
Learning to Schedule Multi-Server Jobs With
Fluctuated Processing Speeds

Hailiang Zhao , Shuiguang Deng , Senior Member, IEEE, Feiyi Chen, Jianwei Yin,

Schahram Dustdar , Fellow, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—Multi-server jobs are imperative inmodern cloud computing systems. A noteworthy feature ofmulti-server jobs is that, they

usually request multiple computing devices simultaneously for their execution. How to schedulemulti-server jobs online with a high system

efficiency is a topic of great concern. First, the scheduling decisions have to satisfy the service locality constraints. Second, the scheduling

decisions needs to bemade onlinewithout the knowledge of future job arrivals. Third, andmost importantly, the actual service rate

experienced by a job is usually in fluctuation because of the dynamic voltage and frequency scaling (DVFS) and power oversubscription

techniqueswhenmultiple types of jobs co-locate. Amajority of online algorithmswith theoretical performance guarantees are proposed.

However, most of them require the processing speeds to be knowable, thereby the job completion times can be exactly calculated. To

present a theoretically guaranteed online scheduling algorithm for multi-server jobswithout knowing actual processing speeds apriori, in this

article, we propose ESDP (Efficient Sampling-basedDynamic Programming), which learns the distribution of the fluctuated processing

speeds over time and simultaneously seeks tomaximize the cumulative overall utility. The cumulative overall utility is formulated as the sum

of the utilities of successfully serving eachmulti-server jobminus the penalty on the operating, maintaining, and energy cost. ESDP is proved

to have a polynomial complexityand a logarithmic regret, which is a State-of-the-Art result.We also validate it with extensive simulations and

the results show that the proposed algorithm outperforms several benchmark policieswith improvements by up to 73%, 36%, and 28%,

respectively.

Index Terms—Bipartite graph, dynamic programming, multi-server job, online learning, regret analysis

Ç

1 INTRODUCTION

TODAY’S computing clusters have plenty of multi-server
jobs, e.g., the distributed training of deep neural net-

works [1], [2] and large-scale graph computations [3], [4]. A
notable feature of multi-server jobs is that they usually
request multiple computing devices simultaneously such as
CPUs and GPUs and hold onto them during their execution.
From Google cluster trace [5], we can observe that more
than 90% jobs request multiple CPU cores and nearly 20%
jobs request CPU cores no less than 1000.

It is difficult for the cluster scheduler to allocate an appro-
priate number of computing devices to each multi-server job
with a high system efficiency. The major challenges are dis-
cussed as follows.

� Service Locality. Service locality is common in modern
cloud and edge computing systems, especially for
Machine Learning as a Service (MLaaS) [6] and Server-
less computing [7], [8]. With service locality, a multi-
server job may only be processed by a subset of serv-
ers where the computing device request, software
dependencies, and other requirements such as geo-
graphical constraints are satisfied. For instance, in a
resource-constrained cluster, service locality could
lead to a situation where all the DNN training jobs
are scheduled to the onlyserver with GPUs and the
rest of them have to wait until the GPUs are released.

� Unknown Arrival Patterns of Jobs. In real-world sce-
narios, multi-server jobs arrive to the cluster online.
The scheduler needs to make the resource allocation
decisions without knowing the job arrival patterns
apriori. The lack of the job arrival distributions could
lead to the scheduling decision to a local optimum.

� The Processing Speeds Experienced by each Job is Fluctu-
ated. In production systems where different multi-
server jobs co-locate, such as computation-intensive
jobs, IO-intensive jobs, and latency-critical jobs etc.,
the processing speeds may fluctuate over time and
could be highly variable occasionally. The reason is
that the server is always in multi-tasking of different
jobs, and the hardware techniques such as Dynamic
Voltage and Frequency Scaling (DVFS) [9] and power
oversubscription [10] adjust the CPU cycle frequency
constantly.

A majority of online scheduling algorithms with theo-
retical guarantees have been proposed by formulating

� Hailiang Zhao, Shuiguang Deng, Feiyi Chen, and Jianwei Yin are with the
College of Computer Science and Technology, Zhejiang University, Hangzhou
310027, China. E-mail: {hliangzhao, dengsg, chenfeiyi, zjuyjw}@zju.edu.cn.

� Schahram Dustdar is with the Distributed Systems Group, Technische Uni-
versit€atWien, 1040 Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

� Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Sydney, NSW 2006, Australia. E-mail: albert.zomaya@sydney.
edu.au.

Manuscript received 8 April 2022; revised 16 October 2022; accepted 17 October
2022. Date of publication 20 October 2022; date of current version 16 November
2022.
This work was partially supported in part by the National Science Foundation of
China (NSFC) under Grants U20A20173 and 62125206, and in part by the Key
Research Project of Zhejiang Province under Grant 2022C01145. Schahram
Dustdar’s work was supported by the Zhejiang University Deqing Institute of
Advanced technology and Industrilization (ZDATI).
(Corresponding author: Shuiguang Deng.)
Recommended for acceptance by S. Wang.
Digital Object Identifier no. 10.1109/TPDS.2022.3215947

234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:hliangzhao@zju.edu.cn
mailto:dengsg@zju.edu.cn
mailto:chenfeiyi@zju.edu.cn
mailto:zjuyjw@zju.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au

combinatorial optimization problems with scenario-oriented
constraints [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23]. To solve these combinatorial programs, algo-
rithms are designed with various theoretical approaches.
Typical approaches include relaxed integer programming
[12], online primal-dual alternating updates [13], online
approximate algorithms [21], [22], [23], heuristics [14], [15],
deep reinforcement learning (DRL) [16], [17], etc. However,
despite the vast literature of them, their model formulations
which tackle with the fluctuated processing speeds of multi-
server jobs are limited. To execute these online algorithms,
the processing speeds of servers are required to be knowable
when making the scheduling decisions, thereby the job com-
pletion times can be exactly calculated. However, as we have
analyzed above, in production systemswhere different types
of multi-server jobs co-locate, the actual processing speeds
experienced by jobs is unknown and fluctuated when mak-
ing the scheduling decisions.

To present a theoretically guaranteed online scheduling
algorithm for multi-server jobs without knowing the distribu-
tions of the processing speeds apriori, in this paper, we propose
ESDP (Efficient Sampling-based Dynamic Programming) to
learn the distributions of the fluctuated processing speeds
with sufficient exploration-exploitation and simultaneously
to maximize the cumulative overall utility (AOU). AOU is for-
mulated as the sum of the obtained utilities of successfully
processing each multi-server job minus the penalty on the
operating, maintaining, and energy cost for serving them
over each time slot. Further, the utility of a job is fitted by a
stochastic quasi-linear function of allocated computing devi-
ces in terms of its completion time. Our work is built on the
intuition that, for a multi-server job, its completion time is
mainly determined by the actual processing speed it experi-
ences, which is linear with the allocated computing devices.
Our basic assumption is that, although the actual processing
speeds are fluctuated over time, they come from some certain
distributions, which are determined by the hardware specifications
of the underlying physical machines. It is exactly ESDP’s job to
learn the underlying processing speed distributions and
leverage them to guide the computing device allocations.
Specifically, ESDP casts the online multi-server job schedul-
ing problem into the framework of online learning [24], and
it makes the scheduling decisions for each arrived job with
sufficient exploration-exploitation. Based on the exploited pat-
terns, ESDP introduces several deterministic maximization
problems whose targets are the expectation of AOU approxi-
mated by statistics. Then, ESDP solves these deterministic
problems with a dynamic programming subroutine in poly-
nomial time. We use regret [24], i.e., the gap on AOU

between ESDP’s and the offline optimum achieved by the ora-
cle, to analyze the performance of ESDP. We provide a rigor-
ous proof to show that ESDP has a best-so-far regret, i.e.,
OðlnT Þ, where T is the time slot length. Our contribution
fulfills one of the key deficiencies of current literature in the
stochastic scheduling of mutli-server jobs without knowing
processing speeds apriori. The main contributions are sum-
marized as follows.

� We propose an online algorithm, i.e., ESDP, to sched-
ule multi-server jobs without exact processing speeds
apriori. ESDP makes no assumptions on the job arrival

patterns, and it fully takes service locality into consid-
eration. We prove that ESDP has a best-so-far regret
OðlnT Þ, which grows logarithmically with the time
slot length.

� ESDP casts the online stochastic scheduling problem
into the framework of online learning, and adopts
several dynamic programming subroutines to solve
the approximated deterministic problems in polyno-
mial time.

� We validate the performance of ESDP with extensive
simulations. Experimental results show that, in
default settings, ESDP significantly outperforms sev-
eral widely used heuristics with improvements by
up to 73%, 36%, and 28%, respectively.

The rest of this paper is organized as follows. We formu-
late the stochastic multi-server job scheduling problem with
a bipartite graph in Section 2. We then present the design
details of ESDP with theoretical analysis in Section 3. Numer-
ical results are presented in Section 4. We discuss related
works in Section 5 and close this paper in Section 6.

2 SYSTEM MODEL

We consider a computing cluster of heterogeneous servers
serving several types of multi-server jobs. Different servers
are equipped with different types and quantities of comput-
ing devices, including CPUs, GPUs, etc. Multi-server jobs of
different types have different requests on computing devi-
ces under the service locality constraints. Key notations
used in this paper are summarized in Table 1.

2.1 Bipartite Graph Model Under Service Localities

We use a bipartite graph ðL;R; EÞ to model service locality,
where L and R are the set of left vertices and right vertices,
respectively, and E is the set of edges between the two sets of
vertices. The vertices in L are indexed by l and viewed as job
types, while the vertices inR are indexed by r and represent
servers. For a vertex l 2 L, we useRl � R to represent the set

TABLE 1
Summary of Key Notations

NOTATION DESCRIPTION

T Time horizon of length T
G ¼ ðL;R; EÞ The bipartite graph
l 2 L Amulti-server job type (port)
r 2 R A server/node
ðl; rÞ 2 E The edge (channel) between l and r
8r : Lr The set of job types connect to r
8l : Rl The set of servers connect to l
rlðtÞ The job arrival probability of port l at time t
11lðtÞ 2 f0; 1g The job arrival status of port l at time t
K The set of different types of computing devices
aaaaaaak The ovearll request on device k
ck The number of the type-k devices in the cluster
xxxxxxxðtÞ The scheduling decision at time t
8k : ck The total number of type-k devices
UlðtÞ The utility if job l at time t
8k : fkð�Þ Cost of provisioning type-k devices
UðxxxxxxxðtÞÞ The overall utility at time t
ReðT Þ The regret over the time horizon T

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 235

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

of right vertices it connects with. Similarly, we use Lr � L to
represent the set of left vertices for r 2 R.

We designate each vertex l 2 L as port and each edge
ðl; rÞ as channel. The bipartite graph model is visualized in
Fig. 1.

2.2 Job Scheduling With Restricted Capacities

In our formulation, time is slotted, and at each time t 2 T :¼
f1; . . . ; Tg, for each port, at most one job arrives1. Con-
cretely, at the beginning of time t, a job is yielded from port
l with probability rlðtÞ, and with probability 1� rlðtÞ, there
is no job. It is worth noting that, the probabilities frlðtÞgl2L
are only used for generating job arrival instances, which is
not required by the to-be-proposed algorithm ESDP when
making the online decisions.

There are K types of computing devices in the cluster,
including CPUs, GPUs, NPUs, and FPGAs. For each type-l
job, we denote by a

ðl;rÞ
k 2 Nþ its request on the type-k com-

puting device when it is processed by server r through the
channel ðl; rÞ. The total number of the type-k computing
devices in the cluster, where k 2 K :¼ f1; ::; Kg, is repre-
sented by ck 2 Nþ.

At time t, we use

xxxxxxxðtÞ :¼ xðl;rÞðtÞ
� �T

8ðl;rÞ2E 2 X :¼ 0; 1f gjEj (1)

to represent the scheduling decision. A job can be scheduled
to multiple servers simultaneously for parallel execution. A
constraint xxxxxxxðtÞ should satisfy is that, the computing devices
allocated out from the cluster should not more than it has:

X
ðl;rÞ2E

a
ðl;rÞ
k xðl;rÞðtÞ � ck; 8k 2 K; t 2 T : (2)

Note that if port l yields no job at t, denoted by 11lðtÞ ¼ 0,
then xðl;rÞðtÞ ¼ 0 for all r 2 Rl.

The multi-server job scheduling problem is studied for
maximizing the AOU, which is formulated as the sum of the
utilities of successfully serving each multi-server job minus
the penalty on the operating, maintaining, and energy cost

for serving them over each time slot. We denote by UlðtÞ the
utility of the type-l job at time t, and it is formulated as

UlðtÞ :¼
X
r2Rl

xðl;rÞðtÞZðl;rÞðtÞ �
X
k2K

X
r2Rl

fk a
ðl;rÞ
k

� �
xðl;rÞðtÞ;

(3)

where Zðl;rÞðtÞ is a stochastic variable following an underly-
ing distribution with the expectation of yðl;rÞ. We formulate
Zðl;rÞðtÞ as the actual computation utility experienced by the
type-l job at time t when it is processed by server r through
the channel ðl; rÞ 2 E. Correspondingly, yðl;rÞ is the expecta-
tion of the computation utility, and it is unknown when
making the scheduling decisions. Our formulation is built
on the assumption that, although yðl;rÞ cannot be obtained
apriori, we can learn it and approximate it with sufficient
exploration-exploitation. In addition, the computation utility
is linearly additive, i.e., if a job is processed through multiple
channels in parallel, the final utility is the sum of computa-
tion utility obtained from all these channels. The second
part in (3) is the penalty on the supply cost. Thereinto,
fkðaðl;rÞk Þ is the supply cost for provisioning a

ðl;rÞ
k units of the

type-k computing device for the type-l job through the chan-
nel ðl; rÞ. ffkð�Þg8k2K models the operating, maintaining, and
energy cost for serving jobs. Different from previous works
[25], [26], [27], we make no assumptions on the convexity or
differentiability of ffkð�Þg8k2K.

Our goal is to maximize the expectation of AOU, i.e., the
expected sum of utilities of multi-server jobs in a long-term
horizon. The problem is formulated as follows.

P1 : max
8t2T :xxxxxxxðtÞ2X

lim
T!1

XT
t¼1

E

�X
l2L

UlðtÞ
�

s:t: ð2Þ;X
r2Rl

xðl;rÞðtÞ ¼ 0 if 11lðtÞ ¼ 0; 8l 2 L; t 2 T ; (4)

With further transformation, we can get

E

�X
l2L

UlðtÞ
�
¼
X
ðl;rÞ2E

xðl;rÞðtÞ
�
Zðl;rÞðtÞ �

X
k2K

fk a
ðl;rÞ
k

� ��
:

(5)

In the following content, we use UðxxxxxxxðtÞÞ and
P

l2L UlðtÞ
interchangeably.

3 ALGORITHM DESIGN

In this section, we demonstrate the design details of ESDP,
which can solve P1 with a probabilistic optimality asymptoti-
cally in polynomial time. ESDP is built on the well known
ESCB policy [28], [29] and a recent derivative, called AESCB
[30], for solving combinatorial semi-bandit problems. In the
following content, first, we formulate the regret minimiza-
tion problem that corresponds to P1 and bring in several
evolving statistics to approximate E½UðxxxxxxxðtÞÞ� at each time t.
Based on these statistics and a converge-to-zero sequence
fdðtÞgt2T , we introduce a series of deterministic optimization
problems. Then, we solve these deterministic problems
sequentially based on dynamic programming in polynomial
times. After that, we provide rigorous theoretical analysis

Fig. 1. The bipartite graph model for multi-server job scheduling.

1. Even though, our model can be easily extended to the scenarios
where multiple jobs arrive from a port in a single time slot.

236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

for ESDP in terms of the algorithmic complexity and the regret
onAOU. In the end,we discuss the possible extensions of ESDP

on the Gang scheduling scenarios.

3.1 Regret Minimizing With Evolving Statistics

P1 is an online stochastic optimization problem with random

variables ZZZZZZZðtÞ ¼ ½Zðl;rÞðtÞ�T8ðl;rÞ2E not determined until the
time t arrives. P1 is equivalent to the regret minimization
problem listed below:

P2 : min
8t2T :xxxxxxxðtÞ2X

lim
T!1

ReðT Þ :¼
XT
t¼1

E D xxxxxxxðtÞð Þ½ �

s:t: ð2Þ; ð4Þ;

where the expected per-time slot gap E½DðxxxxxxxðtÞÞ� is

E D xxxxxxxðtÞð Þ½ � :¼ ~yyyyyyyTxxxxxxx�ðtÞ �E
X
l2L

UlðtÞ
" #

(6)

and

~yyyyyyy :¼ yðl;rÞ �
P

k2K fk a
ðl;rÞ
k

� �h iT
8ðl;rÞ2E

2 ½0; 1�jEj

xxxxxxx�ðtÞ :¼ argmaxxxxxxxxðtÞ2VðtÞ ~yyyyyyyTxxxxxxxðtÞ
� 	

VðtÞ :¼ xxxxxxxðtÞ 2 X j ð2Þ & ð4Þ hold at time tf g:

8>><
>>: (7)

The regret ReðT Þ is the gap between the optimal AOU

achieved by an omniscient oracle who has the full knowledge
on yyyyyyy and the AOU achieved by the to-be-proposed algorithm
ESDP. A good algorithm should achieve a smallest possible
regret ReðT Þ as T goes to infinity. For simplification, we
denote by ~ZZZZZZZðtÞ the column vector

�
Zðl;rÞðtÞ �

X
k2K

fkðaðl;rÞk Þ
�T
8ðl;rÞ2E

:

W.O.L.G, we normalize ~ZZZZZZZðtÞ into ½0; 1�jEj by carefully tuning
the parameters in ffkð�Þgk2K. The non-negative property is
widely accepted for utility functions [25], [27], [31], [32]. Nev-
ertheless, different from the above literature, we make no
assumptions on the convexity or differentiability of ffkg8k2K.
P2 is still a stochastic optimization problem and the

expectation operation is not eliminated. To make it solvable,
based on the idea introduced by the ESCB policy [28], we
introduce several statistics to approximate yyyyyyy with the explo-
rated information. These statistics are used to supersede the
random variables inP2. Specifically, at each time t, we define

nðl;rÞðtÞ :¼
Xt
t0¼1

xðl;rÞ t
0ð Þ (8)

as the cumulative quantity of channel ðl; rÞ 2 E been used up
to time t. Based on it, we define the following statistics:

ŷðl;rÞðtÞ :¼

Pt

t0¼1 xðl;rÞðt
0Þ ~Zðl;rÞðt0Þ

nðl;rÞðtÞ
nðl;rÞðtÞ > 0

0 otherwise

8<
: (9)

ŝ2
ðl;rÞðtÞ :¼

gðtÞ
2nðl;rÞðtÞ

nðl;rÞðtÞ > 0

þ1 otherwise;

(
(10)

where

gðtÞ :¼ ln tþ 4 lnðln tþ 1Þ �max
t02T

max
xxxxxxx2Vðt0Þ

kxxxxxxxk1
�
: (11)

ŷðl;rÞðtÞ is a non-biased estimation based on historical noisy
computation utilities for type-l job when processed through
channel ðl; rÞ. ŝ2

ðl;rÞðtÞ is a metric proportional to the variance
of the estimate ŷðl;rÞðtÞ, proposed by [28]. We place a hat
on the estimations to indicate that they are calculated and
updated online.

Inspired by the ESCB and AESCB policies, at time t, we
introduce the following deterministic problem P3ðtÞ:

P3ðtÞ : max
xxxxxxxðtÞ2VðtÞ

~UðxxxxxxxðtÞÞ :¼ dðtÞ þ ŷyyyyyyðtÞTxxxxxxxðtÞ þ
ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q
s:t: ð2Þ;

dðtÞ > 0; lim
t!1

dðtÞ ¼ 0; (12)

where

ŷyyyyyyðtÞ :¼ ŷðl;rÞðtÞ
� �T

ðl;rÞ2E

ŝssssss2ðtÞ :¼ ŝ2
ðl;rÞðtÞ

h iT
ðl;rÞ2E

8<
:

are the corresponding column vectors. Moreover, ŷyyyyyyðtÞ can be
efficiently calculated throughmatrix operations as follows:

f

xxxxxxxð1Þ; . . . ; xxxxxxxðtÞ½ � ~Zð1Þ � nð1Þ

� �T
; . . . ; ~ZðtÞ � nnnnnnnðtÞ

� �Th iT�
;

where � is the element-wise division operator, nnnnnnnðtÞ is the vec-
tor fnðl;rÞðtÞgTðl;rÞ2E , and fð�Þ is the inverse of function diagð�Þ,
defined as

fðMÞ :¼
XjEj
i¼1

eeeeeeeTi Meeeeeeei
� �

eeeeeeei; M 2 RjEj	jEj: (13)

In (13), eeeeeeei is the i-th standard unit basis.
In P3ðtÞ, fdðtÞgt2T could be any sequence converges to

zero. For instance,

dðtÞ :¼ 1

ln ln tþ 1ð Þ þ 1
: (14)

The objective of P3ðtÞ is an approximated statistical-based
overall computation utility at time t. From P2 to P3ðtÞ, we
remove the random variable ZZZZZZZðtÞ and thereby remove the
expectation operation in the objective. As a result, we trans-
form the original stochastic problem into a deterministic
problem while keeping the solution space impervious. In
most case, the following inequality should hold:���� ~yyyyyyy� ŷyyyyyyðtÞð ÞTxxxxxxxðtÞ

���� �
ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q
: (15)

By Chebyshev’s Inequality, ŷyyyyyyðtÞTxxxxxxxðtÞ

ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q
covers

nearly 60% population. To achieve a larger coverage, we can
increase the numerical multiplier to the standard variance.
In our formulation, setting the multiplier as 1 is enough to
achieve the State-of-the-Art minimum regret upper bound.
The analysis will be detailed in Section 3.3.

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 237

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

3.2 Polynomial-Time Dynamic Programming

If the sequence fdðtÞgt2T is removed from ~UðxxxxxxxðtÞÞ and (12) is
dropped, P3ðtÞ is NP-hard [28], [29], i.e., it cannot be solved
in polynomial time. Therefore, to solve it efficiently,
inspired by the AESCB policy [30], ESDP resorts to solving
several relaxed budgeted integer programming problems by
adding the converge-to-zero sequence fdðtÞgt2T , which is
exactly what we have done when formulating P3ðtÞ.

In the following, we will detail how we solve P3ðtÞ with
dynamic programming. First, at each time t, based on dðtÞ,
we define the following scale-up statistics for ŷðl;rÞðtÞ and
ŝ2
ðl;rÞðtÞ respectively:

�̂ðl;rÞðtÞ :¼
l
�ðtÞŷðl;rÞðtÞ

m
(16)

Ŝ
2
ðl;rÞðtÞ :¼

l
�2ðtÞŝ2

ðl;rÞðtÞ
m
; (17)

where

�ðtÞ :¼
&
maxt02T maxxxxxxxx2Vðt0Þkxxxxxxxk1

� 	
dðtÞ

’
(18)

is the scaling size at time t. By the AESCB policy [30], at each
time t, we introduce several budgeted integer programming
problems P4ðs; tÞ for each s 2 SðtÞ, where

SðtÞ :¼

0; 1; . . . ; �ðtÞ �max

t02T
max
xxxxxxx2Vðt0Þ

kxxxxxxxk1
�
; (19)

as follows:

P4ðs; tÞ : max
xxxxxxxðtÞ2X

ŜSSSSSS2ðtÞTxxxxxxxðtÞ

s:t: ð2Þ; ð12Þ;
�̂������ðtÞTxxxxxxxðtÞ � s: (20)

In P4ðs; tÞ, ŜSSSSSS2ðtÞ and �̂������ðtÞ are the corresponding column
vectors for (16) and (17), respectively. Let us use xxxxxxx�P4ðs; tÞ to
denote the optimal solution for P4ðs; tÞ. Then, the final solu-
tion to maxfP4ðs; tÞgs2SðtÞ at time t, denoted by xxxxxxx�P4ðtÞ, is set
as some xxxxxxx�P4ðs

?
; tÞwhere s

? 2 SðtÞ staisfies

s
? 2 argmax

s2SðtÞ

(
sþ

ffi
ŜSSSSSS
2ðtÞTxxxxxxx�P4ðs; tÞ

q)
: (21)

Now we demonstrate the detailed procedure of ESDP, which
is summarized in Algorithm 1. ESDP solves P1 and P2

by solving the problems fP4ðs; tÞgs2SðtÞ;t2T . The relations
between P3ðtÞ and fP4ðs; tÞgs2SðtÞ, and how the solutions of
fP4ðs; tÞgs2SðtÞ;t2T affect the regret ReðT Þ will be analyzed in
Section 3.3.

Now, the problem is how to solve fP4ðs; tÞgs2SðtÞ optimally
within polynomial time. ESDP solves it based on dynamic pro-
gramming. Concretely, at each time t, corresponding to each
P4ðs; tÞ, we bring in the problemP5ðs; t; ccccccc; iÞ as follows.

P5ðs; t; ccccccc; iÞ : max
xxxxxxxðtÞ2X

ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

s:t: ð2Þ; ð12Þ; ð20Þ;Xei
e¼e1

xeðtÞ ¼ 0; (22)

where ccccccc :¼ ½ck�Tk2K is the capacity vector in (2), e :¼ ðl; rÞ 2 E
and ei is the i-th edge ðl; rÞ in E. The new constraint (22) is
used to set the first several scheduling decisions (until i) to
0 forcibly. Obviously, P5ðs; t; ccccccc; 0Þ is equal to P4ðs; tÞ because
(22) is not functioning when i ¼ 0. The optimal solution of
P5ðs; t; ccccccc; iÞ can be obtained by recursing over s, ccccccc, and i. To
do this, let us use xxxxxxx�ðs; t; ccccccc; iÞ to denote the optimal solution
of P5ðs; t; ccccccc; iÞ, and use V �P5ðs; t; ccccccc; iÞ to denote the corre-
sponding objective. In the following, we demonstrate the
recursing details.

Algorithm 1. The ESDP Framework

Input: The bipartite graph ðL;R; EÞ, requirements
faðl;rÞk gk2K;ðl;rÞ2E , capacities fckgk2K, cost functions
ffkgk2K, and the sequence fdðtÞgt2T

Output: Online solution to P1 (and P2) at time t 2 T
1 while t ¼ 1; . . . ; T do
2 Observe the job arrival status from each port l 2 L
3 Update �̂������ðtÞ and ŜSSSSSS

2ðtÞwith (16) and (17) based on dðtÞ,
respectively

4 /* Solve fP4ðs; tÞgs2SðtÞ by Algorithm 2 */

5 for each s 2 SðtÞ do
6 Solve P4ðs; tÞ and return xxxxxxx�P4ðs; tÞ
7 end for
8 xxxxxxx�P4ðtÞ xxxxxxx�P4ðs

?
; tÞ, where s

?
staisfies (21)

9 /* Satisfy constraint (4) of P1 */

10 for each l 2 L do
11 if 11lðtÞ ¼¼ 0 then
12 for each r 2 Rl do
13 Set the ðl; rÞ-th element of xxxxxxx�P4ðtÞ as 0
14 end for
15 end if
16 end for
17 end while
18 return fxxxxxxx�P4ðtÞgt2T and fUðxxxxxxx�P4ðtÞÞgt2T

Case I: If x�eiþ1ðs; t; ccccccc; iÞ ¼ 0, i.e., the ðiþ 1Þ-element of
xxxxxxx�ðs; t; ccccccc; iÞ is 0, then (22) is not violated for P5ðs; t; ccccccc; iþ 1Þ.
Thus, we have

xxxxxxx�ðs; t; ccccccc; iþ 1Þ ¼ xxxxxxx�ðs; t; ccccccc; iÞ (23)

and

V �P5ðs; t; ccccccc; iþ 1Þ ¼ V �P5ðs; t; ccccccc; iÞ: (24)

The result means that xxxxxxx�ðs; t; ccccccc; iÞ is also the optimal solution
to P5ðs; t; ccccccc; iþ 1Þ.

Case II: If x�eiþ1ðs; t; ccccccc; iÞ ¼ 1, the optimal substructure is
much more complicated. For simplification, we define
matrix A by

A ¼ a
ðl;rÞ
k

h iK	jEj
:

Then we have

A xxxxxxx�ðs; t; ccccccc; iÞ � eeeeeeeiþ1ð Þ � ccccccc�A:;iþ1; (25)

where eeeeeeeiþ1 is the ðiþ 1Þ-th standard unit basis. Besides,

�̂������ðtÞT xxxxxxx�ðs; t; ccccccc; iÞ � eeeeeeeiþ1ð Þ � s� �̂eiþ1ðtÞ (26)

238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

and

ŜSSSSSS
2ðtÞT xxxxxxx�ðs; t; ccccccc; iÞ � eeeeeeeiþ1ð Þ ¼ ŜSSSSSS

2ðtÞTxxxxxxx�ðs; t; ccccccc; iÞ � Ŝ
2
eiþ1
ðtÞ:

Combining the above formula with (25) and (26), we can get
the following evolving optimal substructure:

V �P5ðs; t; ccccccc; iÞ ¼V
�
P5 maxfs� �̂eiþ1ðtÞ; 0
� o

; t;

maxfccccccc�A:;iþ1; 0g; iþ 1Þ þ Ŝ2
eiþ1
ðtÞ: (27)

Thus, for every possible s, ccccccc, and i, we can update the solu-
tion to P5ðs; t; ccccccc; iÞ by

x�eiþ1ðs; t; ccccccc; iÞ ¼
0 V �P5ðs; t; ccccccc; iÞ ¼ V �P5ðs; t; ccccccc; iþ 1Þ
1 otherwise:

The recursion starts from condition s ¼ 0, ccccccc ¼ 0000000, and i ¼
jEj. Algorithm 2 summarizes the main procedure. It is used to
substitute Step 5 � Step 7 of ESDP. Obviously, Algorithm 2 is
of OðjEj � jSðtÞj �

Q
k2K ckÞ-complexity, i.e., fP4ðs; tÞgs2SðtÞ are

solved in polynomial time. In the following content, we will
show the relations between P3ðtÞ and fP4ðs; tÞgs2SðtÞ, and
analyze how the solution obtained by ESDP affects the regret
ReðT Þ defined inP2.

Algorithm 2. DP for Solving fP4ðs; tÞgs2SðtÞ
Input: SðtÞ, resource requirements faðl;rÞk gk2K;ðl;rÞ2E , and scale-

up statistics �̂������ðtÞ and ŜSSSSSSðtÞ
Output: Optimal solution to fP4ðs; tÞgs2SðtÞ
1 8i 2 f0; . . . ; jEjg, xxxxxxx�ðs; t; ccccccc; iÞ 0000000 for s from 0 to
�ðtÞ �maxt02T fmaxxxxxxxx2Vðt0Þkxxxxxxxk1g do

2 for c0c0c0c0c0c0c0 from 0000000 to ccccccc do
3 V �P5ðs; t; ccccccc

0; jEjÞ is 0 if s ¼¼ 0 else �1
4 for i from jEj � 1 to 0 do
5 if ccccccc0 ¼¼ 0000000 then
6 V �P5ðs; t; ccccccc

0; iÞ V �P5ðs; t; ccccccc
0; iþ 1Þ

7 continue
8 end if
9 V �P5ðs; t; ccccccc

0; iÞ maxfV �P5ðmaxfs�
�̂eiþ1ðtÞ; 0g; t;maxfccccccc0 �A:;iþ1; 0g; iþ 1Þþ
Ŝ2
eiþ1
ðtÞ; V �P5ðs; t; ccccccc

0; iþ 1Þg
10 if V �P5ðs; t; ccccccc

0; iÞ 6¼ V �P5ðs; t; ccccccc
0; iþ 1Þ then

11 xxxxxxx�ðs; t; ccccccc0; iÞ xxxxxxx�ðmaxfs� �̂eiþ1ðtÞ;
0g; t;maxfccccccc0 �A:;iþ1; 0g; iþ 1Þ

12 x�eiþ1ðs; t; ccccccc
0; iÞ 1 // Update

13 if Axxxxxxx�ðs; t; ccccccc0; iÞ � ccccccc0 is violated then
14 V �P5ðs; t; ccccccc

0; iÞ V �P5ðs; t; ccccccc
0; iþ 1Þ

15 xxxxxxx�ðs; t; ccccccc0; iÞ xxxxxxx�ðs; t; cccccccrsquo; ; iþ 1Þ
16 end if
17 end if
18 end for
19 end for
20 /* Assign the solution of i ¼ 0 to P4ðs; tÞ */
21 xxxxxxx�P4ðs; tÞ xxxxxxx�ðs; t; ccccccc; 0Þ
22 end for
23 return fxxxxxxx�P4ðs; tÞgs2SðtÞ

3.3 Optimality and Regret Analysis

In this section, we will analyze the upper bound of ReðT Þ
for ESDP when T goes to infinity. The result is based on the

relations between the optimal solutions of several problems
we defined above. The problems and their optimal solutions
are summarized in Table 2 for quick reference. Our first
result is that ESDP achieves the optimal statistical-based com-
putation utility asymptotically with a certain probability.

Theorem 1. (Probabilistic Asymptotical Optimality) By execut-
ing ESDP for problem P3ðtÞ, limt!1 ~Uðxxxxxxx�P4ðtÞÞ is at least

max
xxxxxxxðtÞ2VðtÞ

(
ŷyyyyyyðtÞTxxxxxxxðtÞ þ

ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q)
(28)

with probability at most exp

�
� 1

3 ðjLj �
P

l2L rlðtÞÞ
2

�
:

Proof. Note that ~Uð�Þ is the objective defined in P3ðtÞ and
(28) is exactly the optimal objective of P3ðtÞ without the
approximate parameter dðtÞ. Before our proof, we define
the set

FðtÞ :¼ xxxxxxxðtÞ 2 X j ð2Þ holds at time tf g: (29)

Different from the set VðtÞ, FðtÞ does not require con-
straint (4) to hold. Thus we have VðtÞ � FðtÞ. The follow-
ing proof holds for every t 2 T .

By the definitions (9), (16), (17) and the fact ~ZZZZZZZ 2
½0; 1�jEj, we have

ŷyyyyyyðtÞ � �̂������ðtÞ
�ðtÞ �

1

�ðtÞ 1111111þ ŷyyyyyyðtÞ: (30)

Thus,

max
xxxxxxxðtÞ2VðtÞ

ŷyyyyyyðtÞTxxxxxxxðtÞ þ
ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q

� 1

�ðtÞ max
xxxxxxxðtÞ2VðtÞ

�̂������ðtÞTxxxxxxxðtÞ þ
ffi
ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

q
: (31)

Further, the RHS of (31) staisfies

max
xxxxxxxðtÞ2VðtÞ

�̂������ðtÞTxxxxxxxðtÞ þ
ffi
ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

q

¼ max
s2SðtÞ

max
�̂������ðtÞðtÞTxxxxxxxðtÞ¼s;xxxxxxxðtÞ2VðtÞ

(
sþ

ffi
ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

q)

� max
s2SðtÞ

max
�̂������ðtÞTxxxxxxxðtÞ�s;xxxxxxx2VðtÞ

(
sþ

ffi
ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

q)

� max
s2SðtÞ

max
�̂������ðtÞTxxxxxxxðtÞ�s;xxxxxxx2FðtÞ

(
sþ

ffi
ŜSSSSSS
2ðtÞTxxxxxxxðtÞ

q)
: (32)

The RHS of (32) is exactly maxfP4ðs; tÞgs2SðtÞ. The upper

bound of it should be s
? þ

ffi
ŜSSSSSS2ðtÞTxxxxxxx�P4ðtÞ

q
if no channel is

TABLE 2
Probelms and Their Optimal Solutions

PROBLEMS OPTIMAL SOLUTIONS

P1 (defined over T) fxxxxxxx�ðtÞgt2T
P2 (defined over T) fxxxxxxx�ðtÞgt2T , because P1
 P2

P4ðs; tÞ xxxxxxx�P4ðs; tÞ, also xxxxxxx�ðs; t; ccccccc; 0Þ
maxfP4ðs; tÞgs2SðtÞ xxxxxxx�P4ðtÞ (by Step 8 of ESDP)
P5ðs; t; ccccccc; iÞ xxxxxxx�ðs; t; ccccccc; iÞ (by Algorithm 2)

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 239

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

shut down forcibly, i.e., Step 10 � Step 16 are not exe-
cuted by ESDP. To quantify the probability that no chan-

nels are forcibly shut down, we use the result of

Chernoff Bounds. The upper tail of Chernoff Bounds is

stated as follows.
If X1; . . . ; Xn 2 f0; 1g are mutually independent, then

8x � m, where m :¼ E½
P

i Xi�, we have

Pr

�X
i

Xi � x

�
� ex�m

m

x

�x

:

Based on this conclusion, we can further derive that

Pr

�X
i

Xi � ð1þ "Þm
�
�

e"

ð1þ "Þ1þ"
�m

; (33)

where " � 0.
With the Taylor-series expansion for lnðxþ 1Þ at x ¼

0, we have

lnð1þ "Þ ¼
X1
n¼1

ð�1Þnþ1"n
n

¼ "� "2

2
þ "3

3
� . . . � "� "2

2
:

Thus, we have

1

lnð1þ "Þ �
1

"ð1� 1
2 "Þ
¼ 1

"
þ 1

2� "
� 1

"
þ 1

2
:

Applying the inequality to the RHS of (33), we can get

Pr

�X
i

Xi � ð1þ "Þm
�
� exp

� "2m

3

�
: (34)

Replacing Xi with 11l and ð1þ "Þm with jLj, (34) is trans-
formed into

Pr

�X
l2L

11l ¼ jLj
�
� exp

�
� 1

3
jLj �

X
l2L

rlðtÞ
 !2�

; (35)

which exactly quantifies the probability that every port
yields at least one job. In this case, no channel ðl; rÞ 2 E is
shut down forcibly. Thus, with this probability, the RHS
of (32) staisfies

max
sðtÞ2S

max
�̂������ðtÞTxxxxxxxðtÞ�s;xxxxxxxðtÞ2FðtÞ

(
sþ

ffi
ŜSSSSSS2ðtÞTxxxxxxxðtÞ

q)

¼ s
? þ

ffi
ŜSSSSSS2ðtÞTxxxxxxx�P4ðtÞ

q
"s

?
staisfies (21) with prob. (35)

� �̂������ðtÞTxxxxxxx�P4ðtÞ þ
ffi
ŜSSSSSS2ðtÞTxxxxxxx�P4ðtÞ

q
"(20)

� 1111111þ �ðtÞŷyyyyyyðtÞð ÞTxxxxxxx�P4ðtÞ þ
ffi
ŜSSSSSS2ðtÞTxxxxxxx�P4ðtÞ

q
"(30)

� �ðtÞ

dðtÞ þ ŷyyyyyyðtÞTxxxxxxx�P4ðtÞ þ

ffi
ŝssssss2ðtÞTxxxxxxx�P4ðtÞ

q �
: (36)

Combining the result of (31), (32), and (36), the following
inequality holds for all the time t 2 T :

max
xxxxxxxðtÞ2VðtÞ

(
ŷyyyyyyðtÞTxxxxxxxðtÞ þ

ffi
ŝssssss2ðtÞTxxxxxxxðtÞ

q)
� ~U xxxxxxx�P4ðtÞ

� �
: (37)

When t!1 and dðtÞ ! 0, the result is tightly bounded.tu

The theorem shows that ESDP can achieve approximately
optimal statistical-based computation utility at each time
slot with a certain probability. This optimality is important
for minimizing the regret because it builds the upper bound
of the optiaml computation utility ~yyyyyyyTxxxxxxx�ðtÞ at each time t.
The probabilistic regret upper bound is given by the follow-
ing theorem.

Theorem 2. (Regret Upper Bound under Certain Conditions) By
executing the ESDP algorithm, as T !1, ReðT Þ is upper
bounded by

O

lnT � jEj � lnxxxxxxx�ð Þ2

mint2T D xxxxxxx�P4ðtÞ
� �� (38)

with probability at most expð� 1
3 ðjLj �

P
l2L rlðtÞÞ

2Þ. In (38),
Dðxxxxxxx�P4ðtÞÞ is introduced by (6), and xxxxxxx

� is defined as

xxxxxxx� :¼ argmax
8t2T :xxxxxxx�ðtÞ

kxxxxxxx�ðtÞk1: (39)

Proof. The result is immediate with Theorems 1 and 4.4 of
[30]. The technique is to define three events AðtÞ, BðtÞ, CðtÞ
at each time t:

AðtÞ :¼
�� ~yyyyyyy� ŷyyyyyyðtÞð ÞTxxxxxxx�ðtÞ

�� � ffi
ŝssssss2ðtÞTxxxxxxx�ðtÞ

q
 �
BðtÞ :¼ Dðxxxxxxx�P4ðtÞÞ � 4dðtÞ

n o
CðtÞ :¼ AðtÞ [BðtÞ;

8>>><
>>>:

(40)

and study the sum of the upper bound of ReðT Þ under
these events respectively. Which of these events will hap-
pen depends on the accuracy of the estimations ŷyyyyyyðtÞ. Con-
sidering that the proof is similar to the proof presented in
[30], wewill not demonstrate the complete proof here. tu

3.4 Extending to Gang Scheduling

ESDP can be extended to the Gang scheduling scenarios,
where the scheduling decisions for the task instances of a
job follows the ALL-OR-NOTHING property. In other words,
only when all tasks2 of a job are successfully scheduled, the
job could be launched. Gang scheduling is required for
multi-server jobs such as distributed DNN trainings and
Message Passing Interface (MPI) jobs. Take the DNN train-
ing with the parameter server (PS)-worker architecture as
an exmaple, at least one PS and one worker are successfully
scheduled, the training could start.

In the following, we show briefly how Gang Scheduling
can be modeled. Let us re-define xxxxxxxðtÞ as

xxxxxxxðtÞ :¼ xl
ðq;rÞðtÞ

h i
q2Ql;r2Rl;l2L

;

where Ql stores the indices of tasks for the type-l job. Then,
we have the following new constraints:

2. In practice, not all tasks of a job need to be scheduled. In Kuber-
netes, the job submitter can specify the minimum number of tasks that
must be scheduled successfully. In the following, we usemlðtÞ to repre-
sent the minimum number of tasks that should be scheduled at time t
of the type-l job.

240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

P
r2Rl

P
q2Ql

xl
ðq;rÞðtÞ � mlðtÞ 8l; tP

l2L
P

q2Ql
alðq;kÞx

l
ðq;rÞðtÞ � cðk;rÞ 8k; r; t;

(

where mlðtÞ is the minimum number of tasks to be exe-
cuted, alðq;kÞ is the requirement of the type-k resource for the
q-th task of the type-l job, and cðk;rÞ 2 Nþ is the number of
the type-k computing devices available to server r. The
same to (2), the new constraint also has the form of Axxxxxxx � ccccccc.
The new problem can be solved by a similar approach to
ESDP after several mathematical transformations.

4 NUMERICAL RESULTS

In this section, we conduct extensive simulations to validate
the performance of ESDP. We first verify the performance of
ESDP against several handcrafted benchmarking policies on
the AOU. Then, we analyze the generality and robustness of
it under different cluster settings. The simulations are con-
ducted on a server with 48 Intel Xeon Silver 4214 CPUs, 256
GB memory, and 2 Tesla P40 GPUs.

Traces. We use the data from cluster-trace-v2018 of the
Alibaba Cluster Trace Program3 to generate our experiment
experiments. Specifically, we leverage the specifications of
the machines, the arrival patterns and resource require-
ments of different kind of jobs to set resource capacities
fckgk2K, job arrival probabilities frlgl2L, and device require-
ments of jobs faaaaaaakgk2K.

Default Scenario Settings. In default settings, our simula-
tion environment has 40 servers, each equipped with 3 types
of computing devices (CPUs, MEM, and GPUs), and 8 multi-
sever job types of different resource requirements. Job arrival
probabilities frlgl2L are setted to adjust the job arrival status
with Bernoulli Distributions. frlgl2L are applied on the basis
of the actual arrival patterns from the trace to increase sto-
chasticity. Although faaaaaaakgk2K are retrieved from the trace
data, we still need to set the equipped resource limits to elim-
inate inappropriate settings which could lead to the solution
space of problem P1 being null. Specifically, we denote by

kAk2 and kAk2 the upper bound and the lower bound of

fAijg8i;j, and set them to 2 and 1 in default, respectively. Cor-
respondingly, we use kccccccck2 and kccccccck2 to represent the upper
bound and the lower bound of ccccccc, and set them to 2 and 1 in
default, respectively. The settings of these bounds are nor-
malized. For each computation utility vðl;rÞ, ðl; rÞ 2 E, we gen-
erate it from aNormal distribution as follows:

N

mðl;rÞ � Uð0:1; 1Þ; sðl;rÞ ¼

mðl;rÞ
2

�
:

Correspondingly, for each device type k 2 K, the operating
cost fkðaðl;rÞk Þ is generated from the Normal distribution
Nð0:5; 0:1Þ. Note that the settings we adopt are only required
to make the stochastic problem P1 feasible. ESDP is robust
enough to make scheduling decisions of high system effi-
ciency. The robustness will be demonstrated in detail in the
following content. Besides, note that ESDP has no assump-
tions on the distributions of the valuations fvðl;rÞgðl;rÞ2E . The
Normal distributions we used here are only for problem con-
struction. The default time slot length is 2000.

Default Algorithmic Settings. When we implement ESDP,
maxt02T fmaxxxxxxxx2Vðt0Þkxxxxxxxk1g is calculated as ajEj, where a 2
½0; 1� is a coefficient by default to be 0.5. We set dðtÞ and gðtÞ
as ðlnðlnðtþ 1Þ þ 1Þ þ 1Þ�1 and lnðtþ 1Þ þ 4 lnðlnðtþ 1Þ þ
1Þ � ajEj, respectively in default. Considering that those two
sequences significantly affect the effectiveness of ESDP, we
will comprehensively discuss their variations in Section 4.2.

Baselines. ESDP is compared with the following hand-
crafted baselines.

� The Accumulative Utility First (HAUF): HSWF is dif-
ferent from ESDP in the following ways. At each time
t, ZZZZZZZðtÞ is estimated as the average of historical obser-
vations. With the estimate, HSWF ranks each port
in the descending order of

P
r2Rl

xðl;rÞðtÞðZðl;rÞðtÞ �P
k2K fkða

ðl;rÞ
k ÞÞ, and set the corresponding xðl;rÞðtÞ

as 1 in turn until (2) can not be satisfied.
� The Lowest Cost First (LCF): Similar to HSWF, at each

time t, ZZZZZZZðtÞ is estimated as the average of historical
observations. Then, LCF ranks each job (non-empty

port) in the ascending order of cost
P

k2K fkða
ðl;rÞ
k Þ,

and set the corresponding xðl;rÞðtÞ as 1 in turn until
(2) can not be satisfied.

� The Longest Waiting Time First (LWTF): LWTF is dif-
ferent from ESDP in two ways. First, ZZZZZZZðtÞ is estimated
as the average of historical observations. Second,
LWTF ranks each port in the descending order of the
waiting time of jobs yield from that port, and set the
corresponding xðl;rÞðtÞ as 1 in turn until (2) can not be
satisfied.

Note that we do not implement heuristics such as the
Genetic Algorithm for comparison. This is becauseP1 is a sto-
chastic optimization problem and traditional heuristics need
to be revised carefully to match it. All of the three baselines
use a similar method to estimate the historical valuation of
each channel. With the estimate, the stochastic optimization
problem is transformed into a deterministic one. Essentially,
heuristics can be implemented by following a similar
approach. However, a big problem that cannot be ignored is
that heuristics are time-consuming with a non-polynomial
complexity. Heuristics have to be called in every time slot,
which could be very slowwhen the time slot length is large.

4.1 Performance Verification

In the first part, we demonstrate how the average AOU

changes as time slot increases. As Fig. 2 shows, ESDP outper-
forms the baselines by up to nearly 73%, 36%, and 28%,
respectively within 8000 time slots. In the beginning, HSWF
performs better than EDSP, but as the time slots increase,
ESDP gradually outperforms HSWF, and the gap between

TABLE 3
Default Parameter Settings

PARAM. VALUE PARAM. VALUE

jLj 8 jRj 40

kAk2 2 kAk2 1

a 0.5 frlgl2L 0.9

kccccccck2 2 kccccccck2 1

K 3 T 2000

ffkgk2K � Nð0:5; 0:1Þ frðl;rÞgðl;rÞ2E 0.1

3. https://github.com/alibaba/clusterdata

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 241

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

them keeps widening. ESDP is able to surpass HSWF because
that, unlike HSWF, which does not adjust its strategy, EDSP
constantly updates its strategy with the explorated valuation
distributions. Besides, we also demonstrate the ratio between
the AOU achieved by ESDP and the baselines in Fig. 3. We can
conclude that, the performance of ESDP increases signifi-
cantly when the time slots available to explore increase. The
reason lies in that more time slots leads to more approximate
estimate to fvðl;rÞgðl;rÞ2E .

In Fig. 4, we calculate the average AOU in this way: for
each time slot length T , the y-axis value is 1

T

PT
t¼1 UðxxxxxxxðtÞÞ.

Different from the baselines, the average AOU of ESDP

increases steep and later flattens, which verifies that the
AOU converges to an underlying upper bound (the AOU

achieved by the oracle). The computation overhead of ESDP

under different scales of the bipartite graph is shown in
Fig. 5. It is interesting to find that the rewards oscillate at
the beginning time slots. One of the leading factors is that
ESDP is boosted with a well designed initial solution. No sur-
prisingly, the rewards achieved in the beginning can be eas-
ily surpassed when the time slot is sufficiently large.

4.2 Sensitivity Analysis

In this section, we give a brief analysis on several important
parameter settings. The first problematic parameter we test

is the size of the solution space X , which is tuned byA and ccccccc.
Recall that A :¼ faaaaaaakgk2K and ccccccc :¼ fckgk2K are respectively
the device requirements of each type of jobs and the device
capacities of the cluster. The x-axis of Fig. 6 is kA�1xxxxxxxk2. With-
out doubt, the AOU increases with the growth of X for all the
algorithms because the number of can-be-processed jobs
increase. Even though, ESDP has the highest growth in the
AOU because it can fully exploit the estimated valuations.

The first algorithmic parameter we pay attention to is the
sequence fdtgt2T , which is used to relax the NP-hard problem
P2 to a polynomial one. The three fdtgt2T shown in Fig. 7 are
ðlnðtþ 1Þ þ 1Þ�1, ðlnðlnðtþ 1Þ þ 1ÞÞ�1, and ðlnððlnðlnðtþ 1Þ þ
1ÞÞ þ 1Þ þ 1Þ�1, respectively. Fig. 7 demonstrates that differ-
ent settings of the sequence has little effect on the per-
formance of ESDP, but strong affect on the computation
overhead. Another algorithmic parameter we are interested
on is fgðtÞgt2T , which is used to estimate the variance ð10Þ.
The three fgðtÞgt2T demonstrated in Fig. 8 are lnðtþ 1Þ þ
4 lnðlnðtþ 1Þ þ 1Þ � ajEj, 4 lnðlnðtþ 1Þ þ 1Þ � ajEj, and lnðtþ
1Þ, respectively. We can find that the third setting has an
overwhelming advantage. The reason is that, theoretically,
gðtÞ acts as a balancer between exploration and exploitation.
A smaller gðtÞ leads to a higher tendency to exploitation.

Figs. 9 and 10 demonstrate the impact of job arrival rate r
and the density of the bipartite graph. From Fig. 9 we can
find that, with the increase of r, the AOU achieved by nearly
all the algorithms also goes up. The result is obvious because

Fig. 2. The AOU versus time slots.

Fig. 3. The ratio between the AOUS.

Fig. 4. The average AOU versus time slots.

Fig. 5. Computation overheads.

Fig. 6. AOU versus X .

Fig. 7. AOU versus fdðtÞgt2T .

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

more jobs can be processed within service capacities when r

increases. It is interesting to find that, increasing the job
arrival probability can lead to a high resource utilization,
thereby increasing the AOU. However, a large job arrival
probability also brings in a fierce resource contention. A
direct consequence of it is that, for ESDP, many elements in
the vector xxxxxxxðtÞ fall into the interior of X , rather than the
boundaries, thereby leading to a reward reduction. The phe-
nomenon can be observed when moving r from 0.8 to 1.0.
Fig. 10 demonstrates the impact of the service locality con-
straint. When the number of edges increases in the bipartite
graph, which means the service locality constraint is relaxed,
the solution spaceX becomes larger. It significantly increases
the difficulty of searching the optimal solution for ESDP.

4.3 Scalability Analysis

In this section,we demonstrate the performance of ESDP under
different scales of scenario settings. Figs. 11 and 12 demon-
strate the impact of the scale of the bipartite graph G. First, we
observe that, whatever the number of the node is, ESDP takes
the leading position. Besides, as jRj becomes larger, all the
algorithms obtain a relatively larger cumulative AOU. The
result is evident because a large cluster can provide sufficient
computing devices, which leads to jobs being fully served. It
is worth noting that, when jRj increases from 60 to 80, HAUF
achieves a higher AOU than ESDP. The reason of the weak posi-
tion of ESDP is that the solution space X increases with the
node number, and ESDP need a larger time slot length to learn

the underlying distributions of the computation utilities.
Fig. 11 shows that the number of job types, i.e., jLj, has a simi-
lar impact to jRj in terms of the performance of ESDP.

Fig. 13 shows that, whatever the parameter settings, ESDP

always performs the best, and its performance has a positive
correlation with the time horizon length T . As we have ana-
lyzed, a large time horizon provides more chances for ESDP

to learn the underlying distributions,thereby increasing the
reward in the gradient ascent directions.

5 RELATED WORKS

Online resource allocation for co-located jobs is always the
focus of attention for both industrial and research commu-
nities. Online algorithms which yield a nice theoretical per-
formance bound can be divided into two categories.

In the first category, the online algorithms are sophisti-
cally designed for specific job types, including multi-stage
data query and analysis workflows (which are organized as
DAGs) [19], [33], service function chains (SFCs) [34], distrib-
uted deep neural network training jobs [12], [13], [17], [22],
[35], [36], [37], etc. In these works, the algorithms are pro-
posed by formulating combinatorial optimization problems
with scenario-oriented constraints, and their performance
guarantees are provided by the adopted optimization techni-
ques. A typical work is [12], where the authors propose an
algorithm, named SPIN, with a rounding-based randomized
approximation approch, to schedule the placement-sensitive

Fig. 11. AOU versus jLj.

Fig. 12. AOU versus jRj.

Fig. 13. AOU versus T .

Fig. 8. AOU versus fgðtÞgt2T .

Fig. 9. AOU versus r.

Fig. 10. AOU versus jEj.

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 243

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

Bulk Synchronous Parallel (BSP) jobs. Their design is built on
the relaxation of the Gang scheduling constraints and the job
completion time (JCT) is minimized with linear program-
ming. The authors develop an algorithm which is Oðln jMjÞ
-approximate with high probability, where M is the set of
computing devices.

In the second category, the job type is not specified, but
their theoretical superiority for job co-location and resource
contention is highlighted. The algorithms are designed with
different theoretical basis, including online approximate algo-
rithms [18], [20], [23], Online Convex Optimization (OCO)
techniques [21], [38], game-theoretical approaches [39], Multi-
Armed Bandit (MAB) theories and DRL-based algorithms
[16], [40], etc. In theseworks, the performance of the proposed
algorithms are usually analyzedwith approximate ratio, com-
petitive ratio, Price of Anarchy (PoA), and regret. A typical
recent work is [21]. Among these, the most similar work to
ours is [38]. This work presents an online algorithm based on
the MAB theories and the OCO techniques, which aims at
make online resource allocation decisions without knowing
future job arrivals according to machine availabilities. The

proposed algorithm can achieve Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

d

q
Þ regret with

probability 1� d while guaranteeing a small fit for both the
single-job and multi-job cases over a duration of T time slots.
Themain differences between thiswork and ours are summa-
rized as follows.

� Although [38] considers the fluctuated machine ser-
vice capacities, its systemmodel does not differentiate
computing device types. The authors adopt the combi-
natorial MAB framework to address the resource allo-
cation problem while our algorithm ESDP is built on
the AESCB policy.

� In [38], the authors propose an algorithm which has

a Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

d

q
Þ regret with probability 1� d for con-

cave utility functions. By contrast, ESDP has a loga-
rithmic regret OðlnT Þ for linear separatable utilities.
Although ESDP has a lower regret in terms of the
time slot length T , its performance guarantee does
suitable for the non-linear cases.

6 CONCLUSION

In this paper, we study the multi-server job scheduling prob-
lem without knowing the actual processing speed distribu-
tions apriori. We formulate the problem as a stochastic
cumulative overall utility maximization program and cast it
into the framework of online learning. We propose an online
algorithm, termed as ESDP, to learn the underlying processing
speed distributions and use the exploited statistics to guide
the scheduling decisions. ESDP adopts dynamic programming
to solve several well designed approximated deterministic
problems in polynomial time. We prove that ESDP has a best
possible regret, i.e., lnðT Þ. The performance of ESDP is also vali-
dated with extensive simulations. Moreover, extending ESDP

to general non-linear utilities might be an interested future
research direction.

REFERENCES

[1] S.-X. Zou et al., “Distributed training large-scale deep architectures,”
inProc. Int. Conf. Adv. DataMining Appl., 2017, pp. 18–32.

[2] O.Gupta andR. Raskar, “Distributed learning of deep neural network
overmultiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, 2018.

[3] D. Yan, J. Cheng, Y. Lu, andW.Ng, “Effective techniques formessage
reduction and load balancing in distributed graph computation,” in
Proc. 24th Int. Conf.WorldWideWeb, 2015, pp. 1307–1317.

[4] W. Xiao et al., “TUX2: Distributed graph computation for machine
learning,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2017, pp. 669–682.

[5] M. Tirmazi, N. Deng, M.-E. Haque, Z.-G. Qin, S. Hand, and A.
Barker, “Google cluster-usage traces V3,” 2019. [Online]. Avail-
able: https://github.com/google/cluster-data

[6] M. Ribeiro, K. Grolinger, and M. A. Capretz, “MLaaS: Machine
learning as a service,” in Proc. IEEE 14th Int. Conf. Mach. Learn.
Appl., 2015, pp. 896–902.

[7] I. Baldini et al., Serverless Computing: Current Trends and Open Prob-
lems. Singapore: Springer, 2017, pp. 1–20.

[8] E. Jonas et al., “Cloud programming simplified: A berkeley view
on serverless computing,” 2019, arXiv: 1902.03383.

[9] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A green energy-efficient
scheduling algorithm using the DVFS technique for cloud data-
centers,” Future Gener. Comput. Syst., vol. 37, pp. 141–147, 2014.

[10] A. G. Kumbhare et al., “Prediction-based power oversubscription
in cloud platforms,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 473–487. [Online]. Available: https://www.usenix.org/
conference/atc21/presentation/kumbhare

[11] J. V. Gautam,H. B. Prajapati, V. K.Dabhi, and S. Chaudhary, “A sur-
vey on job scheduling algorithms in big data processing,” in Proc.
IEEE Int. Conf. Elect. Comput. Commun. Technol., 2015, pp. 1–11.

[12] Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, and F. C. Lau,
“Scheduling placement-sensitive BSP jobs with inaccurate execu-
tion time estimation,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 1053–1062.

[13] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495–503.

[14] I. Attiya, M. Abd Elaziz, and S. Xiong, “Job scheduling in cloud
computing using a modified Harris hawks optimization and sim-
ulated annealing algorithm,” Comput. Intell. Neurosci., vol. 2020,
2020, Art. no. 3504642.

[15] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving scheduling
heuristics via genetic programming with feature selection in
dynamic flexible job-shop scheduling,” IEEE Trans. Cybern.,
vol. 51, no. 4, pp. 1797–1811, Apr. 2021.

[16] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” in Proc. Pacific-Asia Conf.
Knowl. Discov. Data Mining, 2020, pp. 906–917.

[17] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee,
and M. Zaharia, “Heterogeneity-aware cluster scheduling policies
for deep learning workloads,” in Proc. 14th USENIX Symp. Operat-
ing Syst. Des. Implementation, 2020, pp. 481–498.

[18] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-
aware task dispatching and scheduling in edge computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270–1286,
Jun. 2020.

[19] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of
multi-stage jobs to minimize the total weighted job completion
time,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 864–872.

[20] K. Psychas and J. Ghaderi, “Scheduling jobs with random
resource requirements in computing clusters,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 2269–2277.

[21] Y. Liu, H. Xu, and W. C. Lau, “Online job scheduling with
resource packing on a cluster of heterogeneous servers,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 1441–1449.

[22] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495–503.

[23] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau,
“OnDisc: Online latency-sensitive job dispatching and scheduling
in heterogeneous edge-clouds,” IEEE/ACM Trans. Netw., vol. 27,
no. 6, pp. 2472–2485, Dec. 2019.

[24] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends� Mach. Learn., vol. 4, no. 2, pp. 107–194, 2012.

[25] X. Tan, B. Sun,A. Leon-Garcia, Y.Wu, andD.H. Tsang, “Mechanism
design for online resource allocation: A unified approach,” Proc.
ACMMeas. Anal. Comput. Syst., vol. 4, no. 2, pp. 1–46, Jun. 2020.

[26] H. Zhao et al., “DPoS: Decentralized, privacy-preserving, and low-
complexity online slicing for multi-tenant networks,” IEEE Trans.
Mobile Comput., to be published, doi: 10.1109/TMC.2021.3074934.

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/google/cluster-data
https://www.usenix.org/conference/atc21/presentation/kumbhare
https://www.usenix.org/conference/atc21/presentation/kumbhare
http://dx.doi.org/10.1109/TMC.2021.3074934

[27] H. Zhao, S. Deng, Z. Xiang, and J. Yin, “Online social welfare max-
imization with spatio-temporal resource mesh for serverless,”
2021, arXiv:2112.02456.

[28] R. Combes,M. S. Talebi,A. Proutiere, andM.Lelarge, “Combinatorial
bandits revisited,” inProc. 28th Int. Conf.Neural Inf. Process. Syst., 2015,
pp. 2116–2124.

[29] R. Degenne and V. Perchet, “Combinatorial semi-bandit with
known covariance,” in Proc. 30th Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 2972–2980.

[30] T. Cuvelier, R. Combes, and E. Gourdin, “Statistically efficient,
polynomial-time algorithms for combinatorial semi-bandits,” Proc.
ACMMeas. Anal. Comput. Syst., vol. 5, no. 1, 2021, Art. no. 09.

[31] T. Roughgarden, “Algorithmic game theory,” Commun. ACM,
vol. 53, no. 7, pp. 78–86, 2010.

[32] B. Sun, A. Zeynali, T. Li, M. Hajiesmaili, A. Wierman, and D. H.
Tsang, “Competitive algorithms for the online multiple knapsack
problem with application to electric vehicle charging,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 4, no. 3, 2020, Art. no. 51.

[33] Z. Hu, B. Li, C. Chen, and X. Ke, “FlowTime: Dynamic scheduling
of deadline-aware workflows and ad-hoc jobs,” in Proc. IEEE 38th
Int. Conf. Distrib. Comput. Syst., 2018, pp. 929–938.

[34] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed
redundant placement for microservice-based applications at the
edge,” IEEE Trans. Services Comput., vol. 15, no. 3, pp. 1732–1745,
May/Jun. 2022.

[35] A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for good-
put-optimized deep learning,” in Proc. 15th USENIX Symp. Operat-
ing Syst. Des. Implementation, 2021, pp. 1–18.

[36] Y. Peng, Y. Bao, Y. Chen, C.Wu, C.Meng, andW. Lin, “DL2: A deep
learning-driven scheduler for deep learning clusters,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 8, pp. 1947–1960, Aug. 2021.

[37] M. Yu, C. Wu, B. Ji, and J. Liu, “A sum-of-ratios multi-dimen-
sional-knapsack decomposition for DNN resource scheduling,” in
Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[38] H. Xu, Y. Liu, W. C. Lau, J. Guo, and A. Liu, “Efficient online
resource allocation in heterogeneous clusters with machine varia-
bility,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 478–486.

[39] R. Burra, C. Singh, and J. Kuri, “Service scheduling for bernoulli
requests and quadratic cost,” in Proc. IEEE Conf. Comput. Com-
mun., 2019, pp. 2584–2592.

[40] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. M. Leung, “Tailored
learning-based scheduling for kubernetes-oriented edge-cloud
system,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

Hailiang Zhao received the BS degree from the
School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China, in
2019. He is currently working toward the PhD
degree with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
His research interests include cloud & edge com-
puting, distributed systems, and optimization algo-
rithms. He has published several papers in flagship
conferences and journals including IEEE ICWS
2019, the IEEE Transactions on Parallel and Dis-

tributed Systems, IEEE Transactions on Mobile Computing, etc. He has
been a recipient of the Best Student Paper Award of IEEE ICWS 2019. He
is a reviewer of the IEEE Transactions on ServicesComputing and Internet
of Things Journal.

ShuiguangDeng (Senior Member, IEEE) received
the BS and PhD degrees in computer science from
Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a full professor with the
College of Computer Science and Technology,
Zhejiang University. He previously worked with the
Massachusetts Institute of Technology in 2014 and
Stanford University in 2015 as a visiting scholar.
His research interests include edge computing,
service computing, cloud computing, and business
process management. He serves for the journal

IEEE Transactions on Services Computing, Knowledge and Information
Systems,Computing, and IETCyber-Physical Systems: Theory & Applica-
tions as an associate editor. Up to now, he has published more than 100
papers in journals and refereed conferences. In 2018, he was granted the
Rising Star Award by IEEETCSVC. He is a fellowof the IET.

Feiyi Chen received the BS degree from the
School of Computer Science and Engineering, Sun
Yat-sen University (SYSU), Guangzhou, China, in
2021. She is currently working toward the master
degree with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
Her research interests include cloud computing,
edge computing, and distributed systems.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU), in 2001.
He was a visiting scholar with the Georgia Institute
of Technology. He is currently a full professor with
the College of Computer Science, ZJU. Up to now,
he has published more than 100 papers in top
international journals and conferences. His cur-
rent research interests include service computing
and business process management. He is an
associate editor of the IEEE Transactions on
Services Computing.

Schahram Dustdar (Fellow, IEEE) is a full profes-
sor of computer science (informatics) with a focus
on Internet Technologies heading the Distributed
Systems Group, TU Wien. He is the founding co-
editor-in-chief of the ACM Transactions on Internet
of Things (ACM TIoT) as well as the editor-in-chief
of the Computing (Springer). He is an associate
editor of the IEEE Transactions on Services Com-
puting, IEEE Transactions on Cloud Computing,
ACM Computing Surveys, ACM Transactions on
the Web, and ACM Transactions on Internet Tech-

nology, as well as on the editorial board of the IEEE Internet Computing
and IEEEComputer. He is a recipient ofmultiple awards: TCI Distinguished
Service Award (2021), IEEE TCSVC Outstanding Leadership Award
(2018), IEEE TCSC Award for Excellence in Scalable Computing (2019),
ACM Distinguished Scientist (2009), ACM Distinguished Speaker (2021),
IBMFaculty Award (2012). He is an electedmember of theAcademiaEuro-
paea: The Academy of Europe, where he is the chairman of the Informatics
Section, aswell as an Asia-Pacific Artificial Intelligence Association (AAIA)
president (2021) and a fellow (2021). He is an EAI fellow (2021) and an
I2CICC fellow (2021). He is a member of the 2022 IEEE Computer Society
FellowEvaluatingCommittee (2022).

Albert Y. Zomaya (Fellow, IEEE) is Peter Nicol
Russell chair professor of Computer Science and
director of the Centre for Distributed and High-Per-
formance Computing with the University of Sydney.
To date, he has published 700 scientific papers
and articles and is (co-)author/editor of 30 books. A
sought-after speaker, he has delivered 250 keynote
addresses, invited seminars, and media briefings.
He is currently the editor in chief for ACM Comput-
ing Surveys and served in the past as editor in chief
for IEEE Transactions on Computers (2010–2014)

and IEEE Transactions on Sustainable Computing (2016–2020). He is a
decorated scholar with numerous accolades including fellowship of the
American Association for the Advancement of Science, and the Institution
of Engineering and Technology. Also, he is a fellow of the Australian Acad-
emy of Science, Royal Society of New South Wales, foreign member of
Academia Europaea, and member of the European Academy of Sciences
and Arts. Some of he recent awards include the New South Wales
Premiers Prize of Excellence in Engineering and Information and Commu-
nications Technology (2019) and the Research Innovation Award, IEEE
Technical Committee on Cloud Computing (2021). His research interests
lie in parallel and distributed computing, networking, and complex systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHAO ETAL.: LEARNING TO SCHEDULE MULTI-SERVER JOBSWITH FLUCTUATED PROCESSING SPEEDS 245

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 05,2022 at 10:48:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

