signatures, respectively.

4.1 The Basic Idea

Like DSkype [6], our framework suffers from the high com-
munication cost between distribution bolts and query bolts
as the number of query bolts increases. DSkype alleviates
this problem by using four distribution methods, namely
hashing-based, location-based, keyword-based, and prefix-
based methods. However, these methods are designed for
top-k queries rather than skyline queries. Thus, there exist
differences between DSkype and our setting. To explain the
differences, we first present an observation:

Observation 1. Given a query q and a tuple dt, dt cannot
become one skyline member related to q if dt:l does not fall in
q:r or |q:w \ dt:w| = 0.

Proof of Observation1 : According to Definition 5, the
spatial relevance between q and dt, RSðq; dtÞ = 0, if dt:l is
not in q:r. On the other hand, the textual relevance between
q and dt, RT ðq; dtÞ = 0, if |q:w \ dt:w| = 0, based on Defini-
tion 4. Thus, dt cannot become a dominator w.r.t q if RSðq; dtÞ
= 0 or RT ðq; dtÞ = 0, according to Definition 6. Therefore, dt
cannot become one skyline member related to q.

Given that Nqb refers to the number of query bolts, |m:cj
is the number of keywords in a geo-textual streaming data
tuple, and d is the average number of query bolts whose
regions overlap one query. Table 1 summarizes the four
schemes in Dskype [6] for our setting. For the location-based
mechanism, a streaming data tuple in our setting cannot
become one skyline if its geo-location does not fall in the
region of any query according to Observation 1. Thus, a
data tuple needs to be forward to only one query bolt whose
spatial region contains the spatial region of the tuple. There-
fore, the average communication cost of each message is
one rather than Nqb (see Table 2 in [6]) when the location-
based mechanism is applied for our environment. In addi-
tion, the replication ratio of subscriptions is d rather than
one (see Table 2 in [6]), because the range region of a query
may overlap the regions of multiple query bolts.

Although, according to Table 1, the location-based
scheme can be optimal in terms of the communication cost
for our setting (i.e., the communication cost is one for each
incoming message), the communication cost is still an issue
in the streaming data environment, due to the continuous
forwarding of messages from distribution bolts to query
bolts. In fact, it is evident that some incoming tuples over
distributing bolts cannot become skyline candidates accord-
ing to Observation 1. We can avoid forwarding such tuples
to query bolts to reduce the communication cost.

However, a top-k spatial-keyword query cannot meet
similar results as Observation 1. To explain this case, we
recall the definition of top-k query in DSkype [6].

TABLE 1
Summary of Four Distribution Schemes in [6] for our Setting

Distribution scheme Replication ratio Communication cost

Hashing-based 1 Nqb

Location-based d 1
Keyword-based |m:c| min(|m:cj, Nqb)
Prefix-based 	|m:c| min(|m:cj, Nqb)
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Definition 10 ðatop � kqueryÞ. Is defined as q0 = (w, l, k, a ),
where q0:w is a set of keywords, q0:k is the maximum number of
streaming data tuples that q0 is willing to receive, and q0:a is
the preference parameter used in score function.

To measure the relevance between a query q0 and a
streaming data tuple dt, a score function is defined as

Scoreðq0; dtÞ ¼ q0:a� SSimðq0:l; dt:lÞ
þ ð1� q0:aÞ � TSimðq0:w; dt:wÞ : (5)

In formula (5), SSimðq0:l; dt:lÞ is spatial proximity and is

computed as 1 � eDistðq0:l;dt:lÞ
MaxDist , where eDistðq0:l; dt:lÞ is the

euclidean distance and MaxDist is maximum distance in
the space. TSimðq0:w; dt:wÞ is textual proximity and com-
puted by the cosine similarity.

According to Definition 10 and formula (5), a streaming
tuple dt may still become a top-k candidate with respect to
q0 even although SSimðq0:l; dt:lÞ or TSimðq0:w; dt:wÞ is a
lower value, since the score function is based on the combi-
nation of SSimðq0:l; dt:lÞ and TSimðq0:w; dt:wÞ. Therefore,
DSkype for top-k queries cannot in advance filter out some
incoming tuples over distributing bolts like our framework
for skyline queries based on Observation 1.

Next, we propose a novel approach for optimizing the
communication overheads of our framework based on
Observation 1. The main idea of our method is that it indi-
vidually employs spatial and textual signatures to com-
pactly represent the spatial and textual information of
queries over each query bolt. Then, these spatial and textual
signatures are deployed on distribution bolts. Thus, one dis-
tribution bolt can use the two types of signatures to prune
incoming tuples that cannot become skyline candidates to
reduce unnecessary forwarding of messages to query bolts.
The location-based scheme combined with spatial and tex-
tual signatures enables the achievement of a much lower
communication cost than the original location-based
scheme. Fig. 4 illustrates our approach. In this example,
there are a distribution bolt and a query bolt. A query set
{q1, q2} has been deployed in advance on the query bolt
using the location-based distribution scheme. Then, a spa-
tial signature with spatial cuckoo filter (see Section 4.2) and
a textual signature with min-wise hashing (see Section 4.3)
are created over {q1, q2}. Both signatures are sent back to the
distribution bolt. Subsequently, we suppose that the distri-
bution bolt receives two tuples t1 and t2 in turn from tuple
spouts. According to Fig. 4a, both locations of t1 and t2 fall
in the spatial region of the query bolt Us. Thus, both t1 and
t2 should have been forwarded to the query bolt. But we
can avoid these forwards with signatures. As Fig. 4b shows,
we can first prune t1 with the spatial signature, because the
spatial signature compactly represents the region informa-
tion of q1 and q2 and neither q1 or q2 contains t1 in space,

even though the keywords of t1 match those of q1 and q2
(see Fig. 4a). On the other hand, although q1 contains t2 in
space (see Fig. 4a), we are still able to prevent the forward-
ing of t2 to the query bolt, because the textual signature can
detect that the set of keywords of t2 (i.e, {W3, W4} ) has no
intersection with that of q1 (i.e, {W1, W2}).

More generally, there are a distribution bolt (denoted as
D Bolt) and m query bolts (denoted as Q Bolt1; . . . ;
Q Boltm ). Each query bolt Q Bolti periodically sends a
<spatial signature, textual signature> pair (denoted as
<ssi, tsi>) to D Bolt according to its local query workload.
Thus, the D Bolt locally holds m <ssi, tsi> pairs. Let tup be
an incoming tuple, the optimization scheme is shown in
algorithm 2. The D Bolt first checks whether the location of
an incoming tuple can hit anyone in m spatial signatures
(line 2). If it hits a spatial signature ssi, then we further
observe whether the set of keywords of the tuple also hit
the textual signature tsi (line 3). If yes, the tuple is for-
warded to the Q Bolti (line 4). For other cases, the tuple is
discarded.

Algorithm 2. TheOptimization Scheme ofCommunication

1 CommOptimization_Procedure(tup)
// Check the tuple with spatial signatures

2 if 9 ssi where tup:l hits ssi then
// Check the tuple with the textual signature

3 if tup:w hits tsi then
4 forward tup to the Q Bolti and return
5 end
6 else
7 discard tup and return
8 end
9 end
10 discard tup and return

TABLE 2
Dataset

Set
name

# of
objects

Vocabulary Average # of keywords in
objects

TWEETS 12.7M 1.7M 9

Fig. 4. An example of the proposed method for optimizing communica-
tion costs.
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In the following two subsections, we will provide the
details of generating spatial and textual signatures and fil-
tering streaming data tuples with them.

4.2 The Optimization Scheme Based on
Spatial Signatures

A Bloom filter (BF) is a data structure that represents a set of
elements in a space-efficient manner [41]. The BF can sup-
port membership queries on the originating set without
knowledge of the set itself. The BF always determines posi-
tively if an element is in the set, whereas it generally deter-
mines elements outside the set negatively with a
probabilistic false positive error [41]. The BF is an effective
signature approach for compressing a set and querying
membership in a set. Nevertheless, the original BF does not
consider the spatial objects. Our setting requires a BF that
can represent a set of spatial objects3 from a set of queries.
Furthermore, the BF can be utilized to determine whether
the location point in a tuple is within the spatial region of
any query in the query set. In [42], a spatial Bloom filter
(SBF) was proposed for spatial objects. However, the SBF is
based on the BF, so it cannot support deletion operations.
As a result, the SBF is not suitable for dynamic updates of
queries in our setting. In Section 3.2.2, we employed the
cuckoo filter [10] to index streaming data tuples due to its
advantages of taking only 	 1 time space cost than a stan-
dard Bloom filter and supporting deletion. Therefore, we
proposed a spatial cuckoo filter (SCF) for generating and
maintaining spatial signatures. We obtain the SCF by
replacing the Bloom filter in the SBF with a cuckoo filter.

To enable SCFs to store location information, like the
SBF, we first divide the entire 2D space into a set of distinct
regions denoted as ". The dimension of such regions can be
set to an arbitrarily small size so that there is no loss in
terms of location precision. Thus, a spatial object (i.e., a rect-
angle) concerning one query can be represented as a subset
of ", denoted as ~, where each region in the subset ~ over-
laps the rectangle. Meanwhile, the geo-location of one tuple
can be identified with the region containing it. Fig. 5 illus-
trates the set-based spatial representation of a query and a
tuple. In Fig. 5, the universe space consists of 16 regions
(i.e., " = {ri|1 	 i 	 16 } ). Thus, for the query q, the corre-
sponding~ = {r1, r2, r3, r5, r6, r7}, while the tuple t is identi-
fied by the region r5.

Once a rectangle and a geo-location can be identified as
elements of a subset of ", a SCF can be utilized to encode the
spatial information. Formally, for the region set o:~ =
{r1,...,rn} of a spatial object o, a spatial cuckoo filter SCðo:~)
is a cuckoo hash table that is denoted as HT for the spatial
object o, and it is defined as

SCðo:DÞ ¼ HT ¼
[

r2o:D;h2H < hðrÞ; fringerðrÞ > :

(6)

In formula (6), H = {h1, h2} is a set of two partial-key
cuckoo hashing functions. The first hashing function h1 =
hash(r), where hash is a uniform hashing function. h1 takes
the binary string of the identifier of one region r as input to
output the index of one bucket in HT . Moreover, h2 = h1

hash(fingerðr)), where 
 is the XOR operation and
fingerðr) is the fingerprint of r. For h1 and h2, the fingerðr)
is inserted into bucket[h1] and bucket[h2], respectively.

Note that in [42], the spatial representation of a spatial
object is identified as a set of areas of interest {~1,...,~s}
with different priorities. However, in our case, we are con-
cerned only about whether one tuple falls in one area of
interest. Therefore, the spatial representation of a spatial
object by an area of interest~.

Suppose that rt is one region (2 ") that contains the geo-
location of an incoming tuple and fðrtÞ is the fingerprint of
rt. Having constructed a SCF for one region set ~ , denoted
asHT , we can determine whether rt 2~ by formula (7).

i ¼ h1ðrtÞ; j ¼ h2ði; fðrtÞÞ
HT:bucket½i� has fðrtÞ orHT:bucket½j� has fðrtÞ

: (7)

There exist false positive errors when applying the SCF
for spatial pruning. The errors arise from two aspects. The
first aspect is that a tuple may be falsely verified to be in the
query range with the SCF, because its region is a member of
the region set of the query. The problem is illustrated in
Fig. 5, where the tuple t out of query q is verified to hit q
due to r5 2 " corresponding q when the SCF is used. The
other aspect is the potential collision of hashes. Therefore,
the false positive probability denoted as p is computed as

p ¼ ps þ ph: (8)

where, ps and ph are the false positive probabilities from the
above-mentioned first and second aspects, respectively.
ps 
 numborder

j"j , where numborder is the number of border
regions (2 o:~) that intersect the region that contains the
geo-location of a data tuple o and j"j is the number of
regions in ". The value of ph can be configured according to
[10].

4.3 The Optimization Scheme Based on
Textual Signatures

According to formula (1), the text relevance of a query q and
a data tuple t can be determined by the set similarity
between q:w and t:w. Thus, assuming that a set of queries Q
= {q1,...,qn} on one query bolt and one incoming tuple t
arrives at one distributing bolt, we can copy the keyword
sets of Q from the query bolt to the distribution bolt and
then check whether the formula (9) holds.

Fig. 5. An example of spatial representation.

3. Each spatial object in this paper is a 2D rectangle.
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8q 2 Q;RT ðq; tÞ ¼ jq:w \ t:wjjq:w [ t:wj ¼ 0: (9)

If it holds, the tuple t can be pruned by the distribution
bolt. However, transferring all sets of keywords is expen-
sive in terms of both transmission and storage overheads.
Therefore, we provide a space-saving solution that utilizes
one min� wise signature to compactly represent a set of
keywords. These signatures are deployed on the distribu-
tion bolt instead of sets of keywords. As a result, both trans-
mission and storage overheads can be significantly reduced.
Moreover, we can estimate the similarity of two sets with a
high accuracy to filter tuples as well, through comparing
twomin� wise signatures.

Concretely, according to [43], given a family of
min� wise independent permutations F , for a set X and
any element x 2 X, when p is chosen at random from F , the
following formula holds

PrðminfpðXÞg ¼ pðxÞÞ ¼ 1

jXj : (10)

where pðXÞ is a permutation of X and pðxÞ is the location
value of x in the resulted permutation, and minfpðXÞg ¼
minfpðxÞjx 2 Xg. With ‘ min� wise independent permuta-
tions from F , themin� wise signature ofX is defined as

SðXÞ ¼ fminfp1ðXÞg;minfp2ðXÞg; . . . ;minfp‘ðXÞgg:
(11)

Note that the expensive preprocessing cost may be
incurred when the number of independent permutations ‘
is large. Therefore, we employed the one-permutation min-
wise hashing method proposed in [44] to generate signa-
tures instead of ‘ permutations. The one-permutation
method breaks the space evenly into ‘ bins, and stores the
smallest nonzero in each bin. Thus, we can gain a speedup
of ‘ times for generating a signature.

Assume that two keyword sets A, B � U where U is the
set of all keyword, Thus, the set resemblance of A and B
defined as rðA;BÞ can be estimated by the similarity of their
min� wise signatures SðAÞ and SðBÞ defined as
r̂ðSðAÞ; SðBÞÞ. This means that rðA;BÞ can be computed by
the following formula.

rðA;BÞ ¼ r̂ðSðAÞ; SðBÞÞ ¼ jfijminfpiðAÞg ¼ minfpiðBÞggj
‘

:

(12)

Additionally, for k sets of keywords A1,...,Ak, the
min� wise signature of union of A1,...,Ak can be computed
by combining the min� wise signature of individual sets
(see Formula (13)).

SðA1 [ ::: [AkÞ½i� ¼ minfSðA1Þ½i�; . . . ; SðAkÞ½i�g: (13)

Based on function 1 of query bolts, queries on each query
bolt are indexed by a Quadtree with inverted files. Each leaf
node maintains an inverted file that contains keywords of all
queries in the leaf node. We can employ formula (11) to gen-
erate one min-wise signature for presenting a set of key-
words in each leaf node. Thus, one query bolt can send m
min-wise signatures, wherem is the number of leaf nodes in

its Quadtree, to the distribution bolt for textual filtering.
However, the size of min-wise signatures increases linearly
with the number of leaf nodes. The large number of min-
wise signatures is an issue in terms of communication and
storage costs. Therefore, we propose amethod for generating
constant-size signatures. Our method is based on the idea of
repeatedly calling formula (13) to merge signatures in index-
ing tree nodes in a bottom-up manner until the number of
signatures is reduced to one predefined threshold.

After generating a set of min-wise signatures V , for an
incoming tuple t, we can decide to prune it if formula (14),
where � 2 [0, 1) is a threshold, holds.

8v 2 V; r̂ðv; Sðt:wÞÞ 	 �; where � 2 ½0; 1Þ: (14)

Note that in formula (14) we use � as a threshold instead
of zero, due to the estimating error of r̂ð:Þ. According to the
description in [45], the upper bound of error of one min-
wise independent permutation in the worst case, denoted
as UBðeÞ.

UBðeÞ 	 O
1ffiffi
‘
p

� �
: (15)

where ‘ is the number of bins for the one-permutation min-
wise hashing method. Therefore, we set � = 1ffiffi

‘
p .

5 PERFORMANCE EVALUATION

First, we introduce the experimental setup, and then present
the experimental results of evaluating the proposed index
structure, the skyline computing method, the scheme of
communication optimization, and the distributed skyline
processing performance, respectively.

5.1 Experimental Setup

5.1.1 Dataset

We employed a real-life dataset TWEETS4 [9]. The dataset con-
tains 12 million tweets with geo-textual information from 2008
to 2011. The statistics of the dataset are summarized in Table 2.

5.1.2 Query Workload

For query workload, we generate spatial-keyword queries
based on the TWEETS dataset. 5M geo-textual messages are
randomly selected. For each selected object, h terms are ran-
domly picked as query keywords, and h is a random num-
ber between 1 and 5. The query region is set to a rectangle,
and the region size is uniformly chosen between 0.01% and
1% of the universe data space.

5.1.3 Experimental Environment

All the experiments are conducted on a cluster with six
homogenous nodes (one nimubus and five supervisors). A
single-node Zookeeper server is deployed for coordination
between nimubus and supervisors. These six nodes are con-
nected via a 1Gbps’s Ethernet. Table 3 lists the major config-
urations of each node in the cluster. Each supervisor can
run at most four workers at the same time, and each worker
can run multiple spouts/bolts concurrently.

4. https://github.com/lt-cug/TWEETS-data-set

2668 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 13,2022 at 12:23:27 UTC from IEEE Xplore.  Restrictions apply. 



5.2 Evaluating the Data Indexing Structure

In the following experiments, we measured MF-Rt-tree on a
single node in the cluster, because each node needs to use
its MF-Rt-tree for skyline computing. We investigated
update performance, space cost, and query performance of
MF-Rt-tree for geo-textual streaming data tuples. Like the
configures about time-based sliding windows in [12], the
sliding window length ranges from |W1|= 800, to |W2|=
1.6K and |W3| = 3.2K seconds, and the arrival rate is set to
a low rate with arr1 = 10 tuples/second and a high rate with
arr2 = 1000 tuples/second, respectively. The parameters of
the cuckoo filter (shown in Table 4) follow the configuration
in [10] to achieve the false positive probability ph 	 1%.
Additionally, the number of buckets m in one cuckoo filter
depends on the number of different keywords in the incom-
ing tuples in the sliding windowW .

For comparison, the following indexing structures are
constructed in main memory to index streaming data tuples
as well.

1) Inverted-KD tree is a KD-tree whose leaves hold
inverted files proposed in [7].

2) I3 is an integrated inverted index [23], which adopts
the quadtree to hierarchically partition the data
space into keyword cells.

3) IL-Quadtree is an inverted linear quadtree proposed
in [24].

4) IR-tree is a R-tree with inverted files proposed in [22].

5.2.1 Update Cost

First, we filled one sliding window with size = 3.2K seconds
and constructed the Inverted-KD tree, I3, IL-Quadtree, IR-
tree, and MF-Rt-tree, respectively. Then, we continuously
observed the operation number and runtime incurred by
updating the these indexing structures at intervals of 20
seconds.

As shown in Fig. 6a, N on the x-axis represents the N-th
20 seconds, and Nop on the y-axis is the number of opera-
tions. The Nop of MF-Rt-tree is about 17.4%, 19.7%, 24.5%,

and 44.7% of one of IR-tree, IL-Quadtree, I3, and Inverted-
KD tree, respectively. The reason for the operation saving of
MF-Rt-tree lies in its ability to avoid numerous deletion
operations with the update memo structure.

Meanwhile, we also investigated the impact of our clean-
ing scheme on the update performance of MF-Rt-tree. For
comparison, we implemented the original clean-upon-touch
scheme in [11] denoted as C2. Our cleaning scheme is
denoted as C1. For our cleaning scheme, according to the
formula (3), the cleaning threshold Tclean is set with b = 0.8,
MAXarrR = 10K tuples/second, MAXh = 8, C = 40, and r =
5. Fig. 6a shows that on average the MF-Rt-tree with C1
increases the operations by 29.7%, due to incurring the dele-
tion operations compared with MF-Rt-tree. However, the
update performance of MF-Rt-tree with C1 still outperforms
other indexing structures. The Nop of MF-Rt-tree with C1 is
about 22.5%, 25.6%, 31.8%, and 58.0% of one of IR-tree, IL-
Quadtree, I3, and Inverted-KD tree, respectively. On the
other hand, as we can see, our cleaning scheme C1 can sig-
nificantly reduce the operation number by 59.1 %, com-
pared with C2. This result indicates C2 is not well suitable
for the streaming data setting. Moreover, the experimental
results for runtime evaluation shown in Fig. 6b are similar
to the ones in Fig. 6a. Furthermore, in the case of high
arrival rate shown in Fig. 7, we can see the similar experi-
mental results as well.

5.2.2 Space Cost

In the following experiment, we observed the space cost of
MF-Rt-tree against Inverted-KD tree, I3, IL-Quadtree, and
IR-tree. For I3, we followed the parameter setting in [23],
one keyword is dense if the number of tuples containing the
keyword exceeds 128.

As shown in Fig. 8a, MF-Rt-tree can on average save the
space cost by 51.4%, 51.9%, and 55.0%, respectively, com-
pared with Inverted-KD tree, IL-Quadtree, and IR-tree. The
excellent performance gains result from MF-Rt-tree’s use of
the space-saving data structure cuckoo filters to store

TABLE 3
Configurations of Each Node

Hardware Feature

CPU quad-core CPU (i7-7700, 3.6GHz)
Memory 32GB DDR4
Disc storage 1TB
Software Feature
OS Windows 10
Storm 1.2.1

TABLE 4
Parameters of Cuckoo Filter

Parameter Value

Number of hashing functions k 2
Target false positive probability
ph

	 1%

Number of entries per bucket b 4
Load factor a 95%
Fingerprint length in bits f log 2ð1=phÞ þ log 2ð2bÞd e ¼ 10

Fig. 6. The update cost of MF-Rt-tree under arr1.

Fig. 7. The update cost of MF-Rt-tree under arr2.
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keywords in indexing nodes. Meanwhile, MF-Rt-tree
slightly outperforms I3 by 2.1% space saving on average. I3

is also space-efficient, because it only builds spatial index-
ing trees for dense keywords. In our experiments, dense
keywords in I3 are about 30.4% of all keywords on average.
According to Fig. 8b, the space saving of MF-Rt-tree is more
obvious under a high arrival rate because more keywords
can be compactly represented with cuckoo filters.

However, the size of MF-Rt-tree will gradually expand
over time as the number of old tuples increases over time.
Thus, we investigated the impact of the proposed cleaning
scheme on the size of MF-Rt-tree. We run the same cleaning
procedure described in Fig. 6. Fig. 9 shows that the space
cost of MF-Rt-tree exhibits a continuous increase over time,
whereas that of MF-Rt-tree with the cleaning scheme can
consistently maintain a stable level. The experimental
results indicate that the cleaning scheme can effectively alle-
viate MF-Rt-tree’s issue of space cost.

5.2.3 Query Cost

In this experiment, we randomly selected 1000 queries from
the query workload. We measured the average runtime of
per query over Inverted-KD tree, IR-tree, I3, IL-Quadtree,
MF-Rt-tree, and MF-Rt-tree after cleaning. As Fig. 10a illus-
trates, MF-Rt-tree can averagely accelerate 14.56�, 12.35�,
4.17�, individually, relative to Inverted-KD tree, IR-tree, and
I3. The performance gain of MF-Rt-tree mainly benefits from
the query performance ofO(1) through cuckoo filters for tex-
tual pruning, while Inverted-KD tree cannot in advance ter-
minate queries due to no textual pruning in non-leaf nodes,
and IR-tree needs tomatch keywords in indexing nodeswith
time complexity of OðN). Meanwhile, I3 has to run multiple
linear scans over lists, where each list holds tuples containing
a non-dense keyword, if one query contains non-dense key-
words. Furthermore, we observed that IL-Quadtree is 0.25
milliseconds faster than MF-Rt-tree on average per query.
The reason for the good query performance of IL-Quadtree
is that one indexing tree is established for each keyword.

Thus, IL-Quadtree can achieve a fast spatial pruning for one
query keyword. However, IL-Quadtree has a much higher
storage cost (see Fig. 8) and update cost (see Fig. 6) compared
with MF-Rt-tree. Meanwhile, MF-Rt-tree after cleaning only
is 0.09 milliseconds slower than IL-Quadtree on average per
query.Moreover, in Fig. 10b,MF-Rt-tree andMF-Rt-tree after
cleaning on average outperform IL-Quadtree by about 8%
and 25%, respectively. These results indicate that our index-
ing structure has a query performance comparable to IL-
Quadtree.

5.3 Evaluating the Skyline Computing Method

We inspect the processing time of the proposed skyline com-
puting method over geo-textual streaming data on a single
node. For convenience, we denote the eager-based and
eager�-based spatial-keyword skyline computingmethod as,
eager and eager� ,respectively, whereas the BNL-based spa-
tial-keyword skyline computing method is termed BNL. We
respectively observe the runtime speedups of eager and
eager� compared with BNL. We randomly choose 10 queries
to continuously observe the average runtime of three meth-
ods for skyline computing at intervals of 20 seconds. The
window has been filled when the experiment starts, and the
tuples in window also have been indexed by MF-Rt-tree and
have been preprocessed for both eager and eager�. Accord-
ing to Fig. 11a, compared to BNL, eager can on average gain
speedups of 43.22�, 63.9�, and 82.45� over time, forW1,W2,
and W3, respectively. This is because BNL has to repeatedly
travel the tuples in the windows to recompute the skylines
as new tuples arrive, whereas eager can continuously moni-
tor the incoming tuples and maintain the skyline incremen-
tally with pruning schemes. Furthermore, eager� can
accelerate 1.235�, 1.248�, and 1.25� relative to eager forW1,
W2, and W3. Meanwhile, in the case of high arrival rate
shown in Fig. 11b, we can see the similar experimental
results. The performance gain lies in the ability of eager� to
update the skyline results as early as possible when update
events happen comparedwith eager.

Fig. 8. The space cost of MF-Rt-tree.

Fig. 9. The space cost of MF-Rt-tree with cleaning.

Fig. 10. The query cost of MF-Rt-tree.

Fig. 11. The computing cost of spatial-keyword skylines.
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5.4 Evaluating the Communication
Optimization Schemes

In this section, we evaluate the proposed communication
optimization schemes for our framework in a cluster. Like
DSkype [6], the communication cost between distribution
bolts and query bolts is dominant for our distributed frame-
work. Thus, the communication overhead between one dis-
tribution bolt and multiple query bolts is used to measure
the performance of the proposed schemes. In the following
experiments, we first evaluated the location-based distribu-
tion scheme with spatial signatures, and we then measured
the location-based distribution scheme with both spatial
and textual signatures.

5.4.1 Evaluating the Location-Based Distribution

Scheme With Spatial Signatures

We observe the effects of spatial signatures on the commu-
nication cost under the different numbers of queries, query
bolts, and inputting streaming data tuples, respectively.

In the first experiment, the number of query bolts is fixed
to Nqb = 4 and the number of inputting data tuples Nt is set
to 100K. The number of queries Nq ranges from 1M to 2M,
3M, 4M, and 5M.

Based on the standard geographic coordination system
(i.e., latitude and longitude), the minimum global space
containing all spatial objects (i.e., rectangles) in the query
set is first evenly partitioned into Nqb disjoint domains. Each
query bolt owns one domain only. Then, each query from
the query set is distributed to the query bolts whose
domains overlap the query range. Furthermore, to generate
spatial signatures, we adopted the means of spatial repre-
sentation in [42]. The space is represented by the standard
geographic coordination system. Thus, the whole space is
divided into a set of distinct regions. The precision of the
sides (in meters) of a region is fixed to 0.001o. Therefore, the
number of regions Nr = 2000 � 2000. Subsequently, each
query bolt generates a set of regions based on the spatial
objects from local queries and the spatial representation.
Furthermore, each query bolt creates one spatial signature
with SCF and sends it to the distribution bolt. The parame-
ter configuration of the cuckoo filter follows Table 4. Mean-
while, the number of buckets in one cuckoo filter m is equal
to the number of distinct regions owned by one query bolt
(i.e., Nr=Nqb

� 	
). Thus, the size of one SCF, denoted as

jSCF j, can be computed as follows.

jSCF j ¼ 1=a� b� f � Nr=Nqb

� 	
: (16)

The location-based distribution scheme has been used for
comparison, because it can achieve the optimal communica-
tion cost (see Table 1) in our setting. Moreover, we also pro-
vided the optimal communication cost without the false
positive. For convenience, the location-based distribution
scheme, the location-based distribution scheme with spatial
signatures, and the optimal communication cost without
the false positive are denoted as Location, Lþ SS,
Optimal case, respectively.

The experimental results presented in Fig. 12a show that
the communication cost of Location remains constant (i.e.,
100K), because each incoming tuple must be forwarded to
one query bolt whose domain contains its location. Com-
pared with Location, Lþ SS can reduce the communication
cost by 43.7%, 40.3%, 37.7%, 35%, and 31.6% with Nq rang-
ing from 1M to 5M, respectively. This demonstrates the
pruning power of the spatial signatures. We also observed
that the pruning power of the spatial signatures decreases
as the size of Nq increases. This occurs because the union of
all query regions increases with the size of queries increas-
ing in a given global space, so that the possibility of filtering
incoming tuples with spatial signatures decreases. On the
other hand, Lþ SS holds the false positive rate of 4.5%,
4.9%, 6.3%, 7.6%, and 8.7% for various sizes of queries
(from 1M to 5M), respectively, compared to Optimal case.
The reason for the increasing trend of false positive rate is
partially that the probability value ps in formula (8) will
increase for more queries and partially that the possibility
of the hashing collision of the cuckoo filter will increase
when one SCF stores more query regions. Additionally, in
terms of the storage cost, the distribution bolt holds four
spatial signatures. According to formula (16), the size of one
spatial signature 
 5MB. Thus, the total space cost of spatial
signatures is 4 � 5MB 
 20MB.

In the second experiment, the number of queries is fixed
toNq = 5M and the size of tuples remains 100K. The number
of query bolts Nqb ranges from 4 to 8, 16, and 32. According
to the results presented in Fig. 12b, Lþ SS can reduce the
communication cost by 31.6%, 32.5%, 33.1%, and 32.3% for
Nqb = 4, 8, 16, and 32, respectively, compared to Location.
The experimental results indicate that the filtering effects
have no obvious difference for various numbers of query
bolts, because the query set is fixed so that SCFs generated
from 4, 8, 16, and 32 query bolts have similar pruning
power. The same filtering results for different Nqb under
Optimal case also demonstrate this point. Furthermore, the
space costs incurred by SCFs on the distributed bolt are
20MB as well based on formula (16) and Nqb.

Fig. 12. The communication cost with spatial signatures.
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In the last experiment, the number of queries Nq is fixed
to 5M and Nqb = 32, whereas the number of incoming tuples
Nt increases from 100K to 200K, 300K, 400K, and 500K.
Fig. 12c shows that the communication overhead of Lþ SS
is on average 64.99% of that of Location for various numbers
of tuples where the positive false rate 	 8%. The results
indicate that the pruning power of spatial signatures can
remain stable when the spatial signatures are fixed.

5.4.2 Evaluating the Location-Based

Distribution Scheme With Both Spatial and

Textual Signatures

We further investigate the filtering effect of the textual sig-
natures over the tuples remaining after spatial pruning. In
our setting, the indexing tree is the Quadtree with inverted
files. Thus, the maximum number of textual signatures,
denoted as MAX T , in the distribution bolt is equal to Nqb

� 4L�1, where L is the level number of the local indexing
tree. Thus, in the case that MAX T is set to 512, for Nqb = 4
and 8, each query bolt generates textual signatures based on
at most the first four levels in the local indexing tree,
whereas the first three levels are used for textual signatures
for Nqb = 16 and 32. The number of bins of one-permutation
min-wise hashing ‘ is set to 2,500 so that the estimation error
is bounded by 2.0% (see formula (15)). We also provide the
pruning results with spatial signatures and keyword sets
for observing the estimating error of min-wise hashing. For
convenience, the location-based distribution scheme with
both spatial and textual signatures, where the textual signa-
tures are based on the i� th level of the indexing tree, is
denoted as Lþ SS þ TSi. The location-based distribution
scheme with the spatial signatures and keyword sets, where
the keyword sets are based on the i� th level of the index-
ing tree, is denoted as Lþ SS þKSi.

Corresponding to the case of the first experiment in Fig. 12a,
for Nq = 1M, Fig. 13a shows that Lþ SS þ TSi (i 2 [1,4]) can
further reduce the communication cost of 0.5%, 5.4%, 12.5%,
and 25.9%, respectively, compared with Lþ SS. The filtering
effect of Lþ SS þ TS1 is not obvious, because one textual sig-
nature approximately represents all keywords in the indexing
tree of one query bolt so that most tuples overlap the textual
signature. Nevertheless, Lþ SS þ TS2 has a better pruning
effect than Lþ SS þ TS1. The reason is straightforward: Lþ
SS þ TS2 has 16 textual signatures, whereasLþ SS þ TS1 has
only four textual signatures. Moreover, one textual signature
of Lþ SS þ TS2 represents a smaller subset of keywords than
the one of Lþ SS þ TS1. Thus, Lþ SS þ TS2 is more possible

to filter the no-match tuples than Lþ SS þ TS1. The reason is
the same for the case in which Lþ SS þ TSi is more efficient
thanLþ SS þ TSi�1, where i =3, 4. The experiment results are
similar forNq = 2M, 3M, 4M, and 5M. Additionally, compared
toLþ SS þKSi, the estimating error of textual signatures can
be bounded by 1.83%, because we choose the larger value of ‘
(see formula (15)).

Fig. 13b shows that the pruning powers of Lþ SS þ TSi (i
= 1, 2, 3, 4) rise as Nqb increases. For instance, Lþ SS þ TS3

can further reduce the communication cost of 17.3%, 23.6%,
31.9%, and 37%, for Nqb = 4, 8, 16, and 32, respectively. The
reason for these experimental results is that more textual sig-
natures can be generated as Nqb increases and each textual
signature can represent a smaller-size keyword set. In terms
of storage costs of textual signatures, each textual signature
consists of a pair of coordinates (representing a subregion of
the local indexing tree) and ‘ ¼ 2500 location values of one
permutation. Here, one coordinate occupies 2 bytes while
one location value occupies 8 bytes. Thus, the size of one tex-
tual signature 
 19.54KB. The maximum storage cost of tex-
tual signatures is 10MB, because the maximum number of
textual signatures is 512 in our experiments. Furthermore,
Fig. 13c illustrates that textual signatures can maintain a sta-
ble pruning effect on various number of tuples. For example,
Lþ SS þ TS2 can further filter 25.8%, 22.6%, 25.5%, 26.7%,
and 28%, respectively, in terms of the communication cost.
The reason for these results is similar to that for the experi-
mental results presented in Fig. 12c.

5.5 Evaluating the Distributed Skyline
Query Processing

We conduct experiments to verify the performance of sky-
line query processing of the proposed distributed frame-
work under various numbers of supervisors. We
established the proposed distributed framework in a cluster
described in Section 5.1.3 ”Experimental environment”.
Concretely speaking, let Nsup( = 1, 2, 3, 4, or 5) be the num-
ber of supervisors used for the framework, we constructed
five Storm topologies (denoted as TPNsup ) on the top of Nsup(
= 1, 2, 3, 4, or 5) supervisors, respectively. Each supervisor
runs one worker since one supervisor only has one quad-
core CPU in our cluster. Based on the configuration for
Storm topology in [6], one TPNsup consists of one tuple
spout, one query spout, one distribution bolt, 4�Nsup query
bolts5, three tuple bolts, and one aggregation bolt. We

Fig. 13. The communication cost with spatial and textual signatures.

5. The number of query bolts is set to 4 � Nsup because the CPU in
each supervisor holds four cores.

2672 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 13,2022 at 12:23:27 UTC from IEEE Xplore.  Restrictions apply. 



measured the runtime of each Storm topology with ran-
domly selected 2M queries and 200K incoming tuples. The
arrival rate is set to 5000 tuples/second and the size of slid-
ing window is 2K seconds. For comparison, we also mea-
sured our skyline computing method (see Section 3.2.3)
without Storm on a single node, denoted as Sky-no-Storm.
Meanwhile, to distinguish skyline queries over our frame-
work and DSkype, we implemented skyline queries over
DSkype (i.e., the location-based distribution scheme without
spatial and textual signatures) as well. The skyline queries
over our framework and DSkype under five Storm topolo-
gies are denoted as TPi+ST and TPi+D where i 2 [1, 5],
respectively. For fairness, we also built query index and
data index for both Sky-no-Storm and TPi+D.

Initially, the whole query set is evenly distributed into
query bolts. To achieve the workload balance, we first index
all queries with a Quadtree. Then, each query bolt is respon-
sible for the queries in ½Nleaf/Nqb� neighbor leaves of index-
ing tree, where Nleaf be the number of leaves of Quadtree
and Nqb be the number of query bolts. After that, Nqb

<spatial signature, textual signatures> pairs are generated
based on local queries over query bolts, and are deployed
on the distribution bolt. Thus, the distribution bolt will for-
ward the incoming tuples to the corresponding query bolts
with spatial and textual signatures.

The experimental results in Fig. 14a show that our distrib-
uted framework can gain a speedup of 3.1�, 7.41�, 10.7�,
14.6�, and 17.8�, respectively for TP1 + ST, TP2 + ST, TP3 +
ST, TP4 + ST, and TP5 + ST compared with Sky-no-Storm.
These performance gains result from having more query
bolts (i.e., more CPU threads from workers) to process 2M
skyline queries in parallel, as the number of supervisors (i.e,
the number of workers) increases. Furthermore, TP1 + ST
and TP1 +D have almost the same time overhead. The reason
is that the Storm topology TP1 only contains one supervisor,
so that the data transmission between the distribution bolt
and query bolts is a local transmission that does not pass
through the network. Therefore, the benefits of TP1 + ST in
terms of network overhead are not reflected compared with
TP1 + D. Nevertheless, TPi + ST can improve the query proc-
essing performance by 33.7%, 32.1%, 28.3%, and 27.8%,

respectively, comparedwith TPi +D as the number of super-
visors i increases from 2, 3, 4, to 5. The reason for such experi-
mental results is that our framework can employ both spatial
and textual signatures to reduce the network transmission
time of streaming data tuples from the distribution bolt to
query bolts in a network connected distributed environment,
compared with DSkype. Noted that, the performance gain of
our framework decreases as the number of supervisors i
increases because we fixed the number of incoming tuples to
200K in this experiment. Thus, the average number of tuples
reaching one query bolt decreases when a Storm topology
contains more supervisors. In another experiment, given a
Storm topology TP5 and 2M queries, we increase the number
of incoming tuples Nt from 100K to 200K, 300K, 400K, and
500K. Fig. 14b shows that TP5 + ST can improve the query
processing performance by 25.5%, 27.8%, 31.6%, 34.3%, and
36.1%, respectively, compared with TP5 + D. Obviously, the
performance gain of our framework increases as the number
of incoming tuples increases compared with DSkype when
the number of supervisors is fixed, since the distribution bolt
can prune more tuples by spatial and textual signatures as
the number of incoming tuples increases.

6 CONCLUSION

In this paper, we proposed a distributed skyline query proc-
essing framework for large-scale spatial-keyword publish/
subscribe systems. We also introduced an update-efficient
and space-saving indexing structure for geo-textual stream-
ing data. Moreover, an efficient computing method for con-
tinuous spatial-keyword skyline queries has been presented
to optimize skyline computing. Finally, we provided a spa-
tial and textual signature-based communication optimiza-
tion method to support the scalability of the proposed
distributed framework. The experimental results indicate
that (1) MF-Rt-tree can significantly reduce update costs,
while maintaining a nearly equal storage cost with I3, and a
query performance comparable to IL-Quadtree, (2) eager�

can averagely accelerate 79.72 � faster than the method
based on BNL, (3) the communication optimization method
significantly reduces the communication cost of the pro-
posed distributed framework, and (4) the distributed frame-
work can efficiently support large-scale spatial-keyword
skyline queries.
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