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Abstract—This article presents our vision on the need of developing new managing technologies to harness distributed “computing
continuum” systems. These systems are concurrently executed in multiple computing tiers: Cloud, Fog, Edge and IoT. This simple idea
develops manifold challenges due to the inherent complexity inherited from the underlying infrastructures of these systems. This makes
inappropriate the use of current methodologies for managing Internet distributed systems, which are based on the early systems that
were based on client/server architectures and were completely specified by the application software.
We present a new methodology to manage distributed “computing continuum” systems. This is based on a mathematical artifact called
Markov Blanket, which sets these systems in a Markovian space, more suitable to cope with their complex characteristics.
Furthermore, we develop the concept of equilibrium for these systems, providing a more flexible management framework compared
with the one based on thresholds, currently in use for Internet-based distributed systems. Finally, we also link the equilibrium with the
development of adaptive mechanisms. However, we are aware that developing the entire methodology requires a big effort and the use
of learning techniques, therefore, we finish this article with an overview of the techniques required to develop this methodology.
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F

1 INTRODUCTION

THE last decade has been dominated by applications
based on Cloud infrastructures, however, during the re-

cent years we are witnessing the appearance of new comput-
ing tiers, such as the Edge or the Fog. They provide valuable
features to applications, such as very low latency or privacy
enhancements. Ultimately, new applications are emerging
that take advantage of all the computing tiers available,
hence, they are systems that are simultaneously executed
on the Edge, Fog, and Cloud computing tiers. These systems
are known as “computing continuum” systems.
The applications provided by the distributed “computing
continuum” systems enable developments that belong to the
infrastructure landscape for some years now, such as smart
cities with greener and sustainable spaces; non-polluted
avenues with autonomous vehicles; sustainable and effi-
cient manufacturing with accurate traceability of products,
or health systems able to personalize anyone’s treatment
independently of their current location.
Most research efforts have been devoted to solve specific
challenges of these systems such as data caching, resource
allocation or scheduling among others. However, general
methodologies for design and management of these systems
remain one of the fundamental challenges. This has been
overlooked because the community has been using the tra-
ditional methods for design and management developed for
the first Internet-based systems, those comprising a server
and a client, which are completely specified through the
software application itself. In general, these systems are
being developed from a top-down perspective. Hence, each
system’s architecture is defined ad-hoc to solve a precise
problem. This methodology is still valid for the Cloud
paradigm, but it falls short for the “computing continuum”.
For instance, the concept of developing an architecture for a
system needs to be re-thought for “computing continuum”
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systems. One can find a manifold of different architectures
within the same system. Also, in some situations the desired
architecture will not be possible to implement, and from a
management perspective, the mechanisms developed need
to be able dealing with situations, where the architecture is
another dynamic feature of the system.
We claim that new methodologies are required as “comput-
ing continuum” systems have a fundamental characteristics
that make previous methods inadequate: the application
and the underlying software infrastructure are seamlessly
blended. Therefore, system characteristics are driven by
their infrastructure, which are similar to the ones of a
complex systems, as cited in [1] a system is complex if its
behavior crucially depends on the details of the system.
We foresee a methodology that takes into account the shared
characteristics of all such systems and, changes the role
of the underlying infrastructure’s software. Hence, with
this change of mindset and by leveraging each system’s
infrastructure data, we will be able to manage these systems
obtaining robust, adaptive, and cooperative systems.
This article’s objectives are twofold. First, to present a gen-
eral methodology inhered from cloud computing showing
its limitations in the “computing continuum” context. Sec-
ond, to unravel that a completely new approach is required
to design and manage these systems, sketching our vision
on how we foresee this new methodology.
The rest of this article is organized as follows, in section 2
we show related work for managing cloud systems, then in
section 3 we explain the reasons why we need a new ap-
proach for managing the “computing-continuum” systems.
Section 4 details our vision for the management approach
and underlines the required learning techniques that will be
required to develop it. Finally in section 6 we present our
conclusions.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, DECEMBER 2021 2

2 RELATED WORK

In recent years research effort aimed at developing Edge and
Fog tiers. Through a review on literature one can find three
different approaches.
First, there is research targeting specific topics of these tiers,
such as data caching [2], [3], service deployment [4], com-
putation offloading [5], [6], resource allocation [7], schedul-
ing [8], [9], traffic grooming [10] or service decomposi-
tion [11], among others.
Second, there is research that addresses these specific topics
but they are contextualized in a specific domain. For ex-
ample, in [12] a QoE and energy-aware methodology for
offloading is contextualized in a smart city, or in [13] a
scheduling solution is presented in a smart manufacturing
context. Similarly, in [14] the scheduling is taken to the
healthcare application.
Third, there is research that focuses on general architectures
for specific contexts, such as in [15], where they describe a
specific fog architecture for banking applications or in [16]
where architectures for a healthcare system are presented.
But, to the best of our knowledge, there is a shortcoming
for transversal and general methodologies for managing
“computing continuum” systems. Specifically, transversal
methodologies apply to any application domain and general
methodologies are able to solve any specific issue.
In Cloud computing, which has been on research for a
couple of decades now, there is a methodology that we
claim is required for the “computing continuum” systems.
In this regard, the work on elasticity [17]–[19] develops
a methodology for managing Cloud systems that matches
the need for the “computing continuum” systems in terms
of generality and transversality. This starts by abstracting
any application with three variables: Resources, Quality and
Cost. Then, the system keeps track at the values of these
variables and if any of them goes beyond a certain threshold,
elasticity strategies are applied. Simply put, these change
the application configuration in the cloud infrastructure,
so that its current needs are matched with the expected
performance, and therefore, the Resources, Quality and Cost
variables return at their expected range of values. It is
worth mentioning that in [20] some difficulties are already
identified when dealing with multi-cloud systems.
Now the evolution of Cloud computing is going towards
the server-less computing [21], this basically implies that the
thresholds, commonly known as Service Level Objectives
(SLOs) that controlled the application state, require a higher
level of abstraction. This is more convenient for cloud users,
as they do not longer require to determine low-level specifi-
cations of the application, such as the range of CPU usage,
but higher level ones such as the ratio between the cost
of the infrastructure and the efficiency of the application,
called cost-efficiency as developed in this work [22]–[24],
which proposes a Cloud management system completely
controlled through high-level SLOs.
A similar approach is required to manage “computing
continuum” systems, however, the characteristics of the
underlying infrastructure of such systems make this Cloud
computing approach not adequate.
Before continuing it is worth detailing two concepts that
will be very recurrent along the article. A “computing-

continuum” application only refers to an application de-
veloped on top of the “computing-continuum” fabric of re-
sources, which can range from a video analysis or an entire
vehicle fleet management for a smart city. A “computing-
continuum” system refers to all the resources required to
enable an application of the “computing-continuum”, this
includes also the application itself but just as another com-
ponent of the system.

3 SYSTEM MANAGEMENT IN THE CARTESIAN
SPACE

In this section we will discuss how the Cloud computing
management system could be applied to “computing con-
tinuum” systems. But once there, by reasoning about the
characteristics of these emerging systems, we will be able to
show why this methodology is not sufficient.

3.1 Cartesian blanket

Similarly as done with the Cloud, the system space of
a “computing continuum” application can be represented
with the three variables: Resources, Quality and Cost. Hence,
it can be represented in a three dimensional Cartesian space.
Cloud based systems can be usually abstracted as virtually
unlimited and homogeneous source of resources, which
simplifies the system’s Cartesian representation using Re-
sources, Quality and Cost. However, given the heterogeneity
of “computing continuum” systems, their encoding on this
space is not straight forward.
Nevertheless, we can assume that given a domain this
Cartesian frame could be shared. Simply put, we foresee
that healthcare applications can have the same quality axis,
as it can be interpreted similarly for all cases. But this might
not be the same case for an application devoted to control
product distribution. In any case, it is conceivable to develop
transformations between Cartesian frames to relate applica-
tions from different contexts. Ideally, formalizing relations
between systems from different domains could allow the
further development of transversal methodologies seeking,
for instance, cooperation between systems.
Then, Cloud systems use SLOs to check if the system is
performing as expected. In this regard, only high-level SLOs
can be represented in the Cartesian space, as it is a high-
level abstraction of the system and low-level SLOs can not
be represented.
In general, high-level SLOs will be expressed as lower and
higher boundaries for each of the axis. For instance, two
limits on the Cost axis represent the range in Cost that
the “computing continuum” system can assume. One could
argue that Cost could only have an upper limit. However,
it is important to take into account that by simply using
infrastructure there is an associated Cost, and actually, being
below a threshold could imply that there is some required
infrastructure component that is not being properly used,
hence, the system performance could be endangered.
Visually, this develops an hexahedron on the Cartesian
space that represents the available configurations for the
system state. Hence, within that space the system is oper-
ating with its specified characteristics. Unfortunately, this is
not entirely true.
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As previously mentioned, “computing continuum” systems
do not have an “unlimited” pool of homogeneous infras-
tructure resources, as it is usually assumed for the Cloud.
Therefore, their operative system’s space is linked to the
actual system’s infrastructure. In other words, the underly-
ing infrastructure of the system has to be represented in the
Cartesian space to understand the possible configurations
for the system’s space.
Infrastructure has fixed characteristics of Resources, Quality
and Cost. Hence, they are represented as points in that space.
At this point one could argue that the same infrastructure
can have different characteristics, and this is true for the
Cloud, where you can have virtual machines with different
specifications depending on the need, making the space
fully continuous. But, as the infrastructure is approaching
the Edge, the resources are limited, and therefore, we as-
sume that using an infrastructure is using all its capabilities.
Then, the system’s infrastructure can be added as points in-
side the Cartesian space. Certainly, infrastructure that is out
of the hexaedron will not be adequate for the “computing
continuum” system.
Therefore, the possible configurations for the system state
space can be visually interpreted as a stretched blanket
linked to the infrastructure points and limited by its specifi-
cation hexahedron, as can be seen in Figure 1.
Finally, an elastic strategy, which can be understood as a
reconfiguration the system’s underlying infrastructure, is
put in place if the system state is outside of its SLO defined
hexahedron, to make the system return into its space.

Fig. 1. The figure shows the three axis of the Cartesian space: Re-
sources, Quality and Cost. For each of them there is a couple of
thresholds that limit the system state from a requirement perspective.
On top, the hexaedron generated from the thresholds is sketched, inside
the Cartesian blanket is drawn by linking the points that represent the
system’s underlying infrastructure.

3.2 “Computing continuum” characteristics

In subsection 3.1, it has been already observed that “com-
puting continuum” systems have different characteristics
than Cloud systems. In this regard, characteristics of “Com-
puting continuum” systems are inherited from its underly-
ing infrastructure, similarly as it happens with the Cloud,
but the latter can abstract its infrastructure as virtually
unlimited, homogeneous and centralized, which simplifies
its analysis and allows a management system as the one
explained in section 2.

On the contrary, “computing continuum” systems’ infras-
tructure is large, diverse and distributed. These systems can
have applications that target an entire city, which means that
its infrastructure is spread through the city with components
ranging from sensors or micro-controllers up to large com-
puting units or robots.
Another characteristic of distributed “computing contin-
uum” systems is that its performance depends on many
interactions between its components. Hence, the application
pipeline is large and contains many ramifications. This,
together with the size of the system makes it fragile, as it
becomes difficult to know which part of the pipeline might
break first and how this issue will propagate. Furthermore,
this impedes knowing with certainty how this issue will
affect the system’s performance.
Finally, the system has to be considered as an open system.
This means, that the system is influenced by environmental
events. To put it simple, network congestion or a high in-
crease of users request can unpredictably occur, as they can
be consequence of a crowd gathering due to a non-related
social event. Hence, this creates a high level of uncertainty
with respect to which components can stop servicing as
expected and break the application’s pipeline.
The combination of the described characteristics makes
“computing continuum” systems behave similarly as com-
plex systems, therefore, the required methodology to man-
age them has to take this into account, which completely
changes the paradigm with respect previous Internet sys-
tems.

3.3 Discussion
The previous analysis of the system state representation, its
management methodology and the characteristics of these
systems have opened a set of issues that have motivated the
need for a new methodology for representing and managing
“computing continuum” systems.

3.3.1 Reactive management system
The first issue is that the managing system is reactive.
Hence, the corrective action is performed once the system
state is outside the configured thresholds. This approach is
not valid for a system that behaves similarly as any complex
systems. Their propensity to have cascade errors makes the
reactive action useless as derived errors arise.
It could be argued that the previous can be solved by taking
the action before, so by narrowing down the thresholds.
But this has other implications, as it forces to constraint the
state space of the system, which implies much less design
flexibility in terms of Resources, Quality and Cost. To sum
up, thresholds are not a suitable solution for “computing
continuum” systems.

3.3.2 System’s stability linked to infrastructure
One can also realize that once the state space of the system
is out of the Cartesian blanket stitched to the infrastructure
points, the system is no longer under control, as at least a
component of its state is not properly linked to its current
infrastructure state. Hence, the stability of the system does
not depend on the location of the system state with respect
to the SLOs frames, but with respect to its underlying
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infrastructure. This different behavior with respect to Cloud
systems stems from the fact that the infrastructure com-
ponents are not as flexible as in a Cloud based system. In
this regard, their relation with the underlying infrastructure
needs to be further developed.

3.3.3 Unknown system derivatives
Following the previous discussion, it can be argued that
the managing action has to be performed as soon as the
system state slightly deviates from its Cartesian blanket
space. However, this reveals another shortcoming of this
representation. The Cartesian representation does not en-
code the system derivatives, in other words, it is a represen-
tation that does not provide information on the evolution of
the system. The characteristics of the system do not allow
to define derivatives of the state in order to understand
whether a small deviation is negligible or if it is actually
going to further deviate from its state. And given that these
systems are not free from environmental noise it is relevant
to understand the nature of the deviation. Furthermore,
in such a case, the performed action needs to be very
carefully sized as it could aggravate the situation. To sum
up, “computing continuum” systems require to include the
sense of evolution in their management mechanisms.

3.3.4 Lack of causality relations
This also relates with the last shortcoming identified on this
representation, which is the lack of the notion of causality.
The actions that can be taken in the cloud computing
paradigm are basically vertical or horizontal scaling or a
combination of both. However, the infrastructure of the
“computing continuum” systems requires more detailed
actions, as they depend on each infrastructure component.
Therefore, understanding the cause of a deviation on the
system’s state is required in order to act to overcome it,
which implies that a causality model is required.

4 SYSTEM MANAGEMENT IN THE MARKOVIAN
SPACE

This section first develops our vision for the new approach
to manage distributed “computing continuum” systems and
then it provides research lines with respect to learning tech-
niques that can be used to fully develop the methodology.

4.1 Vision
4.1.1 System state
Understanding the state of the system through high-level
variables provides an abstraction that is useful in order to
generalize to any type of system. Furthermore, it facilitates
the communication between infrastructure providers and
developers of applications. Therefore, our vision keeps the
same idea of using Resources, Quality and Cost as done in the
Cloud computing systems, in this regard, Sys = (R,Q,C).
Nevertheless, the heterogeneity of these systems presents
a challenge, as already identified in [20]. As previously
mentioned, systems that share a domain or that run similar
applications are easier to relate by abstracting their common
characteristics. But this is not the case when dealing with
systems from different domains. For instance, developing

Fig. 2. The system state represented as a node, encoding its high-level
variables: Resources, Quality and Cost.

the same abstraction to represent quality in a system that
allows autonomous driving and another used for managing
city waste is a challenge. Hence, our methodology will
define the system state, its Resources, Quality and Cost de-
pending on the application domain. Nevertheless, further
research will focus on inter-domain generalization mecha-
nisms.
The high-level definition of the system state limits its ob-
servability, therefore, a set of metrics, which are observable,
have to be defined based on the application requirements to
provide the link between computing-continuum resources
and the system state. Simply put, it is not feasible to observe
the low-level resources of the computing-continuum fabric
to directly obtain the system state. In Figure 3 it can be
seen how the low-level resources are aggregated and filtered
into a set of metrics. Similarly, this set of metrics is then
related to the system state. Again, depending on the appli-
cation domain the system will require a higher dependency
on network latency aspects or in an efficient use of the
computational resources. It is worth noticing two details
from Figure 3, first, the arrows keep knowledge of causality
relations, which are important to understand the reasons
of the system’s behavior. Second, both the set of metrics
and the relation of these metrics with the system state are
dependent on the application requirements, whereas the
relation between the “computing-continuum resources” and
the set of metrics are not.

Fig. 3. The figure shows how the system state is influenced by a set
of metrics, both the set of metrics and level of influencing mostly de-
pends on the specified application requirements. Furthermore, the figure
shows how causal relations for the metrics values can be connected with
the “computing-continuum” resources, or in other words, its underlying
infrastructure.

The methodology that it is being discussed in this article
also requires to act in order to provide adaptive mechanisms
to the system. Simply put, the system has to be able to
change the configuration of its underlying infrastructure in
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order to overcome any possible issue encountered. Again,
providing the system state with capabilities to directly
act on the computing-continuum resources is not feasible
due to the large conceptual difference between a high-
level representation of the system and the actual low-level
adaptation on the underlying infrastructure. Hence, there
is the need of create a set of actions to move from the
higher-level to the lower-level, as seen in Figure 4. This can
be a set of different configurations that allows the system
running within its expected requirement. However, these
configurations might not all be possible to be described at
design phase, therefore, this requires to have the capacity to
learn new configurations given applications constraints and
the current state of the computing-continuum resources. In
any case, this will be further expanded in subsection 4.1.4.

Fig. 4. The figure shows the relation of the system state with the set
of actions. In this case, the set of actions require to be learnt as well
as the precise relation of the state with them in order to develop a
system with autonomous and adaptive capabilities. Finally it can be seen
that the adaptation capabilities of the system influence the “computing-
continuum” resources.

4.1.2 Markov Blanket

It is now possible to provide a wider view of the system
representation, by merging together the previous ideas, as
seen in Figure 5. This gives the opportunity to introduce
a concept, the Markov Blanket (MB), that provides several
key features to the managing methodology for emerging
“computing continuum” systems. As defined in [25], the
MB of a variable are those variables that provide enough
information to infer its state. Formally, if the Markov Blanket
of the variable V are variables Y and X , we can say that
P (V |X,Y, Z) = P (V |X,Y ).

Fig. 5. This figure shows the complete perspective on the required repre-
sentation of the system to apply the methodology depicted in this article.
It is worth noticing the central gray space that sets the boundaries of the
Markov Blanket that defines the system state.

The previous definition implies that without a direct obser-
vation of the variable V it is possible to infer its state given
the observation of its MB variables. This a useful tool in or-
der to infer the system state, given that as previously stated
it is not possible to obtain direct observations. Additionally,
the MB is used as a causality filter in our methodology,
simply put, the granularity or detail of the observations to
infer the system state can be chosen, given that the selected
set of observations is meaningful to the system state. Hence,
the set of metrics and actions can be selected in order to
easily match the application requirements. Furthermore, it
allows to create nested representations of the system, so
besides providing a tool to choose granularity, it allows to
focus into a precise application on the entire system to act
on that part keeping the knowledge of the relations and
using the same methodology for adaptation. Simply put,
if the application is managing the mobility of autonomous
cars on a city, a nested MB representation allows to focus
on a smaller application, such as the visualization of the
street cameras in order to solve any issue there, but keeping
clear track of the relations with the other parts of the system
thanks to the causality links encoded.
It is important to remark that the MB variables include
both the metrics and the actions, as seen in the gray area
of Figure 5, given that to understand the current state
of the system the metrics that relate with the underlying
infrastructure are required but also the current configuration
of the system, provided by the state of the action variables.
Usually, the MB is represented as a directed acyclic graph
(DAG) which provides framework for using Bayesian in-
ference, which initially can help to construct the graph to
represent the system, and later to develop knowledge on
causality reasons of an event and their propagation up or
downstream. Formally, the Markov Blanket DAG consists
of the parents, the children and the spouses of the central
node.
Figure 6 shows a more detailed representation of a Markov
Blanket for a “computing continuum” system. It can be seen
how several metrics influence the system state, and how this
influence action states, additionally, there can be direct links
from metrics to actions and also from resources of the un-
derlying infrastructure to actions. Hence, building the DAG
representation is not trivial and requires a proper definition
of the components and also on their links to keep track of
causality effects between them. To that end, subsection 4.2
will take advantage of the DAG representation to detail
learning techniques that can be used to build it.

4.1.3 Equilibrium
The causality filter provided by the Markov Blanket also
provides a high-level perspective on the system scope in
terms of the data, or information, that it can use and in the
adaptation capabilities that it can have. This scope develops
a separation between the system and the environment,
which brings a new concept: the system’s equilibrium. We
can put in place some of the explained concepts to create
a visual metaphor, picture that the system is a blanket
on top of an underlying infrastructure where you can tie
and stretch it. In this scenario having the blanket prop-
erly stretched and attached to the underlying infrastructure
would mean having the system in equilibrium. Hence, once
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Fig. 6. The Markov Blanket for the system state is represented as
directed acyclic graph (DAG). Each M represents en element from the
set of metrics, similarly, each A represents an element from the set
of actions. Also each R makes reference to a resource and C to a
components of the underlying infrastructure of the system.

the underlying infrastructure change due to its dynamic
and complex behavior, the blanket would become rippled
or uneven, therefore an adaption capability would tie and
stretch the blanket on another infrastructure resource. In this
regard, we are using the concept of equilibrium in order to
quantify the need for the system to adapt, simply put, if
the system is not in equilibrium an adaptation is required,
otherwise it can stay as it is. The management decisions over
the system equilibrium aims at freeing the system from the
thresholds dependencies, providing a much more flexible
framework.
“Computing continuum” systems do not have this intrinsic
equilibrium defined. However, this does not mean that it
can not be described and leveraged. In this sense, the equi-
librium of a “computing continuum” system can be defined
as an operation mode defined by a specific infrastructure
configuration. This implies that the equilibrium depends on
the evolution of the metrics that define the system state
and also on the specific configuration of the “computing-
continuum” resources. Simply put, this depends on the
Markov Blankets nodes. Therefore, if relations are created
between the MB nodes during the graph construction, their
derivatives will provide the meaningful information to talk
about system evolution, and consequently, equilibrium, pro-
viding a framework that allows proactive behaviors over
reactive ones. It is worth emphasizing that this research is
framed to a probabilistic approach, in this regard the system
derivatives will be probability distributions over a random
variable variation.
The equilibrium and the derivatives of the system bring
another concept to the surface, this is the temporal evolution
of the system given that all the previous does not make
sense if the system is static. Figure 7 shows, in its bottom,
the temporal dimension on the system, the initial state of the
configuration of the “computing-continuum” underlying in-
frastructure changes, which is sensed by the system metrics’,
which leads to a degradation of the equilibrium state of the
application, therefore, a set of actions is activated in order
to reconfigure the state of the underlying infrastructure in
order to preserve the equilibrium. It is worth noticing that

given the complexity of these systems, the equilibrium of
the system state can be found at different configurations,
which will lead to different equilibrium states or operation
modes, here we assume that a different configuration of the
underlying infrastructure will not assure that the operation
mode of the system is maintained, only its requirements.

4.1.4 Adaptation
Triggered by an equilibrium disturbance, an adaptation
process needs to be performed. This adaptation process (set
of actions) aims at changing the system configuration with
respect to the underlying infrastructure, to reach a new
operation mode for the system and recover the equilibrium
for the system state. However, this process faces two main
challenges: first knowing the configuration capabilities of
the system, so determining the complete set of actions, and
second selecting the best strategy or set of actions to adapt.
The first challenge rises a crucial issue for these systems,
given that the space of possible configurations for the
system increases with its size and complexity, which is
very large, and may be partially unknown. We foresee two
approaches to deal with it, and both require a learning
framework, given that is not feasible to encode all possible
configurations. The first option would be to expose to the
system low-level options for adaptation and given some
constraints let the system learn how low-level adaptations
are mapped into solving higher-level disturbances. This
would allow the system to change the initial set of low-
level adaptations to higher-level ones which could even-
tually lead to better decisions for the second challenge of
selecting the best action. The second option is developing
high-level adaptations from partial representations of the
system using the nested capacity of the MB representation.
This clearly reduces the space of possible configurations,
which might allow to develop a significant list of possible
high-level adaptations, however, this will never cover the
entire space and might not be able to expose adequate
solutions for the overall system. In any case, it is require
to provide the system with learning capabilities to develop
its configuration space or set of actions.
Furthermore, given the space of possible adaptations of
the system, the system requires to chose the best possible
option, which is the second challenge faced in adaptation.
In general, finding the best action to recover the system’s
equilibrium given its complexity, the partially observable
data and the stochastic nature of several underlying phe-
nomena is already a challenge and it is usually solved with
heuristics. Furthermore, given that systems are open and
have many interconnected relations with the underlying
infrastructure, finding a solution for this problem might
also require a learning framework. Simply put, the selected
actions can affect the system from different perspectives
preventing the system state to reach its equilibrium, which
can lead to the need of developing larger policies until the
new equilibrium states are found. Figure 7 adds to the
previous schema of the system the learning framework,
where the chosen re-configuration for the system is taken
as input, and following this iterative process learning can
be achieved.

Interestingly, there is a principle, called Free Energy
Principle (FEP) [26], from neuroscience, that explains the
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Fig. 7. This figure presents again a complete perspective on the sys-
tem’s representation. This figure emphasizes the temporal dimension
of the system and how the configuration of the “computing-continuum”
resources follows this temporal dimension. Additionally, it presents the
structure of the learning framework for the adaptation capabilities of the
system, which resembles to the typical framework of RL.

adaptive behaviour of the brain, and in general for any
system that has adaptive capacities. However, this gener-
alization is actually being disputed by the work of [27]
which claims that the principle is not that general. In any
case, there are several similarities with our approach that
are worth mentioning.
The FEP already uses the Markov Blanket to develop a
representation for the brain, furthermore it categorizes the
Markov Blanket nodes in two: the sensing and the acting.
In our representation, the sensor nodes are metrics, and the
active nodes are these capabilities of the system to modify
the underlying infrastructure. The FEP states that, as an
adaptive system, the brain acts as if it was minimizing the
free energy of the system, or similarly, maximizing the ev-
idence lower bound (ELBO). In this regard, the free energy
is the difference between an expected observation and the
obtained observation. There are two main challenges that
need to be addressed in order to determine if the FEP would
also apply for the systems that we are considering in this
work. First, it would be required to quantify the relations
between the Markov Blanket nodes and the system state,
which in the case of the metrics seems more attainable but
when dealing with the actions this is still a very open issue.
Second, it is required that our system is able to have a
representation of the environment, hence it can have an
expected observation given an action, this is commonly
known as a generative model of the environment, which
is also a relevant challenge that stills need to be tackled.

4.1.5 Illustrative example
The following presents an illustrative metaphor in order to
better understand all the previous methodology. Imagine
that the application of the “computing-continuum” is sim-
ply about transporting containers through the ocean, hence,
the “computing-continuum” system is a boat that carries
them. For the sake of the metaphor, we will assume that the
containers can’t be fixed to the boat, hence if the boat tilts
too much and it looses its “equilibrium” then the containers
can fall and be lost in the ocean.
In any case, there are two main requirements for the boat
in order to properly handle the transportation. The first

is reaching the destination harbor, and the second is not
to loose any container. The first requirement is assumed
that will be achieved given that the boat has sophisticated
technologies to be guided, such as GPS or a compass, and
the destination harbor is fixed within the navigation frame.
However, the second requirement is more tricky, given that
the stability of the boat depends on the weather and sea
conditions. Going back for a moment to the computing con-
tinuum, the first requirement would be for an application
to work without the need of any “computing-continuum”
underlying infrastructure, such as first Internet applications.
However, the second takes into account that the environ-
ment of the application, is dynamic and complex.
Therefore, to assess the stability of the containers the boat
has several inclinometers, sailors that observe the surround-
ing state of the ocean waves, and a report on the weather
condition of its current area for the next couple of hours.
However, the causal relations for these observations can
be more deeper, hence, one could think that to better un-
derstand or predict the tilt of the boat it is required to
observe the ocean and atmosphere characteristics, such as
the temperature of the undersea currents, or the position
and trajectory of the closest squall. This could actually
improve some prediction models, but it drastically increases
the complexity on the system. A similar idea can be cast
towards the possible configurations of the boat in order to
overcome a wind gust or a large wave, if the sailors are
experienced enough, just adapting the sail position can be
enough to manage that, but if they are not, they could try
more options, which in some situation can lead to worse
scenarios. This idea mimics the benefits brought by the
Markov Blanket in terms of filtering causality for the system
state, and to have focus on the system state by observing the
metrics and the system’s configuration.
This metaphor also provides a clear view on the idea of the
system equilibrium, if the boat tilts when waves come and
go then it can lose containers. Therefore, the equilibrium is
required to dynamically change the system configuration to
maintain the application performing as expected.
In this subsection we have developed our vision of the
required methodology to manage “computing-continuum”
systems. In this regard we have identified several aspects
of the methodology that will require to leverage learning
techniques. These aspects can be separated in two classes,
the design phase, where the methodology is adapted to
the specific “computing-continuum” system, and the run-
time phase, where the methodology is used to manage
the system. From this perspective we can identify that the
design phase will require learning algorithms to optimize
the DAG representation of the system, in terms of the
nodes that are represented (set of metrics and set of actions)
and their relations. For the run-time phase we will need
algorithms that can update the system representation based
on the current situation of the system but more importantly
algorithms that learn which adaptive mechanism to select
and how to perform the adaptation.

4.2 Learning

This section details the learning on system representation
during the design phase and during the run-time phase.
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TABLE 1
summary of Design-phase learning

Algorithms Proximity Stability Reactive
Handling
Missing
Values

Prediction
Accuracy Complexity

MF 4 7 7 7 – Low
RWL 4 7 4 4 High Reasonable
SRL 4 7 4 7 Low High
GNN 4 7 4 7 High High
RL 7 4 4 4 Medium High
SDNE 4 7 7 7 Low High
GDL 4 4 4 4 High High

In the design phase, we discuss various graph learning
algorithms used to refine the system and MB learning.
In the run-time phase, the FEP performs the predictions
and action selections through active inference. These two
learning approaches are operated iteratively, as shown in
Fig. 7.

4.2.1 Design phase learning

The DAG is built up with conditional dependencies be-
tween the states from a given set of available data (even
though missing values in the data) [28]. Explaining these
data using DAG is considered as an NP-hard problem [29].
Still, several software tools (Java-based) and libraries (for
MATLAB, Weka, R, C++, Python, etc.) are available to build
initial DAG [30], [31]. Once the DAG is constructed, the
learning can take place to keep track of causality relations
(strength and weakness of a relation), identify redundant
relations and states, optimal MB discovery, etc. There are
several graph learning algorithms in the literature to ex-
tract the knowledge from the graph data. These algorithms
are used to estimate the proximity, structural information,
failure state predictions, etc. Some of these graph learning
algorithms are also useful to extract the knowledge from
the DAGs. The majority of these learning algorithms use
the DAG as an adjacency matrix to simplify the problem.
The summary of graph learning algorithms for DAG is pre-
sented in Table. 1. Here, the proximity indicates the strength
of the causality relation among the two states. The stability
in the table refers the small change in the input of data
does not affect the results or outcome drastically. A reactive
means the algorithm responds and acts to the unprotected
occurrence of events during the learning process.

A matrix factorization (MF) or decomposition mechanism
is used to estimate the strength of the relations (proxim-
ity) on a DAG. In general, the MF reduces a matrix into
constituent parts to understand the complex relations easier
and faster [32]. It also helps to identify the contested edges
(the removal of a link improves the prediction accuracy
among the states) in the DAG [33]. Nonnegative MF further
helps to identify the irrelevant states or relations in the
DAG. It is further improved by combining with manifold
learning strategy to exploit the nonlinear relations on the
DAG [34]. Besides these benefits, there are a few limitations,
i.e., sensitivity to outliers and noises. So, the MF is unstable
until it removes the noises and outliers. The computing
continuum systems’ are complex because of several char-
acteristics discussed in subsection 3.2. However, MF does
not result from accurate results for these systems.

Random walk learning (RWL) can identify the similar
property states in a short hop distance over the DAG so

that we can quickly identify and remove the redundant
states. Unlike MF, the random walk can handle the missing
information and noise data. But, the learning accuracy of a
DAG is more if data is available. The dynamic characteristics
of the computing continuum, such as the states or relations,
may evolve over time and require more effort to learn
because new relations appear while old relations may not
be valid for a long time. The random walk can perform
the learning on such dynamic systems through continuous
learning [35]. Besides these advantages, there are certain
limitations of random walk learning. It can predict the prox-
imity only if the relationship existed between any two states
in the system. It can create uncertainty in the relations for
the small systems because of random strategies and less data
availability. RWL is computationally high. The RWL can
benefit from computing continuum system representations
in predicting the strength of causality relations between the
states. It also adopts the dynamic changes in the computing
continuum representation and learns accordingly.

Statistical Relational Learning (SRL) is used for link pre-
dictions (properties of relations) on a complex and uncertain
DAG. There are several categories of SRL techniques such
as Probabilistic Relational Models (PRM), Markov Logic
Networks (MLN), Bayesian Logic Programming (BLP), and
Relational Dependency Network (RDN) [36]. These tech-
niques efficiently predict the strength of relations among
the states. PRM, BLP, and MLNs suffer from extracting the
inference for the small systems or the large systems with
unlabeled information. The SRL fails to forecast accurate
predictions in the case of the unlabeled instances in the
system. SLR causes too expensive computations if missing
labels in the system. The SLR may not fit the computing
continuum unless the label data is provided without miss-
ing information. Due to the scalability and dynamic nature
of the computing continuum, it is strenuous to provide such
accurate information, so SRL may not fit the computing
continuum.

Graph neural networks (GNN) is a supervised learning
strategy and uses a neural network framework to process
the DAG. The GNN can be operated learning on three
general types such as a system, a state, or a relation [37].
The system-level and state-level learning strategies can re-
sult in classification (categorize the states of representations
according to their characteristics), predict the possible re-
lations among the states, and group the similar property
nodes in the system for simplifying the learning strategies.
The relation-level learning strategies can predict the possible
relations among the states and also classify the relations
depends on their characteristics. Combining the GNN and
SRL techniques can help us to estimate the relational density
between the states on representations [38]. There are certain
limitations of GNN such as (i) challenging to represent the
system compatible with neural networks, (ii) being compu-
tationally expensive, (iii) Customization of the GNN model
(deciding the number of GNN layers, aggregation function,
style of message passing, etc.). On computing continuum
representation, the GNN is useful for classifying the states,
predict strength of the relations, and grouping the similar
property nodes or relations.

Reinforcement learning (RL) can be used to learn and
extract knowledge from a DAG by considering accuracy,
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diversity, and efficiency in the reward function [39]. RL and
GNN are combined together to extract the behavior of a
DAG [40]. This combination is also used to identify the cas-
cades of failures states in the DAG [41]. These techniques are
suitable for small systems because they are computational
hungry mechanisms. These methods are also fit for dynamic
environments such as computing continuum because of
adaptability.

Structural deep network embedding (SDNE) exploit the first
and second-order proximity together into the learning pro-
cess to achieve the structure-preserving, and sparsity [42].
The first-order proximity can extract the pairwise similarity
between any two states (local network). In contrast, the
second-order proximity identifies the missing legitimate
links throughout the system. Therefore, the second-order
proximity can identify the redundant states in DAG. The
characteristics of the local and global systems learn using
these two proximities. It can remember the initial structure
of the DAG and easily reconstruct the original one in case
of any failures during the learning. Along with this, the
SDNE results at most performance in terms of classification
and link predictions. On the other hand, it is essential
to identify the balance point among the first and second-
order proximities to achieve optimal results. However, it
increases the complexity due to unnecessary computations.
The SDNE is helpful to predict the strength of causality
relations on computing continuum representations. Since
SDNE is high computational, it is possible to minimize by
grouping similar states or relations using GNN.

Geometric deep learning (GDL) efficiently classifies the
similar states on a system and parse the heterogeneous
systems efficiently. In contrast, the traditional GNN, deep
learning, Convolutions Neural networks (CNN) algorithms
are inaccurate. The primary reason is that the GNN, deep
learning, CNN are worked based on convolutions, and
they can work efficiently on Euclidean data [43]. In con-
trast, computing continuum data or representations are non-
euclidean. It means there are different states with a variety
of neighbors or their connectivity. So, it isn’t easy to apply
the convolution because of non-euclidean data. However,
the GDL does not resolve the curse of dimensionality issue.
GDL does not require additional abstractions to perform
the learning on computing continuum representations. It
is dynamic, accurate, and low computational for learning
complex computing continuum systems.

Bayesian network structure learning (BNSL) extracts the
correlations among the random variables from the data. The
BNSL is performed in three learning approaches, including
constrained-based, score-based, and hybrid (which com-
bines both score-based and constrained-based techniques).
The constrained-based approach learns structure dependen-
cies from the data using conditional independent tests. The
score-based approach minimize/maximize the scores as ob-
jective functions [44]. These three approaches are primarily
useful to perform learning on a set of relations between the
states and quantify the strength of causality relations [45].

Sun et al. [46] uses a Particle swarm optimization algo-
rithm for BNSL to minimize the computational complexity
through the derivation of the optimal objective function. A
constraint-based parallel BNSL approach is introduced in
[47] to perform the parallel conditional independence test

to minimize the time-consuming steps during the learning
process. He et al. [48] derived efficient BNSL for large
DAGs using multi-granularity information. The DAG is
partitioned using the hierarchical agglomerative clustering
algorithm and each sub-partition learn independently and
construct a refined DAG. Qi et al. [49] propose a BNSL
algorithm based on sharing mutual information between the
two states. In this approach, the mutual information decides
either the edge removal (when a piece of mutual informa-
tion is weaker) or condition set generation (when a degree of
mutual information is weaker). Vogogias et al. [50] introduce
a score-based BNSL tool (named BayesPiles) to visualize
the consensus representation using a heuristic search algo-
rithm. Tsamardinos et al. [51] proposed a constraint-based
Max-Min Hill-Climbing algorithm for BNSL. This algorithm
combines search-and-score techniques with local learning
to improve the efficiency of the representations. A recur-
sive anatomy identification (RAI) algorithm is introduced
for BNSL in [52] to learn the edge directions, conditional
Independence, and sub-systems recursively and efficiently.
The RAI algorithm provides the best classification accuracy,
correct representations with low computational complexity.

During the design-phase learning, the algorithms dis-
cussed above identify and remove the redundant states
and relations from the system representations. It also recon-
structs the system representation according to the strength
of the causality relations. It is worth detailing here that the
MB concept can also be used to optimize a DAG. In this
regard, we need to separate the conceptual perspective of
having the system’s representation using the state variables
as a central node for the MB, from using the MB concept
in order to optimize the final representation of the system.
The latter allows to center a MB at each node of the DAG
in order to verify the dependency of the current relations,
which is a very popular technique for feature selection in
machine learning.

Markov Blanket Learning (MBL) follows a supervised
learning strategy to extract the DAG that characterizes the
target state. Unlike other supervised learning algorithms
(For example, Neural networks, Regression, Support vector
machine, Decision tree, etc.), the MBL returns a genera-
tive model (return more robust models even though some
missing values and redundant features). MBL can perform
either constraint-based or score-based approaches, which
are similar to BNSL. The constraint-based approach is fur-
ther divided into topology-based (tackle the data efficiency)
and non-topology-based (greedily test the states’ indepen-
dence). The time complexity of topology-based learning is
reasonable, over the non-topology and score based learning
approaches. The primary goal of these learning strategies
is to reduce the loss in the accuracy in MB discovery with
a reasonable complexity [53]. Few improvements made on
these learning algorithms to overcome this challenge. A
recursive MBL algorithm is introduced in [54] for learning
the BN and removing the states in which the statistical de-
pendencies do not affect the other states of the system. The
primary goal of the MBL is feature selection or discovering
the best set of MBs) [55]–[57].

The MBL produces a robust system by reducing the
number of states, and non-linear relations [58]. By using the
independence relation between the states, MBL is discov-
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ered for each node and then connected the MB consistently
to form an updated global system [55]. Learning the MB
with low computations and high efficiency is crucial. In
this context, several MBL algorithms are introduced in the
literature. Ling et al. [59] proposed an efficient approach to
discover the MB using local structure learning. Here, the MB
are identified based on the currently selected parents and
children (PC). This approach results in more true positive
states (for the selected MBs) in a large DAG with mini-
mal computations. A local structure learning algorithm is
introduced for efficient MB discovery in [60] to distinguish
the parents from children based on the edge directions
from the DAG. A minimum message length-based MBL
algorithm is introduced in [61] for large-scale DAG with
perfect and imperfect data. The perfect DAG means the
detailed information about the states and their relations
and is maintained using a conditional probability table.
In this approach, the MBL is smooth for perfect DAG.
The imperfect DAG uses a Naive Bayes to assume the
independence between the MB and the remaining states.
A topology-based MB discovery algorithm is introduced by
Gao et al. [62] using a simultaneous MB algorithm, in which
the false PC and coexistence property of spouses states
are identified and removed simultaneously to minimize the
computational time. A selection via group alpha-investing
(SGAI) technique is introduced for efficient MB selection
from a set of multiple MBs using representation sets [63].
The SGAI algorithm avoids unnecessary computations for
parameters regularization. So, the overall complexity of the
MB discovery will minimize through this approach.

There are certain benefits of using MBL on computing
continuum. MBL-based feature selection help us to iden-
tify the best resource (state) for service placements [64]
with rapid actions through quick decisions. The MBL can
also be beneficial to decide a set of metrics that influence
a resource’s workload among all the metrics. Identifying
fewer metrics to determine the influence on a resource will
decrease the computation burdens.

4.2.2 Run-time phase learning
As we discussed in subsection 4.1.4, the states of a system

representation are differentiated by MB as sensory and
active states. In a MB, the internal and external states are
conditionally independent of each other. These two states
are influenced via sensory and active states [65]. The internal
and active states directly affect the structural integrity of
a MB through active inferences. The active inferences are
helpful to minimize the uncertainties of the sensory states
in the MB and derive minimal free energy for the internal
states. The FEP mainly works based on active inference
and it carries out learning and perception on the system
[66]. The active inference understand the behaviour of the
system depending on the generative model and it can able
to predict the sensory states. The active inference is helpful
to obliterate the prediction errors by updating an internal
system that generates predictions through a perceptual in-
terface and perceptual learning.

The FEP majorly performs predictions of future states
and through active inference is able to improve them.
Furthermore, FEP through active inference is able to learn
about the best action to select. Initially, predictive coding

consistently updates the system representation based on
the predicted sensory state information. The FEP minimizes
the prediction errors by comparing the actual sensory state
information with the predicted data. The predictions gen-
erated by the FEP are more accurate than the traditional
machine learning algorithms. FEP is very powerful in min-
imizing the prediction errors through errors backpropaga-
tion [67]. Actions are the source of the system control. These
actions are selected and controlled by the FEP through
variational message passing based on the sensory state pre-
dictions. The theory of active inference especially inspires
the proper selection of an action. The active inference is also
useful to generate a deep generative model for adoptive
actions through exploration. The critical limitation of the
active inference is the scalability, and it can be addressed
using the deep neural networks or deep RL [68].

The traditional machine learning strategies and FEP are
combined in the literature to achieve the better performance
of the systems. For example, an artificial neural network
is incorporated with FEP to enhance the learning rate in
terms of better action selection, and control [69]. In [70],
the FEP is used as Active inference for the RL to speed up
the learning process to reach the goal state quickly. FEP is
used for reinforced Imitation learning to minimize the ex-
plorations through learning and perception. This discussion
concludes that combining the traditional ML with FEP can
extend the learning paradigm. This strategy reduces the cost
and produces high performance by reaching the goal state
quickly.

5 USE CASE INTERPRETATION

In this section we present a use case in order to exemplify
how we envision our methodology.

5.1 Application description
We set the application in the traffic control area. It consists
of checking if car drivers are using their phone with their
hands while driving. To do so, several cameras are installed
at the roads and the videos recorded are able to detect driver
activity through AI inference1.
The system is composed by a set of sensors distributed
through the roadside, the basic set would require cameras
to record driver activity, radars to get car speed, ground
sensors to count the number of cars in the road and a light
system to allow recordings without daylight. Additionally,
the sensors require to connect to small computational units
to pre-process data, and in the case of the cameras, AI
inference boards are expected to be within their proximity.
Additionally, the application will have a larger server to
process the data as well as storage capacity. Finally, the
application is also ready to offload some of the inference
or processing needs to a public cloud. Figure 8 shows a
simplified schema of the application architecture.

5.2 SLOs as application requirements
Service Level Objectives (SLOs) are a tool for Cloud
providers to map requirements into measurable metrics of

1. www.newscientist.com/article/2300329-australias-ai-cameras-
catch-over-270000-drivers-using-their-phones/amp/



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, DECEMBER 2021 11

Fig. 8. Schema of the application’s architecture

the system. In our approach, we go one step further and we
focus on high-level SLOs [22] in order to encode service
oriented requirements and to being able to relate these
SLOs with the three highest-level variables of the system:
Resources, Quality and Cost. However, this advantage comes
with the cost to map these into measurable parts of the
system, which is not always straightforward. For this use
case we have select the following SLOs:

• SLO 1: Percentage of drivers recognized.

This SLO is strongly linked with the Quality of the system.
It would be computed by taking the total number of drivers
recognized by the system and dividing it between the total
number of cars.
To get the total number of cars we would need the output
of sensors, such as the ground sensors, and to obtain the
number of drivers recognized we would require the output
of the AI-based inference system. However, in order to have
a complete picture of what is the status of the application
regarding this SLO, we will also consider the number of
cameras in place, to account for obstructions between cars,
the video quality which involves the image resolution but
also if its daylight or if it rains, finally the inference model
used will also be taken into account. All this information
does not properly provide the SLO value, but is expected to
be able to explain the current situation of the SLO, it can be
understood as a Markov Blanket around the SLO.

• SLO 2: Percentage of drivers recognized faster than
twice the speed limit.

This SLO is very related with the previous but is easily
related with the business strategy of the application, given
that drivers at the phone, which are at twice the speed limit,
are more severely fined. The only difference that we account
for this SLO, with respect to the previous, is the need to
incorporate data from radars on the overall equation.

• SLO 3: System up-time.

This SLO is related with the Resources that the application
is using. It would be assessed by considering the total
up time of the application with respect to the total time
elapsed. However, we want to account for the causes and
the relations between the system components that allow this
level of availability. Hence, with this SLO we will also take
into account other ways to measure the system’s availability,
such as having a periodical ping to the computing units
or checking the continuous stream of data from the sensor.
More specifically, we imagine end-to-end tests that could

also perform an overall check of the entire system, so that
we can check that it is up and well-functioning.

• SLO 4: Expected remaining energy above certain
value.

IoT and Edge devices can have energy constraints if they
are not plugged to a main energy source. Therefore this SLO
will ensure that this devices do not run out of energy. Hence,
this SLO relates both Resources and Cost of the system. To
measure it, we would need to track the operation time of
energy-constrained devices and their charging times. This
information already provides everything we would consider
to have a broader picture of the system.

• SLO 5: Percentage of inferences at Public cloud.

The use of a Public cloud can be required at some specific
moments due to periods of over-request on the application
from both the users side and the sensors side. However,
this type of offloading highly increases the cost of the
application due to the fees applied by the Public cloud
providers. Therefore this SLO is used to have control over
unexpected Costs. It would be computed by keeping track
of the offloadings at the public cloud.

• SLO 6: Privacy level.

A big challenge is to provide qualitative measure for pri-
vacy standards of an application, however, it is clear to
us that this type of requirement is a must for ”computing-
continuum“ applications. For this use case, we are consid-
ering a metric called privacy concern that will categorized
the privacy of the system with respect of the system topol-
ogy and the use of public cloud, in which extra privacy
measurements might need to be taken into account. This
metric will be balanced with the privacy measures in place,
which will provide the final privacy level of the system.
Therefore, by keeping track of the offloaded instances as
well as the current privacy concern of the system and the
implemented privacy measures, it would be possible to
provide the proposed SLO.

5.3 Developing the DAG

From the previous description of the required SLOs, we
can draft a DAG that express the relation between low-
level metrics, which can be understood as a description
of the ”computing continuum“ resources, the set of high-
level SLOs and the system state variables. This DAG ex-
presses the first part of our new representation, see Figure 3.
Additionally, we expect to find a mapping between this
representation and a causal representation of the system.
The second part of the system’s representation, see Figure 4,
relates the high-level system variables and, possibly, some
SLOs with the system’s adaptive means, however, we will
not yet unfold this part in this article.
A first approximation to the DAG can be seen in Figure 9.
In order to build this first approximation, we have gone
through the SLO needs and we have identified the measur-
able resources that could be taken into account. Neverthe-
less, it is clear that this might not be the final graph, as we
might be not taking into account relevant resources or some
of the depicted on the graph are not really influencing the
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Fig. 9. DAG of the system: from the measurable ”computing continuum“
resources to the high-level system variables.

SLO. Further, it can even change due to new constraints or
requirements. Hence, from this point it is required to use the
different techniques depicted in Section 4.2 in order to adjust
the representation to the final configuration of the system.
It is important to highlight that this DAG is also a germi-
nal causal graph for the application, this causal graph is
expected to encode the capability for the system to trace
back the causes of its current status, leading to the capacity
of performing precise actions to solve any encountered
issue. However, the causal graph will also require further
refinement in order to ensure that causality relations are well
defined. We expect both DAG (the system’s Markov Blanket
and the causal graph) to deviate and differentiate as they
precisely encode their expected features. However, build-
ing both from the system’s SLOs ensures finding common
points in order to move from the abstraction of causality
analysis to the actual measurements and components of the
system.

6 CONCLUSION

This article highlights the need of developing new method-
ologies to manage “computing continuum” systems, this
includes developing a new representation of theses sys-
tems and a framework to develop tools and mechanisms
for them. The elasticity paradigm developed for managing
cloud systems falls short when dealing with “computing
continuum” systems. In short, it has been seen that the
Cartesian space it is not able to properly grasp the charac-
teristics of the underlying infrastructure on which these sys-
tems are based, and it does not provide active mechanisms
to solve the perturbation that they can suffer. Nevertheless,
the system’s space composed by Resources, Quality and Cost
is kept to provide a high-level representation.
The methodology develops a new representation for these
systems that is based on the Markov Blanket concept. This
provides manifold advantages to deal with complex sys-
tems: i) provides a causality filter to control the scope of the
system representation; ii) allows to develop nested represen-
tations to focus on specific issues; iii) develops a formal sep-
aration between the system and the environment providing
space for the development of cooperative interfaces between
different systems; vi) encodes causality relations within the
system components to provide knowledge on the system’s
evolution.
The managing framework is based on the concept of equi-
librium, leaving behind the use of thresholds. In this regard,
the equilibrium aims at alerting the system in advance so

that the adaptive mechanisms performed are more efficient.
Additionally, it also encodes the system derivatives, which
allows to adjust the adaptive mechanism to the precise
needs of the system.
To sum up, this new approach focuses on the complexity
inherent to these systems due to their underlying infras-
tructure. However, this does not solve the problem of their
complexity, just set the tools to manage them. Therefore, this
article also presents a survey on learning methods required
to completely develop the methodology, ranging from meth-
ods to build and maintain an optimized representation of
the system, until mechanisms to develop the self-adaptive
capacities of the “computing continuum” systems.
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