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a b s t r a c t

In view of the coarse and fine changes of process variable in industrial systems, this paper introduces
a univariate alarm design method based on dynamic evidence fusion. Firstly, in order to describe
the coarse statistical characteristics of historical sample data, the multi-transition data segmentation
based on memory and forgetting strategies and the referential evidential matrix (REM) construction
are presented. Secondly, the real-time sample of process variable is transformed into alarm evidence by
matching with REM, and then such multiple pieces of alarm evidence continuously acquired in time are
fused by evidence reasoning (ER) rule with the interval-valued fusion weights and reliabilities of alarm
evidence, so as to accurately adapt the fine change of process variable. Finally, numerical experiment
and motor rotor alarm experiment are implemented to validate that the proposed method has better
performances than traditional alarm design methods.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Industrial alarm systems monitor process variables in real
ime to ensure safe, efficient and continuous operation of in-
ustrial equipment [1,2]. The common univariate alarm methods
nclude direct threshold method, deadband, filtering and time
elay [3]. Among them, the direct threshold method is to compare
ample values of process variable with alarm threshold, once the
ample value exceeds the threshold, an alarm will be issued,
therwise no alarm will be issued [4]; The deadband uses high
nd low alarm thresholds, when the sample value is higher than
he high threshold, an alarm is issued, and when the sample value
s lower than the low threshold, the alarm is cleared [5]; The
ime delay only issues an alarm when the sample value exceeds
larm threshold for several consecutive times [6]; Filtering uses
oving average or moving variance strategy to process sample
alues, and then compares the filtered value with threshold [7].
ith the increasing complexity of equipment, the influence of

nterference in operating conditions, and the design constraints
f the parameters such as alarm threshold, the performance of
hese traditional alarm methods are inadequate.

∗ Corresponding author.
E-mail address: xuxiaobin1980@163.com (X. Xu).
ttps://doi.org/10.1016/j.jprocont.2022.03.007
959-1524/© 2022 Elsevier Ltd. All rights reserved.
The performance of alarm methods need to be evaluated by
corresponding indicators. [8] proposed to use average alarm delay
(AAD), false alarm rate (FAR) and missed alarm rate (MAR) as
vital evaluation indicators, which have been widely used in alarm
methods. Among them, AAD evaluates the punctuality of alarm
method when abnormal states occur, while FAR and MAR reflect
the accuracy of alarm method in identifying normal/abnormal
states. Too high AAD means too little time for on-site disposal,
too high FAR and MAR indicate that the performances of alarm
method are unsatisfactory.

In order to fully improve the performances of univariate alarm,
it is necessary to focus on the coarse and fine changes of process
variable, which respectively correspond to two main processes
in alarm design: one is data preprocessing of historical sample
data at the macroscopic level, and the other is dynamic parameter
adjustment at the microscopic level [9,10]. The former is a typical
data segmentation problem, and its purpose is to divide historical
data into normal/abnormal data segments as the training set via
the detected change points (namely the switching points between
different normal and abnormal states of process variable), and
then to train the parameters such as alarm threshold. In addition
to the alarm design scenario, data segmentation is also applicable
to process monitoring, fault detection and diagnosis, and other in-
dustrial scenarios. The latter is to appropriately adjust the design

https://doi.org/10.1016/j.jprocont.2022.03.007
http://www.elsevier.com/locate/jprocont
http://www.elsevier.com/locate/jprocont
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arameters with the dynamic change of process variable. In short,
he purpose of the former is to mine the coarse statistical charac-
eristics of historical data of process variable, while the latter is to
ccurately capture the fine change of real-time sample of process
ariable, and gives necessary response through dynamic parame-
er adjustment. Further, the main difference between the coarse
nd fine description of process variable is the usage of temporal
nformation, the coarse description uses the data information of
he historical moment, and on this basis, the fine description uses
he data information of the current moment.

For the historical data segmentation, hypothesis testing and
tatistical model are two commonly used methods [11]. The
ypothesis testing method requires the data conform to prob-
bility distributions, then the data are segmented via statistic
trategies [12]. The statistical model method assumes that the
ata satisfy mathematical statistical laws, then divides the data by
tatistical indicators [13]. Obviously, these two methods need to
ive the initial distribution or model structure of process variable
n advance, but it is often difficult to accurately obtain this prior
nformation in practice. In addition, these methods are usually
ood at handling the sample sequence with only one transi-
ion between normal and abnormal state, but in practice there
re often multiple transitions between normal and abnormal
tates, where the multiple transitions include one normal state
hanging to multiple abnormal states, and multiple normal states
hanging to multiple abnormal states. Therefore, it is necessary
o provide methods to solve this complex multi-transition data
egmentation problem.
For the dynamic parameter adjustment, deadband, filtering,

nd time delay methods need to adjust many parameters such
s dead zone interval, filter order, delay step and alarm thresh-
ld [14]. These traditional methods usually need to get probability
ensity function (PDF) model by fitting of historical data, then
he optimal parameters are obtained by offline optimization. On
he one hand, PDF hardly describe the dynamic change of data
nformation. On the other hand, after the pivotal parameters are
etermined offline, it is difficult to make timely adjustments
ccording to the fine change of real-time sample. It probably
akes these traditional alarm methods ineffective in practical
pplication.
In fact, the historical data segmentation and dynamic param-

ter adjustment can be attributed to the analysis and processing
f the uncertainty of process variable under the coarse and fine
hanges essentially. The Dempster–Shafer (DS) theory of evi-
ence originated from Bayesian theory [15], defines the set of
ormal and abnormal states as a frame of discernment (FoD),
nd constructs evidence on the power set of FoD. Moreover, it
lso provides optional evidence combination rules to effectively
educe the uncertainty of process variable through evidence fu-
ion process [16–18]. In addition, the newly developed evidence
easoning (ER) rule clearly recognizes the difference between
he fusion weight of evidence and reliability of evidence during
usion process, and more effectively focus the probability (belief
egree) on real states, so as to reduce the uncertainty in making
ecision [19]. [20] uses the Jeffery-like evidence linear updating
ule to design univariate alarm. Wherein, the process variable is
ransformed into alarm evidence by fuzzy membership function,
hen the historical and current alarm evidence are fused based on
he linear updating rule, and finally the alarm-decision is made
ia the fused alarm evidence. However, due to the information
oss in generating evidence, and the limited response of linear
usion mechanism to dynamic fine change of process variable,
here is still room for improvement in alarm evidence fusion
trategy.
Therefore, considering the coarse and fine changes of process
ariable, this paper proposes a novel univariate alarm design
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method based on dynamic evidence fusion, which mainly in-
cludes: (1) The coarse description of process variable. Firstly, the
initial Mann–Kendall (MK) method is improved via the mem-
ory and forgetting strategies to divide historical sample data.
It is suitable for the detection of several transitions, and can
obtain multiple change points and diverse data segments with-
out any prior knowledge. Then, the referential evidential matrix
(REM) is established to realize the transformation of process
variable to referential alarm evidence. Such data preprocessing
and REM construction fully abstract the coarse statistical char-
acteristics of historical data. (2) The fine description of process
variable. First, the real-time sample activates REM to get the
current alarm evidence. Then a newly dynamic ER rule con-
sidering interval-valued fusion weight is proposed, which can
dynamically fuse current and historical alarm evidence to get
current global alarm evidence. Among them, in order to accu-
rately adapt the fine change of process variable, unlike the initial
ER rule that the reliability and fusion weight are fixed, the new
ER rule calculates the reliability online via the forgetting strat-
egy, and describes the interval-valued fusion weight by random
variable. Thus, the dynamic parameter adjustment can adapt the
fine change of real-time data information, and realize efficient
integration of historical and current alarm information. Finally,
the precise alarm-decision is made based on the current global
alarm evidence.

This paper is organized as follows: Section 2 introduces the
basic concept of DS theory and alarm performance indicators;
Section 3 presents the alarm design method based on dynamic
evidence fusion; In Section 4, a numerical experiment and a
motor rotor alarm experiment are given to illustrate the effec-
tiveness of the proposed method; Finally, this study is concluded
in Section 5.

2. Theoretical basis

2.1. Evidence reasoning rule in DS theory

In DS theory, there is a collectively exhaustive and mutually
exclusive set of propositions, denoted by Θ = {H1,H2, . . . ,Hn},
called a frame of discernment (FoD), and P(Θ) = 2Θ =

∅,H1, . . . ,Hn,H1,H2, . . . ,Θ} consists of Θ and all its subsets
are called a power set of Θ . A basic belief assignment function
(also called BBA or evidence) on Θ is a function m:P(Θ) → [0,
1], which satisfies m(∅) = 0 and

∑
θ⊆P(Θ) m(θ ) = 1, wherein the

belief degree of supporting the proposition θ is m(θ ) [21].
In ER rule, a piece of evidence e is profiled by the following

belief distribution form [22]

e = {(θ,m(θ ))|∀θ ⊆ Θ,
∑
θ⊆Θ

m(θ ) = 1} (1)

intuitively, e is the ‘‘number pairs’’ form of m. Each piece of
evidence is associated with reliability r and fusion weight w
respectively, r, w ∈ [0, 1]. Then the evidence e with reliability
and fusion weight can be profiled by

ẽ = {(θ, m̃(θ ))|∀θ ⊆ Θ; (P(Θ), m̃(P(Θ)))} (2)

˜ (θ ) =

{ 0
crwm(θ )
crw(1 − r)

θ = ∅
θ ⊆ Θ, θ ̸= ∅
θ = P(Θ)

(3)

here crw is a normalization factor of reliability and fusion weight
s follows

rw =
w

1 + w − r
(4)

When two pieces of independent evidence e1 and e2 with
reliabilities (r , r ) and fusion weights (w , w ) respectively are
1 2 1 2
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used, the joint evidence to support the proposition θ can also be
btained by

(θ )e(2) = [m1 ⊕ m2](θ )

=

⎧⎨⎩
0, θ = ∅

m̂(θ )e(2)∑
D⊆Θ m̂(D)e(2)

, θ ⊆ Θ, θ ̸= ∅

m̂(θ )
e(2)

= [(1 − r2)w1m(θ )1 + (1 − r1)w2m(θ )2]

+

∑
B∩C=θ

w1m(B)1w2m(C)2, ∀θ ⊆ Θ

(5)

In addition, the evidence distance between two pieces of evi-
dence m1 and m2 can be measured as [23]

dJ (m1,m2) =

√
1
2
(m1 − m2)TD(m1 − m2) (6)

here the Jaccard coefficient D is a n×n matrix, its elements
atisfy: ∀A, B ∈ 2Θ ,D(A, B) = |A ∩ B|/|A ∪ B|. In the univariate
alarm system context, the D is a 3 × 3 matrix, that is

=

[ 1 0 1/2
0 1 1/2

1/2 1/2 1

]
(7)

dJ (m1, m2) takes 0 means these two evidence are exactly same,
and takes 1, otherwise. The similarity measure between m1 and

2 is

im(m1,m2) = 1 − dJ (m1,m2) (8)

obviously, Sim(m1, m2) ∈ [0, 1]
For the design of univariate alarm systems, the FoD Θ =

A(Alarm), NA(Non-Alarm)}, so the alarm evidence is m = (m(A),
(NA), m(Θ)). Among them, the belief degree of supporting the

propositions ‘‘Alarm’’ and ‘‘Non-Alarm’’ are m(A) and m(NA) re-
spectively, and m(Θ) represents the complete unknown for these
two propositions. Obviously, if the sum of m(A) and m(NA) is 1,
m(Θ) = 0.

2.2. Performance indicators in industrial alarm

The x(t) is discrete sample signal of process variable x, the
sample period is h, and xtp is alarm threshold for safe operation of
equipment. There are alarm generation mechanisms: when x(t)
≥ xtp, alarm; when x(t) < xtp, no alarm. Obviously, the random
change of x(t) and the improper selection of xtp will lead to false
alarm and missed alarm: when process variable x(t) is in normal
state, the alarm given by alarm system is false alarm; when x(t) is
in abnormal state, the alarm not issued by alarm system is missed
alarm. Therefore, the two performance indicators of the alarm
system are derived: false alarm rate (FAR) and missed alarm rate
(MAR) [24]:

FAR = (FA/(FA + TN)) × 100% (9)

MAR = (MA/(MA + TA)) × 100% (10)

among them, TN and FA are respectively the number of non-
alarms and the number of false alarms when x(t) is in normal
state; MA and TA are respectively the number of missed alarms
and the number of alarms when x(t) is in abnormal state.

The time when x(t) is in the abnormal state is t0, and the alarm
system will give an alarm at ta, then the alarm delay Td is defined
as [25]

Td = ta − t0 (11)

if x(t) has multiple transitions from normal state to abnormal
state, the average alarm delay (AAD) is defined as the average
value of Td, namely
AAD = Mean(Td) (12)
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3. Alarm design method based on dynamic evidence fusion

3.1. Framework

To describe and adapt the coarse and fine changes of process
variable, and further improve the performance of the univariate
alarm system, the following six-step framework is proposed. To
describe the coarse change of process variable, Section 3.2 first
introduces the data preprocessing based on multi-transition data
segmentation (step 1) and the construction of REM (step 2). To
adapt the fine change of process variable, Section 3.3 exhibits
the alarm design method based on dynamic evidence fusion,
which includes the last four steps: acquire current alarm evidence
mt = (mt (A), mt (NA), mt (Θ)) (step 3); calculate reliability and
interval-valued fusion weight of alarm evidence (step 4); obtain
current global alarm evidence m1:t = (m1:t (A), m1:t (NA), m1:t (Θ))
by dynamic fusion of historical global alarm evidence m1:t−1 =

(m1:t−1(A), m1:t−1(NA), m1:t−1(Θ)) and mt (step 5); and make
alarm-decision based on m1:t (step 6). The whole process of the
designed univariate alarm method is shown in Fig. 1.

Step 1 (Multi-transition data segmentation): Establish the mem-
ory and forgetting strategies to improve the initial MK method
for multi-transition data segmentation. Namely the detected first
change point and its subsequent sample points are selectively
memorized, and the sample points before the first change point
are intentionally forgotten, so as to continuously obtain multiple
change points and diverse data segments in historical sample
data, and the corresponding label is added to each sample point
to form sample pair. More details are presented in Section 3.2.1.

Step 2 (The construction of REM): Based on the divided his-
torical sample data obtained in step 1, the referential evidential
matrix (REM) is constructed by calculating the similarity distribu-
tion of each sample pair in historical sample data, which is used
for the transformation of process variable to referential alarm
evidence, and realizes the accurate description of the coarse
statistical characteristics of historical sample data. More details
can be found in Section 3.2.2.

Step 3 (Acquisition of current alarm evidence): The real-time
sample of process variable x(t) activates the REM to obtain the
current alarm evidence mt . More details are presented in Sec-
tion 3.3.1.

Step 4 (Calculation of reliability and interval-valued fusion weight
of alarm evidence): Before using dynamic ER rule to fuse the cur-
rent alarm evidence mt and the historical global alarm evidence
m1:t−1, the first thing to be solved is how to adjust the reliability
and fusion weight of the corresponding alarm evidence. There-
fore, a new dynamic ER rule considering interval-valued fusion
weight is proposed. Wherein, the reliability is calculated online
according to the forgetting strategy, the interval-valued fusion
weight is described by random variable with certain probability
distribution characteristics, so as to fully adapt to the dynamic
fine change of real-time sample. More details can be found in
Section 3.3.2.

Step 5 (Dynamic fusion of current and historical alarm evidence):
On the basis of the real-time online calculation of reliability and
the timely adjustment of interval-valued fusion weight, this step
extends the initial ER rule with fixed fusion weight and reliability
to the new dynamic ER rule, which is used for dynamic fusion
of current alarm evidence mt = (mt (A), mt (NA), mt (Θ)) and
historical global alarm evidence m1:t−1 = (m1:t−1(A), m1:t−1(NA),
m1:t−1(Θ)) to obtain current global alarm evidence m1:t = (m1:t
(A),m1:t (NA),m1:t (Θ)). More details are presented in Section 3.3.3.

Step 6 (Alarm-decision making based on current global alarm
evidence): Based on the given alarm-decision criteria, the accu-
rate alarm-decision is made according to current global alarm
evidence m . More details can be found in Section 3.3.4.
1:t
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Fig. 1. The flowchart of the designed univariate alarm method.
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.2. The coarse description of process variable via data segmentation
nd REM

.2.1. Multi-transition data segmentation
Step 1.1: The x(t)Tt=1 is divided into T segments with lengths 1,

, . . . , T, and the first sample point of each segment is x(1). Then
he nth segment can be expressed as Fn = [x(1), x(2), . . . , x(n)], 1≤
≤ T. For the segment Fn, the rank sequence sk can be defined as

k =

k∑
i=1

zi, k = 2, 3, . . . , n (13)

mong them

i =

{
1, x(i) > x(j)
0, x(i) ≤ x(j) j = 1, 2, . . . , i (14)

bviously, the rank sequence sk is the cumulative number that
(i) at the ith time is greater than x(j) at the jth time.
Step 1.2: The forward statistics of standard normal distribution

F k is defined as follows

Fk =
[sk − Mean(sk)]

√
Var(sk)

, k = 1, 2, . . . , n (15)

here UF 1 = 0, the mean and variance of sk are represented by
Mean (sk) and Var (sk) respectively, as shown below

Mean(sk) = n(n + 1)/4, k = 2, 3, . . . , n
ar(sk) = n(n − 1)(2n + 5)/72, k = 2, 3, . . . , n

(16)

Step 1.3: Similarly, the above process is repeated according
to the reverse order x(T ), x(T − 1), . . . , x(1), and the reverse
statistics of standard normal distribution UBk is calculated by
Eqs. (13)–(16). Obviously, UBk = −UF k, UB1 = 0.

Step 1.4: ±U1−α/2 is the (1 − α/2) quantile, and α is the
given significance level. According to the memory and forgetting
strategies, segment Fn is extended as far as possible until the
following two conditions are met, the data length of segment
Fn stops increasing, and the intersection is marked as the first
change point x(t1), x(t1)∈Fn. Then, x(t1) is remembered as the new
starting point of historical data, step 1.1∼step 1.3 are repeated
in many times until all the change points are found, and all of
them are represented as x(tq), q = 1,2, . . . , Q, Q is the number of
detected change points.

Condition 1. The reverse statistics of standard normal distribu-
tion UBk enters the range of the critical line ±U1−α/2 for the first
time;
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Condition 2. When Condition 1 is satisfied, the statistics of stan-
dard normal distribution UF k and UBk have an intersection be-
tween the critical line ±U1−α/2.

Remark 1. Currently, there are some improved methods based on
traditional data segmentation methods so as to apply to the mul-
tiple transitions situation. [8] revised traditional Pettitt method
by adopting the idea of bisection method to find multiple change
points. [26,27] sliced the data through a sliding window model,
divided the complete data into sequential sub-windows, and then
performed multiple detections to locate the change points. These
improved methods introduce additional parameters such as trip
point and window width, and these parameters restrict the effect
of data segmentation to some extent.

The MK method suitable for single change point detection,
which is based on the mean change between adjacent data seg-
ments to determine change points and divide data segments [28].
Obviously, the nonparametric MK method can effectively avoid
the problems of the above parametric detection methods, such as
the need to know initial distribution or signal model structure of
process variable. But in practice, the sample sequence must have
multiple change points, not just one change point, so the initial
MK method is not applicable. In fact, for the first mean change of
sample sequence, once the MK method detects the change time
and its corresponding sample point, the sample point is regarded
as the first change point. At this time, the statistical character-
istics of all sample points before the first change point have
been fully utilized. Briefly, in the sample sequence, the statistical
characteristics of the sample points after the first change point
play a direct role in the detection of the second change point,
rather than the statistical characteristics of the sample points
before the first change point. Hence, according to the memory
and forgetting principle of cognitive science [29], the original MK
method is improved to solve this complex multi-transition data
segmentation problem.

Remark 2. The proposed multi-transition data segmentation al-
gorithm needs to satisfy the following two assumptions: (1) the
historical sample sequence of the process variable x(t) has differ-
ent mean values under normal and abnormal states; (2) different
mean values corresponding to different states of the process
variable x(t) are known. Based on full understanding of industrial
rocess, these two assumptions can be established through prior
nowledge learning.

.2.2. The construction of REM
Step 2.1: According to the change points obtained in step

, the historical data is divided into normal and abnormal data
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Table 1
Referential evidential matrix table.

y(t)
x(t)

e1 e2 e3 · · · ẽa
R1 R2 R3 · · · R̃a

Y1 β1,1 β1,2 β1,3 · · · β1,̃a
Y2 β2,1 β2,2 β2,3 · · · β2,̃a

segments, and the corresponding sample labels ‘‘Alarm (A)’’ and
‘‘Non-Alarm (NA)’’ are added respectively, which contains T sam-
le pairs, denoted as Z = [x(t), y(t)], x(t) and y(t) are the input and

output of the designed alarm system respectively. The reference
values set of input x(t) is R = {Rã|ã = 1, 2, . . . , a}, a is the
number of input reference values, and the specific values of Rã are
determined according to expert knowledge; the reference values
set of output y(t) is Y = {Yb̃|b̃ = 1, 2}, Y1 = 0, Y2 = 1, the output
reference values 0 and 1 represent non-alarm action ‘‘NA’’ and
alarm action ‘‘A’’ respectively. Thus, the relationship between x(t)
and y(t) can be approximately represented by the relationship
between input reference values and output reference values.

Step 2.2: The similarity distribution V (x(t)) of the input x(t)
about R can be calculated by information transformation meth-
ods:
V (x(t)) = {(Rã, αã)|ã = 1, 2, . . . , a}
αã = (Rã+1 − x(t))/(Rã+1 − Rã)
αã+1 = (x(t) − Rã)/(Rã+1 − Rã)

(17)

where, αã and αã+1 represent the similarity of x(t) matching Rã
and Rã+1 respectively, obviously Rã + Rã+1 = 1.

Step 2.3: Because y(t) can only take the discrete value Yb̃, the
similarity distribution V (y(t)) of y(t) about Y is

V (y(t)) = {(Yb̃, λb̃)|b̃ = 1, 2}
λb̃ = 1, when y(t) = Yb̃, otherwise λb̃ = 0

(18)

Therefore, each sample pair (x(t), y(t)) in Z can be converted into
the form of comprehensive similarity distribution
(αãλb̃, αã+1λb̃, αãλb̃+1, αã+1λb̃+1), αã,b̃ is the comprehensive sim-
ilarity of x(t) matching Rã and y(t) matching Yb̃. δã,b̃ is the sum
of all αã,b̃ in Z, ψb̃ =

∑a
ã=1 δã,b̃ is the sum of comprehensive

similarity of all y(t) matching Yb̃ in Z, ηã =
∑2

b̃=1 δã,b̃ is the
sum of comprehensive similarity of all x(t) matching Rã in Z, and∑2

b̃=1 ψb̃ =
∑a

ã=1 ηã = T .
Step 2.4: When the input x(t) is the reference value Rã, the

belief degree that the output y(t) is the reference value Yb̃ is

βã,b̃ = (δã,b̃/ψb̃)/
2∑

b̃=1

(
δã,b̃/ψb̃

)
(19)

and the referential alarm evidence eã is obtained

eã = {(NA, βã,1), (A, βã,2)} (20)

The REM as shown in Table 1 is established to describe the
relationship between input x(t) and output y(t).

3.3. The fine description of process variable based on dynamic evi-
dence fusion

In engineering practice, whether the industrial equipment is in
normal state or abnormal state, the operation state of the equip-
ment before and after has certain correlation. That is to say, the
correct decision of ‘‘Alarm (A)’’ and ‘‘Non-Alarm (NA)’’ are often
made by integrating the historical and current process variable
information, rather than only based on the current state change

of process variable, because the latter is likely to be caused by the
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measurement error in sensor or environmental interference. The
evidence reasoning (ER) rule is widely used in the fusion of multi-
source evidence with its strict probabilistic reasoning process and
rigorous logical reasoning mechanism. Hence, the ER rule can
be used to fuse the historical global alarm evidence m1:t−1 and
the current alarm evidence mt to get the current global alarm
evidence m1:t , which is the best judgment of the current state
of the equipment and greatly eliminates the influence of various
uncertainty.

3.3.1. Acquisition of current alarm evidence
Step 3: The real-time sample of process variable x(t) must

be in interval [Rã, Rã+1], then the current alarm evidence mt
corresponding to x(t) can be obtained by the weighted sum of
the activated referential alarm evidence eã and eã+1

mt = (mt (NA),mt (A),mt (Θ))
mt (NA) = αãβ1,ã + αã+1β1,ã+1

mt (A) = αãβ2,ã + αã+1β2,ã+1

(21)

among them, mt (A) and mt (NA) are the belief degree of support-
ing propositions ‘‘Alarm (A)’’ and ‘‘Non-Alarm (NA)’’ respectively,
and mt (A) + mt (NA) = 1. The common alarm design methods
are based on whether x(t) exceeds the alarm threshold xtp to
absolutely assigns probability 1 to ‘‘A’’ or ‘‘NA’’. Compared with
them, the proposed alarm evidence generating mechanism can
be regarded as the lossless transformation process from pro-
cess variable information to alarm evidence. Note that since the
sum of mt (A) and mt (NA) is 1, there is no situation where the
propositions ‘‘A’’ and ‘‘NA’’ are completely unknown, so mt (Θ) =

0.

3.3.2. Calculation of reliability and interval-valued fusion weight of
alarm evidence

Step 4.1: According to similarity measure between the corre-
sponding alarm evidence, the forgetting strategy is established to
adjust the reliability of current and historical alarm evidence. The
reliability r1:t−1 of historical global alarm evidence m1:t−1, and the
reliability rt of current alarm evidence mt are

r1 : t−1 =

t−1∑
t=t−l

rt

/
l

rt = r1 : t−1 + r0 ∗ τ ∗ φ

s.t. 0 ≤ r1 : t−1, rt ≤ 1

(22)

φ = (Sim(mt , eB))/(Sim(m1 : t−1, eB) + Sim(mt , eB)) (23)

among them, the reliability r1:t−1 of m1:t−1 is given by the av-
erage value of the reliabilities at the previous l moments, and
l depends on the sample size; r0 is initial reliability, generally
r0 = 0.5; τ is reward and punishment function, when both
m1:t−1 and mt support propositions ‘‘A’’ or ‘‘NA’’ at the same time,
τ = 1, otherwise τ = −1; eB is standardized alarm evidence,
when m1:t−1 or mt supports proposition ‘‘A’’, eB = (0, 1, 0), and
when m1:t−1 or mt supports proposition ‘‘NA’’, eB = (1, 0, 0); φ
is forgetting enhancement factor, which can be given according
to the similarity measure between eB and mt , and the similarity
measure between eB and m1:t−1 comprehensively.

Step 4.2: The interval-valued fusion weight of correspond-
ing alarm evidence is characterized by continuous random vari-
able with uniform distribution. The interval-valued fusion weight
W1:t−1 of m1:t−1, and interval-valued fusion weight Wt of mt are

Wt ∼ U(w−

t , w
+

t )
W1 : t−1 ∼ U(w−

1 : t−1, w
+

1 : t−1) (24)

s.t.0 ≤ W1 : t−1,Wt ≤ 1
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−

t = wc_tp − d̃, w+

t = wc_tp + d̃
−

1 : t−1 = wh_tp − d̃, w+

1 : t−1 = wh_tp + d̃
(25)

mong them, the historical sample data is used as the training
et, and the initial ER rule with fixed fusion weights is used to
use current and historical alarm evidence, wc_tp and wh_tp are
he optimal fusion weights of the current and historical alarm
vidence obtained based on training set respectively. This process
an be realized in Matlab toolbox by classical optimization algo-
ithms. d̃ is the evidence distance between m1:t−1 and mt through
q. (6). Note that wc_tp and wh_tp represents the contribution of
istorical data to interval-valued fusion weight, while d̃ reflects
he dynamic fine adjustment of current process variable infor-
ation to interval-valued fusion weight. So the Wt and W1:t−1
ccurately reflect the relationship between historical and current
rocess variable information.

emark 3. When the initial static ER rule is used for the fusion
f current and historical alarm evidence, the reliability and fusion
eight of corresponding alarm evidence are determined, and
ot change in each fusion on this condition. However, process
ariable information change dynamically, and the relationship
etween current and historical alarm evidence will also change.
n this case, continuing to use fixed reliability and fusion weight
or reasoning will reduce the trust of fusion result. Therefore, it is
ecessary to design dynamic ER rule, whose reliability and fusion
eight can be real-timely adjusted according to the relationship
etween corresponding alarm evidence, so as to ensure the cor-
ect reasoning, accurately adapt the fine change of the process
ariable, and improve the efficiency of alarm evidence fusion.

Tracing back to the origin of ER rule, the reliability r objec-
ively represents the accurate judgment ability of information
ource for a given problem, which is the inherent nature of
vidence itself and will not be affected by other evidence. The
usion weightw subjectively represents the importance of current
vidence relative to other evidence. Due to the subjective nature
f the fusion weight, it may fluctuate irregularly over time, and
as no obvious statistical characteristics. It is impossible to obtain
ccurate values through function modeling and calculation, so
he fusion weight can only be obtained in the interval form. In
ontrast, the reliability may also change over time, but for a fixed
nformation source, a more reasonable and accurate reliability can
e obtained on the basis of fully considering the fine change of
rocess variable and combining with the statistical characteristics
n a certain period. Hence, based on the above analysis of the
ifference between reliability and fusion weight, the thought of
ntentional forgetting and the interval form are adopted in each
usion.

emark 4. Based on the above analysis that the fusion weight
s described as interval form, it can be seen that the original
ntention of the interval-valued fusion weight is evenly to set the
usion weight with equal possibilities in the specified interval, in
rder to reflect its fluctuations characteristics in a certain range
ver time. The interval-valued fusion weight cannot be inter-
reted as taking values in a specific part of interval or absolutely
aking fixed values in the interval. Therefore, compared with
he probability distribution of continuous random variables such
s exponential distribution and normal distribution, the uniform
istribution is more suitable for characterizing interval-valued
usion weight due to its good probability characteristics.

.3.3. Dynamic fusion of current and historical alarm evidence
Step 5.1: The ER rule (Eq. (5)) in Section 2.1 is extended to the
larm design as Eq. (5) in Box I.
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Among them, reliabilities {rt , r1:t−1} and interval-valued fusion
weights {Wt , W1:t−1} of m1:t−1 and mt can be obtained by step 4
respectively, m(θ )e(2)1 : t is the fusion result of m1:t−1 and mt by using
the proposed dynamic ER rule. Obviously, m(θ )e(2)1 : t is an interval
value, the optimization model is as follows:

max /minm(θ )e(2)1 : t

st :Wt ∼ U(w−

t , w
+

t ),W1 : t−1 ∼ U(w−

1 : t−1, w
+

1 : t−1)
(27)

where m(θ )e(2)1 : t is calculated in Eq. (26), and some simple opti-
mization methods can be used to calculate the extreme value of
m(θ )e(2)1 : t .

Step 5.2: In order to facilitate the formulation of the final
alarm-decision, based on mathematical principles, the m1:t is
obtained by calculating the mathematical expectation of the
interval-valued fusion result m(θ )e(2)1 : t

m1 : t = E(m(θ )e(2)1 : t ), θ ⊆ Θ, θ ̸= 0 (28)

E(m(θ )e(2)1 : t ) =

∫∫
Ξ

m(θ )e(2)1 : t
1

w+

1 : t−1 − w−

1 : t−1

×
1

w+

t − w−

t
dW1 : t−1dWt (29)

here, E(•) represents the mathematical expectation of •, and Ξ
s the rectangular area determined by W1:t−1 and Wt .

.3.4. Alarm-decision making based on current global alarm evi-
ence
Step 6: After the iterative fusion in step 5, the current global

larm evidence m1:t = (m1:t (A), m1:t (NA), m1:t−(Θ)) is obtained,
nd the following alarm-decision criteria are given

f m1 : t (NA) ≥ m1 : t (A) , then output y (t) = 0, no alarm;

f m1 : t (NA) < m1 : t (A) , then output y (t) = 1, alarm. (30)

. Comparative analysis of experiments

This section demonstrates the design process of univariate
larm method based on dynamic evidence fusion through a nu-
erical simulation experiment (Experiment 1) and a motor rotor
larm experiment (Experiment 2), and verifies the effectiveness
f the designed alarm method. In Experiment 1, a piecewise
hite Gaussian random process with both average and variance
arying in intervals is used to generate process variable x(t);

Experiment 2 implements an alarm experiment on the multifunc-
tional motor rotor experimental platform, and uses the vibration
acceleration signal of the experimental platform as the process
variable x(t) in the designed alarm.

In these two experiments, the data preprocessing is imple-
mented first, and then multiple change points and diverse data
segments in historical sample data are obtained as training set.
Based on the training set, the REM of the proposed alarm design
method, the optimal alarm threshold in [20], the optimal alarm
thresholds of the moving average filter method under different
filter orders, and the optimal alarm thresholds of the time delay
method under different delay steps are obtained respectively.
Then, the proposed univariate alarm design method based on
dynamic evidence fusion (DF) is compared with the moving aver-
age filter method with different filter orders under optimal alarm
thresholds (AF), the combined on and off-time delay method with
different delay steps under optimal alarm thresholds (TD), and
the alarm evidence linear updating method (LU) in [20]. The
experimental results illustrate that the proposed DF method has
better effectiveness than traditional AF/TD/LU methods in im-
proving the accuracy and sensitivity, and achieving the trade-off
between accuracy and sensitivity.
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m(θ )e(2)1 : t =
(1 − rt )W1 : t−1m1 : t−1(θ ) + (1 − r1 : t−1)Wtmt (θ ) + W1 : t−1Wtm1 : t−1(θ )mt (θ )

(1 − rt )W1 : t−1 + (1 − r1 : t−1)Wt + W1 : t−1Wt
∑

Υ∈θ m1 : t−1(Υ )mt (Υ )
, θ ⊆ Θ, θ ̸= 0 (26)

Box I.
Fig. 2. The sample sequence of process variable x(t).
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.1. Experiment 1

The following piecewise white Gaussian random process with
oth average and variance varying in intervals is used to gener-
te the sample sequence of process variable x(t). Obviously, the

interval-valued average and variance reflect that the statistical
properties of x(t) are inaccurate and partly unknown (namely,
the coarse change of process variable). The segmentations cor-
responding to t < 500 and 1000 ≤ t < 1500 are normal data
egments, and the segmentations corresponding to 500 ≤ t <
000 and 1500 ≤ t < 2000 are abnormal data segments, and the

change points in the sample sequence of the process variable x(t)
are 500, 1000, and 1500 respectively, as shown in Fig. 2.⎧⎪⎨⎪⎩
x(t) ∼ N([0.2, 0.3], [0.5, 0.6]2) t < 500
x(t) ∼ N([1.2, 1.5], [0.5, 0.6]2) 500 ≤ t < 1000
x(t) ∼ N([0.2, 0.3], [0.5, 0.6]2) 1000 ≤ t < 1500
x(t) ∼ N([1.2, 1.5], [0.5, 0.6]2) 1500 ≤ t < 2000

(31)

Firstly, the preprocessing of the alarm design is carried out.
According to step 1, the sample sequence of process variable x(t)
is divided into 2000 segments: F1 = {x(1)}, F2 = {x(1), x(2)}, . . . ,
F2000 = {x(1), x(2), . . . , x(2000)}. Then, started from the segment
F1, calculate the forward statistics of standard normal distribution
UF k and the reverse statistics of standard normal distribution UBk
in each segment according to Eqs. (13)∼(16). Take the signifi-
cance level α = 0.05, consult the normal distribution chart to
get |U1−α/2| = 1.96. When segment F523 is calculated, UF 523 and
UB523 satisfy Conditions 1 and 2, and at t = 502, UF 523 and UB523
intersect in the range of critical line ±1.96, so x(502) is the first
change point in the sample sequence of x(t), as shown in Fig. 3.
Record x(502) as the new starting point in the sample sequence
of x(t), and repeat the above steps until two other change points
x(1001) and x(1499) in the sample sequence are found. Thus,
the sample sequence is divided into normal data segments {x(1,
501), x(1001, 1498)} and abnormal data segments {x(502, 1000),
74
Table 2
Classification of sample sequence into
normal and abnormal data.
Normal data Abnormal data

x(1, 501) x(502, 1000)
x(1001, 1498) x(1499, 2000)

Table 3
Referential evidential matrix table.

y(t) x(t)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

Y1 1 1 0.9884 0.9263 0.7325 0.326 0.0831 0.0252 0 0 0
Y2 0 0 0.0116 0.0737 0.2675 0.674 0.9169 0.9768 1 1 1

x(1499, 2000)} by combining the detected change points, and the
corresponding sample labels ‘‘Alarm (A)’’ and ‘‘Non-Alarm (NA)’’
are added respectively, as shown in Table 2. Take these 2000
sample pairs with sample labels as training set, combined with
expert knowledge, set the reference values set of input x(t) as
{−1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}, and the reference
values set of output y(t) as {0, 1}. According to the information
ransformation methods in step 2, use Eqs. (17)∼(20) to establish
he REM shown in Table 3. At the same time, based on the above
raining set, traverse the sample sequence of x(t) and combined
ith the ROC curve, the optimal alarm threshold xotp = 0.86

n [20], the optimal alarm thresholds of the moving average filter
nder different filter orders, and the optimal alarm thresholds of
he time delay under different delay steps as shown in Table 4
re obtained respectively.
Next, the alarm system based on dynamic evidence fusion is

esigned. Follow the distribution law of Eq. (31) to randomly
enerate 2000 samples as test set. Combine the REM, use Eq. (21)
o transform the real-time sample of process variable x(t) into the
corresponding current alarm evidence mt . Then take m1 as the
urrent global alarm evidence m at t = 1, started from t = 2,
1:1
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Fig. 3. Mann–Kendall statistical curve of process variable x(t).
Table 4
The optimal alarm thresholds in moving average filter and time delay.

Filter orders/delay Steps

3 4 5 6 7 8 9 10 11

Moving average filter 0.77 0.79 0.83 0.75 0.81 0.81 0.77 0.79 0.72
Time delay 0.82 0.73 0.74 0.60 0.48 0.57 0.33 0.31 0.30

use Eqs. (26)∼(29) to fuse the current alarm evidence mt with
historical global alarm evidence m1:t−1 to get the current global
larm evidence m1:t . Among them, according to step 4, l = 7,
nd the initial values of reliabilities and interval-valued fusion
eights are both set to 1; Combine the optimal fusion weights
c_tp = 0.58 and wh_tp = 0.66 of the current and historical alarm
vidence under the training set, using Eqs. (22)∼(25) to deter-
ine the reliabilities rt and interval-valued fusion weights wt of
urrent alarm evidence mt , the reliabilities r1:t−1 and interval-
alued fusion weights W1:t−1 of historical global alarm evidence.
inally, make alarm-decision according to the criterion of Eq. (30),
nd MAR = 0.7%, FAR = 0.2% and AAD = 2.5 respectively. In addi-
ion, here another alarm system is designed based on the initial
tatic ER rule with fixed parameters as a comparative experiment.
epeat the above experimental steps, when use Eq. (28) to fuse
t and m1:t−1, the optimal fusion weights {wc_tp = 0.58, wh_tp =

.66} and optimal reliabilities {rc_tp = 0.45, rh_tp = 0.57} of
urrent and historical alarm evidence are obtained according to
he training set, and the alarm results are MAR = 4.5%, FAR =

.8% and AAD = 4 respectively.
Table 5 shows the partial reliabilities and interval-valued fu-

sion weights under dynamic ER rule. It can be seen from Table 5
that in each fusion, the reliabilities and interval-valued fusion
weights dynamically change according to data information, obvi-
ously this is more in line with the fine change of real-time sample
of process variable. Correspondingly, whether the optimal values
of reliabilities and interval-valued fusion weights are obtained
by training set, or them are set according to expert knowledge,
the reliability and fusion weight of the initial static ER rule are
fixed in each fusion, which restricts the performance of ER rule in
designing alarm system. Further analysis, Table 5 also shows that
the reliabilities and interval-valued fusion weights of historical
alarm evidence are not always higher than that of current alarm
evidence, there is a fluctuating and corresponding relationship
between them, so as to reflect the real fine change law of process
variable.

Fig. 4 shows a complete process in which x(t) changes from
normal state to abnormal state (namely t = 1 ∼ t = 1000), the
75
interval-valued fusion results m(NA)e(2)1 : t and m(A)e(2)1 : t correspond-
ing to the change process calculated by Eq. (26), the upper and
lower limits of m(NA)e(2)1 : t and m(A)e(2)1 : t are marked with red dotted
line and cyan solid line respectively. The part of the red dotted
line that exceeds the cyan solid line at each moment represents
the adjustment effect of the interval-valued fusion weight in the
fusion process. It is worth noting that the red dotted line at
certain moments in Fig. 4 is much higher than the cyan solid
line, this is because the range of interval-valued fusion weights
at that moment are wider, resulting in larger range of interval-
valued results obtained by dynamic fusion. Further analysis, from
the comparison between Figs. 4(a) and 4(b), it can be seen that
the upper and lower limits of m(NA)e(2)1 : t in normal state (namely
t = 1 ∼ t = 500) are higher than that of m(A)e(2)1 : t ; Similarly, it
can be seen from the comparison of Figs. 4(c) and 4(d) that the
upper and lower limits of m(A)e(2)1 : t under abnormal state (namely
t = 501 ∼ t = 1000) are both higher than m(NA)e(2)1 : t . To sum
up, regardless of whether process variable is in normal state or
abnormal state, the interval-valued fusion results obtained by
the dynamic fusion based on ER rule considering interval-valued
fusion weight can accurately describe the true state of process
variable. It is also not difficult to see that in order to facilitate the
formulation of the final alarm-decision, the use of mathematical
expectation to transform the interval-valued fusion results into
the corresponding current global alarm evidence mt does not
change the essential characteristics of the dynamic ER rule.

In order to show the effectiveness of the proposed DF method,
use the distribution law in Eq. (31) to randomly generate 300
test sets, and each test set includes 2000 samples. Repeat the
above experimental steps and perform multiple test experiments.
Calculate the average values of FAR, MAR and AAD for DF, AF,
TD and LU respectively. Table 6 shows the statistical results of
m(FAR), m(MAR) and AAD.

It can be seen from Table 6 that compared with the alarm
evidence linear updating method (LU) in [20], the proposed DF
method can greatly reduce AAD, and at the same time, FAR
and MAR are also reduced. On the one hand, this is because LU
method uses piecewise fuzzy membership function to transform
process variable into alarm evidence, which leads to excessive
information loss; The alarm evidence in the proposed DF method
is obtained through the data-driven REM, which can be regarded
as a lossless conversion from process variable to alarm evidence,
and an accurate description of the coarse statistical characteristics
of the historical sample data. On the other hand, the LU method
overemphasizes the importance of historical alarm evidence in

each fusion process, the corresponding fusion weights cannot be
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Table 5
Partial reliabilities and interval-valued fusion weights under dynamic ER rule.
Parameter t

499 500 501 502 · · · 1695 1696 1697

Reliability rt 0.7403 0.7258 0.7179 0.7021 · · · 0.6533 0.7513 0.7549
r1:t−1 0.7321 0.6834 0.7735 0.7469 · · · 0.7302 0.8038 0.7496

Interval weight Wt [0.55, 0.61] [0.38, 0.78] [0.21, 1] [0.21, 1] · · · [0.53, 0.62] [0.56, 0.59] [0.46, 0.69]
W1:t−1 [0.62, 0.69] [0.46, 0. 86] [0.13, 1] [0.11, 1] · · · [0.76, 0.85] [0.79, 0.82] [0.69, 0.92]
Fig. 4. Interval-valued fusion results m(θ )e(2)1 : t .
Table 6
Performance comparison of various methods.

DF LU n-step TD n-order AF

3 4 5 6 7 8 3 4 5 6

m(FAR) (%) 0.18 0.72 2.61 0.71 1.13 2.9 0.34 13.87 4.12 2.48 2.14 0.73
m(MAR) (%) 0.75 1.96 1.06 0.63 0.53 0.59 0.87 0.61 4.15 2.58 1.01 1.17
AAD 2.9 19.3 2.62 4.6 5.34 5.98 8.68 7.5 17.98 29.31 32.55 60.77
adjusted real-timely according to the fine change of the process
variable during the transition from normal state to abnormal
state, which ultimately makes the AAD too high; The DF method
is based on dynamic ER rule to adjust the interval-valued fusion
weights and reliabilities of the historical and current alarm evi-
dence in a timely manner, and then can reduce AAD, and make
precise alarm-decision during the transition stage.

In addition, the experimental results in Table 6 also show
hat since the alarm thresholds, delay steps and filter orders of
he traditional TD and AF methods will not change after offline
etermination, the effectiveness of these two methods is certainly
ot as good as the proposed DF method. Compared with the
D method with different delay steps from n = 3 to n = 8,
nd the AF method with different filter orders from n = 3 to
= 6, the proposed DF method realizes the trade-off between

he accuracy (FAR/MAR) and sensitivity (AAD), and to a certain
xtent achieves the synchronous improvement of the accuracy
nd sensitivity. Most notably, in the TD method, when delay
teps n increase from 3 to 5, FAR decreases, and FAR starts to
ncrease again when n = 6; when delay steps n increase from
to 6, MAR decreases, and MAR starts to increase again when
= 7; There is a similar situation in the AF method. All of these

ndicate that the introduction of the delay steps and filter orders
ill improve the performance at the beginning, but it is not an
nlimited improvement. There is a basic trade-off between the
erformance indicators in the field of alarm design.
76
4.2. Experiment 2

This section implements alarm experiment on the ZHS-2 mul-
tifunctional motor rotor experimental platform as shown in Fig. 5.
By installing vibration acceleration sensors on the base, the vi-
bration acceleration signal of the rotor is recorded through the
HG-8902 data acquisition box. Then the fast Fourier transform
(FFT) method is used to convert the collected time-domain signal
into frequency-domain signal as process variable. Two states of
process variable are considered in the alarm experiment: the
normal state, and the abnormal state caused by the unbalance
of the rotor. Among them, the turntable is not equipped with
any screws to simulate the normal state of the rotor, and the
abnormal state is simulated by installing screws on the turntable.
In the alarm experiment, the speed of the motor rotor is set at
1500 rpm, the sample frequency of the sensor is 1280 Hz, and
the 1 times fundamental frequency is 25 Hz.

The abnormal vibration generated by the screw on the
turntable will specifically cause the amplitude of the frequency
component to change. Therefore, the amplitude of 1 times fun-
damental frequency signal is selected as process variable x(t).
According to the above experimental conditions, the normal state
and abnormal state of the rotor are simulated for many times
to carry out alarm experiment. Wherein the process variable
data is collected continuously with sample interval of 4 s, and
four groups of sample sequences are obtained under normal and
abnormal states, each group includes 100 samples, which are



X. Weng, X. Xu, L. Chang et al. Journal of Process Control 113 (2022) 68–79

s
s

E
s
i

Fig. 5. ZHS-2 multifunctional motor rotor experimental platform.
Fig. 6. The sample sequence of process variable x(t).
Table 7
Referential evidential matrix table.

y(t) x(t)

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

Y1 1 1 0.9876 0.9494 0.7664 0.4003 0.1101 0.0075 0.0042 0
Y2 0 0 0.0124 0.0506 0.2336 0.5997 0.8899 0.9925 0.9958 1
5
m
n
0
b
A
f

recorded as x(t)400t=1, as shown in Fig. 6 (Fig. 6 shows the sample
equence formed by splicing the data of the rotor in the normal
tate and the abnormal state).
Use x(t)400t=1 as training set, repeat the experimental process in

xperiment 1. When segment F114 is calculated, UF 114 and UB114
atisfy Conditions 1 and 2, and at t = 102, UF 114 and UB114
ntersect in the range of critical line ±1.96, so x(102) is the first
change point in the sample sequence, as shown in Fig. 7. Then
the two other change points x(209) and x(301) in the sample
sequence are found. Based on these detected change points, the
normal data segments {x(1, 102), x(209, 300)} and abnormal data
segments {x(103, 208), x(301, 400)} are obtained. These 400 sam-
ple pairs are set as training set, the reference values set of input
x(t) is set as {0.006, 0.008, 0.01, 0.012, 0.014, 0.015, 0.016, 0.018,
0.02, 0.022, 0.024} by expert knowledge, and the reference values
set of output y(t) is set as {0, 1}. Then the REM is established
as shown in Table 7. Similarly, the optimal alarm thresholds in
moving average filter and time delay are obtained respectively
as shown in Table 8. In addition, wc_tp = 0.47 and wh_tp = 0.7
are the optimal fusion weights of the current and historical alarm
evidence obtained based on training set.

The alarm experiment is repeated 200 times on motor rotor

experimental platform, and the average values of FAR, MAR and

77
Table 8
The optimal alarm thresholds in moving average filter and time delay.

Filter orders/delay Steps

3 4 5 6 7 8

Average filter 0.0153 0.0155 0.0153 0.0152 0.0158 0.0153
Time delay 0.0151 0.0155 0.0149 0.0133 0.0132 0.0133

AAD are calculated respectively. Table 9 shows the statistical
results of m(FAR), m(MAR) and AAD. It can be seen from Table 9
that the m(MAR) = 0.83% of the alarm evidence linear updating
method (LU) is close to the m(MAR) = 0.51% of the proposed DF
method, but the other two indicators m(FAR) = 1.17%, AAD =

.2 are higher than m(FAR) = 0.17%, AAD = 2.3 of the proposed
ethod. For the time delay method (TD), when the delay step
= 4 and n = 5, the corresponding m(FAR) are 0.28% and

.25%, which are close to the m(FAR) of the proposed method;
ut the AAD of TD are 4.7 and 5.7, which are higher than the
AD of the proposed method. Similarly, for the moving average
ilter method (AF), when the filter order n = 5 and n = 6, the
corresponding m(MAR) are 0.75% and 0.52% respectively, which
is close to the m(MAR) of the proposed method, but the AAD of
AF are 87.6 and 95.4 respectively, which are much higher than
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Fig. 7. Mann–Kendall statistical curve of process variable x(t).
Table 9
Performance comparison of various methods.

DF LU n-step TD n-order AF

3 4 5 6 7 8 3 4 5 6

m(FAR) (%) 0.17 1.17 1.95 0.28 0.25 10.7 11.7 5.61 4.11 1.54 1.32 0.99
m(MAR) (%) 0.51 0.83 0.75 0.91 0.95 0.71 0.95 1.13 2.11 1.48 0.75 0.52
AAD 2.3 5.2 2.6 4.7 5.7 4.9 6.4 7.3 17.9 49.8 87.6 95.4
the AAD of the proposed method. Therefore, compared with LU,
TD and AF, the proposed univariate alarm design method based
on dynamic evidence fusion shows good performance in accuracy
and sensitivity. The reason for these performance gaps have been
explained detailedly in Experiment 1 and will not be repeated
here.

5. Conclusion

In view of the coarse and fine changes of process variable,
nd the problems existing in the two important processes of data
reprocessing and dynamic parameter adjustment, this paper
roposes a univariate alarm design method based on dynamic
vidence fusion under FoD of DS theory. The main contributions
re as follows: (1) For the coarse change of process variable, the
nitial Mann–Kendall method is improved based on memory and
orgetting strategies to divide the historical sample data into nor-
al and abnormal data segments. Then, the REM is established

o realize the transformation from process variable to alarm ev-
dence. Both of them are used to reflect the coarse statistical
haracteristics of historical sample data. (2) For the fine change
f process variable, a new dynamic ER rule considering interval-
alued fusion weight is proposed. That is, the reliability of alarm
vidence is calculated in real time according to the forgetting
trategy, and the interval-valued fusion weight of alarm evidence
s described by random variable with uniform distribution. All
hich are used for the dynamic fusion of historical and current
larm evidence, so as to adapt the fine change of real-time sam-
le of process variable and make more accurate alarm-decision.
inally, two experiments are presented to validate the effective-
ess of the proposed method than the traditional alarm design
ethods.
In essence, this paper considers the coarse and fine changes

f process variable. For future work, other changes of process
ariable need to be considered. For instances, the process variable
nder different working conditions may change essentially with
he increasing complexity of industrial equipment. How to make
ull use of process variable information under different working
onditions to formulate accurate alarm may be more significant

n practice.
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