
Mobility-Aware Offloading and Resource
Allocation for Distributed Services Collaboration

Haowei Chen , Shuiguang Deng , Senior Member, IEEE, Hongze Zhu , Hailiang Zhao ,

Rong Jiang , Schahram Dustdar , Fellow, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—In mobile edge computing (MEC) systems, mobile users (MUs) are capable of allocating local resources (CPU frequency

and transmission power) and offloading tasks to edge servers in the vicinity in order to enhance their computation capabilities and

reduce back-and-forth transmission over backhaul link. Nevertheless, mobile environment makes it hard to draw offloading and

resource allocation decisions under dynamical wireless channel state and users’ locations. In real life, social relationship is also

provably a significant factor affecting integral performance in collaborative work, which results in MUs decisions strongly coupled and

renders this problem further intractable. Most of previous works ignore the impact of inter-user dependency (or data dependency

among IoT devices). To bridge this gap, we study the service collaboration with master-slave dependency among service chains of

MUs and formulate this combinational optimization problem as a mixed integer non-linear programming (MINLP) problem. To this end,

we derive the closed-form expression of resource allocation solution by convex optimization and transform it to integer linear

programming (ILP) problem. Subsequently, we propose a distributed algorithm based on Markov approximation which has polynomial

computation complexity. Experimental result on real-world dataset substantiates the usefulness and superiority of our scheme, in terms

of reducing latency and energy consumption.

Index Terms—Mobile edge computing, task offloading, resource allocation, dependency, collaborative computing

Ç

1 INTRODUCTION

IN recent years, network data traffic substantially prolifer-
ates with excessive MUs, e.g., smart phones and wearable

equipments. At the same time, the development of infra-
structure of Internet, including base station and cloud
server cluster, couldn’t keep up with the pace of ultra-low
latency demand of networks [1]. In the interest of resolving
this huge burden, MEC is proposed to avert the inevitable
burden by pushing computation capabilities from core to
the edge of networks [2]. It has emerged as a prominent

paradigm to cope with the tremendous Internet data, where
most of computation tasks are completed at edge servers in
proximity through ratio access network (RAN), instead of
the distant cloud [3]. Mobile network operators (MNOs) are
allowed to deploy edge servers in strategic locations flexibly
to guarantee quality of experience (QoE) of users. Without
transferred to core network, MEC saves backhaul latency
and energy cost of a high order of magnitude, and relieves
the traffic load [4].

However, there are practical concerns about how to over-
come the inherent nature of resources constraints. Conven-

tional quality of service (QoS) based algorithms turn into

obsolete to achieve globally optimal solution, due to the

sophisticated network state caused by mobile terminals

(MT) [5], [6]. Uninterrupted computing and transmission of

user devices requires cost-effective methods to sustainably

work, since the limited capacity of battery and scarce out-

door charging infrastructures pose impediments [7]. At last,

ultra-low response latency is necessitated so that results

could reach to delay-sensitive applications instantaneously,

like augmented reality and autonomous vehicles [8], [9],

[10]. It’s expected to adjust CPU frequency and transmission

power adaptively to cope with wireless channel emergency

[11]. Therefore, for users, how to realize the trade-off

between energy consumption and latency, so as to reduce

response latency at the same time that energy consumption

is stablized at a small enough level has been raised as one of

the biggest issue [12].
Some existing works demonstate that social relationship

could be utilized to draw strategies, since user’s social attrib-
utes determine what roles they play in a group [13], [14]. This
kind of interactions is referred to as inter-user dependency [15],

� Haowei Chen, Hongze Zhu, and Hailiang Zhao are with the College of
Computer Science and Technology, Zhejiang University, Hangzhou 310012,
China. E-mail: {haowei98, 22021097, hliangzhao}@zju.edu.cn.

� Shuiguang Deng is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310012, China, and also with the Institute
of Intelligence Applications, Yunnan University of Finance and Econom-
ics, Kunming 650000, China. E-mail: dengsg@zju.edu.cn.

� Rong Jiang is with the Institute of Intelligence Applications, Yunnan Uni-
versity of Finance and Economics, Kunming 650000, China.
E-mail: jiang_rong@aliyun.com.

� Schahram Dustdar is with Distributed Systems Group, TU Wien, 1040
Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

� Albert Y. Zomaya is with High Performance Computing & Networking,
School of Computer Science, University of Sydney, Camperdown, NSW
2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 27 Apr. 2021; revised 4 Jan. 2022; accepted 7 Jan. 2022.
Date of publication 13 Jan. 2022; date of current version 24 Mar. 2022.
This work was supported in part by the Key Research Project of Zhejiang Prov-
ince under Grant 2022C01145 and in part by the National Science Foundation
of China under Grants U20A20173 and 62125206. The work of Schahram
Dustdar was supported in part by the Zhejiang University Deqing Institute of
Advanced Technology and Industrilization (ZDATI).
(Corresponding author: Shuiguang Deng.)
Recommended for acceptance by Q. Zheng.
Digital Object Identifier no. 10.1109/TPDS.2022.3142314

2428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2126-8028
https://orcid.org/0000-0002-2126-8028
https://orcid.org/0000-0002-2126-8028
https://orcid.org/0000-0002-2126-8028
https://orcid.org/0000-0002-2126-8028
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5527-5544
https://orcid.org/0000-0001-5527-5544
https://orcid.org/0000-0001-5527-5544
https://orcid.org/0000-0001-5527-5544
https://orcid.org/0000-0001-5527-5544
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:haowei98@zju.edu.cn
mailto:22021097@zju.edu.cn
mailto:hliangzhao@zju.edu.cn
mailto:dengsg@zju.edu.cn
mailto:jiang_rong@aliyun.com
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au

[16]. In addition, user mobility is also a useful feature for wire-
less network design [17]. However, few prior works combine
bothmobility and inter-user dependency into consideration.

Inter-user dependency is commonly appeared in real life
as long as there exists groups (e.g.,master-slave construction).
People tend to experience web service with friends and fami-
lies. It is more tractable to optimize overhead with regarding
them as a whole. For the sake of elaboration, we use service
dependency among individuals to abstract away from social
attributes. It is common for team members to contact fre-
quently and regularly to update schedule and require data
from others according to what they need. In other words, ser-
vice dependency correlates the service results of different
users. For instance, only after the leader distributes work con-
tent to members, the latter could begin to work. It is ubiqui-
tous in real-life business scenarios, such as Party A and B,
superior and subordinate, and groupwork.

Note that this kind of service dependency could be found
in technologies based on distributed system, especially mas-
ter-slave-based architecture. Federated learning is a promis-
ing paradigm for training artificial intelligence (AI) models,
where slave nodes train local model on private data samples
solely and the master aggregate parameters (e.g., weights
and biases of a deep neural network) from slave nodes and
broadcasting them back for the next training round [17], as
shown in Fig. 1. It’s known that workload scheduling is the
bottleneck of reducing latency. There exist some works aim-
ing at utilizing MEC to improve the performance of feder-
ated learning. Yao et al. investigate the CPU frequency and
transmission power controll of devices to optimize feder-
ated learning in MEC-aid network [18]. CSARO proposed
in this paper is also a beneficial attempt to achieve accelera-
tion at communication layer for federated learning in MEC
network.

As for collaboration research for MEC system, Xia et al.
studied collaborative data caching in edge servers with user
dependency considered [19]. In other distributed systems,
like wireless sensor network (WSN) and Internet of things
(IoT) systems, this dependency could be reflected in data
dependency between sink node (e.g., gateway) and sensor
nodes [20], [21]. There exist other lots of master-slave-based
systems, like Kubernetes [22] and Hadoop [23]. In other
words, our work aims at proposing valuable insights in the

sense of promoting the quality of experience of users and
reducing overheads for these above technologies.

However, it is challenging to take both mobility and inter-
user dependency into consideration. First, it requires a mod-
erate trade-off between energy consumption and completion
latency. Blind pursuit of ultra-low latencymay lead to intoler-
able energy consumption, since transmission under deep fad-
ing costs higher energy consumption for minimum data unit
(MDU) [24]. Second, offloading and allocation decisions
among users are strongly mutual coupled. If the master
demands results urgently, slaves have to shorten the latency
at the expense of more energy consumption. Otherwise, it can
follow an energy-effective method provided that the whole
latency is slightly or even no deteriorated. Where there is
dependency there is optimization space to realize systemopti-
mum. At last, the network state is time-varied. The next task
would be started only after its all immediate predecessors
have been completed. How to offload tasks and allocate
resources optimally thus emerges as a global optimization
problem,which leads to high computation complexity.

This paper aims at the combinational optimization of off-
loading and resources allocation to reduce collaborative
cost. The basic idea is adapted from [15], [16]. However, the
problem and the environment we focus on are not the same.
They investigate the inter-user dependency optimization
between two static users with only one server and extend it
to a multi-user scenario. We care about the optimization for
task model existing in master-slave systems, such as feder-
ated learning and other technologies mentioned before. It
consists of multiple mobile users and multiple edge servers.
Additional concerns for us are not only the difficulty of
solving problems due to scale but also the spatio-temporal
causality in a dynamic environment caused by mobility.
The ”one climb” policy designed by Yan et al. is not applica-
ble any more since the task model changes and the number
of edge servers increases. The main contributions of this
paper can be summarized as follows:

� Our work provides a valuable scheme by jointly opti-
mizing offloading and allocation policies to realize
acceleration and green computing for master-slave-
based scenarios in MEC environment, such as feder-
ated learning and real-life collaborative services.

� Taking the weighted sum of latency and energy con-
sumption as objective, we devote efforts to solve the
practical problem of ensuring QoS and sustainable
computing for devices with both mobility and inter-
user dependency considered. This work is state-of-
the-art and challenging due to the high complexity
in the design of solution with strong coupling caused
by inter-user dependency.

� We formulate this problem as a non-convex MINLP
problem which can only be solved by exhaustive
search with exponential solution space. To this end, by
assuming offloading decision is given, we obtain the
allocation strategy for transmission power and CPU
frequency with convex optimization. The MINLP
problem thus is simplified to ILP problem. Next, we
propose a distributed algorithm based on Markov
approximation to obtain the near-optimal solution
within polynomial time.

Fig. 1. Illustration of federated learning, where slaves are responsible for
training models and master is required to send, update and aggregate
parameters.

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2429

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

� Based on real-world dataset, we take two state-of-
the-art algorithms and other baseline algorithms as
benchmarks. Experimental results show our uperior
performance and robustness as anticipated.

The rest of this paper is organized as follows. Section 2
summarizes related work and the system model is intro-
duced in Section 3. We formulate the joint optimization
problem and present the algorithm design in Section 4.
Experimental results are provided in Sections 5 and 6 dis-
cusses the multi-dependency scenario and prove the feasi-
bility of our algorithm and concludes this paper.

2 RELATED WORK

Mobile edge computing technology emerges as a promising
paradigm to alleviate the traffic load on core network with
computation capability pushed to the edge of network. Due
to the demands of QoS and limited battery capacity, there
are a lot of prior works evolved to optimize latency and
energy consumption in terms of resource allocation and off-
loading policy.

For offloading policy, previous literatures proposed many
novelmethods to solve optimization problemofmulti-task off-
loading in MEC scenario. In [25], a game-theoretical approach
was proposedwith an objective tomaximize number of served
users and minimize overall latency and energy consumption
by allocating users. In [26], a multi-user collaboration platform
CoopEdge was developed which investigated reputation-
based method for task executor selection where users with
high reputationswouldbe prioritized. In [27], based onLyapu-
nov optimization, Zhao et al.designed a general framework for
offloading partitionable tasks to edge servers with the aim of
minimizing response latency and stablizing battery of device
in a reliable level. Qian et al. in [28] investigated NOMA for
computation in multiaccess mobile edge computing and pro-
pose a deep reinforcement learning (DRL) method to solve the
joint optimization problem of multi-task offloading, NOMA
transmission and resource allocation to minimize the energy
consumption of IoT devices. In [29], another DRL-based algo-
rithm which can assimilate experiences and knowledge from
the distributed system was studied by Qiu et al. to solve the
multi-user computation offloading problem.With deepneuro-
evolution and policy gradient combined, the utilization of
system was also improved. A minority game approach was
proposed in [30] where users are modeled as players with the
objective of addressing heterogeneous task offloading problem
with incomplete information. In [31], a joint multi-hop multi-
task partial computation offloading and network flow sched-
uling prolem was researched with the target of minimize the
average delay of tasks in collaborative edge computing. By
usingMcCormick envelope andMosek solver in CVX, a lower
bound solution was finally derived. The work [32] was ori-
ented to computation offloading in industrial IoT-edge-cloud
environment, aiming for QoS improvement. In [33], a privacy-
preservingmechanismwas proposed tomake offloading deci-
sions for DNN model training tasks and has been proved to
reduce communication rounds.

Resource allocation is also an significant work in network
optimization. The work [11] investigated the adjustable
transmit power and CPU frequency problem in mobile envi-
ronment and proposed an online algorithm to minimize

users’ response delay and energy consumption. In [34], Bah-
reini et al. studied the dynamic provisioning of computing
resources. Two allocation and pricingmechanismswere pro-
posed to maximize social welfare. [12] studied the energy
allocation for users so as to locally execute computation tasks
from energy beamforming. Chen et al. researchedDVFS tech-
nology to realize energy efficient scheduling with adjustable
CPU frequency [35]. Based on Lyapunov Optimization, they
proposed a distributed algorithm which can achieve near
optimal system profit while bounding the queue length. Li
et al. developed an channel assignment and power control
solution based on the idea of branch-and-price and then
designed a greedy algorithm to achieve a sub-optimal per-
formance [36]. Wu et al. investigated the optimal power allo-
cation for NOMA relay-transmission and propose a layered-
algorithm to efficiently compute the optimal power alloca-
tion solution and the maximum throughput for the targeted
MU [37]. In [38], H-CRANs following online learning based
centralized and decentralized approaches was proposed for
transmission power control with inter-tier interference and
capacity constraints.

As for the study of offloading and resource allocation for
DAG, in [39], Meng et al. proposed an online deadline-
aware offloading and scheduling algorithm called Dedas to
determine both dynamical network bandwidth and compu-
tation task offloading with the objective of minimizing the
average completion time. In [40], D-Dedas, a distributed
algorithm was further designed for large network systems
to allow edge servers making decisions independently
while performance improved.

This paper aims to solve the joint optimization of offload-
ing and resource allocation under dependency among users.
In [16], Yan et al. establish inter-user dependency between
two users and utilize ”one-climb” policy to solve offloading
and scheduling problem. After that, they carry on in-depth
study in [15] with bi-section search method and Gibbs Sam-
pling algorithm. However, the above studies only consider
simple static scenario where exist one dependency, one edge
server and two users. In this paper, we are devoted to resolve
this problem in a multi-user, multi-server and multi-depen-
dencymobile systemwhere one-climb policy is inapplicable.

3 SYSTEM MODEL

As illustrated in Figs. 2 and 3, we consider there is a project to
be completed by a business sector, composed of multiple
mobile users, denoted by N ¼ f1; 2; . . . ;Ng. Each MU is
required to finish a composition task chain. MU 1, as the mas-
ter, is responsible for sending commands (generated from one

Fig. 2. MEC network with mobile users, APs and servers.

2430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

task) and aggregating results produced by other MUs to com-
plete project (detailedly shown in Fig. 3).MUs fi i 2 N ; i 6¼ 1gj
execute tasks individually and return demanded results back
to MU1. It is exactly the same with federated learning that the
central server orchestrates algorithms for training nodes
(slaves) and aggregates newly updated parameters. The task
model shown in Fig. 3 is a specific round of collaboration, like
one training round in federated learning. Each task can be off-
loaded to edge servers or processed locally. Our optimization
objective is to provide valuable schemes by drawing optimal
offloading and allocation policies to realize acceleration and
green computing for each round of collaboration for this kind
of architecture, in mobile and dependent environment. We
assume the master (MU 1) needs to interact with others twice,
once to publish contents and once to collect results, i.e., broad-
casting averaged gradients and aggregating updated gra-
dients in federated learning. Key system parameters are
shown in Table 1.

Task Model. For clarity, we show computation task chains
of MUs detailedly in Fig. 3. Specifically, MU i; 8i 2 N has
Mi computation tasks to be executed in a sequence with
inner-user and inter-user dependency, defined as Mi ¼
f1; 2; . . . ;Mig. We take mi;j to indicate jth task of Mi; 8i 2
N ; j4Mi. Each task mi;j gets ready for execution only after
outputs of its all predecessors have been received. For
instance, m2;k2 could be started after results of m1;k1 and
m2;k2�1 have reached. We use Ii;j and Oi;j to indicate the
input and output data of task mi;j, respectively. Workload
of taskmi;j is represented byDi;j. For convenience, we intro-
duce two pseudo tasks for each user i; 8i 2 N , referred as to
mi;0 and mi;Miþ1, whose Ii;0 ¼ Oi;Miþ1 ¼ 0 and Di;0 ¼
Di;Miþ1 ¼ 0. We take DAG form G ¼ ðV;EÞ to represent the
whole project, where V indicates the set of tasks and E
describes the dependency between two tasks. MU1 needs to
distribute work contents to other MUs fi i 2 N ; i 6¼ 1gj and
aggregate their results together, afterm1;k1 ; 1 � k1 �M1 and
m1;r1 , respectively.

Network Model. Edge servers are deployed by mobile net-
work operator in strategic points to finish computation tasks
on behalf of MUs, denoted by S ¼ f1; 2; . . . ; Sg. Each server
is equipped with an access point (AP) so as to realize com-
munications via wireless LAN (WLAN). APs have different
atenna allocation schemes and edge servers are heteroge-
neous in computation resources. MUs have options to off-
load tasks to edge servers or execute them locally. It’s
assumed that MUs can be only allowed to communicate
with at most one edge server concurrently, which means
offloading decision follows a binary policy [41]. We use
asi;j 2 f0; 1g to represent the binary decision of mi;j, which
follows

asi;j ¼
1; offloaded to edge server s

0; otherwise

�
;

and X
s2S

asi;j � 1: (1)

Notice that pseudo tasks are naturally processed at local
MUs, i.e.,

P
s2S a

s
i;0 ¼

P
s2S a

s
i;Miþ1 ¼ 0. Based on orthogonal

frequency-division multiplexing (OFDM) technique, we
consider an orthogonal partition on spectrum to enable
multi-user offloading/downloading service. MUs commu-
nicate with edge servers over orthogonal channels and
would not interfere with each other.

Fig. 3. Illustration of service dependency in task chains.

TABLE 1
Key System Parameters

Symbols Definition

S; S Set of edge servers and the size of S
N ; N Set of mobile users and the size ofN
Mi;Mi Set of tasks for MU i and the size ofMi

mi;j jth task for ith MU
Ii;j; Oi;j Data size of input and output for taskmi;j

Di;j Workload of taskmi;j

fi;j CPU frequency of local execution for taskmi;j

tdi;j Download delay for taskmi;j if local execution
TRl

i;j Transmission delay of local execution for taskmi;j

tui;j Upload delay for taskmi;j if edge computing
Eu

i;j Upload energy consumption for taskmi;j

TRc
i;j Transmission delay of edge computing for taskmi;j

CLl
i;j Complete latency for taskmi;j if local execution

El
i;j Energy consumption for taskmi;j if local execution

Rs
i;j Bitrates for uploading taskmi;j

Rc
i;j Bitrates for downloading taskmi;j

pi;j Transmitted power for taskmi;j

hi;j Channel gain when processing taskmi;j

CLc
i;j Complete latency for taskmi;j if edge computing

eui;j Energy consumption for offloading taskmi;j

Ai;j Execution platform of taskmi;j

RTi;j Ready time of taskmi;j

FTi;j Finish time of taskmi;j

CLi;j Complete latency for taskmi;j

Ai;j Execution platform of taskmi;j

texi;jði0; j0Þ Extra latency between tasksmi;j andmi0 ;j0

eexi;jði0; j0Þ Extra energy cost between tasksmi;j andmi0 ;j0

Ti Overall latency to complete task chainMi

Ei Overall energy cost to complete task chainMi

vT
i weight parameter of latency for MU i

vE
i weight parameter of energy consumption for MU i

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2431

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

Mobility Model. We use Random Waypoint Model to
characterizes MUs’ mobility paths. Each user i 2 N stays
in the initial point pi;0 for a random time ti;0 2 0; tmaxð �.
Another point pi;1 is next randomly selected. After stay,
it moves to point pi;1 at vi;0 meters per second, where vi;0
is randomly generated in vmin; vmax½ �. Next, each user i
stays in pi;1 for a random time ti;1 2 tmin; tmax½ �. This pro-
cess is repeated until the user moves out. In this case,
given an arbitrary time point t 2 ðt0; tKÞ, we can attain
its location li. It’s not difficult to verify that distance dsi;j
and channel gain hs

i;j are one-to-one mapping. Hence,
there exists bijection between time point t and channel
gain hs

i;j.

3.1 Overheads of Local Execution

As the upgrade of central processing unit (CPU) andmemory,
the computation capability and storage have made a progress
recently. Smart devices are enabled to process application
locally, e.g., image preprocess and animation rendering [11].

Typically, local computing is an alternative strategy
when channel state is poor. Dynamic voltage and frequency
scaling (DVFS) technology provides the theoretical and
technical support for dynamically adjusting the CPU fre-
quency to execute tasks adaptively [42].

This subsection aims to analyse inner-user dependency
and give the expression of energy consumption and latency
brought by local execution for retrieving output of mi;j�1 to
complete mi;j. Overheads caused by inter-user dependency
will be discussed in Section 3.3. Task mi;j can be locally exe-
cuted only after the output data of mi;j�1 has reached the
device of MU i. We define TRi;j to represent the transmis-
sion latency between tasksmi;j�1 andmi;j as follows

TRl
i;j ¼

X
s

asi;j�1

�
1�

X
s

asi;j

�
tdi;j; (2)

where tdi;j ¼
Oi;j�1
Rc
i;j

is the download delay from edge server

and Rc
i;j is the downlink bitrate (explained in the next sec-

tion). TRl
i;j only exists when task mi;j�1 computed in edge

server and task mi;j executed in local device, indicated byP
s a

s
i;j�1ð1�

P
s a

s
i;jÞ.

To quantify the completion latency, we let fi;j denote the
CPU clock frequency for finishing task mi;j. It thus can be
expressed as

CLl
i;j ¼

Di;j

fi;j
; (3)

and the corresponding energy consumption of local execu-
tion is

El
i;j ¼ ðaf2

i;j þ bÞCLl
i;j ¼

aD2
i;j

CLl
i;j

þ bCLl
i;j; (4)

where a and b are parameters decided by CPUmodels [43].
Notice that DVFS technology divides fi;j into discrete

values ranging from 0 to fpeak actually. For simplicity, we
regard fi;j as a continuous value to attain its optimal solu-
tion. Devices just need to choose the closest element from
the set in practice.

3.2 Overheads of Edge Computing

In this subsection we will elaborate the concrete process of
edge computing and how to calculate overheads brought by
inner-user dependency. This process starts when taskmi;j �
1 is finished and ends up with the completion of task mi;j. It
could be divided into two stages:

Offloading or Migrating. Before task mi;j to be edge com-
puted, edge server should get the output of task mi;j�1. Off-
loading happens when mi;j�1 is completed locally, i.e.,

1�
P

s a
s
i;j�1

� �P
s a

s
i;j ¼ 1. MU i is required to send output

data of task j� 1 to target edge server with adjustable
power pi;j. It comes with transmission delay as

tui;j ¼
Oi;j�1
Rs

i;j

; (5)

where Rs
i;j denotes the bitrate of uplink to edge server s

which is quantified by

Rs
i;j ¼ Blog

�
1þ

pi;jh
s
i;j

s2

�
; (6)

where B is the communication bandwidth, s2 denotes the
variance of additive white Gaussian noise (AWGN) origi-
nating from receiver (e.g., receiver thermal noise) and hs

i;j ¼

G 3�108
4pFcd

s
i;j

� �u

denotes the channel gain caused by path loss

and shadowing attenuation where G is the antenna gain, Fc

indicates the carrier frequency, u represents the path loss
exponent and dsi;j denotes the distance between target server

s and MU i and u represents the path loss exponent. Rc
i;j is

the downlink bitrate based on fixed power pc.
By introducing fðxÞ ¼D s2ð2x=B � 1Þ, (6) could be rewrit-

ten as

pi;j ¼
1

hs
i;j

f

�
Oi;j�1
tui;j

�
: (7)

Accordingly, the energy overhead can be calculated by

Eu
i;j ¼ pi;jt

u
i;j ¼

tui;j

hs
i;j

f

�
Oi;j�1
tui;j

�
: (8)

We take a triad CPUs; STs; BDsf g to express the current
status of each edge server 8s 2 S where CPUs; STs; BDs

indicate the the percentage of remaining CPU, storage, and
bandwidth resources where 0 � CPUs; STs; BDs � 1. Task
mi;j can be offloaded to edge server s only if its demand of
these three resources would be satisfied, which can be
expressed by cpui;j � CPUs; sti;j � STs; bdi;j � BDs. Channel
state is location-based since channel gain hs

i;j is related to
the distance dsi;j to edge server. It is thus essential for MUs
to be aware of channel state information (CSI) before mak-
ing strategies. [24] supposes APs are channel-aware while
communicating and there exist feedback channels to trans-
fer CSI from APs to MUs. Before uploading, MUs send off-
loading decisions to edge servers deployed with controllers.
They determine how many resources (cpui;j; sti;j; bdi;j) the
task will take up based on history records, check whether
the offloading is feasible (sufficient computation capability,

2432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

bandwidth and storage resources) and send back control
signal to MUs.

On the other hand, cross-edge migration happens when
two consecutive tasks mi;j�1 and mi;j are executed in two
different edge servers. We use t0 to indicate the migration
delay. Therefore, the latency for transmission is evaluate to

TRc
i;j ¼

�
1�

X
s

asi;j�1

�X
s

asi;jt
u
i;j þ

X
s

asi;j�1

�
1�

X
s

asi;j�1a
s
i;j

�
t0: (9)

The energy consumption of edge computing can be given
by Ec

i;j ¼
P

s a
s
i;jð1�

P
s a

s
i;j�1ÞEu

i;j.

Edge Execution. Similar to local computing, the comple-
tion latency of edge computing can be given by

CLc
i;j ¼

Di;j

fc
s

; (10)

where fc
s is the CPU frequency of sth edge server. Without

loss of generality, we setmin8s2Sf
c
s > fpeak.

3.3 Overheads of Inter-User Dependency

The previous two subsections account for overheads
resulted by inner-dependency at the same MU. In what fol-
lows, we will elaborate the impact of inter-user dependency
on extra overheads, which can be quantified as the energy
consumption and latency spent on fetching results from
other MUs. For instance, taskm2;k2 needs to retrieve the out-
put ofm1;k1 .

Let Ai;j denote the execution platform of jth task in ith
MU. Ai;j ¼ 0 indicates task mi;j chooses local computing.
Otherwise, Ai;j ¼ s means it is about to be offloaded to edge
server s. Assume that mi;j is one predecessor of mi0;j0 where
i 6¼ i0. Accoring to different Ai;j and Ai0;j0 , we divide the
extra overheads into five categories.

i) 0 < Ai;j ¼ Ai0;j0

There is no need for extra communication since tasksmi;j

and mi0;j0 can be executed consecutively at the same edge
server.

ii) 0 ¼ Ai;j < Ai0;j0

It means the result of computation taskmi;j is required to
be sent from MU i to Ai0;j0 . The additional overheads in
terms of delay and energy consumption could be given by

texi;jði0; j0Þ ¼
Oi;j

R
Ai0 ;j0
i;j

; (11)

and

eexi;j i0; j0ð Þ ¼ Oi;j

R
Ai0 ;j0
i;j h

Ai0 ;j0
i;j

f
Oi;j

texi;j i0; j0ð Þ

 !
; (12)

respectively. In this case, MU i dispatches result Oi;j to Ai0;j0

at bitrate R
Ai0 ;j0
i;j with a constant power p0.

iii) 0 ¼ Ai0;j0 < Ai;j

Likewise, it can be expressed as an additional download-
ing from Ai;j. The extra cost can be computed by

texi;j i0; j0ð Þ ¼ Oi;j

Rc
i0;j0

(13)

iv) 0 < Ai;j 6¼ Ai0;j0

In this case, mi;j and mi0;j0 are executed on different edge
servers. As aforementioned before, the migration delay is
texi;j ¼ t0.

v) 0 ¼ Ai;j ¼ Ai0;j0

This happens when the two tasks are executed in two
local devices i and i0, respectively. It needs to exchange
result of mi;j from MU i to MU i0 where APs act as relay
nodes. The extra latency is

texi;j i0; j0ð Þ ¼ Oi;j

Rmax
i;j

þ Oi;j

Rc
i0;j0

(14)

where Rmax
i;j is the maximum uploading rate MU i could

achieve with edge servers S. It can be regared as once
uploading and downloading process. Accordingly, the extra
energy consumption is eexi;j i0; j0ð Þ ¼ p0Oi;j

Rmax
i;j

.

3.4 Problem Formulation

To formulate the expression of delay Ti of each MU i; 8i 2
N , we use the finish time FTi;Miþ1 of task mi;Miþ1 to equiva-
lently represent the total latency of MU i. According to Sec-
tion 3, we could express the finish time of the jth task of
MU i, i.e.,mi;j, as a sum of two parts

FTi;j ¼ RTi;j þ CLi;j; (15)

where RTi;j is the ready time for mi;j to be executed and
CLi;j ¼

P
s a

s
i;jCL

c
i;j þ ð1�

P
s a

s
i;jÞCLl

i;j denotes the comple-

tion latency of task mi;j. For any task, it is ready to be exe-

cuted only after the outputs of its all predecessors have

reached its execution platform. Let predðmi;jÞ indicate the

predecessor task set of taskmi;j. RTi;j is given by

RTi;j ¼ max FTi;j�1 þ TRl
i;j þ TRc

i;j; T max
i;j

n o
; (16)

where in the maxf�g function, the former indicates the
arrival time of the output of predecessor task from MU i,
i.e.,mi;j�1, and the latter T max

i;j denotes the latest arrival time

of predecessors from other MUs i0ji0 2 N ; i0 6¼ if g, T max
i;j ,

maxi0 6¼i;mi0 ;j0 2pred mi;jð Þ FTi0;j0 þ texi0;j0 ði; jÞ
n o

. When predðmi;jÞ
has only one element mi;j�1, we set T max

i;j ¼ 0, i.e., RTi;j ¼
FTi;j�1 þ TRl

i;j þ TRc
i;j. As a result, we can obtain the expres-

sions of the overall latency Ti of MU i as

Ti ¼ FTi;Miþ1: (17)

On the other hand, given any task mi;j, we express its
energy consumption as

Ei;j ¼ 1�
X
s

asi;j

 !
El

ij þ
X
s

asi;jE
c
i;j þ eexi;j: (18)

The overall energy consumption of MU i can be evaluated
to the sum of energy consumption of tasks from mi;1 to
mi;jþ1 expressed as

Ei ¼
XMiþ1

i¼1
Ei;j: (19)

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2433

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

In this paper, our objective is to jointly optimize the
energy consumption and response delay which are proved
to be two competitive objectives hereinbefore in project col-
laboration. In real life, each participant in collaboration is
supposed to be self-governed. They have their own con-
cerns about the energy consumption and response delay to
complete the whole project. For instance, there exists some-
one who is urgent to finish work (large vT

i), even at the cost
of high energy consumption (small vE

i). Parameters vT
i ;v

E
i

will influence other workers’ decisions to reduce response
time. In other words, what we care obout is not only the per-
formance of the whole project, but also the concerns of each
participant. We take the weighted sum of response delay
and energy consumption of each participant minimization
as our objective, defined as

P1 : min
ða;p;fÞ

X
i2N

vT
i TiþvE

i Ei

� �
s.t. 0 � pi;j � ppeak;

0 � fi;j � fpeak;

asi;j 2 f0; 1g; 8i; j: (20)

where 0 < vT
i < 1 is the normalized weight parameter

indicating how much MU i cares the whole latency, and
normalized 0 < vE

i < 1 denotes the importance of energy
consumption, which are decided by the preference of MU i
and its specific application. It is interesting to mention that
parameters vT

i and vE
i are allowed to take any value before

normalization and when they are set to specific values, P1
can be interpreted as some special problems, such as max
span minimization problem. Notice that solutions (asi;j; fi;j
and pi;j) of tasks mi;j; 8i 2 N ; j 2Mi are spatio-temporal
coupled with each other. This kind of relations is reflected
in the changes of network status brought by different loca-
tions of MU i, which is determined by the ready time RTi;j

and mobility pattern. For inner-user dependency, the loca-
tion where task mi;j is ready for execution is depended on
how long previous tasks mi;j0 ; 1 � j0 � j� 1 take, which
depends on asi;j0 ; fi;j0 ; pi;j0 . For inter-user dependency, any
task which needs results from other MUs cannot start exe-
cution unless results have been received. Once the loca-
tion to execute task mi;j changes, the distance dsi;j from
MU i to edge server s; 8s 2 S will change accordingly
and further affect the decisions and performance of later
tasks. That is to say, solutions asi0;j; fi0;j; pi0;j; 8j 2 M

0
i of

other MUs also influence the performance of MU i. It is
time-consuming to resolve this problem which is NP-
hard. For simplicity, we assume resources of each edge
server are enough for MUs.

4 SOLUTION

This section outlines our solution of resource allocation and
offloading, respectively.

4.1 Allocation of CPU Frequency and Power

We denote receive process as receiveing results from other
MUs and send process as sending output to other MUs. As
shown in Fig. 3, each MU has once receive process and once
send process. It’s not difficult to verify that only receiving

output from others will influence subsequent tasks. To
decouple inter-user dependency, we introduce N auxiliary
variables Qi; 1 � i � N to indicate the end time of receive
process for MU i. MU 1 finishes receiveing after all results
of other MUs have reached at its execution platform. Q1 can
be given by

Q1 , max FT1;r1�1 þ TRl
1;r1
þ TRc

1;r1
; T max

1;r1

n o
; i ¼ 1: (21)

As for MU i; 1 < i � N , it only receives the result of m1;k1

fromMU 1. TheQi can be given by

Qi , max FTi;ki�1 þ TRl
i;ki
þ TRc

i;ki
; T max

i;ki

n o
; 1 < i � N: (22)

We could rewrite RTi;j as

RTi;j ¼
Q1 i ¼ 1; j ¼ r1
Qi 1 < i � N; j ¼ ki
FTi;j�1 þ TRl

i;j þ TRc
i;j otherwise

8<
: ; (23)

while the coupling termmaxf�g is already eliminated.
Notice that there exists bijection between fi;j and CLl

i;j,
pi;j and tui;j, which means we can obtain fi;j and pi;j by deter-
mining CLl

i;j and tui;j, respectively. P1 could be further
approximately reformulated as

P1�AP : min
ða;tu;CLlÞ

X
i2N

vT
i TiþvE

i Ei

� �
s.t. asi;j 2 f0; 1g;
0 � pi;j � ppeak;

0 � fi;j � fpeak; 8i; j;XN
i¼2

FTi;ki�1 þ TRl
i;ki
þ TRc

i;ki
þ T sum

i;ki
� 2Qi

� �
� 0; (C1)

FT1;r1�1 þ TRl
1;r1
þ TRc

1;r1
þ T sum

1;r1
�NQ1 � 0; (C2)

(24)

where C1 and C2 approximate to (21) and (22), respec-
tively, which indicate the inter-user constraints. Specifi-
cally, T sum

i;j ,
P

i0 6¼i; i0;j0ð Þ2pred i;jð Þ FTi0;j0 þ texi0;j0 ði; jÞ. In this

way, we decouple the solution of each MU. P1�AP is a
non-convex MINLP problem which lacks of efficient

algorthm. A closer observation of P1�AP shows that the

feasible set of a is not related to tu; CLl and vice versa. In

other words, we can solve a and tu; CLl separately. It is no

difficult to verify that P1�AP would turn into a convex

problem if a is given.
By assuming a is given, the Lagrangian function of P1�

AP can be expressed as

Lðtli;j; tui;j; �;mÞ ¼
X
i2N

�
vT
i Ti þ vE

i Ei

�

þ �
XN
i¼2

�
FTi;ki�1 þ TRl

i;ki
þ TRc

i;ki
þ T sum

i;ki
� 2Qi

�
þ m

�
FT1;r1�1 þ TRl

1;r1
þ TRc

1;r1
þ T sum

1;r1
�NQ1

�
;

(25)

2434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

where � and m are Lagrange multipliers. Based on KKT con-
dition, it is obtained that � � 0 and m � 0.

Proposition 1 Adapted from Theorem 4.1 in [44] and
Proposition 3.1 in [15]. The optimal CPU frequency alloca-
tion f�i;j of task j for MU i with

P
s a

s
i;j ¼ 0 is given by

f�i;j ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þ vE

i b

vE
i a

s
; fpeak

()
: (26)

For MU1, when 0 < j � k1;G ¼ mþ ðN � 1Þ�, when k1 <
j � r1 � 1;G ¼ m, otherwise G ¼ vT

1 . For MU i; 0 < i � N ,
when 0 < j � ki � 1;G ¼ �, when ki � 1 < j � ri;G ¼
vT
i þ m, otherwise G ¼ vT

1 .

Proof. For MU 1, when 0 < j � k1, the derivative of
Lagrange function Lwith respect to CLl

i;j is

@L

@CLl
1;j

¼
@ vE

1 E1 þ mFT1;r1�1 þ � N � 1ð ÞFT1;k1

� �
@CLl

1;j

¼ vE
1 �aD1;j

2

CLl
1;j

2
þ b

 !
þ mþ N � 1ð Þ�; (27)

whereCLl
1;j ranges within

D1;j

fpeak
;þ1

h �
and @L

@CLl
1;j

is amonot-

onously increasing function with CLl
1;j. If

@L
@CLl

1;j

j
CLl

1;j
¼D1;j
fpeak

>

0, the optimal solution is f�1;j ¼ fpeak. Otherwise, f�1;j ¼ffi
mþ N�1ð Þ�þvE

1
b

vE
1
a

r
. When k1 < j � r1 � 1, we have

@L

@CLl
1;j

¼
@ vE

1 E1 þ mFT1;r1�1
� �

@CLl
1;j

¼ vE
1 �aD1;j

2

CLl
1;j

2
þ b

 !
þ m: (28)

Similarly, we can obtain f�i;j ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffi
mþvE

1
b

vE
1
a

r
; fpeak

�

. Oth-

erwise, the derivative of L is

@L

@CLl
1;j

¼
@ vT

1 T1 þ vE
1 E1

� �
@CLl

1;j

¼ vE
1 �aD1;j

2

CLl
1;j

2
þ b

 !
þ vT

1 : (29)

Thus, we have f�i;j ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT
1
þvE

1
b

vE
1
a

r
; fpeak

�

. As for other

MUs, the mathematical derivation of fi;j; 1 < i � N is

similar with the proof of f1;j. tu

With mathematical analysis of Proposition 1, there are
some interesting numerical properties. For the master,
MU1, the optimal CPU frequency of m1;j; 0 < j � k1 is pro-
portional to � and m (the larger � and m, the tighter con-
straints of inter-user dependency). When � and m exceed a
certain threshold, MU1 has to compute tasks with the maxi-
mum frequency fpeak at the price of the maximum energy
consumption. Likewise, as for k1 < j � r1 � 1, f�1;j is only
depended on m, since task j has already been out of the
impact range of the first dependency. Otherwise, when r1 �
1 < j �M1, f

�
1;j is decided by vT

1

�
vE
1 (i.e., comparison of

preference on delay and energy consumption) instead of �
and m. This is because the rest ofM1 would not be affected
by dependency, as independent individuals.

As for task j; 0 < j � ki � 1 ofMU i; 1 < i � N , f�i;j is pro-
portional to the value of �. The larger � means it is more
urgent for ith MU to complete task ki. As a result, MU i will
execute tasks with larger CPU frequency regardless of more
overhead. It is noted that f�i;j for task j; 0 < j � ki � 1 is unre-
latedwith �, since its performance has no direct impact on the
second inter-dependency. On the other hand, f�i;j for task
j; ki � 1 < j �Mi, is decided by �. The rest tasks j; ri < j �
Mi can be regarded as an independent task sequence. That is
why their solutions f�i;j are only depended onvT

i andvE
i .

Proposition 2. The optimal transmit delay ðtui;jÞ
� of task j; 1 �

j �Mi þ 1 for MU i 2 N with 1�
P

s a
s
i;j�1

� �P
s a

s
i;j ¼ 1

is given by

ðtui;jÞ
� ¼

Oi;j�1

Blog 2ð1þ
ppeakh

s
i;j

s2
Þ

hs
i;j � s2

ppeak
½� z

Wð�ze�zÞ � 1�

ln 2�Oi;j�1
BðWðge�1Þþ1Þ otherwise:

8><
>: (30)

For MU1, when 0 < j � k1, z ¼ 1þ �ðN�1Þþm
vE
1
ppeak

and g ¼
h1;jð�ðN�1ÞþmÞ

vE
1
s2

� 1, when k1 þ 1 < j � r1 � 1, z ¼ 1þ m

vE
1
ppeak

and g ¼
hs
i;j
m

vE
1
s2
� 1, when r1 � 1 < j �M1 þ 1, z ¼ 1þ vT

i

vE
1
ppeak

and g ¼ h1;jv
T
1

vE
1
s2
� 1. For MU fi i 2 N ; i 6¼ 1gj , when 0 < j �

ki � 1, z ¼ 1þ �
vE
i
ppeak

and g ¼
hs
i;j
�

vE
i
s2
� 1, when ki � 1 < j �

ri � 1, z ¼ 1þ m

vE
i
ppeak

and g ¼
hs
i;j
m

vE
i
s2
� 1, when ri � 1 < j �

Mi þ 1, z ¼ 1þ vT
i

vE
i
ppeak

and g ¼
hs
i;j
vT
i

vE
i
s2
� 1. WðxÞ is Lambert

function, the inverse function of JðzÞ ¼ zexpðzÞ [45].

Proof. It is similar with the proof for Proposition 1 and can
be completed by deriving the the first-order and second-
order derivative of Lagrangian function L with respect to
t
y
i;j, where i 2 N ; j 2 Mi. tu

There are interesting properties that if channel gain hs
i;j is

weaker than a certain threshold (e.g., caused by deep shad-
ing), MUs have to offload tasks with the maximum power
as p�i;j ¼ ppeak, since their results are demanded by other
MUs with inter-user dependency. The threshold is inversely
proportional to � and m, since tighter dependency means
greater demand for p�i;j. Otherwise, when hs

i;j is higher than
the threshold, MUs will obtain lower ðtui;jÞ

� since WðxÞ is an
increasing function when x > �1=e. In addition, like Prop-
osition 1, �, m and vT do different affects according to the
index of task.

Theorem 1. We can fast obtain the optimal �� and m�, with iter-
ation as

�ðtþ 1Þ ¼ �ðtÞ þ ‘ðtÞ � Y½ �þ; (31)

and

mðtþ 1Þ ¼ mðtÞ þ ‘ðtÞ � Z½ �þ; (32)

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2435

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

where Y ¼
PN

i¼2 ð2Qi � FTi;ki�1 � TRl
i;ki
� TRc

i;ki
� T sum

i;ki
Þ

and Z ¼ NQ1 � FT1;r1�1 � TRl
1;r1
� TRc

1;r1
� tsum1;r1

� �
where

‘ðtÞ is diminishing stepsize [11].

The number of iteration to converge of normal Lagrang-
ian method is non-deterministic due to the random initial
values of � and m. According to [11], [46], [47], if the dimin-
ishing stepsize satisfies

P1
n¼0 ‘ðnÞ ¼ 0 and limt!1‘ðtÞ ¼ 0,

Lagrangian method will fast converge, regardless of how
awful the initial point is.

4.2 Solution of Offloading Policy

Hitherto, we obtain p�i;j and f�i;j by assuming ai;j is given. This
MINLPproblem is accordingly transformed into ILP program
with variables asi;j. It is a difficult problem since it is non-con-
vex with exponential solution space as

Q
i2N Mið ÞSþ1. In addi-

tion, due to themobility of users and task dependencies, there
exists spatio-temporal causality among offloading strategies.

The solutions of f�; p� hold the global optimum of the
whole DAG, which makes it hard to determine the evolu-
tion equation between two states. In addition, the decision
space is exponential. Thus dynamic programming is not an
appropriate choice. SinceM in MUs are heterogeneous and
MUs are strongly coupled, centralized algorithm, e.g., evo-
lution algorithm may not show good performance. Here,
we introduce a distributed algorithm named CSRAO, based
on Markov approximation to make it converge within poly-
nomial convergence time [48], [49].

We define gi;j 2 f0; 1; . . .; Sg to indicate the offloading
policy of task mi;j, where gi;j ¼ 0 represents local execution
and gi;j ¼ s; 1 � s � S indicates offloading to server s. We
denote F as the state set of Markov chain and f 2 F as each
state composed of offloading policy set g1; g2; . . . ; gNf g
where each gi is a Mi-dimension vector indicating the off-
loading decision of MU i and each dimension is gi;j of task
mi;j. For brevity, we re-express P1 as a common optimiza-
tion problemminf2Fxf, where xf ¼

P
i2N vT

i Ti þ vE
i Ei

� �
.

To construct our problem-specific Markov chain, we
associate each state with a percentage of time pf when f is
in use. Thus, it can be transferred to an equivalent minimum
weight independent set (MWIS) problem, which hold the
same optimal value, as

P1�MWIS :min
X
f2F

pfxf

s:t:
X
f2F

pf ¼ 1; (33)

where we regard xf as the weight of pf. By introducing log-
sum-exp function, P1�MWIS can be approximated to a
convex problem

P1� r :min
X
f2F

pfxf þ
1

r

X
f2F

pflogpf

s:t:
X
f2F

pf ¼ 1; (34)

with approximation gap is upper-bounded by log Fj j=r,
where r is a positive constant. Based on KKT condition, the

optimal value of (38) is given by 1=rð Þlog
P

f2F expð�rxfÞ
h i

and the optimal solution is

p�f ¼
expð�rxfÞP

f02F expð�rxf0 Þ
: (35)

We consider p�f as the stationary distribution to construct
our time-sharing Markov chain. Once it converges, the time
allocation p�f for f; 8f 2 F can be obtained and P1�MWIS
will be solved based on the most of time assigned to f� [49].
Due to the product form of p�f, we can design at least one
Markov chain, while satisfying

1) any two states are reachable from each other,
2) the following equation is satisfied

p�fqf;f0 ¼ p�f0qf0;f; (36)

where qf;f0 denotes the transition rate from f to f0.
There exists many forms of qf;f0 . In this paper, we design

it as follows:

qf;f0 ¼
exp �’ð Þ

1þ exp �r xf � xf0
� �� ; (37)

where ’ is a constant while the above two conditions are
satisfied.

Algorithm 1. Collaborative Service Resource Allocation
and Offloading (CSRAO) Algorithm

Input: Mobility information of each MUs, network state
information and DAG information

Output: Resource allocation pi;j and fi;j and offloading pol-
icy asi;j

1 for each MU i 2 N do
2 Initialize the offloading policy gi randomly ;
3 Generate an exponential random timer with mean as

expð’Þ=Vi;
4 end
5 Calculate the objective P1 as � and m converge;
6 Denote the current system state as f and let all MUs begin

counting down;
7 repeat
8 if there exists one timer of MU expires then
9 Denote the MU as i and update its offloading policy

randomly as new state f0 with only one element
changed;

10 MU i broadcasts the new state to other MUs to obtain
the value of f� and p�;

11 f f0 with probability
1� expð�rxfÞ

�
expð�rxfÞ þ expð�rxf0 Þ
� �

;
12 All MUs refresh timers and begin counting down;
13 end
14 until P1 converges
15 return g, f� and p�;

We propose distributed CSRAO algorithm as shown in
Algorithm 1, where MUs are just required to broadcast its
new state with each other. At the beginning, all MUs initial-
ize offloading policies and generate their own timers ran-
domly (line 1-line 4). Accordingly, each MU i determines fi
and pi from (26) and (30) (line 5, line 6). In each iteration, the
first expiring MU randomly updates its offloading decision
with only one element changed and informs other MUs to
obtain new f and p. System has to decide whether to stay in
the new state according to (37) (line 8-line 13) until P1 con-
verges. It’s worth mentioning that CSRAO not only could

2436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

converges fast but also possesses the mechanism to prevent
falling into local optimumwith adjustable parameter r.

Complexity Analysis. Recall that we apply Lagrangian
multiplier method to derive the closed-form expression of
f�i;j and p�i;j, by assuming a is given. In Algorithm 1, while
updating ai;j, f�i;j and p�i;j under diminishing stepsize, it
could converge fast with complexity as OðTMiÞ, where T
represents the number of iteration. Due to ‘ðtÞ, the value of
T is small. The searching space of a is Oð

Q
i2N ðMiÞSþ1Þ. By

introducing Markov approximation algorithm, we could
obtain the sub-optimal solution within polynomial conver-
gence time when r is a proper value in Theorem 4, which is
significantly reduced from exponential complexity of
exhaustive search.

4.3 Mechanism Analysis

In this subsection, we will analysis convergence feasibility,
approximation gap and convergence time of our proposed
CSRAO algorithm.

Theorem 2. P1 can be solved globally by Algorithm 1, with tran-
sition probability as expð�rx0fÞ

�
expð�rxfÞ þ expð�rxf0 Þ
� �

.
When r! 0, Algorithm 1 converges with probability 1.

Proof. Let f denote the current state with a; f; p given. The
objective value xf could be derived as (24). In each itera-
tion, user i who expires first randomly change its offload-
ing policy ai;j; 8j 2 Mi to update a. In this case, f; p could
converge fast according to (31) and (32), so as to obtain
x0f. According to Algorithm 1, under state f, user i counts
down with rate as V =expð’Þ, there is

qf;f0 ¼
1

Vi
� expð�rxfÞ
expð�rxf0 Þ þ expð�rxfÞ

� Vi

expð’Þ

¼ expð�’Þ
1þ exp �r xf � xf0

� �� � ; (38Þ

which is equal with (37) designed before. It means our
design is satisfied to realize time-sharing among different
states in Markov chain. Thus, the optimal solution will be
gained with stationary distribution converge to (35).

Let f� be the global optimum, i.e., xf� � xf; 8f 2 F.
According to (37), the system is prone to stay in xf with
larger probability qf;f0 whose objective value is lower. It
indicates the system will converge to f� and be allocated
with time percentage as p�f. We re-express (35) as

p�f� ¼
1P

f02F expð�rðxf� � xf0 ÞÞ
: (39)

It can be concluded that p�f�ðxÞ increases as r decreases.
When r! 0, the time percentage allocated to f� is p�f� !
1. However, there exists a tradeoff that large r may lead
to system getting trapped in local optimum. tu

Theorem 3. The approximation gap is upper-bounded by 0 �
�� " � log Fj j=r, where � denotes the approximation solution
of CSRAO and " indicates the optimum [46], [50].

Proof. Following [50], we introduce Dirac delta function to
represent the distribution �pf of the theoretical optimality
with definition fmin , argminf2Fxf.

�pf ¼
1; if f ¼ fmin

0; otherwise

�
: (40)

According to the optimal stationary distribution of p�f,
we derive

X
f2F

p�fxf þ
1

r

X
f2F

p�flogp
�
f �

X
f2F

�pfxf þ
1

r

X
f2F

�pflog �pf ¼ ": (41)

Based on Jensen inequality, we obtain

X
f2F

p�flogp
�
f � �log

X
f2F

p�f � �
1

p�f

 !
¼ �log jFj: (42)

By substituting (42) to (41), we have

� ¼
X
f2F

p�fxf � "þ log Fj j
r

: (43)

With � > ", thus, Theorem 2 is proved. tu

Theorem 4 Adapted from Theorem 5 in [47]. The mixing
time (convergence time) of our designed continuous-time Mar-
kov chain is upper-bounded as Oðlog ðNÞÞ and lower-bounded

if ln 1
2n

�
2expð�’� rxminÞ

P
i2N Mi

Sþ1 � 1
� �

; 0 < r < rth,

where rth ¼ ln 1þ 1P
i2N ðMi

Sþ1�1Þ

� �
=2ðxmax � xminÞ.

Proof. Let PtðfÞ represent the probability distribution of all
states in F at time t, with initial state as f. According to
[47], the mixing time can be given by

tmixðnÞ ¼
D
inf t > 0 : max

f2F
PtðfÞ � p�k kTV � n

�

: (44)

We further denote xmax ¼D maxf2Fxf and xmin ¼D
minf2Fxf. Since Fj jexpð�bxmaxÞ �

P
f02F expð�bxf0 Þ �

Fj jexpð�bxminÞ. According to (35), we could derive the
minimum probability of stationary distribution pmin ¼

D

minf2Fp
�
f �

exp �r xmax�xminð Þð Þ
Fj j .

Based on uniformization technique [51], let Q ¼
qf;f0
� �

denote the transition rate matrix of our Markov
chain and develop a discrete-time Markov chain &

with transition rate matrix P ¼ 1þ Q
u
, where u ¼D

P
i2N

Mi
Sþ1 � 1

� �
expð�’� rxminÞ is the uniformization con-

stant and I is the identity matrix.
Applying spectral gap inequality [52], we have

tmixðnÞ � 1
uð1�%2Þ

ln 1
2n where %2 indicates the second largest

eigenvalue of P . With Cheeger’s inequality [52], we have

1� 2x � %2 � 1� 1
2x

2 where x is bounded as pmin
u
� exp

ð�’� rxmaxÞ � x � 1. tmixðnÞ satisfies

tmixðnÞ �
ln 1

2n

2expð�’� rxminÞ
P

i2N Mi
Sþ1 � 1

� � : (45)

Next, we prove the upper bound of tmixðnÞ. Similarly,
we construct a uniformized Markov chain &0 whose tran-
sition matrix is P 0 ¼ I þQ=u0 by uniformization tech-
nique on our Markov chain. u0 is given by u0 ¼D exp
ð�’Þ

P
i2N Mi

Sþ1 � 1
� �P

f2F expð�rxfÞ. By path cou-
pling method [53], there is

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2437

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

dTV ðPtðfÞ; p�Þ �
N � expð�expð�’ÞKtexpð�rð2xmax � xminÞÞÞ; (46)

where K ¼
P

i2N ðMi
Sþ1 � 1Þðexpð2rðxmax � xminÞÞ

�
; 0 <

r < rth ¼ ln 1þ 1P
i2N ðMi

Sþ1�1Þ

� �
=2ðxmax � xminÞ: Thus,

according to [47], we have

tmixðnÞ �
expðrð2xmax � xminÞ þ ’Þ � lnN

nP
i2N ðMi

Sþ1 � 1Þðexpð2rðxmax � xminÞÞÞ
� :

(47)
tu

5 EXPERIMENTAL RESULT

Based on Random waypoint model, we simulate trajectories
of MUs in a grid of 1000m	 1000m. tmax is set to 30s and the
speed v of mobile user follows a uniform distribution in
[4m/s, 15m/s]. Moreover, we exploit EUA dataset [54] to
construct the distribution of 10 edge servers with randomly
sampling them in our grid. With referring to [11], we
assume there exists mobile users with SAMSUNG Galaxy
S5 whose maximum CPU frequency is 2.5 GHz, and Dell
I3650-1838 as edge server with quad-core 2.7 GHz CPU. As
for each task mi;j, the workload Di;j, input Ii;j and output
data Oi;j are assumed to follow a uniform distribution in
[50,100] Mega cycles, [10,50] KB, and [10,50] KB, respec-
tively. Channel bandwidth is set to B ¼ 5MHz with AWGN
s2 ¼ �90dBm and date rate of downlink is Rc ¼ 100Mbps.
The peak transmit power is equal to ppeak ¼ 0:1. As parame-
ters of free-space path loss model in [15], We set path loss
exponent u ¼ 3, antenna gain G ¼ 4:11, and carrier fre-
quency Fc ¼ 915MHz. For simplicity, we assume CPU,
storage and storage resources of edge servers are large
enough for collaboration tasks. As for local computation,
a and b are set as 0.34 and 0.35 [55]. We initialize weight
parameters vT

i and vE
i as 0.5 and 0.5, respectively. We

consider the following benchmark methods for perfor-
mance comparison:

� CSA-IP [15]: current state-of-the-art algorithm to solve
inter-dependency problem. For offloading policy, it
uses Gibbs sampling algorithm to obtain it iteratively.
In addition, offloading decision for each user follows
”one-climb” policy that tasks are either offloaded to
the edge server for exactly once. Furthermore, it adopts
Lagrange multiplier method to derive the closed form
expression of CPU frequency and transmitted power.

� GA: genetic algorithm. Since genetic algorithm can
only solve the integer programming problem, we
reserve our Lagrange multiplier method to obtain
the optimal solution of fi;j and pi;j. Total offloading
decision solution is regarded as a chromosome
where gene is an offloading decision for each task. In
each iteration, we execute crossover and mutate to
generate new chromosomes and use Lagrange multi-
plier method to solve fi;j and pi;j.

� CSA-JO [11]: current state-of-the-art algorithm to
solve the joint optimization problem of resource allo-
cation and offloading where mobile users are served
by multiple servers without inter-user dependency.

It utilizes Lagrangian multiplier method to obtain
the optimal CPU frequency and transmission power,
and selects edge server by setting a contention
period for edge servers to compete for tasks.

� RA: Random algorithm. MUs randomly draw off-
loading decisions among all edge servers and local
execution. Next, adjust CPU frequency or transmis-
sion power randomly.

In what follows, we will compare our CSRAO algorithm
with these four baseline algorithms in three aspects, feasibil-
ity, scalability and sensitivity, to verify our superiority.

5.1 Feasibility Validation Under Varing Workload

In this subsection, we compare performance of these four
algorithms with workload Di;j varied from 50 to 300. We
can observe from Fig. 4a that GA, CSA-IP and CSA-JO out-
perform RA in term of the cost for service collaboration, i.e.,
the weighted sum of latency and energy consumption. In
addition, the solution of offloading and allocation policy in
the case of dynamic task workload obtained by our algo-
rithm is more cost-effective. When workload increases to
300 from 50, CSRAO is always the best scheme while the
second is CSA-JO and the third is GA. That is because ”one-
climb” policy is not applicable to send-and-receive depen-
dency in multi-user multi-server scenario. It is difficult for
CSA-IP to find a good solution of CPU frequency and trans-
mitted power. Meanwhile, although CSA-JO proposes a
scheme to select one ”best” server from candidates, it
regards each MU as an individual node and accordingly
neglects service dependency. As for GA, it is hard to get the
optimal solution without consider the problem-specific fac-
tor due to the large decision space. On the contrary, our
algorithm aims to jointly optimize offloading, CPU fre-
quency and transmission power to achieve the global
optimality.

Fig. 4. Comparison under increasing workload in terms of cost, response
latency and energy consumption.

2438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

To gain detailed performance of each scheme, we draw
the variation tendency of two competing objectives, latency
and energy consumption in Figs. 4b and 4c, respectively.
Findings can be drawn including that (i) as workload
increases, results of all methods increases; (ii) our scheme
could achieve superior results in terms of both latency and
energy consumption; (iii) even if GA spends the lowest
energy only second to our CSRAO, its latency is too long to
tolerant, which leads to its total cost to stay in a high level
and worse than CSA-JO. The reason for first finding is larger
workload naturally requires longer time to complete. The
reason behind (ii) is our scheme considers inter-user depen-
dency and can be applied to a more complex scenario. The
last finding reveals that only stablizing one objective to a low
level could not ensures the optimality of global cost.

5.2 Scalability Analysis

We take the four schemes into comparison in terms of sys-
tem cost, response latency and energy consumption, with
the number of users and tasks increasing.

5.2.1 Comparison With Increasing Number of Tasks

In this subsection, we evaluate the performance of our frame-
work under different number of tasks, compared with other
baseline schemes. As shown in Fig. 5a, we vary task number
of eachMUsMi from 5 to 50.We can observe that CSA-JO and
ours obtain close relatively optimal results and outperform
others greatly while task number is 5. That is because when
the number of tasks is small, the effect caused by inter-
user dependency is also small. As tasks increase, the gap
between ours and CSA-JO gets larger. In addition, our
algorithm shows superior performance and remains the
greatest level from beginning to end. When tasks exceed
a certain threshold, GA scheme outperforms CSA-IP,
due to mutation and crossover for global optimum. Our
scheme facilitates MUs to reduce long-term energy and
latency cost under location-based channel state and pre-
vents being trapped in local optimum.

Next, we examine the performance tradeoff between the
two competing objective in P1, completion latancy

P
i2N Ti

and energy consumption
P

i2N Ei. Figs. 5b and 5c reflect the
impact of task number on latancy and energy consumption,
respectively. Both of them show that varying task number
from 5 to 50 naturally results in an increase of E and T for all
methods.We can observe from Figs. 5b and 5c that RA has the

poorest performance nomatter whether it is latency or energy
consumption. From Fig. 5b, CSA-JO acts very close to us and
even outperforms ours later. However, we find it obtains too
large energy consumption from Fig. 5c. As a result, CSA-JO
ranks second to us in term of the weighted sum of latency and
energy consumption. GA is also the same and CSA-IP has the
poorest results. The reason behind this is CSA-IP requires a
specific scenario that ”one-climb” policy is tenable. We can
come to a conclusion from Figs. 5a, 5b and 5c that even though
there exists one algorithm could obtain one lower objective
than ours, latency or energy consumption, our algorithm
could realize better tradeoff. This finding is because as task
number increases, more tasks are affected by others which
means before making decisions, each MU has to take the per-
formance of whole system into consideration, even at the
expense of its private optimality. For instance, MU i has to
speed up for transmission in order to improve social optimal-
ity even if deep loss happens and vice versa.

5.2.2 Comparison With Increasing Number of Users

In this subsection, we evaluate the influence of the number of
users N on the optimality of objectives, including total cost,
latency and energy consumption. It is not difficult to find our
algorithm shows the best performance as the number of users
increases from Fig. 6a. Since CSA-IP only considers two-user
scenario, it shows poorness of scalability. At beginning, when
user number is 2, the gap among results of GA, CSA-JO and
ours is very small. As user number varies from 2 to 10, GA
and CSA-JO behave powerless. Reasons behind it are that
CSA-JO ignores the service dependency among MUs and it
hard for GA to converges with an exponential decision space.
Meanwhile, our scheme maintains the best performance all
along. That means our CSRAO could achieve the tradeoff
betweenMU itself and system optimalitywell.

We draw the results of two competitive objectives, latency
and energy consumption in Figs. 6b and 6c. As user number
increases, service dependency among MUs turns into more
complicated. The tradeoff between latency and energy con-
sumption becomes harder to realize. That means schemes
have to draw offloading and allocation decisions under a
more complex DAG. It’s not difficult to find that the two sub-
problem are strongly coupled. Offloading policy determines
the environment of allocation and the performance of offload-
ing is based on results of joint optimization of CPU frequency
and transmission power in return. It is observed from Figs. 6b
and 6c that although CSA-JO could achieve very nearly the

Fig. 5. Comparison under increasing number of tasks in terms of cost, response latency and energy consumption.

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2439

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

same and even lower latency, its total cost still underperforms
ours, since it spends much more energy on transmission and
execution. Another observation can be drawn from Sec-
tions 5.2.1 and 5.2.2 that compared with other schemes, our
scheme can adapt for the scenario whose scalability increases
best, whether user number or task number.

5.3 Sensitivity Analysis

To explore the influence of sensitivity in our scheme, we
vary control parameter r and weight parameter vT

i and vE
i

to observe performance variation.

5.3.1 Impact of Control Parameter

In the above three subsections, we evaluate our scheme in
the view of system scalability, compared with other four

baseline schemes. In this subsection, we examine the perfor-
mance under different values of inner control parameter r.
Recall that r is a parameter which affects the performance
of convergence of Markov Approximation algorithm. As
reflected in Fig. 7, when we vary r from 1 to 100, final
results achieved by our algorithm decrease. Three curves
drop steeply at first and then converges smoothly. Reason
behind it is that larger rmeans larger probability for system
to transfer to the better state. At the initial stage, xf is rela-
tively larger, which results in larger transition rate. It is eas-
ier for system to update to a better state. However, as state
becomes better, the cost of current state decreases. Thus, it
is hard for system to select a better state.

5.3.2 Impact of Weight Parameter

In this subsection, we examine the influence on trade-off
between energy consumption and response latency brought
by the weight parameter vT . As shown in Fig. 8, vT varies
from 0.2 to 1.0 uniformly. We can observe from Fig. 8 that as
vT increases, response latency naturally decreases at the
same time that energy consumption becomes higher. It’s
not difficult to verify because latency gets more sensitive to
objective P1 with larger vT . On the contrary, as vT

decreases, that is to say vE increases relatively, the energy
consumption is reduced.

Another observation can be obtain from Fig. 8 is that the
gradient of latency with respect to vT is monotonically
decreasing. Specifically, for the larger vT , the same increase
results in reducing less latency and rasieing more energy
consumption. It’s can be seen that the most densely distrib-
uted area for vT is vT ¼ 0:5which means the better tradeoff.

6 DISCUSSION AND CONCLUSION

In this paper, we investigate the joint optimization of resource
allocation (CPU frequency and transmission power) and off-
loading strategy for composite service of mobile users, with
service dependency considered. First, we introduce the com-
putation analysis of local execution and edge computing, in
terms of latency and energy consumption. Based on this, we
formulate it as a MINLP whose computation complexity is
non-polynomial. To deal with challengings of strong coupling
between resource allocation and offloading, we assume off-
loading policy is given and accordingly transform it into ILP.
By introducing Lagrangian multiplier method, we derive the
optimal closed-form expressions of CPU frequency and

Fig. 7. Impact of control parameter.

Fig. 6. Comparison under increasing number of users in terms of cost, response latency and energy consumption.

Fig. 8. Impact of weight parameter.

2440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

transmission power. To obtain optimal offloading policy, we
adopt Markov Approximation method to update offloading
decision iteratively as outer layer while the inner layer is
Lagrangian multiplier method. Extensive simulations have
been conducted to evaluate the performance and convergence
of our scheme. In a word, our aim is providing valuable
insights into inter-user dependency. This paper is a start which
only accounts for master-slave model. The more complex
modelwould be studied in the future.

Next, we extend our algorithm to a multi-round scenario
where each round consists of publishing contents by master
and submitting results by workers. Assume that there exist
Y rounds, including Y send and Y receive processes for mas-
ter, MU 1. we denote Qi;y; 1 � y � Y to indicate the wait
time of yth dependency for ith MU. When i ¼ 1, we have

Q1;y ¼ maxfFT1;r
y
i
�1 þ TRl

1;r
y
i
þ; TRc

1;r
y
i
T max

1;r
y
i
g: (48)

Otherwise, we have

Qi;y ¼ maxfFTi;k
y
i
�1 þ TRl

i;k
y
i
þ TRc

i;k
y
i
; T max

i;k
y
i
g; (49)

where kyi and ryi indicate the yth send and receive tasks,
respectively. If there exist workers fail to submit results,
master will regard them as refusing to cooperate in that
round. MU 1 could complete receive without their results.
We define fpredð1; ry1Þ to indicate the failed workers in yth
round. In this case, T max

1;r
y
1
is equal with maxi0 6¼1;mi0 ;j0 2pred m1;jð Þ

nfpredð1; ry1Þ FTi0;j0 þ texi0;j0 ð1; r
y
1Þ

n o
. When a is given, it is also

a convex problem. The Lagrangian function can be
described as

Lðtli;j; tui;j; �;mÞ

¼
X
y2Y

my T1;r
y
1
�1 þ TRl

1;r
y
1
þ TRc

1;r
y
1
þ T sum

1;r
y
1
�NQ1;y

� �

þ
X
y2Y

�y

XN
i¼2

FTi;k
y
i
�1 þ TRl

i;k
y
i
þ TRc

i;k
y
i
þ T sum

i;k
y
i
� 2Qi;y

� �

þ
X
i2N

vT
i Ti þ vE

i Ei: (50)

Next, CSRAO can be applied to draw offloading decision.
Hence, our proposed framework could solve the general
inter-user problem. It’s our future work to find a more low-
complexity algorithm to reduce response latency and
energy consumption.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[2] M. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in Proc. IEEE Conf. Comput. Com-
mun., 2017, pp. 1–9.

[3] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE J. Sel. Areas Com-
mun., vol. 36, no. 3, pp. 587–597, Mar. 2018.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth
Quarter 2017.

[5] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
“Mobility-aware service composition in mobile communities,”
IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 3, pp. 555–568,
Mar. 2017.

[6] S. Deng, H. Wu, W. Tan, Z. Xiang, and Z. Wu, “Mobile service selec-
tion for composition: An energy consumption perspective,” IEEE
Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1478–1490, Jul. 2017.

[7] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo: A com-
putation offloading framework for smartphones,” in Proc. 2nd Int.
ICST Conf. Mobile Comput. Appl. Serv., 2010, vol. 76, pp. 59–79.

[8] Y. Abe, R. Geambasu, K. R. Joshi, H. A. Lagar-Cavilla, and
M. Satyanarayanan, “vTube: Efficient streaming of virtual appli-
ances over last-mile networks,” in Proc. 4th ACM Symp. Cloud
Comput., 2013, pp. 16:1–16:16.

[9] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[10] Z. Xu, L. Zhou, S. C. Chau, W. Liang, Q. Xia, and P. Zhou,
“Collaborate or separate? Distributed service caching in mobile
edge clouds,” in Proc. 39th IEEE Conf. Comput. Commun., 2020,
pp. 2066–2075.

[11] S. Guo, M. Chen, K. Liu, X. Liao, and B. Xiao, “Robust computa-
tion offloading and resource scheduling in cloudlet-based mobile
cloud computing,” IEEE Trans. Mobile Comput., vol. 20, no. 5,
pp. 2025–2040, May 2021.

[12] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and task
offloading policy for wireless powered mobile edge computing
systems,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2443–
2459, Apr. 2020.

[13] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The
role of proactive caching in 5G wireless networks,” IEEE Commun.
Mag., vol. 52, no. 8, pp. 82–89, Aug. 2014.

[14] L. Yao, Y. Wang, X. Wang, and G. Wu, “Cooperative caching in
vehicular content centric network based on social attributes and
mobility,” IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 391–402,
Feb. 2021.

[15] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading and
resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Trans. Wireless Commun., vol. 19, no. 1,
pp. 235–250, Jan. 2020.

[16] J. Yan, S. Bi, and Y. A. Zhang, “Optimal offloading and resource
allocation in mobile-edge computing with inter-user task depend-
ency,” in Proc. IEEE Global Commun. Conf., 2018, pp. 1–8.

[17] M.Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balanc-
ing federated learning with global imbalanced data in mobile sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 59–71,
Jan. 2021.

[18] J. Yao and N. Ansari, “Enhancing federated learning in fog-aided
IoT by CPU frequency and wireless power control,” IEEE Internet
Things J., vol. 8, no. 5, pp. 3438–3445, Mar. 2021.

[19] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 281–294, Feb. 2021.

[20] R. Viswanathan and P. K. Varshney, “Distributed detection with
multiple sensors Part I. Fundamentals,” Proc. IEEE, vol. 85, no. 1,
pp. 54–63, Jan. 1997.

[21] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning
in wireless sensor networks,” IEEE Signal Process. Mag., vol. 23,
no. 4, pp. 56–69, Jul. 2006.

[22] Z. Zhong and R. Buyya, “A cost-efficient container orchestration
strategy in kubernetes-based cloud computing infrastructures
with heterogeneous resources,” ACM Trans. Internet Techn.,
vol. 20, no. 2, pp. 15:1–15:24, 2020.

[23] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang, “Energy efficiency
aware task assignment with DVFS in heterogeneous hadoop
clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 70–82,
Jan. 2018.

[24] D. Han, W. Chen, and Y. Fang, “Joint channel and queue aware
scheduling for latency sensitive mobile edge computing with
power constraints,” IEEE Trans. Wireless Commun., vol. 19, no. 6,
pp. 3938–3951, Jun. 2020.

[25] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[26] L. Yuan et al., “CoopEdge: A decentralized blockchain-based plat-
form for cooperative edge computing,” in Proc. Web Conf., 2021,
pp. 2245–2257.

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2441

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

[27] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, and J. Yin, “A mobility-
aware cross-edge computation offloading framework for partitionable
applications,” inProc. IEEE Int. Conf.Web Services, 2019, pp. 193–200.

[28] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, and B. Lin, “NOMA
assisted multi-task multi-access mobile edge computing via deep
reinforcement learning for industrial Internet of Things,” IEEE
Trans. Ind. Informat., vol. 17, no. 8, pp. 5688–5698, Aug. 2021.

[29] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and col-
lective deep reinforcement learning for computation offloading: A
practical perspective,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 5, pp. 1085–1101, May 2021.

[30] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Heterogeneous edge offloading with incomplete information: A
minority game approach,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 9, pp. 2139–2154, Sep. 2020.

[31] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial
computation offloading in collaborative edge computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1133–1145, May 2021.

[32] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop
cooperative computation offloading for industrial IoT–edge–
cloud computing environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 12, pp. 2759–2774, Dec. 2019.

[33] Y. Mao,W. Hong, H.Wang, Q. Li, and S. Zhong, “Privacy-preserving
computation offloading for parallel deep neural networks training,”
IEEETrans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1777–1788, Jul. 2021.

[34] T. Bahreini, H. Badri, and D. Grosu, “Mechanisms for resource
allocation and pricing in mobile edge computing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 667–682, Mar. 2022.

[35] Y. Chen, C. Lin, J. Huang, X. Xiang, and X. Shen, “Energy efficient
scheduling and management for large-scale services computing
systems,” IEEE Trans. Services Comput., vol. 10, no. 2, pp. 217–230,
Mar./Apr. 2017.

[36] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-
device communication assisted fog computing,” IEEE Trans.
Mobile Comput., vol. 20, no. 3, pp. 1076–1091, Mar. 2021.

[37] Y. Wu, L. P. Qian, H. Mao, X. Yang, H. Zhou, and X. Shen,
“Optimal power allocation and scheduling for non-orthogonal
multiple access relay-assisted networks,” IEEE Trans. Mobile Com-
put., vol. 17, no. 11, pp. 2591–2606, Nov. 2018.

[38] I. Alqerm and B. Shihada, “Sophisticated online learning scheme for
green resource allocation in 5G heterogeneous cloud radio access
networks,” IEEE Trans. Mobile Comput., vol. 17, no. 10, pp. 2423–2437,
Oct. 2018.

[39] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in
edge computing,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 2287–2295.

[40] J. Meng, H. Tan, X. Li, Z. Han, and B. Li, “Online deadline-aware
task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2020.

[41] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation par-
titioning for latency sensitive mobile cloud applications,” IEEE
Trans. Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[42] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization
in the mobile cloud computing environment,” IEEE Trans. Services
Comput., vol. 8, no. 2, pp. 175–186, Mar./Apr. 2015.

[43] K. Son and B. Krishnamachari, “SpeedBalance: Speed-scaling-
aware optimal load balancing for green cellular networks,” in
Proc. IEEE Conf. Comput. Commun., 2012, pp. 2816–2820.

[44] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu,
“Energy-optimal mobile cloud computing under stochastic wireless
channel,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581,
Sep. 2013.

[45] S. Bi, L. Huang, and Y. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4947–4963, Jul. 2020.

[46] C. Lemar�echal, S. Boyd, and L. Vandenberghe, “Convex opti-
mization,” Eur. J. Oper. Res., Cambridge Uni. Press, vol. 170, no. 1,
pp. 326–327, 2006.

[47] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation
for combinatorial network optimization,” IEEE Trans. Inf. Theory,
vol. 59, no. 10, pp. 6301–6327, Oct. 2013.

[48] Z. Shao, X. Jin,W. Jiang,M. Chen, andM. Chiang, “Intra-data-center
traffic engineering with ensemble routing,” in Proc. IEEE Conf. Com-
put. Commun., 2013, pp. 2148–2156.

[49] S. Zhang, Z. Shao, M. Chen, and L. Jiang, “Optimal distributed
P2P streaming under node degree bounds,” IEEE/ACM Trans.
Netw., vol. 22, no. 3, pp. 717–730, Jun. 2014.

[50] H. Zhang, “An optimized video-on-demand system: Theory, design
and implementation,” Ph.D. dissertation, Electr. Eng. Comput. Sci.,
Univ. California, Berkeley, Berkeley, CA, 2012. [Online]. Available:
http://www.escholarship.org/uc/item/74k0723z

[51] R. B. Lund, “Markov processes for stochastic modeling,” J. Amer.
Statist. Assoc., vol. 93, no. 442, pp. 842–843, 1998.

[52] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of
Markov chains,” Ann. Appl. Probability, vol. 1, pp. 36–61, 1991.

[53] R. Bubley and M. Dyer, “Path coupling: A technique for proving
rapid mixing in Markov chains,” in Proc. 38th Annu. Symp. Found.
Comput. Sci., 1997, pp. 223–231.

[54] P. Lai et al., “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Proc. Int. Conf. Service-Ori-
ented Comput., 2018, pp. 230–245.

[55] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic
resource and task allocation for energy minimization in mobile
cloud systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 12,
pp. 2510–2523, Dec. 2015.

Haowei Chen received the BS degree from the
School of Computer and Information Technology,
Beijing Jiaotong University, Beijing, China, in
2020. He is currently working toward the PhD
degree in the College of Computer Science and
Technology, University of Zhejiang, China. His
current research interests include edge comput-
ing and service computing.

Shuiguang Deng (Senior Member, IEEE) received
the BS and PhD degrees both in computer science
from Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a full professor with the
College ofComputer Science andTechnology, Zhe-
jiang University, China. He previously worked with
the Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, in 2014 and Stanford Uni-
versity, Stanford, California, in 2015 as a visiting
scholar. His research interests include edge com-
puting, service computing, cloud computing, and

business process management. He serves for the journal IEEE Trans. on
Services Computing, Knowledge and Information Systems, Computing,
and IET Cyber-Physical Systems: Theory & Applications as an associate
editor. Up to now, he has published more than 100 papers in journals and
refereed conferences. In 2018, he was granted the Rising Star Award by
IEEETCSVC. He is a fellow of IET.

Hongze Zhu received the BS degree from the
School of Computer Science and Technology,
Hangzhou Dianzi University, Hangzhou, China, in
2020. He is currently working toward the master’s
degree in the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
His research interests include edge computing and
machine learning.

Hailiang Zhao received the BS degree from the
School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China,
in 2019. He is currently working toward the PhD
degree with the College of Computer Science
and Technology, Zhejiang University, Hangzhou,
China. He has been a recipient of the Best Stu-
dent Paper Award of IEEE ICWS 2019. His
research interests include edge computing, ser-
vice computing and machine learning.

2442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

http://www.escholarship.org/uc/item/74k0723z

Rong Jiang received the PhD degree in system
analysis and integration from the School of Soft-
ware, Yunnan University, China. He is currently a
deputy dean of the Institute of Intelligence Applica-
tions, distinguished professor and doctoral supervi-
sor with the Yunnan University of Finance and
Economics, Kunming, China. His current research
interests include cloud computing, big data, block
chain, AI application and informationmanagement,
digital economy and software engineering.

Schahram Dustdar (Fellow, IEEE) is currently a
full professor of computer science (Informatics)
with a focus on Internet Technologies heading the
Decentralized Systems Group with the TU Wien,
Austria. He is chairman of the Informatics Section
of the Academia Europaea (since December 9,
2016). From 2004–2010 he was honorary profes-
sor of Information Systems with the Department
of Computing Science, University of Groningen
(RuG), The Netherlands. From December 2016
until January 2017 he was a visiting professor with

the University of Sevilla, Spain and from January until June 2017 he was a
visiting professor with UC Berkeley, Berkeley, California. He is a member
of the IEEE Conference Activities Committee (CAC) (since 2016), of the
Section Committee of Informatics of the Academia Europaea (since 2015),
a member of the Academia Europaea: The Academy of Europe, Informat-
ics Section (since 2013). He is recipient of the ACMDistinguished Scientist
award (2009) and the IBM Faculty Award (2012). He is an associate editor
of IEEE Transactions on Services Computing, ACM Transactions on the
Web, and ACM Transactions on Internet Technology and on the editorial
board of IEEE Internet Computing. He is the editor- in-chief of Computing
(an SCI-ranked journal of Springer).

Albert Y. Zomaya (Fellow, IEEE) is currently the
chair professor of high-performance computing
and networking in the School of Computer Sci-
ence, University of Sydney, Australia. He is also
the director of the Centre for Distributed and High
Performance Computing. He published more than
600 scientific papers and articles and is a author,
co-author or editor of more than 20 books. He
served as the editor-in-chief of the IEEE Transac-
tions on Computers (2011–2014). Currently, he is
the editor in chief of ACM Computing Surveys and

serves as associate editor for several leading journals. He delivered more
than 190 keynote addresses, invited seminars, and media briefings and
has been actively involved, in a variety of capacities, in the organization of
more than 700 national and international conferences. He received the
IEEE Technical Committee on Parallel Processing Outstanding Service
Award (2011), the IEEE Technical Committee on Scalable Computing
Medal for Excellence in Scalable Computing (2011), and the IEEE Com-
puter Society Technical Achievement Award (2014). He is a chartered
engineer, a fellow of AAAS, IET (U.K.), and an elected member of Acade-
mia Europaea. His research interests parallel and distributed computing
and complex systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ET AL.: MOBILITY-AWARE OFFLOADING AND RESOURCE ALLOCATION FOR DISTRIBUTED SERVICES COLLABORATION 2443

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 31,2022 at 07:30:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

