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Abstract—In mobile edge computing (MEC) systems, mobile users (MUs) are capable of allocating local resources (CPU frequency
and transmission power) and offloading tasks to edge servers in the vicinity in order to enhance their computation capabilities and
reduce back-and-forth transmission over backhaul link. Nevertheless, mobile environment makes it hard to draw offloading and
resource allocation decisions under dynamical wireless channel state and users’ locations. In real life, social relationship is also
provably a significant factor affecting integral performance in collaborative work, which results in MUs decisions strongly coupled and
renders this problem further intractable. Most of previous works ignore the impact of inter-user dependency (or data dependency
among loT devices). To bridge this gap, we study the service collaboration with master-slave dependency among service chains of
MUs and formulate this combinational optimization problem as a mixed integer non-linear programming (MINLP) problem. To this end,
we derive the closed-form expression of resource allocation solution by convex optimization and transform it to integer linear
programming (ILP) problem. Subsequently, we propose a distributed algorithm based on Markov approximation which has polynomial
computation complexity. Experimental result on real-world dataset substantiates the usefulness and superiority of our scheme, in terms

of reducing latency and energy consumption.

Index Terms—Mobile edge computing, task offloading, resource allocation, dependency, collaborative computing
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1 INTRODUCTION

N recent years, network data traffic substantially prolifer-

ates with excessive MUs, e.g., smart phones and wearable
equipments. At the same time, the development of infra-
structure of Internet, including base station and cloud
server cluster, couldn’t keep up with the pace of ultra-low
latency demand of networks [1]. In the interest of resolving
this huge burden, MEC is proposed to avert the inevitable
burden by pushing computation capabilities from core to
the edge of networks [2]. It has emerged as a prominent
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paradigm to cope with the tremendous Internet data, where
most of computation tasks are completed at edge servers in
proximity through ratio access network (RAN), instead of
the distant cloud [3]. Mobile network operators (MNOs) are
allowed to deploy edge servers in strategic locations flexibly
to guarantee quality of experience (QoE) of users. Without
transferred to core network, MEC saves backhaul latency
and energy cost of a high order of magnitude, and relieves
the traffic load [4].

However, there are practical concerns about how to over-
come the inherent nature of resources constraints. Conven-
tional quality of service (QoS) based algorithms turn into
obsolete to achieve globally optimal solution, due to the
sophisticated network state caused by mobile terminals
(MT) [5], [6]. Uninterrupted computing and transmission of
user devices requires cost-effective methods to sustainably
work, since the limited capacity of battery and scarce out-
door charging infrastructures pose impediments [7]. At last,
ultra-low response latency is necessitated so that results
could reach to delay-sensitive applications instantaneously,
like augmented reality and autonomous vehicles [8], [9],
[10]. It's expected to adjust CPU frequency and transmission
power adaptively to cope with wireless channel emergency
[11]. Therefore, for users, how to realize the trade-off
between energy consumption and latency, so as to reduce
response latency at the same time that energy consumption
is stablized at a small enough level has been raised as one of
the biggest issue [12].

Some existing works demonstate that social relationship
could be utilized to draw strategies, since user’s social attrib-
utes determine what roles they play in a group [13], [14]. This
kind of interactions is referred to as inter-user dependency [15],
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Master

slave slave slave

Fig. 1. lllustration of federated learning, where slaves are responsible for
training models and master is required to send, update and aggregate
parameters.

[16]. In addition, user mobility is also a useful feature for wire-
less network design [17]. However, few prior works combine
both mobility and inter-user dependency into consideration.

Inter-user dependency is commonly appeared in real life
as long as there exists groups (e.g., master-slave construction).
People tend to experience web service with friends and fami-
lies. It is more tractable to optimize overhead with regarding
them as a whole. For the sake of elaboration, we use service
dependency among individuals to abstract away from social
attributes. It is common for team members to contact fre-
quently and regularly to update schedule and require data
from others according to what they need. In other words, ser-
vice dependency correlates the service results of different
users. For instance, only after the leader distributes work con-
tent to members, the latter could begin to work. It is ubiqui-
tous in real-life business scenarios, such as Party A and B,
superior and subordinate, and group work.

Note that this kind of service dependency could be found
in technologies based on distributed system, especially mas-
ter-slave-based architecture. Federated learning is a promis-
ing paradigm for training artificial intelligence (AI) models,
where slave nodes train local model on private data samples
solely and the master aggregate parameters (e.g., weights
and biases of a deep neural network) from slave nodes and
broadcasting them back for the next training round [17], as
shown in Fig. 1. It's known that workload scheduling is the
bottleneck of reducing latency. There exist some works aim-
ing at utilizing MEC to improve the performance of feder-
ated learning. Yao et al. investigate the CPU frequency and
transmission power controll of devices to optimize feder-
ated learning in MEC-aid network [18]. CSARO proposed
in this paper is also a beneficial attempt to achieve accelera-
tion at communication layer for federated learning in MEC
network.

As for collaboration research for MEC system, Xia ef al.
studied collaborative data caching in edge servers with user
dependency considered [19]. In other distributed systems,
like wireless sensor network (WSN) and Internet of things
(IoT) systems, this dependency could be reflected in data
dependency between sink node (e.g., gateway) and sensor
nodes [20], [21]. There exist other lots of master-slave-based
systems, like Kubernetes [22] and Hadoop [23]. In other
words, our work aims at proposing valuable insights in the
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sense of promoting the quality of experience of users and
reducing overheads for these above technologies.

However, it is challenging to take both mobility and inter-
user dependency into consideration. First, it requires a mod-
erate trade-off between energy consumption and completion
latency. Blind pursuit of ultra-low latency may lead to intoler-
able energy consumption, since transmission under deep fad-
ing costs higher energy consumption for minimum data unit
(MDU) [24]. Second, offloading and allocation decisions
among users are strongly mutual coupled. If the master
demands results urgently, slaves have to shorten the latency
at the expense of more energy consumption. Otherwise, it can
follow an energy-effective method provided that the whole
latency is slightly or even no deteriorated. Where there is
dependency there is optimization space to realize system opti-
mum. At last, the network state is time-varied. The next task
would be started only after its all immediate predecessors
have been completed. How to offload tasks and allocate
resources optimally thus emerges as a global optimization
problem, which leads to high computation complexity.

This paper aims at the combinational optimization of off-
loading and resources allocation to reduce collaborative
cost. The basic idea is adapted from [15], [16]. However, the
problem and the environment we focus on are not the same.
They investigate the inter-user dependency optimization
between two static users with only one server and extend it
to a multi-user scenario. We care about the optimization for
task model existing in master-slave systems, such as feder-
ated learning and other technologies mentioned before. It
consists of multiple mobile users and multiple edge servers.
Additional concerns for us are not only the difficulty of
solving problems due to scale but also the spatio-temporal
causality in a dynamic environment caused by mobility.
The ”one climb” policy designed by Yan et al. is not applica-
ble any more since the task model changes and the number
of edge servers increases. The main contributions of this
paper can be summarized as follows:

e Our work provides a valuable scheme by jointly opti-
mizing offloading and allocation policies to realize
acceleration and green computing for master-slave-
based scenarios in MEC environment, such as feder-
ated learning and real-life collaborative services.

e Taking the weighted sum of latency and energy con-
sumption as objective, we devote efforts to solve the
practical problem of ensuring QoS and sustainable
computing for devices with both mobility and inter-
user dependency considered. This work is state-of-
the-art and challenging due to the high complexity
in the design of solution with strong coupling caused
by inter-user dependency.

e We formulate this problem as a non-convex MINLP
problem which can only be solved by exhaustive
search with exponential solution space. To this end, by
assuming offloading decision is given, we obtain the
allocation strategy for transmission power and CPU
frequency with convex optimization. The MINLP
problem thus is simplified to ILP problem. Next, we
propose a distributed algorithm based on Markov
approximation to obtain the near-optimal solution
within polynomial time.
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e Based on real-world dataset, we take two state-of-
the-art algorithms and other baseline algorithms as
benchmarks. Experimental results show our uperior
performance and robustness as anticipated.

The rest of this paper is organized as follows. Section 2
summarizes related work and the system model is intro-
duced in Section 3. We formulate the joint optimization
problem and present the algorithm design in Section 4.
Experimental results are provided in Sections 5 and 6 dis-
cusses the multi-dependency scenario and prove the feasi-
bility of our algorithm and concludes this paper.

2 RELATED WORK

Mobile edge computing technology emerges as a promising
paradigm to alleviate the traffic load on core network with
computation capability pushed to the edge of network. Due
to the demands of QoS and limited battery capacity, there
are a lot of prior works evolved to optimize latency and
energy consumption in terms of resource allocation and off-
loading policy.

For offloading policy, previous literatures proposed many
novel methods to solve optimization problem of multi-task off-
loading in MEC scenario. In [25], a game-theoretical approach
was proposed with an objective to maximize number of served
users and minimize overall latency and energy consumption
by allocating users. In [26], a multi-user collaboration platform
CoopEdge was developed which investigated reputation-
based method for task executor selection where users with
high reputations would be prioritized. In [27], based on Lyapu-
nov optimization, Zhao et al. designed a general framework for
offloading partitionable tasks to edge servers with the aim of
minimizing response latency and stablizing battery of device
in a reliable level. Qian et al. in [28] investigated NOMA for
computation in multiaccess mobile edge computing and pro-
pose a deep reinforcement learning (DRL) method to solve the
joint optimization problem of multi-task offloading, NOMA
transmission and resource allocation to minimize the energy
consumption of IoT devices. In [29], another DRL-based algo-
rithm which can assimilate experiences and knowledge from
the distributed system was studied by Qiu et al. to solve the
multi-user computation offloading problem. With deep neuro-
evolution and policy gradient combined, the utilization of
system was also improved. A minority game approach was
proposed in [30] where users are modeled as players with the
objective of addressing heterogeneous task offloading problem
with incomplete information. In [31], a joint multi-hop multi-
task partial computation offloading and network flow sched-
uling prolem was researched with the target of minimize the
average delay of tasks in collaborative edge computing. By
using McCormick envelope and Mosek solver in CVX, a lower
bound solution was finally derived. The work [32] was ori-
ented to computation offloading in industrial IoT-edge-cloud
environment, aiming for QoS improvement. In [33], a privacy-
preserving mechanism was proposed to make offloading deci-
sions for DNN model training tasks and has been proved to
reduce communication rounds.

Resource allocation is also an significant work in network
optimization. The work [11] investigated the adjustable
transmit power and CPU frequency problem in mobile envi-
ronment and proposed an online algorithm to minimize
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Fig. 2. MEC network with mobile users, APs and servers.

users’ response delay and energy consumption. In [34], Bah-
reini et al. studied the dynamic provisioning of computing
resources. Two allocation and pricing mechanisms were pro-
posed to maximize social welfare. [12] studied the energy
allocation for users so as to locally execute computation tasks
from energy beamforming. Chen et al. researched DVFS tech-
nology to realize energy efficient scheduling with adjustable
CPU frequency [35]. Based on Lyapunov Optimization, they
proposed a distributed algorithm which can achieve near
optimal system profit while bounding the queue length. Li
et al. developed an channel assignment and power control
solution based on the idea of branch-and-price and then
designed a greedy algorithm to achieve a sub-optimal per-
formance [36]. Wu et al. investigated the optimal power allo-
cation for NOMA relay-transmission and propose a layered-
algorithm to efficiently compute the optimal power alloca-
tion solution and the maximum throughput for the targeted
MU [37]. In [38], H-CRANSs following online learning based
centralized and decentralized approaches was proposed for
transmission power control with inter-tier interference and
capacity constraints.

As for the study of offloading and resource allocation for
DAG, in [39], Meng et al. proposed an online deadline-
aware offloading and scheduling algorithm called Dedas to
determine both dynamical network bandwidth and compu-
tation task offloading with the objective of minimizing the
average completion time. In [40], D-Dedas, a distributed
algorithm was further designed for large network systems
to allow edge servers making decisions independently
while performance improved.

This paper aims to solve the joint optimization of offload-
ing and resource allocation under dependency among users.
In [16], Yan et al. establish inter-user dependency between
two users and utilize “one-climb” policy to solve offloading
and scheduling problem. After that, they carry on in-depth
study in [15] with bi-section search method and Gibbs Sam-
pling algorithm. However, the above studies only consider
simple static scenario where exist one dependency, one edge
server and two users. In this paper, we are devoted to resolve
this problem in a multi-user, multi-server and multi-depen-
dency mobile system where one-climb policy is inapplicable.

3 SysTEM MODEL

As illustrated in Figs. 2 and 3, we consider there is a project to
be completed by a business sector, composed of multiple
mobile users, denoted by N ={1,2,...,N}. Each MU is
required to finish a composition task chain. MU 1, as the mas-
ter, is responsible for sending commands (generated from one
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Fig. 3. lllustration of service dependency in task chains.

task) and aggregating results produced by other MUs to com-
plete project (detailedly shown in Fig. 3). MUs {i|i € N,i # 1}
execute tasks individually and return demanded results back
to MUT. It is exactly the same with federated learning that the
central server orchestrates algorithms for training nodes
(slaves) and aggregates newly updated parameters. The task
model shown in Fig. 3 is a specific round of collaboration, like
one training round in federated learning. Each task can be off-
loaded to edge servers or processed locally. Our optimization
objective is to provide valuable schemes by drawing optimal
offloading and allocation policies to realize acceleration and
green computing for each round of collaboration for this kind
of architecture, in mobile and dependent environment. We
assume the master (MU 1) needs to interact with others twice,
once to publish contents and once to collect results, i.e., broad-
casting averaged gradients and aggregating updated gra-
dients in federated learning. Key system parameters are
shown in Table 1.

Task Model. For clarity, we show computation task chains
of MUs detailedly in Fig. 3. Specifically, MU ¢, Vi € N has
M; computation tasks to be executed in a sequence with
inner-user and inter-user dependency, defined as M; =
{1,2,...,M;}. We take m,; to indicate jth task of M;,Vi €
N, j< M. Each task m; ; gets ready for execution only after
outputs of its all predecessors have been received. For
instance, myy, could be started after results of m;;, and
Mo i,—1 have reached. We use I;; and O;; to indicate the
input and output data of task m; j, respectively. Workload
of task m; ; is represented by D, ;. For convenience, we intro-
duce two pseudo tasks for each user ¢,Vi € NV, referred as to
mio and m;asq1, whose ILig=0;y,11 =0 and D=
D; a+1 = 0. We take DAG form G = (V, E) to represent the
whole project, where V' indicates the set of tasks and £
describes the dependency between two tasks. MU1 needs to
distribute work contents to other MUs {i|i € N,i # 1} and
aggregate their results together, after my;,,1 < ky < M, and
my,, respectively.
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TABLE 1
Key System Parameters

Symbols Definition

S, S Set of edge servers and the size of S

N,N Set of mobile users and the size of N

M;, M;  Set of tasks for MU i and the size of M,

mj jth task for ith MU

I;;,0;;  Data size of input and output for task m; ;

D;; Workload of task m; ;

fij CPU frequency of local execution for task m;

r;-i . Download delay for task m; ; if local execution
Té{ y Transmission delay of local execution for task m; ;

T Upload delay for task m; ; if edge computing
E}; Upload energy consumption for task m; ;
Transmission delay of edge computing for task m; ;

CL?J/ Complete latency for task m; ; if local execution
E! i Energy consumption for task m; ; if local execution
R;; Bitrates for uploading task m;

Ry, Bitrates for downloading task m; ;

Dij Transmitted power for task m; ;

hij Channel gain when processing task m; ;

CL{; Complete latency for task m; ; if edge computing
e Energy consumption for offloading task m; ;

Aij Execution platform of task m; ;

RT;; Ready time of task m; ;

FT; Finish time of task m; ;

CL;; Complete latency for task m; ;

A;j Execution platform of task m; ;

rfj(i’, J')  Extra latency between tasks m; ; and my j

ejj(z’ ,J'")  Extra energy cost between tasks m; j and m; y

T; Opverall latency to complete task chain M;

E, Overall energy cost to complete task chain M;

weight parameter of latency for MU ¢
weight parameter of energy consumption for MU ¢

ISR
S

Network Model. Edge servers are deployed by mobile net-
work operator in strategic points to finish computation tasks
on behalf of MUs, denoted by S = {1,2, ..., S}. Each server
is equipped with an access point (AP) so as to realize com-
munications via wireless LAN (WLAN). APs have different
atenna allocation schemes and edge servers are heteroge-
neous in computation resources. MUs have options to off-
load tasks to edge servers or execute them locally. It's
assumed that MUs can be only allowed to communicate
with at most one edge server concurrently, which means
offloading decision follows a binary policy [41]. We use
a;; € {0,1} to represent the binary decision of m;;, which

follows
. { 1, offloaded to edge server s
a’ . =
1,] 0

. )
otherwise

and

Za‘;]‘ <1. (@)

seS

Notice that pseudo tasks are naturally processed at local
MUs, ie., > sy = D s y;+1 = 0. Based on orthogonal
frequency-division multiplexing (OFDM) technique, we
consider an orthogonal partition on spectrum to enable
multi-user offloading/downloading service. MUs commu-
nicate with edge servers over orthogonal channels and
would not interfere with each other.
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Mobility Model. We use Random Waypoint Model to
characterizes MUs’ mobility paths. Each user i € N stays
in the initial point p;( for a random time ¢, € (0, tmax]-
Another point p;; is next randomly selected. After stay,
it moves to point p;; at v; ) meters per second, where v; o
is randomly generated in [Uyin, Umax]. Next, each user i
stays in p;; for a random time ¢;1 € [tmin, tmax]. This pro-
cess is repeated until the user moves out. In this case,
given an arbitrary time point ¢ € (t),tx), we can attain
its location /;. It's not difficult to verify that distance d; ;
and channel gain %}, are one-to-one mapping. Hence,
there exists bijection between time point ¢ and channel
gain h; ;.

3.1 Overheads of Local Execution

As the upgrade of central processing unit (CPU) and memory,
the computation capability and storage have made a progress
recently. Smart devices are enabled to process application
locally, e.g., image preprocess and animation rendering [11].

Typically, local computing is an alternative strategy
when channel state is poor. Dynamic voltage and frequency
scaling (DVFS) technology provides the theoretical and
technical support for dynamically adjusting the CPU fre-
quency to execute tasks adaptively [42].

This subsection aims to analyse inner-user dependency
and give the expression of energy consumption and latency
brought by local execution for retrieving output of m; j_; to
complete m; ;. Overheads caused by inter-user dependency
will be discussed in Section 3.3. Task m; ; can be locally exe-
cuted only after the output data of m;;_; has reached the
device of MU i. We define TR;; to represent the transmis-
sion latency between tasks m; j_; and m; ; as follows

TR ;=) aj;, (1 - afg‘) o )

S

Oij-1
R¢ .
ij

where r;{j = is the download delay from edge server
and Rf; is the downlink bitrate (explained in the next sec-
tion). TR ; only exists when task m; ; ; computed in edge
server and task m;; executed in local device, indicated by
Zs a‘f,j—l (1 - Zs (I,f/)

To quantify the completion latency, we let f; ; denote the
CPU clock frequency for finishing task m, ;. It thus can be
expressed as

D:
CLl ==
o fig

and the corresponding energy consumption of local execu-
tion is

3)

2

1 2 oD l
Bl = (af?,+ BOL, = == + CL , @)
i

where « and p are parameters decided by CPU models [43].

Notice that DVFS technology divides f;; into discrete
values ranging from 0 to f,.q.: actually. For simplicity, we
regard f;; as a continuous value to attain its optimal solu-
tion. Devices just need to choose the closest element from
the set in practice.
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3.2 Overheads of Edge Computing
In this subsection we will elaborate the concrete process of
edge computing and how to calculate overheads brought by
inner-user dependency. This process starts when task m; ; —
1 is finished and ends up with the completion of task m; ;. It
could be divided into two stages:

Offloading or Migrating. Before task m; ; to be edge com-
puted, edge server should get the output of task m; ;_;. Off-
loading happens when m;;_; is completed locally, i.e.,

(1 -2 a‘jj—l)
data of task j—1 to target edge server with adjustable
power p; ;. It comes with transmission delay as

s a; ;= 1. MU i is required to send output

, O;j—1
o T 5
7'—7“,] R;J ’ (5)

where R, denotes the bitrate of uplink to edge server s

which is quantified by
i e
R, = Blog (1+p"’—2”), (6)
- o

where B is the communication bandwidth, ¢ denotes the
variance of additive white Gaussian noise (AWGN) origi-
nating from receiver (e.g., receiver thermal noise) and A} ; =

0
G ( 4;1‘1((55,) denotes the channel gain caused by path loss

and shadowing attenuation where G is the antenna gain, F;
indicates the carrier frequency, 6 represents the path loss
exponent and d; ; denotes the distance between target server
s and MU i and 6 represents the path loss exponent. R; ; is
the downlink bitrate based on fixed power p°.

By introducing f(z) A o%(2*/8 — 1), (6) could be rewrit-

ten as
1 O ;-
pi’j:h‘?.f( r;.l)' @
] ]
Accordingly, the energy overhead can be calculated by
v _ Tij o Oij-
Ef; = pijti; = hsj_ f( t; . : ) ®
] 1,j

We take a triad {CPU;, ST,, BD,} to express the current
status of each edge server Vs € S where CPU;, ST,, BD,
indicate the the percentage of remaining CPU, storage, and
bandwidth resources where 0 < CPU,, ST,, BD, < 1. Task
m;; can be offloaded to edge server s only if its demand of
these three resources would be satisfied, which can be
expressed by cpu; ; < CPU, st; ; < ST, bd; j < BD,. Channel
state is location-based since channel gain £{; is related to
the distance d; ; to edge server. It is thus essential for MUs
to be aware of channel state information (CSI) before mak-
ing strategies. [24] supposes APs are channel-aware while
communicating and there exist feedback channels to trans-
fer CSI from APs to MUs. Before uploading, MUs send off-
loading decisions to edge servers deployed with controllers.
They determine how many resources (cpu; j, st; j, bd; ;) the
task will take up based on history records, check whether
the offloading is feasible (sufficient computation capability,
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bandwidth and storage resources) and send back control
signal to MUs.

On the other hand, cross-edge migration happens when
two consecutive tasks m;;_; and m,; are executed in two
different edge servers. We use 7y to indicate the migration
delay. Therefore, the latency for transmission is evaluate to

TR ; = <1_Zau 1)2% 'J+Za1/ 1(1—Za” 1a[/>‘[(] ©)

The energy consumption of edge computing can be given
by Ef] = Z ( Z a’z/ I)Eu

Edge Executzon. Similar to local computing, the comple-
tion latency of edge computing can be given by
< (10)
IS
where f¢ is the CPU frequency of sth edge server. Without
loss of generality, we set miny,es S > fpeak-

CL;; =

3.3 Overheads of Inter-User Dependency

The previous two subsections account for overheads
resulted by inner-dependency at the same MU. In what fol-
lows, we will elaborate the impact of inter-user dependency
on extra overheads, which can be quantified as the energy
consumption and latency spent on fetching results from
other MUs. For instance, task ms ;, needs to retrieve the out-
put of my ;.

Let A; ; denote the execution platform of jth task in ith
MU. 4;; =0 indicates task m;; chooses local computing.
Otherwise, A; ; = s means it is about to be offloaded to edge
server s. Assume that m; ; is one predecessor of m; ; where
i #4'. Accoring to different A;; and Ay, we d1v1de the
extra overheads into five categories.

)0 < Aiy]‘ = Ai’,j’

There is no need for extra communication since tasks m; ;
and m; y can be executed consecutively at the same edge
server.

i) 0 = Ai,]’ < Aj/_j/

It means the result of computation task m; ; is required to
be sent from MU i to Ay ;. The additional overheads in
terms of delay and energy consumption could be given by

(i, ) = % an
R”’ 7
and
O 0;;
g N (12)
]( ) RAT/J,hA/ (1 ( 7‘])>

respectively. In this case, MU i dispatches result O; ; to Ay »
at bitrate R, ; "7 with a constant power py.

111)0714/,/ < A

Likewise, it can be expressed as an additional download-
ing from A; ;. The extra cost can be computed by

0

RF/ 7 (13)

(i g) =

iv) 0 < Ai,j 75 Ail’jr
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In this case, m; ; and my ; are executed on different edge
servers. As aforementioned before, the migration delay is
‘L'l J = T0.

V) 0= jAj = Ai’,j’

This happens when the two tasks are executed in two
local devices i and 7/, respectively. It needs to exchange
result of m;; from MU ¢ to MU ¢’ where APs act as relay

nodes. The extra latency is

O i,
Rmar

07 j
R 5

(i) = (14)

where R is the maximum uploading rate MU i could
achieve with edge servers S. It can be regared as once
uploading and downloading process. Accordingly, the extra

R - O; ;
energy consumption is efﬁ(z’ 7)) = I;g,,,,,ﬁ;-,,’ .
' 0

3.4 Problem Formulation

To formulate the expression of delay 7; of each MU i, Vi €
N, we use the finish time FT;, M;+1 Of task m; 37,41 to equiva-
lently represent the total latency of MU 4. According to Sec-
tion 3, we could express the finish time of the jth task of
MU i, i.e., m;, as a sum of two parts

FTM = RT” + CLM, (15)

where RT;; is the ready time for m,; to be executed and
CLij =3 a;,CL{ ;4 (1 =3, a; )CL; ; denotes the comple-
tion latency of task m; ;. For any task, it is ready to be exe-
cuted only after the outputs of its all predecessors have
reached its execution platform. Let pred(m; ;) indicate the
predecessor task set of task m; ;. RT; ; is given by

(16)

0,57

RE] = maX{FTi‘jfl + TR + TR¢ TZ;QT}’

where in the max{-} function, the former indicates the
arrival time of the output of predecessor task from MU i,
i.e., m; 1, and the latter T mar denotes the latest arrival time

of predecessors from other MUs {i'|[i' e N,i" #1i}, T}/ 2
MAXy i m, s pred(ms ;) {FTM/ + 1y (i,j)} When pred(mi,j)
has only one element m;; 1, we set 7}/ =0, i.e., RT;; =

FT; ;1 + TR j+ TR, As a result, we can obtain the expres-
sions of the overall latency T; of MU i as

Ti = FTip41- )

On the other hand, given any task m;; we express its
energy consumption as

E]—<1—Zafﬁj> —I—Za”EL —l—e“

The overall energy consumption of MU i can be evaluated
to the sum of energy consumption of tasks from m,; to
m; j+1 expressed as

(18)

(19)
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In this paper, our objective is to jointly optimize the
energy consumption and response delay which are proved
to be two competitive objectives hereinbefore in project col-
laboration. In real life, each participant in collaboration is
supposed to be self-governed. They have their own con-
cerns about the energy consumption and response delay to
complete the whole project. For instance, there exists some-
one who is urgent to finish work (large wiT), even at the cost
of high energy consumption (small »¥). Parameters o/, w?
will influence other workers’ decisions to reduce response
time. In other words, what we care obout is not only the per-
formance of the whole project, but also the concerns of each
participant. We take the weighted sum of response delay
and energy consumption of each participant minimization
as our objective, defined as

Pl: (g% ;(wZTﬁwiEEi)

st. 0<Z Dij < Ppeak
0 < fi_j < fpcak7

a;; € {0, 1}, Vi, j. (20)

where 0 < o/ < 1 is the normalized weight parameter
indicating how much MU ¢ cares the whole latency, and
normalized 0 < o < 1 denotes the importance of energy
consumption, which are decided by the preference of MU ¢
and its specific application. It is interesting to mention that
parameters »! and ¥ are allowed to take any value before
normalization and when they are set to specific values, P1
can be interpreted as some special problems, such as max
span minimization problem. Notice that solutions (a; ;, f;;
and p; ;) of tasks m;;, Vi € N,j € M, are spatio-temporal
coupled with each other. This kind of relations is reflected
in the changes of network status brought by different loca-
tions of MU 4, which is determined by the ready time RT; ;
and mobility pattern. For inner-user dependency, the loca-
tion where task m; ; is ready for execution is depended on
how long previous tasks m;y,1 < j <j—1 take, which
depends on a; fi.j»piy. For inter-user dependency, any
task which needs results from other MUs cannot start exe-
cution unless results have been received. Once the loca-
tion to execute task m;; changes, the distance d;; from
MU i to edge server s,Vs € S will change accordingly
and further affect the decisions and performance of later
tasks. That is to say, solutions a;’?’,w fojipirj, Vi€ M; of
other MUs also influence the performance of MU . It is
time-consuming to resolve this problem which is NP-
hard. For simplicity, we assume resources of each edge
server are enough for MUs.

4 SOLUTION

This section outlines our solution of resource allocation and
offloading, respectively.

4.1 Allocation of CPU Frequency and Power

We denote receive process as receiveing results from other
MUs and send process as sending output to other MUs. As
shown in Fig. 3, each MU has once receive process and once
send process. It's not difficult to verify that only receiving

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

output from others will influence subsequent tasks. To
decouple inter-user dependency, we introduce N auxiliary
variables Q;,1 <i < N to indicate the end time of receive
process for MU i. MU 1 finishes receiveing after all results
of other MUs have reached at its execution platform. Q; can
be given by

Q2 max{FTLrl,l + TR, +TR;, T’{ff’f}, i=1. (1)
As for MU 4,1 < i < N, it only receives the result of m,
from MU 1. The Q; can be given by

Q émax{FT,v_k,l,l + TR, + TR;kl,T?i,;j’f},l <i<N. (22)
We could rewrite RTj ; as
9 t=1,j=mr
RT; =4 Q 1<i<N,j=k, (23)
FI; ;1 + TR? it TRf’j otherwise

while the coupling term max{-} is already eliminated.
Notice that there exists bijection between f;; and CL;,

pij and T r which means we can obtain f; ; and p; ; by deter-

mining CLL;‘ and 7}, respectively. P1 could be further

approximately reformulated as

Pl —AP: min Z(a)LTTL—i—a)FEL)

(a.rhCLl) 5
st aj; €{0,1},
0 < Dij < Ppeak

0< f[J < fp(ﬁak7Vi7j7
N

Z(m7kj,1 + TR, + TR, + T - 2Q,-) <0, (D

=2 ' '
FTy, 1+ TR, +TR;, +T7"—NQ; <0, (C2)
(24)

where C1 and C2 approximate to (21) and (22), respec-
tively, which indicate the inter-user constraints. Specifi-
cally, T75" £ 5 0 @ pyepreaiy FLry + 75y (0, 7). In  this
way, we decouple the solution of each MU. P1 — AP is a
non-convex MINLP problem which lacks of efficient
algorthm. A closer observation of P1 — AP shows that the
feasible set of a is not related to t*, CL! and vice versa. In
other words, we can solve a and t*, CL! separately. It is no
difficult to verify that P1 — AP would turn into a convex
problem if a is given.

By assuming a is given, the Lagrangian function of P1 —
AP can be expressed as

Lzt hn) =y (of T + o E)
ieN
N
HAY (Flig + TR, + TR, + T3 —2Q:)
i=2
+u(FTiy 1 + TRy, +TR;, + T34 — NQy),
(25)
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where X and p are Lagrange multipliers. Based on KKT con-
dition, it is obtained that A > 0 and u > 0.

Proposition 1 Adapted from Theorem 4.1 in [44] and
Proposition 3.1 in [15]. The optimal CPU frequency alloca-
tion f;; of task j for MU i with y__ a; ; = 0 is given by

E
fi*,]' = mln{ M fpeak}
a) o

2

(26)

For MU1, when 0 < j<k;,G=pn+ (N —1)\ when k; <
j<r —1,G=pu, otherwise G = ol. For MU 7,0 < i < N,
when 0 < j<k;—1,G=X\ when k;—1< j<r;,G=

ol + 1, otherwise G = o .

Proof. For MU 1, when 0 < j < ki, the derivative of
Lagrange function L with respect to CL; ; is

L o
ICLY

_ F
wl(

where CLl1 ranges within [f“ —I—oo) and

By + wFT o1 + AN
ICLY

- 1)FT1J<1 )

()[Dl_’j2
oL’

+ﬂ> +u+ (N =1\, (27)

oL

aCLl

f oL
BCL’

is a monot-

onously increasing function with CLI_ D, >

oJ
peak

\CLI .
0, the optimal solution is f; = fpar- Otherw1se, Ii;=
pHN-D)A+ol B

- .When k; < j<r —1,wehave
(,l)1 o
L d(wf By + uFTy, 1)
dCLY; ICLL
_FE (¥D1 J
—a)1< CL’2+ﬂ)+M (28)
. ;L+a) fi
Snrularly, we can obtain f;'; mln{ —, fpwk} Oth-
erwise, the derivative of L 15 “re
L (o[ Ti + ol E)
ICLY ICLY
D, 7
—of [ -4 g 4ol (29)
Crt, i

Thus, we have f:i = min{,/ :w L fpwk}. As for other
X 1

MUs, the mathematical derivation of f;;,1 < i < N is
similar with the proof of f; ;. O

With mathematical analysis of Proposition 1, there are
some interesting numerical properties. For the master,
MU, the optimal CPU frequency of m, ;,0 < j <k is pro-
portional to A and u (the larger A and u, the tighter con-
straints of inter-user dependency). When A and . exceed a
certain threshold, MU1 has to compute tasks with the maxi-
mum frequency fp..; at the price of the maximum energy
consumption. Likewise, as for k; < j<m —1, fl*,j is only
depended on p, since task j has already been out of the
impact range of the first dependency. Otherwise, when 7| —
1 < j< M, f{;is decided by w{ /o (i.e., comparison of
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preference on delay and energy consumption) instead of A
and p. This is because the rest of M; would not be affected
by dependency, as independent individuals.

Asfortaskj,0 < j<k; —10ofMU4, 1 < i <N, f/,is pro-
portional to the value of \. The larger A means it is more
urgent for ith MU to complete task ;. As a result, MU i will
execute tasks with larger CPU frequency regardless of more
overhead. Itis noted that f;; for task j,0 < j < k; — 1is unre-
lated with ), since its performance has no direct impact on the
second inter-dependency. On the other hand, f;; for task
J. ki —1 < j < M,, is decided by A. The rest tasks j,7; < j <
M; can be regarded as an independent task sequence. That is
why their solutions f; ; are only depended on w] and /.

Proposition 2. The optimal transmit delay (<! J) of task j, 1 <

JE M1 for MU i € N with (13, 0f;,) 3, a8, = 1
is given by
OL/ 1 2 .
— B <[ E -1
(r?’ )x _ Blog o(1+ I]u ;kh”) b = Ppeak [ W(—ze?) } (30)
I In2-0; -1 .
BW(ge H+1) otherwise.

For MU1, when 0 < j <k, Z*l-l-M and g=

1ppc(lk
hyj(AN=1)+p) _ .
A 1, when k1 +1 < j<r;—1, z=1+ mwk
B
andg—LZM Lwhenry =1 < jSMi+12=1+ 5~
@1 Ppeal
andg— i e Nyi # 1}, when 0 < j <

5

h A
andg_

ki — 1z—l+r

@ Ppeak

r—1z=1+ E

@;" Ppeak

—1, when k; —1 < j<

X
and g = EM

1, when r; — 1 < 7 <
ol ‘s T
M; +1, z—l—l—b mzdg*’b’

@;” Ppeak @;

function, the inverse function of J(z) = zexp(z) [45].

— 1. W(x) is Lambert

Proof. It is similar with the proof for Proposition 1 and can
be completed by deriving the the first-order and second-
order derivative of Lagrangian function L with respect to

t/;, wherei € N, j € M,. O

There are interesting properties that if channel gain £} ; is
weaker than a certain threshold (e.g., caused by deep shad-
ing), MUs have to offload tasks with the maximum power
as p;; = Ppeak, Since their results are demanded by other
MUs with inter-user dependency. The threshold is inversely
proportional to A and u, since tighter dependency means
greater demand for p; ;. Otherwise, when £ ; is higher than
the threshold, MUs will obtain lower (z}’;)" since W (x) is an
increasing function when = > —1/e. In addition, like Prop-
osition 1, A\, u and «” do different affects according to the
index of task.

Theorem 1. We can fast obtain the optimal X* and p*, with iter-
ation as
ANt +1) =

@) +£(t) - VI, 31)

and

w(t+1) = [p(t) +£1) - 2]7, (32)
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where Y =YY, (20, — FT,5y — TR, — TR, — T3")

and Z = (NQl — FTy, 1 —TR,, —TR;, — zﬁql> where

(t) is diminishing stepsize [11].

The number of iteration to converge of normal Lagrang-
ian method is non-deterministic due to the random initial
values of A and p. According to [11], [46], [47], if the dimin-
ishing stepsize satisfies >~ ¢(n) =0 and lim; ,.¢(t) =0,
Lagrangian method will fast converge, regardless of how
awful the initial point is.

4.2 Solution of Offloading Policy

Hitherto, we obtain p; ; and f; by assuming a;; is given. This
MINLP problem is accordingly transformed into ILP program
with variables a; ;. It is a difficult problem since it is non-con-
vex with exponential solution space as [ ;. N(Mi)“l. In addi-
tion, due to the mobility of users and task dependencies, there
exists spatio-temporal causality among offloading strategies.

The solutions of f*,p* hold the global optimum of the
whole DAG, which makes it hard to determine the evolu-
tion equation between two states. In addition, the decision
space is exponential. Thus dynamic programming is not an
appropriate choice. Since M in MUs are heterogeneous and
MUs are strongly coupled, centralized algorithm, e.g., evo-
lution algorithm may not show good performance. Here,
we introduce a distributed algorithm named CSRAO, based
on Markov approximation to make it converge within poly-
nomial convergence time [48], [49].

We define y,; € {0,1,...,S} to indicate the offloading
policy of task m; j, where y; ; = 0 represents local execution
and y; ; = 5,1 < s < § indicates offloading to server s. We
denote ® as the state set of Markov chain and ¢ € ® as each
state composed of offloading policy set {y;,ys,...,¥n§}
where each y; is a M;-dimension vector indicating the off-
loading decision of MU i and each dimension is y; ; of task
m; ;. For brevity, we re-express P1 as a common optimiza-
tion problem mingecoy, Where zy, = 3.\ (0! T; + 0P E;).

To construct our problem-specific Markov chain, we
associate each state with a percentage of time 7, when ¢ is
in use. Thus, it can be transferred to an equivalent minimum
weight independent set (MWIS) problem, which hold the

same optimal value, as

P1— MWIS min Y mymy
pcd

s.t. Z Ty = 17

where we regard x, as the weight of 7. By introducing log-
sum-exp function, P1 — MWIS can be approximated to a
convex problem

(33)

1
P1 — p :min Z TpTp + — Z mylog g
ped ped

s.t. Zn¢ =1,

with approximation gap is upper-bounded by log|®|/p,
where p is a positive constant. Based on KKT condition, the
optimal value of (38) is given by (1/p)log {Z pedd exp(fpxd,)}
and the optimal solution is

(34)
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exp(—pzy)
> cw €XP(—pTy)

= (35)

We consider 7 as the stationary distribution to construct
our time-sharing Markov chain. Once it converges, the time
allocation 7 for ¢, V¢ € @ can be obtained and P1 — MWIS
will be solved based on the most of time assigned to ¢* [49].
Due to the product form of 7, we can design at least one
Markov chain, while satisfying

1) any two states are reachable from each other,

2) the following equation is satisfied

n:;qd,"d,/ = n;,qd,/%d,, (36)

where ¢, 4 denotes the transition rate from ¢ to ¢'.

There exists many forms of ¢y 4. In this paper, we design
it as follows:

_ exp(—¢)
T+ exp[—ples — )]

dg.¢' 37)

where ¢ is a constant while the above two conditions are
satisfied.

Algorithm 1. Collaborative Service Resource Allocation
and Offloading (CSRAO) Algorithm

Input: Mobility information of each MUs, network state
information and DAG information
Output: Resource allocation p; ; and f; ; and offloading pol-
icy a;;

foreach MU i € N do
Initialize the offloading policy y; randomly ;
Generate an exponential random timer with mean as
exp(e)/Vi;

4 end

Calculate the objective P1 as A and . converge;

W N =

63}

6 Denote the current system state as ¢ and let all MUs begin
counting down;
7 repeat
8 if there exists one timer of MU expires then
9 Denote the MU as i and update its offloading policy
randomly as new state ¢ with only one element
changed;
10 MU i broadcasts the new state to other MUs to obtain
the value of f* and p*;
11 ¢ — ¢’ with probability
1 — exp(—pzy)/ (exp(—pg) + exp(—pay));
12 All MUs refresh timers and begin counting down;
13 end

14 until P1 converges
15 return y, f* and p*;

We propose distributed CSRAO algorithm as shown in
Algorithm 1, where MUs are just required to broadcast its
new state with each other. At the beginning, all MUs initial-
ize offloading policies and generate their own timers ran-
domly (line 1-line 4). Accordingly, each MU i determines f;
and p; from (26) and (30) (line 5, line 6). In each iteration, the
first expiring MU randomly updates its offloading decision
with only one element changed and informs other MUs to
obtain new f and p. System has to decide whether to stay in
the new state according to (37) (line 8-line 13) until P1 con-
verges. It's worth mentioning that CSRAO not only could
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converges fast but also possesses the mechanism to prevent
falling into local optimum with adjustable parameter p.
Complexity Analysis. Recall that we apply Lagrangian
multiplier method to derive the closed-form expression of
;;and p;, by assuming a is given. In Algorithm 1, while
updating a;;, f;;, and p;; under diminishing stepsize, it
could converge fast with complex1ty as O(TM;), where T
represents the number of iteration. Due to £(¢), the value of
T is small. The searching space of a is O([],.y (M;)*™). By
introducing Markov approximation algorithm, we could
obtain the sub-optimal solution within polynomial conver-
gence time when p is a proper value in Theorem 4, which is
significantly reduced from exponential complexity of
exhaustive search.

4.3 Mechanism Analysis
In this subsection, we will analysis convergence feasibility,

approximation gap and convergence time of our proposed
CSRAO algorithm.

Theorem 2. P1 can be solved globally by Algorithm 1, with tran-

sition probability as exp(—px}y) / (exp(—piy) + exp(—pzy)).
When p — 0, Algorithm 1 converges with probability 1.

Proof. Let ¢ denote the current state with a, f,p given. The
objective value x4 could be derived as (24). In each itera-
tion, user ¢ who expires first randomly change its offload-
ing policy a; j,Vj € M; to update a. In this case, f,p could
converge fast according to (31) and (32), so as to obtain
7. According to Algorithm 1, under state ¢, user i counts
down with rate as V /exp(¢), there is

s — 1 exp(—pxy) Vi
.9 V; exp(—p$¢/) + exp(—pl"q;) eXP(‘/’)
exp(—¢)

1 exp(p(as — 7)) o

which is equal with (37) designed before. It means our
design is satisfied to realize time-sharing among different
states in Markov chain. Thus, the optimal solution will be
gained with stationary distribution converge to (35).

Let ¢ be the global optimum, i.e., x4 < z4,V¢ € .
According to (37), the system is prone to stay in x4 with
larger probability g, , whose objective value is lower. It
indicates the system will converge to ¢* and be allocated
with time percentage as ;. We re-express (35) as

1
Z¢/e¢ GXp(fp(.Id)* — $¢/)) ’

7'[;;* =

(39)

It can be concluded that . (z) increases as p decreases.
When p — 0, the time percentage allocated to ¢" is 7y —
1. However, there exists a tradeoff that large p may lead
to system getting trapped in local optimum. ]

Theorem 3. The approximation gap is upper-bounded by 0 <
€ — e <log|D|/p, where e denotes the approximation solution
of CSRAQO and ¢ indicates the optimum [46], [50].

Proof. Following [50], we introduce Dirac delta function to
represent the distribution 774 of the theoretical optimality
with definition ¢,,;, £ arg mingeqpx .
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if 4) = ¢min

otherwise ° (40)

_ 1,
Ty = 0

According to the optimal stationary distribution of 7,
we derive

Zn¢z¢ += an,lognd) < Zn¢x¢ += Zmﬂog Ty = €. (41)
= = e =
Based on Jensen inequality, we obtain
Zn¢log my > —log (Z Ty * - —) = —log|P|. (42)
ped ded T
By substituting (42) to (41), we have
log |®
€—Zﬂ¢$¢<€+ gp\ | (43)
ped
With e > ¢, thus, Theorem 2 is proved. ad

Theorem 4 Adapted from Theorem 5 in [47]. The mixing
time (convergence time) of our designed continuous-time Mar-
kov chain is upper-bounded as O(log (N)) and lower-bounded

lf ln%/QeXp(_ - pxmin) ZZEN (M §H1 _ 1) 0< o < P,

where oy, = In <1 + W) /Q(xmax - trmin)-
ien Wi

Proof. Let P,(¢) represent the probability distribution of all
states in ® at time ¢, with initial state as ¢. According to
[47], the mixing time can be given by

iz (V) 2 inf{t >0: I;la(i))( | Pi(p) — 7|7y < v}. (44)
€

A A
We further denote . = maxgepry and Xy, =

mingeprg. Since [ Plexp(—Pmax) < Dy exp(—Pry) <
|P|exp(—Bxmin). According to (35), we could derive the
A
minimum probability of stationary distribution my,, =
exp(—p(Tmax —Tmin
m1n¢eq)n¢ > B R—

Based on uniformization technique [51], let @ =
{qw,/} denote the transition rate matrix of our Markov
chain and develop a discrete- time Markov Cglain S
with transition rate matrix P =14 ¢ 5, where 6 =3,
(M; S+ 1)exp(—¢ — pamin) is the uniformization con-
stant and I is the identity matrix.

Applying spectral gap inequality [52], we have
iz (V) > (1 ; )ln where g, indicates the second largest

eigenvalue of P. With Cheeger’s inequality [52], we have

1—2x <0, <1—1x* where x is bounded as ™. exp
(—(P - pxmax) < X < 1. tmiz:(\)) satisfies
In -
tmw(v) 2 v (45)

2exp(—<p - pxmin) Zig]\e’ (]\/[z's+1 - 1) .

Next, we prove the upper bound of ¢,,;,(v). Similarly,
we construct a uniformized Markov chain ¢’ whose tran-
sition matrix is P’ =1+ Q/¢ by uniformization tech-

. . 7. ;A
nique on our Markov chain. ¢ is given by 6 = exp

(—0) Yien (Mi% = 1) 3, exp(—pay). By path cou-
pling method [53], there is
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drv(P(¢),p") <

N - exp(_exp(_(p)KteXp(_p(2xmax - xIIlill)))7 (46)
where K =37, [(]W,;S+1 — 1)(exp(20(Tmax — mmm))] ,0 <
o< Py = ln(l + W) /2(Zmax — Tmin).  Thus,

according to [47], we have

Cxp(p(QIma‘x - mmin) + (,0) . ln%

tmi:r(v) S ZZ‘GN [(AL.S+1 — 1)(6Xp(2,0($max - xmin))ﬂ .

(47)
O

5 EXPERIMENTAL RESULT

Based on Random waypoint model, we simulate trajectories
of MUs in a grid of 1000m x 1000m. ¢, is set to 30s and the
speed v of mobile user follows a uniform distribution in
[4m/s, 15m/s]. Moreover, we exploit EUA dataset [54] to
construct the distribution of 10 edge servers with randomly
sampling them in our grid. With referring to [11], we
assume there exists mobile users with SAMSUNG Galaxy
S5 whose maximum CPU frequency is 2.5 GHz, and Dell
13650-1838 as edge server with quad-core 2.7 GHz CPU. As
for each task m;;, the workload D; ;, input ; ; and output
data O;; are assumed to follow a uniform distribution in
[50,100] Mega cycles, [10,50] KB, and [10,50] KB, respec-
tively. Channel bandwidth is set to B = 5AM Hz with AWGN
0% = —90dBm and date rate of downlink is R, = 100Mbps.
The peak transmit power is equal to p,car; = 0.1. As parame-
ters of free-space path loss model in [15], We set path loss
exponent 6 =3, antenna gain G =4.11, and carrier fre-
quency F, =915MHz. For simplicity, we assume CPU,
storage and storage resources of edge servers are large
enough for collaboration tasks. As for local computation,
« and B are set as 0.34 and 0.35 [55]. We initialize weight
parameters ! and ¥ as 0.5 and 0.5, respectively. We
consider the following benchmark methods for perfor-
mance comparison:

e  CSA-IP [15]: current state-of-the-art algorithm to solve
inter-dependency problem. For offloading policy, it
uses Gibbs sampling algorithm to obtain it iteratively.
In addition, offloading decision for each user follows
”one-climb” policy that tasks are either offloaded to
the edge server for exactly once. Furthermore, it adopts
Lagrange multiplier method to derive the closed form
expression of CPU frequency and transmitted power.

e GA: genetic algorithm. Since genetic algorithm can
only solve the integer programming problem, we
reserve our Lagrange multiplier method to obtain
the optimal solution of f;; and p; ;. Total offloading
decision solution is regarded as a chromosome
where gene is an offloading decision for each task. In
each iteration, we execute crossover and mutate to
generate new chromosomes and use Lagrange multi-
plier method to solve f; ; and p; ;.

e CSA-JO [11]: current state-of-the-art algorithm to
solve the joint optimization problem of resource allo-
cation and offloading where mobile users are served
by multiple servers without inter-user dependency.
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Fig. 4. Comparison under increasing workload in terms of cost, response
latency and energy consumption.

It utilizes Lagrangian multiplier method to obtain
the optimal CPU frequency and transmission power,
and selects edge server by setting a contention
period for edge servers to compete for tasks.

e RA: Random algorithm. MUs randomly draw off-
loading decisions among all edge servers and local
execution. Next, adjust CPU frequency or transmis-
sion power randomly.

In what follows, we will compare our CSRAO algorithm

with these four baseline algorithms in three aspects, feasibil-
ity, scalability and sensitivity, to verify our superiority.

5.1 Feasibility Validation Under Varing Workload

In this subsection, we compare performance of these four
algorithms with workload D;; varied from 50 to 300. We
can observe from Fig. 4a that GA, CSA-IP and CSA-JO out-
perform RA in term of the cost for service collaboration, i.e.,
the weighted sum of latency and energy consumption. In
addition, the solution of offloading and allocation policy in
the case of dynamic task workload obtained by our algo-
rithm is more cost-effective. When workload increases to
300 from 50, CSRAO is always the best scheme while the
second is CSA-JO and the third is GA. That is because ”one-
climb” policy is not applicable to send-and-receive depen-
dency in multi-user multi-server scenario. It is difficult for
CSA-IP to find a good solution of CPU frequency and trans-
mitted power. Meanwhile, although CSA-JO proposes a
scheme to select one “best” server from candidates, it
regards each MU as an individual node and accordingly
neglects service dependency. As for GA, it is hard to get the
optimal solution without consider the problem-specific fac-
tor due to the large decision space. On the contrary, our
algorithm aims to jointly optimize offloading, CPU fre-
quency and transmission power to achieve the global
optimality.
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Fig. 5. Comparison under increasing number of tasks in terms of cost, response latency and energy consumption.

To gain detailed performance of each scheme, we draw
the variation tendency of two competing objectives, latency
and energy consumption in Figs. 4b and 4c, respectively.
Findings can be drawn including that (i) as workload
increases, results of all methods increases; (ii) our scheme
could achieve superior results in terms of both latency and
energy consumption; (iii) even if GA spends the lowest
energy only second to our CSRAO, its latency is too long to
tolerant, which leads to its total cost to stay in a high level
and worse than CSA-JO. The reason for first finding is larger
workload naturally requires longer time to complete. The
reason behind (ii) is our scheme considers inter-user depen-
dency and can be applied to a more complex scenario. The
last finding reveals that only stablizing one objective to a low
level could not ensures the optimality of global cost.

5.2 Scalability Analysis

We take the four schemes into comparison in terms of sys-
tem cost, response latency and energy consumption, with
the number of users and tasks increasing.

5.2.1 Comparison With Increasing Number of Tasks

In this subsection, we evaluate the performance of our frame-
work under different number of tasks, compared with other
baseline schemes. As shown in Fig. 5a, we vary task number
of each MUs M; from 5 to 50. We can observe that CSA-JO and
ours obtain close relatively optimal results and outperform
others greatly while task numberis 5. That is because when
the number of tasks is small, the effect caused by inter-
user dependency is also small. As tasks increase, the gap
between ours and CSA-JO gets larger. In addition, our
algorithm shows superior performance and remains the
greatest level from beginning to end. When tasks exceed
a certain threshold, GA scheme outperforms CSA-IP,
due to mutation and crossover for global optimum. Our
scheme facilitates MUs to reduce long-term energy and
latency cost under location-based channel state and pre-
vents being trapped in local optimum.

Next, we examine the performance tradeoff between the
two competing objective in P1, completion latancy >, .y T;
and energy consumption ), , E;. Figs. 5b and 5c reflect the
impact of task number on latancy and energy consumption,
respectively. Both of them show that varying task number
from 5 to 50 naturally results in an increase of £ and 7" for all
methods. We can observe from Figs. 5b and 5c that RA has the

poorest performance no matter whether it is latency or energy
consumption. From Fig. 5b, CSA-JO acts very close to us and
even outperforms ours later. However, we find it obtains too
large energy consumption from Fig. 5c. As a result, CSA-JO
ranks second to us in term of the weighted sum of latency and
energy consumption. GA is also the same and CSA-IP has the
poorest results. The reason behind this is CSA-IP requires a
specific scenario that “one-climb” policy is tenable. We can
come to a conclusion from Figs. 5a, 5b and 5c that even though
there exists one algorithm could obtain one lower objective
than ours, latency or energy consumption, our algorithm
could realize better tradeoff. This finding is because as task
number increases, more tasks are affected by others which
means before making decisions, each MU has to take the per-
formance of whole system into consideration, even at the
expense of its private optimality. For instance, MU i has to
speed up for transmission in order to improve social optimal-
ity even if deep loss happens and vice versa.

5.22 Comparison With Increasing Number of Users

In this subsection, we evaluate the influence of the number of
users N on the optimality of objectives, including total cost,
latency and energy consumption. It is not difficult to find our
algorithm shows the best performance as the number of users
increases from Fig. 6a. Since CSA-IP only considers two-user
scenario, it shows poorness of scalability. At beginning, when
user number is 2, the gap among results of GA, CSA-JO and
ours is very small. As user number varies from 2 to 10, GA
and CSA-JO behave powerless. Reasons behind it are that
CSA-JO ignores the service dependency among MUs and it
hard for GA to converges with an exponential decision space.
Meanwhile, our scheme maintains the best performance all
along. That means our CSRAO could achieve the tradeoff
between MU itself and system optimality well.

We draw the results of two competitive objectives, latency
and energy consumption in Figs. 6b and 6¢c. As user number
increases, service dependency among MUs turns into more
complicated. The tradeoff between latency and energy con-
sumption becomes harder to realize. That means schemes
have to draw offloading and allocation decisions under a
more complex DAG. It's not difficult to find that the two sub-
problem are strongly coupled. Offloading policy determines
the environment of allocation and the performance of offload-
ing is based on results of joint optimization of CPU frequency
and transmission power in return. It is observed from Figs. 6b
and 6¢ that although CSA-JO could achieve very nearly the
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Fig. 6. Comparison under increasing number of users in terms of cost, response latency and energy consumption.

same and even lower latency, its total cost still underperforms
ours, since it spends much more energy on transmission and
execution. Another observation can be drawn from Sec-
tions 5.2.1 and 5.2.2 that compared with other schemes, our
scheme can adapt for the scenario whose scalability increases
best, whether user number or task number.

5.3 Sensitivity Analysis

To explore the influence of sensitivity in our scheme, we
vary control parameter p and weight parameter »! and w?
to observe performance variation.

5.3.1 Impact of Control Parameter

In the above three subsections, we evaluate our scheme in
the view of system scalability, compared with other four
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Fig. 8. Impact of weight parameter.

baseline schemes. In this subsection, we examine the perfor-
mance under different values of inner control parameter p.
Recall that p is a parameter which affects the performance
of convergence of Markov Approximation algorithm. As
reflected in Fig. 7, when we vary p from 1 to 100, final
results achieved by our algorithm decrease. Three curves
drop steeply at first and then converges smoothly. Reason
behind it is that larger p means larger probability for system
to transfer to the better state. At the initial stage, z, is rela-
tively larger, which results in larger transition rate. It is eas-
ier for system to update to a better state. However, as state
becomes better, the cost of current state decreases. Thus, it
is hard for system to select a better state.

5.3.2 Impact of Weight Parameter

In this subsection, we examine the influence on trade-off
between energy consumption and response latency brought
by the weight parameter . As shown in Fig. 8, ! varies
from 0.2 to 1.0 uniformly. We can observe from Fig. 8 that as
o’ increases, response latency naturally decreases at the
same time that energy consumption becomes higher. It's
not difficult to verify because latency gets more sensitive to
objective P1 with larger »’. On the contrary, as o’
decreases, that is to say »” increases relatively, the energy
consumption is reduced.

Another observation can be obtain from Fig. 8 is that the
gradient of latency with respect to ! is monotonically
decreasing. Specifically, for the larger »’, the same increase
results in reducing less latency and rasieing more energy
consumption. It’s can be seen that the most densely distrib-
uted area for o’ is o’ = 0.5 which means the better tradeoff.

6 DiScuSsSION AND CONCLUSION

In this paper, we investigate the joint optimization of resource
allocation (CPU frequency and transmission power) and off-
loading strategy for composite service of mobile users, with
service dependency considered. First, we introduce the com-
putation analysis of local execution and edge computing, in
terms of latency and energy consumption. Based on this, we
formulate it as a MINLP whose computation complexity is
non-polynomial. To deal with challengings of strong coupling
between resource allocation and offloading, we assume off-
loading policy is given and accordingly transform it into ILP.
By introducing Lagrangian multiplier method, we derive the
optimal closed-form expressions of CPU frequency and
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transmission power. To obtain optimal offloading policy, we
adopt Markov Approximation method to update offloading
decision iteratively as outer layer while the inner layer is
Lagrangian multiplier method. Extensive simulations have
been conducted to evaluate the performance and convergence
of our scheme. In a word, our aim is providing valuable
insights into inter-user dependency. This paper is a start which
only accounts for master-slave model. The more complex
model would be studied in the future.

Next, we extend our algorithm to a multi-round scenario
where each round consists of publishing contents by master
and submitting results by workers. Assume that there exist
Y rounds, including Y send and Y receive processes for mas-
ter, MU 1. we denote Q;,,1 <y <Y to indicate the wait
time of yth dependency for ith MU. When ¢ = 1, we have

Qi = max{FT, y_, + TR ,+ TR} ,T|"7}. (48)
Otherwise, we have
Qiy = max{FT}u_, + TR,y + TR, TV}, (49)

where kY and 7! indicate the yth send and receive tasks,

respectively. If there exist workers fail to submit results,
master will regard them as refusing to cooperate in that
round. MU 1 could complete receive without their results.
We define fpred(1,rY) to indicate the failed workers in yth

: maxr 3 :
round. In this case, i is equal with max;, p—t

mu)

\fpred(1,7Y) {FTM + 75 (1, qu/)} When « is given, it is also

a convex problem. The Lagrangian function can be
described as

L(‘L’ﬁ‘j, ‘E;{y A 1)

=3y (Toyy + TR, + TR, +
= 1 1

sum

].,7'*11/ - NQIU)

N
RS (FTi,k:?fl + TR, + TR,y + T35 — QQW)
yey i=2 ! ¢ K

iEN

(50)

Next, CSRAO can be applied to draw offloading decision.
Hence, our proposed framework could solve the general
inter-user problem. It’s our future work to find a more low-
complexity algorithm to reduce response latency and
energy consumption.
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