
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 1

Multi-Objective Parallel Task Offloading and
Content Caching in D2D-aided MEC Networks
Zhu Xiao, Jinmei Shu, Hongbo Jiang, John C. S. Lui, Geyong Min, Jiangchuan Liu, Schahram Dustdar

Abstract—In device to device (D2D) aided mobile edge computing (MEC) networks, by implementing content caching and D2D links,
the edge server and nearby mobile devices can provide task offloading platforms. For parallel tasks, proper decisions on content
caching and task offloading help reduce delay and energy consumption. However, what is often ignored in the previous works is the
joint optimization of parallel task offloading and content caching. In this paper, we aim to find optimal content caching and parallel task
offloading strategies, so as to minimize task delay and energy consumption. The minimization problem is formulated as a
multi-objective optimization problem, concerning both content caching and parallel task offloading. The content caching is formulated
as an integer knapsack problem (IKP). To solve the IKP problem, an enhanced Binary Particle Swarm Optimization algorithm is
proposed. The parallel task offloading problem is formulated as a constrained multi-objective optimization problem, an improved
multi-objective bat algorithm is proposed to address the problem. Experimental results show that our algorithm can decrease delay and
energy cost by at most 45% and 56%, respectively. In addition, the parallel task offloading ratio remains over 91% even with large
number of mobile devices (MDs).

Index Terms—Mobile edge computing, D2D communication, parallel task offloading, content caching, multi-objective optimization.

✦

1 INTRODUCTION

D Evice to device (D2D) aided mobile edge computing
(MEC) networks provide a promising paradigm to

accommodate the massive amount of task demands [1]. By
implementing content caching and D2D links, the mobile
devices (MDs) can assist their neighbouring MDs in task
offloading. For example, a tourist is visiting the museum
and using the augmented reality (AR) kit, he can help to
compute the offloaded classification task of AR from his
nearby MDs. As such, in the D2D-aided MEC networks, the
resource-limited MD can offload its computation-intensive
tasks (e.g., object recognition) to the resource-rich edge
server or nearby MDs with idle computing resources [2].
Such a task migration helps reduce computation delay and
energy cost, especially when the edge server handles lots of
task offloading demands, thereby offering more opportuni-
ties to fully utilize the available resources in the network.

A successful task execution in D2D-aided MEC network
is bound up with proper decisions on task offloading and
content caching [3]. As illustrated in Fig. 1, there are a
remote cloud, an edge server with considerable resources,
a group of tasks demanded by MDs in parallel. Caching

• Zhu Xiao, Jinmei Shu and Hongbo Jiang are with the College of Com-
puter Science and Electronic Engineering, Hunan University, Changsha,
Hunan, China. E-mail: {zhxiao, jinmeishu, hongbojiang}@hnu.edu.cn.

• John C. S. Lui is with the Computer Science and Engineering Department,
The Chinese University of Hong Kong (CUHK), Hong Kong. E-mail:
cslui@cse.cuhk.edu.hk.

• Geyong Min is with the Department of Mathematics and Computer
Science, University of Exeter, Exeter, UK. Email: g.min@exeter.ac.uk.

• Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada. E-mail: jcliu@sfu.ca.

• Schahram Dustdar is with TU Wien, 1040 Vienna, Austria. E-mail:
dustdar@infosys.tuwien.ac.at.

Manuscript received XX XX, 2022

Fig. 1. Parallel task offloading and content caching in D2D-aided MEC
networks. Tasks are generated in parallel. Each color represents a type
of content, task execution demands the specific content and adequate
computing resources.

contents improperly in the edge server could cause high
delay and energy consumption. The top right-hand image
of Fig. 1 shows the overall completion delay of the parallel
tasks. For example, if the edge server caches contents of type
C, D (suppose the contents in Fig. 1 are of the same size),
only 2 out of 6 tasks can be executed at the edge. Instead,
with type A, B and C contents being cached, it is possible
for the edge server to process tasks offloaded from MD2

to MD6. Only MD1 has to seek task offloading from the
cloud. However, offloading all the parallel tasks demanded
by MD2, MD3, MD4, MD5 and MD6 to the edge server
is not feasible. As the edge server is occupied with multiple

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 2

tasks simultaneously, its computing resources are running
low. In such case, offloading excessive parallel tasks to the
edge server runs the risk of unacceptable waiting delay [4].
Say if MD6 offload its task to the edge server, the waiting
delay for MD6 would be large, the task completion time for
the parallel tasks is then prolonged. Optionally, by exploring
D2D links, MD5 provides task offloading platform along
with the content required for MD6, thereby declining the
task completion delay.

Considerable efforts have been made towards content
caching and parallel task offloading. For instance, the au-
thors in [5], [6] and [7] maximize the overall cached pop-
ularity for content caching while balancing cached content
sizes and the edge server’s storage space. For parallel task
offloading in MEC networks, the authors in [8], [9] and [10]
focus on the task delay minimization. With the goal of min-
imizing task completion delay, the authors in [11] propose a
joint content caching and offloading problem, where parallel
task execution scenarios are included. The most related
work [12] jointly optimizes content caching, task offloading
and resource allocation. Yet, the optimization is made only
towards a single user, the available computing resources of
nearby MDs are underutilized. Besides, the optimization of
parallel tasks remains an open topic in [12]. Despite their
inspiring results, existing works neglect to form a joint view
considering content caching and task offloading in the D2D-
aided MEC networks, while the former is inseparable from
the latter. Besides, equal importance has to be attached to
the latency and and energy cost, both of which are critical
for enhancing user quality of experience (QoE).

Coming with the optimization goal of content caching
and parallel task offloading are double challenges. First,
the trade-off between content popularity and content size
should be well balanced for content caching at the edge.
As can be seen in Fig. 1, due to the constrained cache size,
the edge server is not able to store all the contents. While
contents vary in both size and popularity, additional costs
would be incurred if contents are placed improperly. For
example, if contents of type D and E are placed in the edge
server instead of type-A, B and C contents, the number of
its served MDs reduces from 3 to 1, additional delay and
energy consumption are caused (assume that the attributes
of tasks are identical except for the content requirements).
Second, parallel tasks call for properly scheduling among
heterogeneous computing nodes (i.e., MDs and the edge
server), so as to decline both latency and energy consump-
tion. Although the edge server surpasses the MDs in com-
puting capability, the computing resource demands of paral-
lel tasks could outrun the edge server’s capacity. Scheduling
parallel task inappropriately leads to additional delay and
energy costs. For example, if MD2, MD3, MD4 and MD5

migrate their tasks to the edge server simultaneously, the
delay would increase due to the constrained computing
capacity of the edge server. Or if MD4 offloads its task to
the nearby MD5 with poor computing resources, the delay
and energy costs for computation are incurred [13].

In this paper, to address the aforementioned challenges,
we propose a multi-objective optimization approach in
D2D-aided MEC networks, aiming at jointly minimizing
delay and energy consumption for parallel tasks. To that
end, we formulate a multi-objective optimization problem

(denoted as problem P0), which is twofold in terms of
content caching and task offloading. Specifically, Problem
P0 is solved by means of decomposing it into two sub-
problems. To find a balance between content popularity
and content size, we model the content caching subproblem
(denoted as P1) as an integer knapsack problem (IKP).
To resolve the NP-hardness of IKP, an enhanced binary
particle swarm optimization (BPSO) is proposed. To fix
the issue of possibly being stuck in the local optimum,
we introduce an inertia weight and besides, we reinitialize
the solution once it reaches the global best value. With the
subproblem P1 fixed, problem P0 is transferred to the task
offloading subproblem P2. To minimize both task delay
and energy consumption, an improved multi-objective bat
(iMOB) algorithm is designed. The improvements are as
follows. First, to reduce search complexity, we categorize
the MDs based on their battery level, and choose MDs with
sufficient energy level for solution initialization. Second, to
maintain the diversity of our two-dimensional solutions, we
replace the one-dimensional distance used in the original
bat algorithm with euclidean metric. To sum up, our work
makes the following contributions.

• A multi-objective optimization (denoted as problem
P0) scheme is carried out to jointly minimize task
completion delay and energy consumption. Prob-
lem P0 contains two subproblems, i.e., the content
caching subproblem P1 and the parallel task offload-
ing subproblem P2.

• We model the content caching subproblem P1 as
IKP, which turns out to be nonconvex and NP-hard.
An enhanced BPSO algorithm is proposed to solve
IKP problem. The enhanced BPSO shows its effi-
ciency in finding optimal content caching solutions.

• With the subproblem P1 fixed, the original prob-
lem P0 is transferred to P2. We consider a joint
delay and energy consumption optimization in par-
allel task offloading, under the constraints of CPU
resource, battery level and contents. We design an
iMOB algorithm to solve P2. The proposed iMOB
shows its advantages over the benchmarks in finding
a set of high-quality optimal solutions.

• Extensive simulations are carried out to evaluate the
performance of the proposed algorithm, the results
demonstrate that our algorithm outperforms existing
ones. Specifically, our algorithm decreases delay and
energy cost by at most 45% and 56%, respectively,
compared to the benchmarks. The offloading ratio re-
mains above 91% in parallel offloading, which keeps
the highest value in comparison.

The remainder of this paper is organized as follows.
Section 2 reviews the literature, Section 3, 4 give system
model and problem formulation, respectively. Our solu-
tions are presented in Section 5. In Section 6, we provide
experimental results with respect to the performance of
the proposed algorithm. Finally, we conclude this paper in
Section 7.

2 RELATED WORK
In this section, we briefly review the literature addressing
the content caching and task offloading in MEC networks.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 3

Many content caching approaches concern content pop-
ularity. Müller et al. [14] propose a context-aware proactive
caching algorithm,taking both content popularity and users’
preferences into consideration. Zhang et al. [15] develop a
greedy algorithm, based on the stochastic information of
network topology, traffic distribution, channel quality, and
file popularity, in order to jointly optimize content place-
ment, SBS clustering, and bandwidth allocation. In order to
to minimize the average task latency, the authors in [16]
propose an intelligent task caching strategy according to
task size and computing amount. Content popularity is yet
as critical as content size when it comes to content caching
at the edge. Zhang et al. [5] use web mining techniques so
as to increase the edge server content cache hit ratio, both
content size and popularity are considered in their scheme.
HAO et al. [6] present a joint task caching and offloading
scheme, factoring in task popularity, size of contents and the
required computation capacity of tasks. Lan et al. [7] design
an optimal data caching policy to maximize the total size of
offloaded data in cellular networks, in which both content
popularity and size are considered.

Besides content caching, considerable efforts have been
devoted to task offloading. Bozorgchenani et al. [17] formu-
late task offloading in MEC as a constrained multi-objective
optimization problem, an evolutionary algorithm is thus
developed to minimize both the energy consumption and
task processing delay of the MDs. Guo et al. [18] develop
an online learning based computation offloading scheme in
dynamic MEC networks. To address the problem of task ar-
rival dynamics, edge node heterogeneity and computation-
communication delay tradeoff, Ma et al. [19] present a water-
filling based dynamic task scheduling algorithm while sat-
isfying the constraint of resource budget. In [20], Wang et al.
devise a reinforcement learning based algorithm, aiming to
minimize both response delay and execution consumption.
As a matter of fact, processing tasks requires the availability
of contents in computing nodes, which is not a focus point
in all these works.

There are extensive works that accentuate content
caching and task offloading simultaneously. Liu et al. [21]
model content caching and computation offloading as an
optimization problem under the restrictions of probabilis-
tic backhaul and delay. Xu et al. [22] propose an online
algorithm to deal with dynamic service caching and task
offloading optimization in MEC-enable dense cellular net-
works. The issue of cooperative service caching and work-
load scheduling is formulated as a mixed integer nonlinear
programming problem in [23]. The authors in [11] focus on
offloading dependent tasks with service caching, a convex
programming based algorithm is then introduced to solve
this problem. In [3], Chen et al. integrate a task caching
mechanism into computation offloading technique, which
allows the MEC server proactively cache some tasks, as
well as users to offload their tasks to the MEC server. In
[12], the authors optimize content caching, task offloading
jointly for an individual user. The optimization problem is
formulated as a mixed integer nonlinear problem, and is
solved by transforming the problem into an equivalent pure
0-1 integer linear programming.

However, the case when tasks are generated in parallel
is not considered in all the works mentioned above. Par-

allel task offloading problem demands for wisely conduct-
ing communication and computation operations under the
constraint of computing resource. Liu et al. [8] develop a
distributed task offloading algorithm based on generalized
Nash equilibrium, which is able to map multiple tasks with
the goal of minimizing each task’s service delay. Lee et al. [9]
propose an online optimization framework to intelligently
distribute tasks among fog nodes and the cloud, with the
aim of minimizing the maximum communication and com-
putation delay. Guo et al. [10] fixate on parallel computing,
a data offloading and task allocation scheme is proposed
so as to minimize the average task execution delay in fog
radio access network. Unfortunately, although these works
aim at minimizing the latency of parallel task offloading,
they do not consider the energy consumption, which is
also an important factor for MDs. Moreover, task offloading
operations should be conducted under the constraint of
content caching, otherwise it would lead to to infeasible
offloading solutions.

In this paper, we not only investigate the content caching
problem, but also explore the task offloading scheme, where
parallel offloading scenarios are considered. For content
caching strategy, we aim to find the balance between content
popularity and content size, under the stringent constraint
of the edge server’s storage capacity. For parallel task
offloading problem, our intention is to jointly minimize
the task completion delay and energy consumption, while
considering the heterogeneity of the computing nodes. To
the best of authors’ knowledge, this work is first attempt
to optimize parallel task offloading and content caching in
a synergistic way, while jointly reducing task latency and
energy consumption.

3 SYSTEM MODEL
3.1 D2D-aided MEC Network
We consider a D2D-aided MEC network consists of a remote
cloud R, M geographically close MDs that are within the
coverage of an edge server C. It is worth noting that the
edge server is characterized by more storage space and
higher computing capacity compared to the MDs [24]. Let
M={1, . . . , i, . . . ,M} be the set of MDs, with heterogeneous
computing capacities and battery levels. Each MD i can be
described by a tuple {fi, βi}, where fi and βi denote the
computing capacity and battery level of MD i, respectively.

Each MD has a task request, tasks are generated either
serially or simultaneously. Let Γ = {1, . . . , i, · · · ,M} rep-
resent the set of tasks. According to the generation time,
tasks are divided into two sets, i.e., the set of sequential
tasks S and the set of parallel tasks P . Note that each
task in Γ is matched with one and only one MD in M.
Task i is characterized as a tuple {xi, wi, ri}, where xi, wi

and ri denote the traffic size, computation intensity and
delay requirement, respectively. The storage capacity of the
edge server C is defined as C . Since the edge server has
constrained resources, let fc denote the upper bound of
the edge server’s CPU cycle frequency. Due to the limited
physical size, MDs have restricted computing resources and
energy levels. we assume that each MD can only process at
most one task at a time, in another word, computing several
tasks simultaneously is not allowed for MDs. Task execution

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 4

asks for the support of specific contents, with the contents
available, the task can be processed locally, offloaded to
other MDs or the edge server. If neither the MDs nor the
edge server has the specific content stored, or if they are
all running out of computing resources, the task will be
outsourced to the remote cloud.

3.2 Content Caching
Assume that there are J contents in the content catalog,
indexed by J ={1, . . . , j, . . . , J}. Each content j in J can
be measured by {ρj , zj}, where ρj , zj are the content popu-
larity and content size, respectively. We assume that the task
popularity follows the Zipf distribution [25]. Compared to
the remote cloud, where all the contents are cached there,
the edge server has limited storage space. Therefore, it can
only cache a subset of the contents. On one hand, as popular
contents may be demanded by different MDs frequently, it
is beneficial for the edge server to cache as many popular
tasks as popular. While on the other, edge server should
also consider content size when deciding what to cache
because of its stringent resource budget. Besides the edge
server, MDs can cache a few contents as well. MDs are
heterogeneous with regards to their storage capacities. For
example, tablets and laptops (e.g., MD3 and MD5) have
larger storage than cellphones (e.g, MD2). We assume that
the reserved content caching space of mobile phones, tablets
and laptops are Cp, Ct and Cl, respectively. Each MD can
selectively cache contents based on their own needs.

Based on the above premises, we define the integer
content caching variable as aj ∈ {0,1} (j ∈ J), where aj = 1
means that the jth content is placed in the edge server and
vice versa. Thus we have

aj ∈ {0, 1} ,∀j ∈ J (1)

Note that the content caching strategy should be
popularity-aware, so that frequently-asked contents are
stored. Moreover, the overall size of cached contents is
capped by the edge server’s storage capacity C , which is
given by ∑

j∈J
ajzj ≤ C (2)

3.3 Parallel Task Offloading
Parallel task offloading refers to processing the simultane-
ously generated tasks of different MDs in parallel. These
tasks can be outsourced to multiple computation nodes such
as nearby MDs and the edge server. The edge server can
also accommodate tasks from multiple MDs at the same
time. The tacit offloading method of most related works,
such as [17], is serial task offloading, where tasks have to be
processed one by one. However, the serial task offloading
scheme leads to a low resource utilization and prolonged
task execution delay, which is not applicable to the parallel
tasks. Parallel task offloading scheme enables scheduling
multiple tasks at the same time, on the premise of following
the resource constraints. In so doing, the task completion
delay is shortened and the system’s efficiency is enhanced.

If task i is routed to MD i, it means the task is pro-
cessed locally without data transmission, delay and energy
costs depend solely on the computation process. Otherwise,

TABLE 1
Main Notations and Definitions

Notations Definitions
M Set of MDs within the server’s range
M The number of MDs (i.e., tasks)
fc Computational capability of the server
C Storage capacity of the server
fi Computational capability of MD i
βi Battery level of MD i
Γ Set of tasks
xi Traffic size of task i
wi Computational intensity of task i
ri Delay requirement of task i
S Set of sequential tasks
P Set of parallel tasks
J Set of contents
J The number of contents
ρj Popularity of content j
zj Size of content j
aj Caching decision for content j
o Indicator of offloading mode

bi,o Offloading decision of MD i
Ti,start Execution start time of task i
Ti,end Execution end time of task i
dtri,o Transmission delay of task i

etri,o Transmission energy cost of task i

dli
Computation delay of MD i

under local computing mode

dmi
Computation delay of MD i
under D2D computing mode

dsi
Computation delay of MD i

under edge computing mode
emi,k Energy cost of MD k for computing task i

eli Energy cost of MD i for local computing
Di Completion delay of task i
Ei Energy cost of task i
D Completion delay of Γ
E Energy cost of Γ
Ds Completion delay of S
Dp Completion delay of P
a Content caching strategy
b Offloading solution
B Set of offloading solution vectors

NPareto The number of Pareto front solutions

transmission delay and energy consumption are incurred as
well.

We assume that each MD can process at most one
offloaded task, since their physical sizes are constrained.
As for tasks offloaded to the edge server in parallel, we
suppose that the edge server can process several tasks
simultaneously as long as its resource constraint is ensured.
The execution time for these parallel tasks may overlap,
as indicated in the small image in Fig. 1. Let Ti,start and
Ti,end denote the execution start time and end time of
parallel task i in P , respectively. The overall task comple-
tion time for the set of parallel tasks P is computed as
max(Ti,end)−min(Ti,start), i ∈ P .

3.3.1 Communication Model
When a task is offloaded, the data traffic will first be
transferred to, and then calculated by the edge server or
other MDs. The offloading mode indicator is defined as
o ∈ {l,m, s, c}, where {l,m, s, c} are the local computing,
D2D computing, edge computing and cloud computing
modes, respectively. We assume that the delay for transmit-
ting task i to the remote cloud is fixed, which is denoted by

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 5

dtri,o, o ∈ {c} [26]. The energy spent on transmitting the data
traffic to the remote cloud is expressed as

etri,o = pid
tr
i,o,∀i ∈ Γ,∀o ∈ {c} (3)

where pi is the transmit power of MD i. Without loss of
generality, we assume that our D2D-aided MEC architecture
is based on orthogonal frequency division multiple-access
(OFDMA) technique, which means that users do not inter-
fere with one another when the data is being transmitted,
and each MD is allocated with identical bandwidth B. We
express MD’s transmit power and channel gain as pi, hi,o
(i ∈ M, o ∈ {m, s}). The transmission rate is expressed as
follows

ri,o = Blog2(1 +
pihi,o
σ2

),∀i ∈ M,∀o ∈ {m, s} (4)

where B is the bandwidth, σ2 is the background noise.
Therefore, the transmission delay caused by transmitting
task i is calculated as

dtri,o =
xi
ri,o

,∀i ∈ M, o ∈ {m, s} (5)

and the corresponding energy consumption for transmitting
task i is obtained by

etri,o = pid
tr
i,o,∀i ∈ Γ, o ∈ {m, s} (6)

3.3.2 Computation Model
Without loss of generality, we assume that each task is
indivisible. To this end, we denote the computing modes as
bi,o ∈ {0, 1} (i ∈ Γ, o ∈ {l,m, c, r}), where bi,l = 1, bi,m = 1,
bi,s = 1, bi,c = 1 indicate that task ı is executed in the local
device, other device, edge server, remote cloud, respectively.
Hence, the following constraints

bi,o ∈ {0, 1} ,∀i ∈ Γ, o ∈ {l,m, s, c} (7)∑
o∈{l,m,s,c}

bi,o = 1,∀i ∈ Γ (8)

should be fulfilled to make sure that only one computing
node is selected to process task ı.

A task can be generated alone, or demanded in parallel
with other tasks. S and P are the set of sequential and
parallel tasks, respectively, then we have

S ∪ P = Γ (9)

D2D Computing. With available resources, other MDs in
the vicinity are able to execute tasks. Correspondingly, the
latency for D2D computing is calculated as

dmi =
xiwi

fk
,∀i ∈ Γ,∀k ∈ M, i ̸= k (10)

For MD k (k ̸= i) that executes task ı, the energy con-
sumed by MD k is as follows

emi,k =
[
ψ1(fk)

2 + ψ2

]
dmi ,∀i ∈ Γ,∀k ∈ M, i ̸= k (11)

where the term ψ1(fk)
2 + ψ2 is the energy consumption of

the MD’s CPU per second, fk is the CPU cycle frequency
of MD k, ψ1 is the parameter dependent upon the CPU
frequency, which reflects the power consumed by the logic
gate switching at frequency fk. ψ2 is independent from

the CPU frequency and reflects the power originating from
leakage effects [27].

Edge Computing. The edge server can compute of-
floaded tasks as well. The computing delay spent on edge
computing is calculated as

dsi =
xiwi

fc
,∀i ∈ Γ (12)

Cloud Computing. There are no other choices left than
to offload the task to the remote cloud, if neither MDs nor
the edge server has the required content cached, or if the
computing resources are not available. The remote cloud has
ample computing power, and the delay of computation is
negligible compared to that of transmission. We hence take
no consideration of computing delay for remote offloading.

Local Computing. Tasks can be processed without of-
floading, if the content is stored locally and the computing
resources are sufficient. To process xi bits computation task,
the following computing time and energy consumption are
required

dli =
xiwi

fi
,∀i ∈ Γ (13)

eli =
[
ψ1(fi)

2 + ψ2

]
dli,∀i ∈ Γ (14)

where fi is the CPU cycle frequency of MD i.

4 PROBLEM FORMULATION
The overall completion delay is comprised of transmission
delay and computing delay. For serial tasks, the overall
task completion delay is the sum of all tasks’ latency. For
parallel tasks, the completion delay depends on the earliest
start time and the latest finish time among all parallel
tasks. Let Ti and Ei denote the completion delay and the
corresponding energy consumption for task i(i ∈ S). The
overall task completion delay D can be calculated as

D = Ds +Dp (15)

Ds is the completion time of the sequential tasks

Ds =
∑

Di,∀i ∈ S (16)

where Di is denoted by

Di = bi,ldi,l+bi,m(dmi +dtri,m)+bi,c(d
c
i+d

tr
i,c)+bi,rd

tr
i,r,∀i ∈ Γ

(17)
and Dp is the completion time of the parallel tasks

Dp = max(Ti,end)−min(Ti,start),∀i ∈ P (18)

The energy consumption E is given by

E =
∑

Ei,∀i ∈ Γ (19)

where Ei is denoted by

Ei =bi,le
l
i + bi,m

(
etri,k + emi,k

)
+ bi,ce

tr
i,c + bi,re

tr
i,r,

∀k ∈ M, i ̸= k
(20)

In order to jointly minimize task completion delay and
energy consumption under the constraints of resources, we

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 6

need to make optimal content caching and task offload-
ing decisions. The constrained multi-objective optimization
problem is formulated as follows:

P0 :min
a,b

D,E (21)

s.t.

bi,kxiwi ≤ fkri,∀i ∈ S, k ∈ M (21a)
bi,cxiwi ≤ fcri,∀i ∈ S (21b)∑
i∈P

bi,cxiwi ≤ fcri (21c)∑
i∈M

(
bk,ie

tr
k,i + bk,ce

tr
k,c

)
+
∑
i∈Γ

bi,ke
m
i,k + bk,le

l
k ≤ βk − ε, ∀k ∈ M (21d)

pi ≤ pmax
i ,∀i ∈ M (21e)

Constraints(1)(2)(7)(8).

Problem P0 centers upon minimizing task completion delay
and MDs’ energy consumption in a synergistic way. Con-
straints (21a) and (21b) make sure that the computing capa-
bilities of heterogeneous computing nodes are constrained
when processing the serial tasks. Constraint (21c) represents
the computing resource restriction when parallel tasks are
offloaded to the edge server. Constraint (21d) denotes that
the energy consumption can not surpass the lowest battery
level, where βk ∈ M is the battery level of MD k and ε is a
positive decimal that ensures the battery would not be run
out. Constraint 21(e) means that the transmit power of MD
i can not exceed its maximum power budget. Constraints
(1) and (7) mean that both content caching variable and task
offloading variable are binary-valued. Constraint (2) ensures
the overall sizes of cached contents do not surpass the edge
server’s storage capability. Constraint (8) guarantees that
each task is executed on one and only one computing node.

5 SOLUTIONS
Problem P0 is twofold with respect to both content caching
and task offloading. Problem P0 is solved through de-
coupling the two subproblems, i.e., P1 and P2. P1 is a
content caching problem, which aims at placing as many
popular contents in the edge server as possible. P2 is a
multiple constraints multi-objective problem, where the task
scheduling decision is desired to minimize the delay and
energy cost.
Proposition 1. Solving P1 and P2 respectively is equal to

solving problem P0.

Proof. For one thing, a close observation of problem P0
shows that the binary content caching variable a is not
related to the offloading variable b, i.e., the computation
of tasks has no impact on which contents to be cached in
the edge. For another thing, the optimal offloading decision
b∗ is based on the premise of getting the optimal content
caching strategy a∗. Given the optimal content caching
strategy a∗ derived from solving problem P2, the set of
contents that serves the uppermost number of tasks are
placed in the edge server. In this case, most of the com-
putationally intensive tasks are able to be offloaded to the
edge, which cuts down the transmission delay and energy

cost compared to offloading to the cloud, and offers more
computing resources than seeking offloading services from
MDs. With a∗ settled, the optimal offloading decision b∗

with minimal delay and energy cost is derived by solving
problem P2. Solving problem P1 is the prerequisite of
achieving the optimization goal of P0, solving problem P2 is
the final step to minimize D and E. Hence, solving problem
P0 is equivalent to solving P1 and P2 in sequence. This
completes the proof.

The reason we take the decomposition methodology is
two-fold. First, solving problem P0 directly lacks decision
maker’s preference. Solving problem P1 and P2 allows the
system user to specify the trade-off between the objectives.
For example, if the user is a content provider, he/she has
to count in the monetary cost for caching the contents
in the edge server, and can adjust the optimization goal
of problem P1 to enhance the system’s quality of service
(QoS), meanwhile, the optimization objective of problem
P2 can be preserved to ensure mobile users’ quality of
experience (QoE). Second, finding Pareto optima solution
of problem P0 on convex regions is difficult. Problem P0
is an integer multi-objective optimization problem. In P0,
the Pareto dominance determines whether the solution is
good or not. Any point in the feasible region of P0 defines
a solution (a,b) having two objective function values D and
E. To optimize P0 is to find a hyper-lane (a line for two
objective functions) with a fixed orientation in the feasible
region, and an optimal solution is the point where the
hyper-plane has a common tangent with the feasible space
boundary. A collection of such points comprises the Pareto
front. However, the method is not only computationally
expensive, but also there is a major difficulty in finding the
Pareto front in the convex regions. Decomposing P0 enables
finding a∗ and b∗ separately, the difficulty is reduced.

To cope with the subproblem of content caching, an
enhanced BPSO algorithm is proposed. With a given con-
tent caching solution, the constrained multi-objective op-
timization problem P0 is transferred to task offloading
subproblem. We then design an improved multi-objective
bat algorithm to solve the above problem.

5.1 Content Caching based on Enhanced BPSO

Content caching aims to cache as many popular contents as
possible, and meanwhile make the most of edge server’s
storage space. The content caching strategy for the edge
server is written as

P1 : max
a

∑
j∈J

ajpj (22)

Constraints(1)(2).

Problem P1 is an integer knapsack problem (IKP), which
is proven to be non-convex and NP-hard. The edge server
can be seen as a knapsack, meanwhile there are J items, i.e.,
J contents. Each content is characterized by a different size
and popularity, which equal to the weight and value of an
item, respectively. The goal is to find out a subset of items
with maximal popularity, and the total size of this subset
should not exceed the storage capacity of the edge server.
While caching popular contents at the edge is beneficial for

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 7

reducing task latency and energy consumption, the trade-
off between content popularity and content sizes should be
well balanced.
Proposition 2. The optimization problem in (19) is non-

convex.

Proof. According to Eq. (1), the caching variable aj is binary-
valued, a content is either cached (aj = 1) in the edge server
or not (aj = 0). Besides, constraint (2) is a non-negative
storage constraint. Problem P1 is thus a mixed integer
nonlinear programming problem, which is non-convex [28]
[29].
Proposition 3. The optimization problem in (19) is NP-hard.

Proof. Given J contents, each content has its weight zj and
value pj . To find the best caching solution for problem P1,
we need to compare all aj ∈ J (aj = 0, 1) for J times, the
computation complexity of IKP can reach O(2n). Therefore,
problem P1 is NP-hard and cannot be well solved in poly-
nomial time.

As one of the approximate algorithms, binary par-
ticle swarm optimization is able to approach the NP-
completeness for problem P1 with its fast convergence.
In BPSO mechanism, a group of particles forms a swarm,
where each particle represents a content caching solution for
the edge server. The concept of fitness value is introduced
to evaluate each solution from the perspective of overall
popularity of cached contents. Each particle moves in the
binary search space towards the local optimal fitness and
the global optimal fitness. BPSO can be applied directly
to the discrete content caching space without requiring the
relaxation of variable a, and come as close as possible to the
optimal solution in a reasonable amount of time (usually
polynomial time).

To enhance the ability of searching the global optimum,
we modify the BPSO algorithm from two aspects. In the
original BPSO scheme, the movement of each particle is
only influenced by fitness values, the solution can be easily
trapped in the local optimum once it arrives at the current
optimal position [30]. Different from the original BPSO algo-
rithm, we introduce inertia weight factors wd, c1 and c2 to
balance the trade-off between exploration and exploitation,
and each particle adjusts its position according to three val-
ues: pid, gid and its experience vid, as expressed in Eq. (23).
Furthermore, we reinitialize the particle once it reaches the
best global fitness value. The two modifications mentioned
above provide a more diversified search, and prevent the
BPSO algorithm from being stuck in the local optimum.
The enhanced BPSO algorithm combines the advantages of
relaxation-free, fast convergence and the ability to avoid
being stuck in the local optimum, which helps us solving
the NP-hard binary-valued content caching problem in an
acceptable amount of time.

The position adjustment of a particle can be expressed as

vtid =wd · vt−1
id + c1 · rand1 · (pt−1

id − xt−1
id)

+ c2 · rand2 · (gt−1
id − xt−1

id)
(23)

xtid = xt−1
id + vtid (24)

where the enhanced velocity vid is updated according to
the velocity vt−1

id , the local optimum pt−1
id and the global

optimum gt−1
id at iteration t − 1. xt−1

id is the last position
of the ith particle. rand1 and rand2 are random numbers
that follow the uniform distribution between 0 and 1. wd is
the fine tuning inertia weight, c1 and c2 are both weighting
factors.

Algorithm 1 Enhanced BPSO based Content Caching Algo-
rithm
Require: Content index J and the corresponding parame-

ters ({pj , zj})
Ensure: Content caching decision a

1: Initialize each particle with a random position xi and
velocity vi

2: while numbers of generations do
3: Compute the fitness value for each particle, record the

position of the particle with current best fitness value
as gid

4: Set fitness value as 0 if particle xi violates the storage
capacity constraint

5: if fitness of any particle of the particle swarm is
greater than the current best fitness value then

6: Replace gid with position of this particle
7: end if
8: for i=1 to number of dimension of particle do
9: if Particle reaches local optimal fitness value then

10: Reinitialize the position of this particle to avoid
being trapped in the best position locally

11: end if
12: end for
13: Update velocity and position parameters for particles

according to Eqs. (23) and (24), respectively
14: if the stopping criterion is satisfied then
15: End the iteration and return the particle with the

optimal fitness as content caching decision a
16: end if
17: end while

5.2 Constrained Multi-Objective Task offloading

The subproblem of content caching is solved with the imple-
mentation of BPSO algorithm. Based on the known content
types cached at the edge, problem P0 is then transferred to
the task scheduling subproblem P2, which can be rewritten
as

P2 :min
b

D,E (25)

Constraints(21a)(21b)(21c)(21d)(21e)(7)(8)

Problem P2 is a constrained multi-objective optimization
problem, where the two objectives, i.e., latency and energy
consumption are minimized jointly. The problem can not
be solved simply by one single solution since there are
multiple criteria to evaluate the solutions. The concept of
Pareto front is further introduced to identify the set of high-
quality solutions. Let B = {b1, b2, ..., bZ} be the set of
solution vectors, where bZ is a task scheduling solution
vector and Z is the total number of generated solutions.
For a given minimization problem with k objectives, we use
Uk to denote the value of objective function k (∀k ∈ [1,K]),
the definition of Pareto-dominance is given as follows:

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 8

Definition 1. The value of objective function k for solution
bZ is represented as Uk(b). Solution b1 is said to Pareto-
dominate b2 (i.e., b1 ≻ b2) if Uk(b1) ≤ Uk(b2) for ∀k ∈
[1,K] and ∃k ∈ [1,K] : Uk(b1) < Uk(b2).

The solutions of the subproblem P2 is represented by a
set of non-dominated solutions, which is also called Pareto
front:

S = {bi|bj ≻ bi,∀i, j ∈ [1, Z]} (26)

However, the Pareto front of P2 is not easy to obtain.
First, the algorithms that work well on the typical single-
objective optimization problem is not applicable to problem.
The nonlinear property of both the objective functions and
the constraints makes the true Pareto front not easy to reach
[31]. Second, the constraints divide the search space into
multiple scattered feasible regions. Consequently, the Pareto
front solution spreads on different constraint boundaries
instead of being a continuous curve along a single region,
which is not easy to attain [32].

In order to get a good approximation of the true Pareto
front, an improved multi-objective bat (iMOB) algorithm
is proposed in order to find a diverse range of solutions
that approximate Pareto front. Specifically, iMOB discards
the low-battery MDs from the candidate computing nodes
before the initialization stage, so as to improve the quality
of Pareto front. At the searching stage, each bat goes for the
optimal solutions with minimum delay and energy costs.
The update of the bat population counts in both the random
walk and the current best position to provide a wide range
of diverse properties in Pareto front.

The proposed iMOB algorithm is presented in the fol-
lowing subsection.

5.3 Improved Multi-Objective Bat Algorithm
The multi-objective bat algorithm was proposed based on
swarm intelligence optimization algorithms [33], [34]. In-
spired by this approach, we design an improved multi-
objective bat algorithm to solve subproblem P2.

Specifically, we improve the basic bat algorithm from
two aspects. For one thing, instead of assigning random val-
ues to solutions, which would increase search complexity,
we strive to classify MDs by their battery level and dismiss
those with low energy, in which way the randomness of
solution searching is avoided, and a set of Pareto front
can be found with high efficiency. For another, the original
concept of one-dimensional distance, used in the search
space to measure the diversity of solutions, can not be
straightforwardly applied to our parallel task offloading
scheme. To resolve this problem, motivated by [35], we
exploit the euclidean metric to maintain the diversity of our
two-dimensional solutions.
Definition 2. Given two N matrices, say XN×M and YN×M ,

the euclidean distance between the two matrices in the
same coordinate system can be described by the follow-

ing equation: D =
√∑M

j=1

∑N
i=1(xi,j − yi,j)2

The bat algorithm is based on the echolocation behavior
of micro bats. Micro bats are tiny bats that eat insects. To
detect the target, they use a sonar called echolocation. Dur-
ing the time of preying, micro bats will first emit a highly

pitched sound, the echo will then bounce back to micro bats’
ears and tell them the location, the size and the speed of the
target. Suppose there is a micro bat flying randomly, looking
for food. The search space (i.e. the optimization problem)
is Db dimensional. In order to help the bat find the best
location (i.e., optimal solution) in a quick way, the following
rules should be obeyed when the ith bat updates its position
(solution) at each iteration t:

fib = fmin + (fmax − fmin)βb (27)

V t
ib = V t−1

ib +
(
bi

t−1 − b∗
)
fib (28)

bi
t = bi

t−1 + V t
ib (29)

where fib is the frequency of the bat’s emitted pulse, fmin,
fmax are the minimum and maximum frequency of the
sound waves created by bats, respectively. βb is a random
number drawn from a uniform distribution in [0, 1]. Initially,
each bat i is assigned with a fixed frequency fib uniformly
distributed in [fmin, fmax]. At iteration t − 1, the ith bat
forages for prey with velocity V t−1

ib at position bi
t−1. The

current global best location solutionis denoted by b∗. The
right-hand part bi

t−1 − b∗ in Eq. (28) is calculated using
euclidean distance. At next iteration t, according to Eq. (28)
and Eq. (29), the velocity and position of the bat are adjusted
to V t

ib and bi
t, respectively.

For fitness function, a fine-tuning knob δ is used to com-
bine the two optimization objectives, i.e., task completion
delay and energy consumption, into a single objective. We
represent the fitness value of each bat with the weighted
sum:

f(bi) = δD(bi) + (1− δ)E(bi) (30)

where f(bi) denotes the fitness function value of the ith
solution. D(bi). E(bi) are the delay and energy consump-
tion for solution bi, respectively. δ is a dynamic parameter,
which is adjusted according to the following equation

δ = n/NPareto (31)

here NPareto is a constant that denotes the number of Pareto
fronts, n is an integer and increases from 1 toNPareto. Hence
we have

NPareto∑
n=1

δn = 1 (32)

To generate a new solution, the following policy is adopted:

bnew = bold + εbA
t (33)

where εb is a random number obeying a uniform distri-
bution in [−1, 1], here At = ⟨At

ib⟩ represents the average
loudness of all the bats at iteration t.

As the iterations continue, the loudness Aib and the
pulse rate rib updates in accordance with the following
equations:

At+1
ib = αbA

t
ib (34)

rt+1
i = rti [1 + exp γt] (35)

where αb and γb are constants (0 < αb < 1; γb > 0). At
ib

is the current loudness of bat i, and it changes into At+1
ib at

next time step according to Eq. (34), the adjustment of pulse
rate rti follows Eq. (35).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 9

Different from the continuous real search domain, our
variable is binary-valued. Modifications towards the veloc-
ity and position updating policies are made in the discrete
binary search space. Sigmoid transfer function is introduced
to guarantee that the micro bats move in a binary space. The
transfer function is described as follows:

S
(
V kb

ib (t)
)
=

1

1 + e−V
kb
ib (t)

(36)

where V kb

ib (t) is the velocity of the ith bat in the kbth di-
mension at iteration t. With the Sigmoid function calculated
above, the position updating rule is given as follows:

bi
k(t) =

 0 If rand < S
(
V kb

ib (t)
)

1 If rand ≥ S
(
V kb

ib (t)
) (37)

where bi
k(t) and V kb

i (t) are the position and velocity of bat
i in dimension kb at time step t.

The proposed iMOB algorithm works as follows. Firstly,
we classify MDs based on their remaining energy lev-
els using the method proposed in [17], and discard the
MDs with insufficient energy level. Secondly, we pick the
energy-sufficient computing nodes with the required con-
tents stored as candidate nodes, then initialize a set of
solution obeying the resource constraints. Thirdly, we gen-
erate a set of new solutions according to Eq. (33). Finally,
to approximate the Pareto fronts, we record the optimal
solutions in each iteration. The proposed iMOB algorithm
is summarized in Algorithm 2.

6 PERFORMANCE EVALUATION
6.1 Experiment Settings and Metrics

We consider a D2D-aided MEC scheme with an edge server,
a cloud, and M=50 heterogeneous MDs in close proximity.
The edge server has a radius of 200m and the MDs are
scattered over the coverage region [2], the distance between
two MDs are uniformly distributed in [1, 50] m [36]. The
edge server is equipped with multiple CPU cores and its
total computation capacity is fc=10 GHz [21]. Besides, we
assume the computing capability of MDs follows a uni-
form distribution in [0.9, 1.5] GHz, each MD is initially
allocated with a random energy level uniformly distributed
in [30, 100] percent of battery level. As the cloud is always
equipped with high-speed multi-core CPUs, the computing
capacity of the cloud is much larger than the edge node,
we consider that the computation delay in the cloud is
negligible [23], [37]. The transmission delay from MDs to the
remote cloud is set as 0.5 s [26]. Each MD is allocated with
an equal bandwidth B=20 MHz and the transmit power of
all MDs is set to pi=0.1 W. The parameters ψ1 and ψ2 are
set as 0.34 and 0.35, respectively [27]. The positive decimal
ε ensuring battery safety is 0.3. The white Gaussian noise
variance σ2=2 × 10−13, the channel gain is modeled as
Hi,o = 127 + 30 × log di,o, where di,o is the the MD i and
the computing node o [38].

We assume there are J=100 contents, and the content
popularity follows Zipf distribution [39]. Specifically, ρj =

(1/jα1)/
∑J

j=1 1/j
α1 , here α1 is a constant value 0.56 [40]

[41]. Besides, the content size are set within [50, 100] kb.

Algorithm 2 Improved Multi-Objective Bat Algorithm
Require: Content caching decision a, task index Γ, MDs

and the edge server,
Ensure: Pareto fronts to task offloading problem

Step 1: MD Classification
1: Classify MDs by their remaining battery level using the

method proposed in [17], discard the MDs with low
remaining energy.
Step 2: Initialization

2: Initialize parameters Aib, ri, fmin, fmax, randomly ini-
tialize a cached content in each MD

3: Pick candidate computing nodes for each MD, factoring
in content caching constraint and remaining energy
restriction

4: Initialize population bi(i = 1, 2, ..., N) based on candi-
date nodes, calculate fitness function values according
to Eq. (30), record the optimal solution b∗

5: while n ≤ NPareto do
6: Form a fitness function according to Eqs. (30), (31) and

(32)
Step 3: Solution Update

7: Update bat frequency fib according to Eq. (27)
8: Calculate the euclidean distance between current so-

lution and current best global best solution, then
update bat velocity Vib according to Eq. (28)

9: Update solution bi according to Eq. (36) and Eq. (37)
Step 4: New Solution Acceptance

10: if rand < Aib & f (bi) < f (b∗) then
11: Accept the new solutions and updateAib, ri accord-

ing to Eq. (34) and Eq. (35), respectively
12: end if
13: Calculate fitness and rank all the solutions, find the

current optimal solution b∗

Step 5: Pareto Solution Selection
14: As the bats continue to search, the found optimal

solution set gradually approaches the Pareto front
15: Repeat Step 3 to Step 5 until the maximum number

of iterations is reached
16: end while

The caching capacities of heterogeneous MDs Cp, Ct and
Cl are set as 1000 Kb, 2000 Kb and 6000 Kb, respectively
[42], [43]. The storage capacity of the edge server C is 2
Mb [44]. For tasks, each MD generates a task demanded
either serially or simultaneously. For analytical simplicity,
we assume that the probability that a task is requested alone
is 0.6, the probability that a task is demanded in parallel
with other tasks is 0.4. Task execution demands the specific
contents. Since the content with higher popularity may be
demanded by tasks many times, we assume that the task
type follows identical distribution with content popularity,
i.e., Zipf distribution. Besides, the traffic size of each task
is drawn from the range of [500, 1000] Kb, the computation
intensity is set as 500 cycles/bit, the deadline of tasks is 2
ms [45].

The parameters considered in our algorithms are set
as follows. For the enhanced-BPSO based content caching
algorithm, w=0.8, c1=0.7, c2=0.7, the number of generations,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 10

the maximum dimension are set as 100, 50, respectively.
For iMOB algorithm, the population size N is 10, and the
maximum number of iterations is 1000. We set fmin, fmin

to 0, 2, respectively. The initial loudness Aib, pulse rate ri,
frequency minimum fmin and the frequency maximum fmax

are 0.25, 0.5, 0 and 2, respectively. The number of Pareto
fronts NPareto is 40.

The performance evaluation is carried out based on the
following metrics.

1) The task completion delay, which describes the over-
all delay spending on data transmission and compu-
tation for all tasks.

2) The energy consumption, which represents the over-
all energy cost for transmitting and computing tasks.

3) The offloading ratio, which is the percentage of data
traffic being transmitted to other MDs or the edge
server.

To investigate the efficiency of our D2D-aided MEC
offloading scheme, we compare our D2D-aided offloading
architecture with the following offloading schemes.

1) Nonoffloading scheme (NO), where tasks are han-
dled by mobile device locally, if the local device is
lack of resource or doe not cache the specific service,
the task will have no choice but to be outsourced to
the remote cloud [46].

2) D2D offloading scheme (DDO), where tasks can be
computed locally or by other MDs in the vicinity. If
neither of the two modes works, the data traffic is
transmitted to the remote cloud [46].

3) Nondelayed offloading scheme (NDO), where tasks
can be processed locally or at the edge, or offloaded
to the cloud [47].

To assess the performance of content caching, we compare
our algorithm with the scheme where there is no content is
cached (W/O Caching) in the edge server [48]. In this case,
either MDs with the required contents cached or the remote
cloud is able to execute tasks. The comparison is conducted
based on three metrics, i.e., delay, energy cost and offloading
ratio.

We compare the caching schemes from two aspects. One
is the caching diversity, which is defined as the ratio of
cached content number to the total number of contents.
Another is the storage utilization, which is the ratio of
the occupied storage space of contents to the edge server’s
storage capacity.

6.2 Parallel Offloading Performance

We compare the serial task offloading scheme with the
parallel task offloading architecture. The former one con-
siders only sequential tasks, while the latter includes paral-
lel task offloading as well. We introduce three benchmark
algorithms. Algorithm 1 is the Lyapunov Optimization-
based Dynamic Computation Offloading (LODCO) Based
Greedy Algorithm proposed in [45]. The LODCO-Based
Greedy algorithm always chooses the computation mode
with minimum energy cost for each task, it will not take
the delay optimization goal into consideration. Algorithm
2 is Simulated Annealing (SA) algorithm designed in [49],

taking the weighted sum of delay and energy consumption
as a joint optimization target. In the SA scheme and the
LODCO-based system, neither the content caching method
nor the D2D communication is enabled. Algorithm 3 is the
Non-dominated Sorting Genetic Algorithm 2 (NSGA2) used
in [17], which aims at minimizing task completion delay
and energy consumption simultaneously in energy and de-
lay constrained MEC environments. In the NSGA2 system,
tasks can be processed by nearby MDs, while offloading
tasks to the edge server is not allowed since the contents are
not cached in the server.

6.2.1 Computational Complexity
The computational complexity of the Greedy algorithm is
M logM , where M is the number of tasks. For iMOB, the
classification stage takes constant time O (M). The initial-
ization stage runs in time O

(
M2 +M +NM

)
, where N

is the number of bats in each population, O
(
M2 +M

)
is the running time of picking candidate nodes for each
MD, O (NM) is the time required for population ini-
tialization. The generation of new solutions runs in time
O(NParetoMN), where NPareto is the number of Pareto
front solutions. Hence, the running time of iMOB does not
cross O(NParetoMN) in the worst case scenario. Suppose
there is a total number of Ks required to achieve conver-
gence for SA, the time complexity of the kth iteration is

T
|f(k−1)−f(k)|

∣∣∣1− exp(|f(k−1)−f(k)|
T)

∣∣∣, and the total running

time of SA is
∑Ks

k=1
T

|f(k−1)−f(k)|

∣∣∣1− exp(|f(k−1)−f(k)|
T)

∣∣∣.
For NSGA2, the time complexities for initialization, selec-
tion are both O(NParetoMN), and the complexities for
reproduction and population update are bothO(NParetoN).
Hence, NSGA2 runs in time O(NParetoMN).

Although Greedy algorithm runs in linearithmic time,
the algorithm does not guarantee the global optima. Both
iMOB and NSGA2 are polynomial algorithms. SA is the
most time consuming algorithm and requires exponential
calculation time.

6.2.2 Impacts of Content Caching and D2D Communica-
tion
Fig. 2 and Fig. 3 show the overall task completion delay,
energy consumption and offloading ratio with different task
sequences. Specifically, the results in Fig. 2 are obtained un-
der serial task offloading scheme, Fig. 3 depicts the scenario
where tasks are sometimes generated in parallel.

As illustrated in Figs. 2(a), (b) and Figs. 3(a), (b), the
delay cost and energy cost rise with the increase of MDs
(computation tasks). The proposed iMOB algorithm can
achieve the lowest cost in most cases. For example, in
Fig. 2(a), when the number of MDs reaches 50, the task com-
pletion delay for sequential task offloading model under
iMOB is 4.283, while rising to 7.859, 6.543 and 5.900 under
Greedy, SA and NSGA2, respectively, thereby decreasing
the delay cost by about 45%, 35% and 27% compared with
Greegy, SA and NSGA2, respectively. Similarly, as shown
in Fig. 2(b), the energy consumption for serial tasks are
cut down by 56%, 44% and 38% compared with Greegy,
SA and NSGA2, respectively. It can be observed that iMOB
slightly outperforms the other three algorithms when the
MD number is small, i.e., less than 50. This is because, when

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 11

20 40 60 80 100 120 140 160 180 200

MDs [n]

0

5

10

15

20

25

30

35

T
as

k
C

om
pl

et
io

n
D

el
ay

 [s
]

Greedy
SA
NSGA2
iMOB

(a) Delay

20 40 60 80 100 120 140 160 180 200

MDs [n]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

Greedy
SA
NSGA2
iMOB

(b) Energy Consumption

20 40 60 80 100 120 140 160 180 200

MDs [n]

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ffl

oa
di

ng
 R

at
io

Greedy
SA
NSGA2
iMOB

(c) Offloading Ratio

Fig. 2. Delay, energy consumption and offloading ratio in serial offloading scheme.

20 40 60 80 100 120 140 160 180 200

MDs [n]

0

5

10

15

20

25

T
as

k
C

om
pl

et
io

n
D

el
ay

 [s
]

Greedy
SA
NSGA2
iMOB

(a) Delay

20 40 60 80 100 120 140 160 180 200

MDs [n]

0

0.5

1

1.5

2

2.5

3

3.5

4
E

ne
rg

y
C

on
su

m
pt

io
n

[J
]

Greedy
SA
NSGA2
iMOB

(b) Energy Consumption

20 40 60 80 100 120 140 160 180 200

MDs [n]

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ffl

oa
di

ng
 R

at
io

Greedy
SA
NSGA2
iMOB

(c) Offloading Ratio

Fig. 3. Delay, energy consumption and offloading ratio in parallel offloading scheme.

the search space is small, these algorithms incorporating
the similar idea of random walking are able to find the
optimal solution given the proper iteration number. The
performance of iMOB is stable when the number of MDs
grows, i.e., greater than 100. For example, in Fig. 2(a), the
delay and energy costs are as low as 20 s and 2.6 J when the
number of MDs is 200, meaning that each MD only tasks
about 1 s and 0.013 J to finish the computationally intensive
tasks. This is due to the fact that, iMOB dismisses MDs with
low battery level to reduce the search complexity, and ranks
the solutions according to their fitness values in order to
ensure the population evolves after each generation.

The reduced delay and energy cost are also credited to
the content caching scheme and D2D communication. The
NSGA2 algorithm does not introduce the content caching
scheme, and the computing resources of the edge server
remain unexploited. Unlike NSGA2, the iMOB algorithm
enables content caching at the edge, the MD does not need
to offload the task to the remote cloud if the content is un-
available locally or in nearby MDs. More resources are pro-
vided for the computation tasks. The LODCO-based Greedy
algorithm adopt neither D2D communication nor content
caching scheme, the only way left for task processing is to
upload the data to the remote cloud, if the content is not
cached locally. Hence, higher delay and energy consumption
are incurred.

The combination of D2D communication and content
caching enables offloading tasks to nearby MDs and edge
server, thereby improving task offloading ratio. As shown
in Fig. 2(c) and Fig. 3(c), the offloading ratio under iMOB is

30 35 40 45 50 55 60 65 70 75 80

MDs [n]

2

4

6

8

10

12

14

T
as

k
C

om
pl

et
io

n
D

el
ay

 [s
]

Greedy (serial)
Greedy (parallel)
SA (serial)
SA (parallel)
NSGA2 (serial)
NSGA2 (parallel)
iMOB (serial)
iMOB (parallel)

Fig. 4. Completion delay with different offloading methods.

always the highest of the four algorithms, and the parallel
task offloading ratio under iMOB stabilizes at round 94%.
This is because, under the parallel task offloading scheme,
the MDs are unable to handle all the simultaneously gener-
ated tasks locally, due to their limited computing resources
and storage capacities. In this case, few tasks are executed
locally, most tasks are offloaded to other computing nodes
or the cloud for lower costs.

6.2.3 Parallel Offloading and Serial Offloading

As presented in Fig. 2(a) and Fig.3(a), the delay with parallel
task offloading scheme is lower than that under sequential
task offloading model. For example, when the number of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 12

30 35 40 45 50 55 60 65 70 75 80

MDs [n]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

Greedy (serial)
Greedy (parallel)
SA (serial)
SA (parallel)
NSGA2 (serial)
NSGA2 (parallel)
iMOB (serial)
iMOB (parallel)

Fig. 5. Energy cost with different offloading methods.

MDs is 100, the overall latency under Greedy, SA, NSGA,
iMOB in sequential cases are 14.72, 15.00, 10.26 and 10.20, re-
spectively, while those in parallel cases are 14.48, 13.41, 7.77
and 7.72, respectively. Thereby, the latency for parallel task
offloading under Greedy, SA, NSGA, iMOB are declined by
1,6%, 10.6%, 23.8% and 24.3%, respectively.

The improvement of delay can be seen in Fig. 4. This
is because, parallel offloading scheme allows the comput-
ing nodes to execute tasks simultaneously, thereby saving
the queuing delay. In the sequential offloading scheme,
the tasks have to be processed one by one, the delay is
prolonged. However, as shown in Fig. 5, the impact of
parallel offloading on the system’s energy cost is little, this
is due to the fact that, the energy spent on uploading data
and processing does not change, either under parallel task
offloading scheme or sequential task offloading scheme.

6.2.4 Evaluation of Offloading Schemes
Fig. 6 presents the results of delay, energy consumption
and offloading ratio with different offloading structures.
Specifically, our D2D-aided MEC scheme is compared with
NO, DDO and NDO schemes.

Fig. 6(a) and Fig. 6(b) show that the delay and energy
cost of NO are much more higher than the other three
schemes. Associating the fact that local computing mode is
inferior since MDs choose to process tasks locally. Besides,
as illustrated in Fig. 6(a), the delay of DDO is lower than
that of NDO when the number of MDs is small. As the
the number of tasks continues to grow, NDO outperforms
DDO in terms of delay cost. This is due to the fact that,
when task traffic grows beyond the capacity of MDs, of-
floading tasks to the edge shows its efficiency because of
its considerable computing resource. By comparison, iMOB
scheme performs better than the benchmark algorithms for
decreasing task completion latency.

As depicted in Fig. 6(b), the energy cost of iMOB stays
lowest, while the energy consumption under NO grows
drastically. To be precise, when the number of MDs increases
from 60 to 80, the growth rates of energy cost under NO,
DDO, NDO and iMOB are 5.0%, 4.5%, 2.6% and 0.8%,
respectively. For slowing down the growth of energy cost,
our D2D-aided MEC offloading scheme is better than others.

The offloading ratio of NO is 0, while nearly 95% tasks
are offloaded in the other three schemes. This is because NO

adopts such a model that offloading tasks to other comput-
ing nodes is not allowed. Moreover, when the number of
MDs increases to 100, the offloading ratio is nearly 100%.
This is because offloading tasks can greatly reduce both
delay cost and energy consumption when the data traffic
is heavy.

6.2.5 Pareto Fronts
Since Pareto fronts are generated by both NSGA2 and
iMOB, we compare the two algorithms in this regard. Fig.
5 shows Pareto solutions of NSGA2 and iMOB when the
number of MDs increases from 50 to 100. To investigate the
impact of iterations on Pareto fronts, iterative simulations
are conducted for iMOB-based Pareto solutions.

Fig. 7(a), Fig. 7(b) and Fig. 7(c) plot the Pareto solutions
of NSGA2 and iMOB with 50 MDs, 75 MDs and 100 MDs,
respectively. In particular, to find Pareto optimum, the iMOB
algorithm runs for 100, 200 and 300 iterations, respectively.
We fix the number of NSGA2 iterations to 300. It is straight-
forward to see that the values of energy consumption and
task completion delay increases with the growth in the
number of MDs. Besides, increasing the number of iterations
helps finding better Pareto solutions. Take the case with 100
MDs as an example, the Pareto fronts move towards the
original point when the number of iterations increase from
100 to 200, and then to 300. The iMOB algorithm shows
lower values of delay and energy consumption, compared
to the NSGA2 approach.

6.3 Caching Performance
6.3.1 Evaluation of Caching Schemes
To assess the performance of our caching-at-the-edge
scheme, we compare our algorithm with the scheme in
which no content is cached in the edge server. Since pro-
cessing tasks needs specific contents, if there is no content
cached in the edge, only MDs with the required contents
cached are capable of processing tasks. Besides, adequate
resources is needed as well. If neither of the requirements is
needed, the tasks will have to be outsourced to the cloud.

As shown in Fig. 8(a) and Fig. 8(b), the latency, along
with the energy cost, is significantly reduced when contents
are proactively cached at the edge. The cost gap between
the two schemes is widened with the growth of MDs. For
example, the gaps in terms of delay and energy cost reach
7.05 s, 0.8203 J, respectively. This is attributed to the con-
strained computation and storage resources in the MDs. In
Fig. 8(c), the offloading ratio rises with the growth of MDs.
It is shown that the ratio under iMOB is considerably lower
than that under the no caching scheme in the beginning.
This is due to the fact that edge node is not available
since it is not configured with contents, many tasks have
to be processed locally. Besides, the ratio of iMOB keeps
above 0.92, and rises slowly to 100%. Our caching-at-the-
edge scheme outperforms the other caching modes when it
comes to minimizing task costs and maximizing offloading
ratio.

6.3.2 Caching efficiency
We evaluate the efficiency our content caching algorithm in
terms of storage utilization and convergence speed. Fig. 9

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 13

10 20 30 40 50 60 70 80 90 100

MDs [n]

0

5

10

15

20

25

30

35

40

45

T
as

k
C

om
pl

et
io

n
D

el
ay

 [s
]

NO
DDO
NDO
iMOB

(a) Delay

10 20 30 40 50 60 70 80 90 100

MDs [n]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

NO
DDO
NDO
iMOB

(b) Energy Consumption

10 20 30 40 50 60 70 80 90 100

MDs [n]

0.75

0.8

0.85

0.9

0.95

1

O
ffl

oa
di

ng
 R

at
io

DDO
NDO
iMOB

(c) Offloading Ratio

Fig. 6. Delay, energy consumption and offloading ratio in different MEC schemes.

4 4.5 5 5.5 6 6.5 7 7.5 8

Delay [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

100 Iterations
200 Iterations
300 Iterations
NSGA2

(a) 50 MDs

4 5 6 7 8 9 10 11

Delay [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
E

ne
rg

y
C

on
su

m
pt

io
n

[J
]

100 Iterations
200 Iterations
300 Iterations
NSGA2

(b) 75 MDs

4 6 8 10 12 14 16 18

Delay [s]

0.5

1

1.5

2

2.5

3

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

100 Iterations
200 Iterations
300 Iterations
NSGA2

(c) 100 MDs

Fig. 7. Pareto solutions with different MD numbers.

10 20 30 40 50 60 70 80 90 100

MDs [n]

0

5

10

15

T
as

k
C

om
pl

et
io

n
de

la
y

[s
]

W/O Caching
iMOB

(a) Delay

10 20 30 40 50 60 70 80 90 100

MDs [n]

0

0.5

1

1.5

2

2.5

3

3.5

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

W/O Caching
iMOB

(b) Energy Consumption

10 20 30 40 50 60 70 80 90 100

MDs [n]

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ffl

oa
di

ng
 R

at
io

W/O Caching
iMOB

(c) Offloading Ratio

Fig. 8. Delay, energy consumption and offloading ratio in different caching schemes.

shows that when the total number of content reaches 100,
the algorithm converges fast at iteration 5. Moreover, the re-
source utilization is up to 91% when J is 120. That’s because
during the iterations, each solution learns from the global
optimum and the local optimum, and accordingly updates
itself repeatedly. With the inertia weight introduced, the
solution converges fast towards the global best solution. The
global best solution guarantees the maximization of over-
all content popularity, meanwhile fully utilizing the edge
server’s storage capacity. As a result, the caching efficiency
is significantly enhanced.

6.4 Algorithm Improvement

6.4.1 Enhanced BPSO

We compare the proposed enhanced BPSO algorithm with
the baselines, i.e., the original BPSO algorithm and the
modified versions of BPSO presented in [50]. The modi-
fied versions of BPSO algorithm are presented as follows.
The velocity-modified BPSO algorithm modifies the particle
position equation, so that the velocity of a particle is di-
vided into three regions. According to the current region
of the particle’s velocity, the state of the particle being 0,
1 or unchanged. This modification aims at decreasing the
probability of the algorithm falling into a local optimum.
The position-improved BPSO algorithm updates the particle
position such that part of the particles move away from the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 14

5 10 15 20 25 30

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
to

ra
ge

 U
til

iz
at

io
n

J=20
J=40
J=60
J=80
J=100
J=120

Fig. 9. Resource utilization with different content numbers.

so-far found global optima. The aim is to avoid falling into
local optima and to enhance the search ability. The sigmoid-
modified BPSO algorithm changes the sigmoid function to
improve the probabilities for large positive and negative
velocities. By doing so, each particle’s velocity value is
updated separately in the N-dimensional search space. The
weight-altered BPSO suggests an inertia weight equation that
prevents the original PSO from being prematurely trapped
in a local optimum.

As shown in Fig. 10(a) and Fig. 10(b), the enhanced
BPSO algorithm is able to cache as many popular contents
as possible, and in the meantime make the most of the
edge server’s storage space within the minimum running
time. The overall popularity of the cached contents of the
enhanced BPSO algorithm is up to 61% in the fifth iteration.
The storage utility of the enhanced BPSO algorithm is close
to 100% when the iteration number reaches 15, indicating
that the storage space of the edge server is fully utilized,
and the caching efficiency is at the utmost level. As shown in
Fig. 10(c), the running time of the enhanced BPSO algorithm
remains at the lowest level of the six BPSO algorithms,
and does not exceed 1s even when the number of contents
increases to 200. The running time is decreased by 87.2%
compared to that of the velocity-modified BPSO algorithm.
Besides, the proposed enhanced BPSO algorithm provides
a reasonable caching strategy within the minimum amount
of time. This is because the proposed algorithm has the self-
adapting inertia weight to balance between exploration and
exploitation, and the current best particle goes through a re-
initialization process to avoid the stagnation of evolution.
Although the velocity-modified BPSO algorithm and the
position-improved BPSO algorithm outperform the original
BPSO in terms of moving away from the local optimal
particle, the running time is increased as well, because of the
complicated position update rules. The sigmoid-modified
BPSO algorithm and the weight-altered BPSO algorithm
consume less time compared to the original BPSO algo-
rithm, yet their capabilities of finding global optima are
degraded in comparison with the proposed algorithm and
the velocity-modified BPSO algorithm.

6.4.2 iMOB
We compare the proposed iMOB algorithm with other bat
algorithms (BAs), i.e., the original BA proposed in [51], the

modified BAs presented in [52]. The modifications are made
with regard to the parameters (e.g., loudness and pulse
emission), the weight factor and the update of solutions.
The parameter-updated BA utilizes the update strategies for
both pulse rate and loudness in order to improve the explo-
ration mechanism. Different from the original bat algorithm
using a constant inertia weight factor to balance local and
global search during velocity update, the weight-dynamic
BA proposes a dynamic inertia weight strategy to control
the magnitude of the velocity. Instead of depending on the
loudness, the velocity-based BA updates the solution based
on the velocity. The probability-introduced BA generates new
solutions with a given probability, and accepts the solution
if it is improved, or if the loudness of the bat is greater than
a random value.

As shown in Fig. 11(a), the proposed iMOB is able to
schedule the computationally intensive tasks with the low-
est delay cost of 4.38s, and the lowest energy cost of 0.211J
within 260 iterations. Although the original bat algorithm
converges slightly faster within around 160 iterations, the
solution found by the original bat algorithm is inferior to
that of iMOB, and it takes more time to find the solution, as
shown in Fig. 11(c). The parameter-updated bat algorithm
consumes more running time than iMOB. This is because,
the lack of MD classification enlarges the search space,
and degrades the solution quality. Instead, our proposed
iMOB discards the inferior solutions before the population
updates, thereby leading to the fast convergence. As shown
in Fig. 11(a) and Fig. 11(b), compared to iMOB, the weight-
dynamic BA and the velocity-based BA schedule the tasks
with higher costs of 4.45s and 0.3J, 4.57s and 0.475J, re-
spectively. This is owing to the fact that, these algorithms
accept new solutions merely by a random value, with-
out considering the improvement of the fitness. Although
the capability of exploration is enhanced, these algorithms
fail to ensure the bats moving towards better positions.
The probability-introduced BA finds the offloading solution
with the delay cost of 4.4s and the energy consumption
of 0.28J, which are greater than those of iMOB by 0.02s
and 0.069J, respectively. For one thing, our proposed iMOB
discards inferior solutions by classification before the so-
lution generation, and accepts a new solution if its fitness
value is better. This makes sure the population evolves. For
another thing, the proposed iMOB explores the search space
by accepting an inferior solution with the probability related
to its loudness, which enhances the algorithm’s capability of
moving towards the true Pareto front.

7 CONCLUSION

In this paper, we investigate a joint content caching and task
offloading problem in D2D-aided MEC networks, with the
goal of jointly optimizing task completion delay and energy
consumption. Both serial and parallel task offloading are
considered. To address the content caching subproblem, we
design an enhanced BPSO algorithm, which can effectively
find the global optimal caching strategy. To solve the task
offloading subproblem, an iMOB algorithm is proposed,
which can find a set of high-quality Pareto fronts. The
experimental results show that our algorithm outperforms
benchmarks in terms of finding optimal solutions. In the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 15

10 20 30 40 50 60 70 80 90 100

Iterations

0.75

0.8

0.85

0.9

0.95

1
S

to
ra

ge
 U

til
iz

at
io

n

Proposed
Velocity-Modified BPSO
Position-Improved BPSO
Sigmoid-Modified BPSO
Weight-Altered BPSO
BPSO

(a) Storage Utilization

10 20 30 40 50 60 70 80 90 100

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ac

hi
ng

 D
iv

er
si

ty

Proposed
Velocity-Modified BPSO
Position-Improved BPSO
Sigmoid-Modified BPSO
Weight-Altered BPSO
BPSO

(b) Caching Diversity

20 40 60 80 100 120 140 160 180 200

Contents

0

1

2

3

4

5

6

7

8

R
un

ni
ng

 T
im

e
[s

]

Proposed
Velocity-Modified BPSO
Position-Improved BPSO
Sigmoid-Modified BPSO
Weight-Altered BPSO
BPSO

(c) Running Time

Fig. 10. Performance of the enhanced BPSO in comparison with different bat algorithms.

50 100 150 200 250 300 350 400

Iterations

4.35

4.4

4.45

4.5

4.55

4.6

4.65

T
as

k
C

om
pl

et
io

n
D

el
ay

 [s
]

Proposed
Parameter-Updated BA
Weight-Dynamic BA
Velocity-Based BA
Probability-Introduced BA
BA

(a) Delay

50 100 150 200 250 300 350 400

Iterations

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
ne

rg
y

C
on

su
m

pt
io

n
[J

]

Proposed
Parameter-Updated BA
Weight-Dynamic BA
Velocity-Based BA
Probability-Introduced BA
BA

(b) Energy Consumption

20 40 60 80 100 120 140 160 180 200

MDs [n]

3

4

5

6

7

8

9

R
un

ni
ng

 T
im

e
[s

]

Proposed
Parameter-Updated BA
Weight-Dynamic BA
Velocity-Based BA
Probability-Introduced BA
BA

(c) Running Time

Fig. 11. Performance of the iMOB in comparison with different bat algorithms.

future, we will devote to studying the collaboration between
neighboring edge servers in the parallel task offloading.

REFERENCES

[1] R. Zhang, F. R. Yu, J. Liu, T. Huang, and Y. Liu, “Deep re-
inforcement learning (drl)-based device-to-device (d2d) caching
with blockchain and mobile edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, pp. 6469–6485, 2020.

[2] J. Wu, J. Zhang, Y. Xiao, and Y. Ji, “Cooperative offloading in d2d-
enabled three-tier mec networks for iot,” Wireless Communications
and Mobile Computing, vol. 2021, pp. 1–13, 08 2021.

[3] Z. Chen and Z. Zhou, “Dynamic task caching and computation
offloading for mobile edge computing,” in GLOBECOM 2020 -
2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[4] R. Fantacci and B. Picano, “Performance analysis of a delay
constrained data offloading scheme in an integrated cloud-fog-
edge computing system,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 10, pp. 12 004–12 014, 2020.

[5] Z. Zhang and W. Hao, “Development of a new cloudlet content
caching algorithm based on web mining,” in 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC),
2018, pp. 329–335.

[6] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,”
IEEE Access, vol. 6, pp. 11 365–11 373, 2018.

[7] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, “Task caching,
offloading, and resource allocation in d2d-aided fog computing
networks,” IEEE Access, vol. 7, pp. 104 876–104 891, 2019.

[8] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “Post: Parallel
offloading of splittable tasks in heterogeneous fog networks,”
IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3170–3183, 2020.

[9] G. Lee, W. Saad, and M. Bennis, “An online optimization frame-
work for distributed fog network formation with minimal la-
tency,” IEEE Transactions on Wireless Communications, vol. 18, no. 4,
pp. 2244–2258, 2019.

[10] K. Guo, M. Sheng, T. Q. S. Quek, and Z. Qiu, “Task offloading and
scheduling in fog ran: A parallel communication and computation
perspective,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp.
215–218, 2020.

[11] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading
dependent tasks in mobile edge computing with service caching,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations, 2020, pp. 1997–2006.

[12] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 19, no. 7, pp. 4947–4963, 2020.

[13] S. Kim, E. Go, Y. Song, H. Cho, M. Rim, and C. G. Kang, “A
study on d2d caching systems with mobile helpers,” in 2018 Tenth
International Conference on Ubiquitous and Future Networks (ICUFN),
2018, pp. 630–633.

[14] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 16, no. 2, pp. 1024–1036, 2017.

[15] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Coop-
erative edge caching in user-centric clustered mobile networks,”
IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp. 1791–
1805, 2018.

[16] Y. Miao, Y. Hao, M. Chen, H. Gharavi, and K. Hwang, “Intelligent
task caching in edge cloud via bandit learning,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 1, pp. 625–637, 2021.

[17] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. A. Salinas Mon-
roy, “Multi-objective computation sharing in energy and delay
constrained mobile edge computing environments,” IEEE Trans-
actions on Mobile Computing, vol. 20, no. 10, pp. 2992–3005, 2021.

[18] K. Guo, R. Gao, W. Xia, and T. Q. S. Quek, “Online learning based
computation offloading in mec systems with communication and
computation dynamics,” IEEE Transactions on Communications,
vol. 69, no. 2, pp. 1147–1162, 2021.

[19] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang, “Dynamic
task scheduling in cloud-assisted mobile edge computing,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2022 16

[20] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic
and computation co-offloading with reinforcement learning in
fog computing for industrial applications,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2019.

[21] M. Liu, R. Yu, Y. Teng, and M. Song, “Computation offloading and
content caching in wireless blockchain networks with mobile edge
computing,” IEEE Transactions on Vehicular Technology, vol. PP, pp.
1–1, 08 2018.

[22] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications,
2018, pp. 207–215.

[23] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
IEEE INFOCOM 2020 - IEEE Conference on Computer Communica-
tions, 2020, pp. 2076–2085.

[24] Z. Chen and M. Kountouris, “D2d caching vs. small cell caching:
Where to cache content in a wireless network?” in 2016 IEEE
17th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2016, pp. 1–6.

[25] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content
caching and delivery policy for heterogeneous cellular networks,”
IEEE Transactions on Mobile Computing, vol. 16, no. 5, pp. 1382–
1393, 2017.

[26] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic compu-
tation offloading scheme for fog computing system with energy
harvesting devices,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1869–1879, 2018.

[27] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5,
pp. 2025–2040, 2021.

[28] H. Jiang, Z. Xiao, Z. Li, J. Xu, F. Zeng, and D. Wang, “An energy-
efficient framework for internet of things underlaying heteroge-
neous small cell networks,” IEEE Transactions on Mobile Computing,
vol. 21, no. 1, pp. 31–43, 2022.

[29] Z. Xiao, X. Shen, F. Zeng, V. Havyarimana, D. Wang, W. Chen,
and K. Li, “Spectrum resource sharing in heterogeneous vehic-
ular networks: A noncooperative game-theoretic approach with
correlated equilibrium,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 10, pp. 9449–9458, 2018.

[30] J. Gupta and A. Mahajan, “Bpso optimized k-means clustering
approach for data analysis,” International Journal of Computer Ap-
plications, vol. 133, pp. 9–14, 2016.

[31] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” Inter-
national Journal of Bio-Inspired Computation, vol. 3, 03 2012.

[32] Z.-Z. Liu, B.-C. Wang, and K. Tang, “Handling constrained mul-
tiobjective optimization problems via bidirectional coevolution,”
IEEE Transactions on Cybernetics, pp. 1–14, 2021.

[33] X.-S. Yang, “Bat algorithm for multi-objective optimisation.” Inter-
national Journal of Bio-Inspired Computation, vol. 9, pp. 20 100–20 116,
2021.

[34] X. Ma and J.-S. Wang, “Optimized parameter settings of binary bat
algorithm for solving function optimization problems,” Journal of
Electrical and Computer Engineering, vol. 9, pp. 267–274, 2018.

[35] L. Wei, “A simple way to compute minimum euclidean distance
for synchronous coded multiuser systems,” IEEE Communications
Letters, vol. 2, no. 5, pp. 120–121, 1998.

[36] A. Akbar, R. Ahmad, W. Ahmed, M. Magarini, and M. Alam,
“Managing critical nodes in uav assisted disaster networks,” 10
2020.

[37] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal
approach for online task offloading and resource allocation in
edge-cloud orchestrated computing,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[38] Z. Chen and Z. Zhou, “Dynamic task caching and computation
offloading for mobile edge computing,” in GLOBECOM 2020 -
2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[39] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions
on Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[40] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4924–4938, 2017.

[41] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-

tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[42] L. Li, Y. Xu, J. Yin, W. Liang, X. Li, W. Chen, and Z. Han, “Deep
reinforcement learning approaches for content caching in cache-
enabled d2d networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 544–557, 2020.

[43] Z. Chen and M. Kountouris, “D2d caching vs. small cell caching:
Where to cache content in a wireless network?” in 2016 IEEE
17th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2016, pp. 1–6.

[44] Q. Li, Y. Zhang, A. Pandharipande, Y. Xiao, and X. Ge, “Edge
caching in wireless infostation networks: Deployment and cache
content placement,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2019,
pp. 1–6.

[45] H. Zhao, W. Du, W. Liu, T. Lei, and Q. Lei, “Qoe aware and cell
capacity enhanced computation offloading for multi-server mobile
edge computing systems with energy harvesting devices,” in
2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computing, Scalable Computing Communications, Cloud Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018, pp. 671–678.

[46] Y. He, M. Chen, B. Ge, and M. Guizani, “On wifi offloading in
heterogeneous networks: Various incentives and trade-off strate-
gies,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp.
2345–2385, 2016.

[47] M. H. Cheung and J. Huang, “Dawn: Delay-aware wi-fi offloading
and network selection,” IEEE Journal on Selected Areas in Commu-
nications, vol. 33, no. 6, pp. 1214–1223, 2015.

[48] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic
and computation co-offloading with reinforcement learning in
fog computing for industrial applications,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2019.

[49] Y. Li, “Optimization of task offloading problem based on simu-
lated annealing algorithm in mec,” in 2021 9th International Con-
ference on Intelligent Computing and Wireless Optical Communications
(ICWOC), 2021, pp. 47–52.

[50] M. Elbes, S. AlZu’bi, T. Kanan, A. Al-Fuqaha, and B. Hawashin,
“A survey on particle swarm optimization with emphasis on
engineering and network applications,” Evolutionary Intelligence,
vol. 12, 06 2019.

[51] S. Mirjalili, S. M. Mirjalili, and X.-S. Yang, “Binary bat algorithm,”
Neural Computing and Applications, vol. 25, no. 3, pp. 663–681,
Sep 2014. [Online]. Available: https://doi.org/10.1007/s00521-
013-1525-5

[52] T. Agrawal and V. Chahar, “A systematic review on bat algorithm:
Theoretical foundation, variants, and applications,” Archives of
Computational Methods in Engineering, 10 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3199876

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2022 at 09:18:23 UTC from IEEE Xplore. Restrictions apply.

