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Abstract—Deep neural network (DNN) shows great promise in
providing more intelligence to ubiquitous end devices. However,
the existing partition-offloading schemes adopt data-parallel or
model-parallel collaboration between devices and the cloud,
which does not make full use of the resources of end devices
for deep-level parallel execution. This article proposes eDDNN
(i.e., enabling Distributed DNN), a collaborative inference scheme
over heterogeneous end devices using cross-platform Web tech-
nology, moving the computation close to ubiquitous end devices,
improving resource utilization, and reducing the computing pres-
sure of data centers. eDDNN implements D2D communication
and collaborative inference among heterogeneous end devices
with WebRTC protocol, divides the data and corresponding DNN
model into pieces simultaneously, and then executes inference
almost independently by establishing a layer dependency table.
Besides, eDDNN provides a dynamic allocation algorithm based
on deep reinforcement learning to minimize latency. We conduct
experiments on various data sets and DNNs and further employ
eDDNN into a mobile Web AR application to illustrate the effec-
tiveness. The results show that eDDNN can achieve the latency
decrease by 2.98×, reduce mobile energy by 1.8×, and relieve
the computing pressure of the edge server by 2.57×, against a
typical partition-offloading approach.

Index Terms—Collaborative inference, cross-platform, deep
learning (DL), distributed deep neural network (DNN), ubiq-
uitous end devices.

I. INTRODUCTION

DEEP learning [e.g., deep neural networks (DNNs)] is
currently a representative way of achieving artificial

intelligence (AI) in numerous applications [1]–[3]. With the
maturity of AI technology and the reduction of AI hardware
costs, more and more smart end devices, such as smartphones,
AR/VR glasses, smart cameras, etc., also including Internet-
of-Things (IoT) devices, have emerged in daily life [4]–[6].
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Smart end devices are increasing scenarios and services that
require AI capabilities are constantly enriching [7]. However,
the limited computing capability of end devices is hard to
support executing computationally intensive DNNs for AI
services independently. Thus, the need for collaborative infer-
ence among multiple end devices is increasing. Also, it causes
a demand for integrating these scattered ubiquitous end devices
and finding the best combination to provide collaborative AI
services in different scenarios [8], [9]. For instance, Huawei
has developed the HiAI 3.0, an open platform for AI devices,
which makes contributions on establishing the connection
among end devices and enabling distributed AI capability [10].

However, the majority of existing attempts of DNNs on
ubiquitous end devices leave an unsatisfactory experience with
the following two execution schemes in Fig. 1. The first exe-
cution scheme is the noncollaborative execution, including
mobile-only and cloud-only, which executes the entire DNN
on the end device or transmits tasks to the remote cloud
for offloading DNN computations. The mobile-only approach
performs a high DNN execution latency as conventional
end devices lack computing capability. With the cloud-only
approach, large amounts of data (e.g., image, audio, and video)
are sent to the cloud via the wireless network, which results
in high transmission latency and mobile energy consumption.
Moreover, offloading all computations to the remote cloud
will significantly increase the computing pressure and cost
of the remote cloud, which also raises new privacy concerns
for users (e.g., home security cameras) [11]. The second exe-
cution scheme is collaborative execution, including partition
offloading and adding a lightweight branch. Partition offload-
ing dynamically distributes the computations between the end
device and the remote cloud [12]–[14], protecting data pri-
vacy and reducing the computing pressure of the remote cloud.
The lightweight branch approach adds efficient branches to the
initial DNN for executing inference on the end device indepen-
dently. It also provides a collaborative mechanism for accuracy
compensation [15]–[18]. Obviously, these collaborative solu-
tions mainly optimize DNN computations between the end
device and the backend server. They ignore the use of idle
computing resources of ubiquitous end devices for collabora-
tion. Thus, how can we move computations further close to
the edge by using ubiquitous end devices while providing an
acceptable performance, reducing latency and the pressure of
the backend server, and improving the resource utilization of
end devices?

With the advent of the 5G era, mobile edge com-
puting (MEC) and device-to-device (D2D) communication

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 12:51:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0001-6872-8821


15054 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

Fig. 1. (a) Noncollaborative and (b) collaborative execution schemes of the
DNN on end devices.

technology have gradually been deployed and applied in dif-
ferent scenarios. MEC has the benefit of low communication
costs compared with offloading computations to the remote
cloud and relieves the burdens of the core network. Also, it
is expected to use D2D communication over ubiquitous end
devices to achieve distributed DNN inference, making full use
of computing resources of ubiquitous end devices. However,
implementing distributed DNN inference over ubiquitous end
devices still faces three major challenges.

1) How to execute distributed DNN over heterogeneous
end devices with different computing architectures and
inference frameworks? Ubiquitous end devices have a
large difference in the brand, the computing system
(e.g., iOS, Android, and embedded OS), the infer-
ence framework, and the computing capability. This
requires configuring and deploying different DNNs
according to the characteristics of devices, thus pro-
viding distributed DNN inference across heterogeneous
end devices. Besides, various communication proto-
cols among heterogeneous end devices also hinder the
implementation.

2) Layer dependency of DNN inference seriously hinders
the implementation of distributed DNN inference on
ubiquitous end devices in parallel. DNN inference pro-
cess inputs a task and acquires the different features
layer by layer until obtaining the result. This shows a
strong layer dependency (i.e., the input of the next layer
is the output of the previous layer). Although partition-
offloading approaches divide the DNN into multiple
pieces by layers and distribute them to ubiquitous end
devices for execution, it is hard to execute them in
parallel due to such serial inference characteristic.

3) How to provide a dynamic allocation for end devices
with different computing capabilities that can execute
efficient DNN with optimal latency and resource utiliza-
tion? Note that end devices have different computing
capabilities. The available computing resource of end
devices is dynamic with the change of running appli-
cations. Thus, the key to achieving distributed DNN
across ubiquitous end devices is to design an effective
subtask allocation algorithm to match and execute appro-
priate computation. Additionally, allocating DNN tasks
to end devices with a reliable and efficient inference
is also significant for optimizing latency and resource
utilization.

(a) (b)

Fig. 2. (a) Traditional partitioning and (b) eDDNN dividing.

To address these concerns and enable distributed DNN
inference, we implement D2D communication and collab-
oration over heterogeneous end devices with the help of
cross-platform Web technology and the Web real-time commu-
nication (WebRTC) protocol. We develop a distributed DNN
inference scheme on a Web platform, named eDDNN, that
efficiently reduces layer dependency and accelerates the whole
process. Unlike traditional approaches that partition DNN by
layers (i.e., vertical partition), eDDNN divides the task and
the corresponding DNN model into pieces in Fig. 2 (i.e., hor-
izontal partition whose submodel has all DNN layers and
the size of each layer becomes smaller). Therefore, we can
acquire almost independently DNN inference on submodels
and reduce the layer dependency of inputs at dividing edges.
Besides, we establish an inference dependency table with the
help of the edge server and broadcast it over end devices
to load required dependency information from each other.
Then, we propose a dynamic allocation algorithm, named
DecisionMaker, based on deep reinforcement learning for opti-
mizing the overall processing latency. With these efforts, an
end device can share other devices resources for acceleration
and a better experience. The contributions can be summarized
as follows.

1) Developing a distributed DNN inference scheme over
heterogeneous end devices leveraging the cross-platform
Web, which horizontally divides the task and DNN
model into pieces and executes them on each end device
almost independently by sharing a DNN dependency
table.

2) Proposing a dynamic allocation algorithm to reduce
complexity, which adaptively matches and executes sub-
tasks on end devices, reduce overall execution latency,
and optimize resource utilization of end devices.

3) Evaluating the proposed eDDNN on various DNNs
and data sets and implementing a collaborative recog-
nition for mobile Web AR, showing the satisfac-
tory performance against a typical partition-offloading
approach.

II. BACKGROUND AND MOTIVATION

Cooperative D2D communication technology is widely
studied and applied for data transmission across various end
devices, which uses the end device as the relay for communica-
tion [19], [20]. This work intends to explore data transmission
and collaborative DNN inference based on cross-platform
Web technology over heterogeneous end devices. Therefore,
to achieve D2D communication on the Web and collaborate
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Fig. 3. Illustration of D2D communication technology for ubiquitous end
devices based on WebRTC.

Fig. 4. Typical application scenario of eDDNN.

with each other, we establish a Web-oriented D2D commu-
nication for multiple end devices based on the WebRTC [21]
protocol in Fig. 3. Each end device establishes a D2D con-
nection with others. Note that the MEC server plays a vital
role in registering the connections and managing the connec-
tions of end devices that join or leave. Besides, data may be
transmitted through the MEC server viewed as a relay rather
than that only transmits data among devices. We can also view
the MEC server as an application provider, such as providing
DNN models for recognition and rendering 3-D models in a
mobile Web AR application.

Considering that if we put all intensive calculations on the
MEC server, this may generate many data transmission and
computing pressure. Meanwhile, most ubiquitous end devices
are in idle states, which reminds us to use these idle com-
puting resources to reduce the computing pressure, avoid
large amounts of data transmission, and improve resource
utilization. Thus, the task can be processed by the collabo-
ration without transmitting tasks to the MEC server. Hence,
moving computations close to the edge by using end devices,
improving resource utilization, and reducing the MEC server’s
computing pressure is the primary motivation.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORK

We present a typical application of eDDNN in wearable
computing in Fig. 4. When a user is experiencing AR appli-
cations using a smart glass, with eDDNN, we can offload
intensive DNN recognition computations to other wearable
devices, such as smartphones, smart wristbands, and smart-
watches. eDDNN can greatly reduce the computing pressure
of the glass, thereby enabling the glass to be thinner and
lighter and the user experience to be better. Besides, eDDNN
offloads the DNN computation to other end devices as much
as possible. It is necessary that the wireless customer premise
equipment (CPE) and the edge server can also perform part
of the computation, thereby avoiding the data transmission
between the end device and the edge server. Consider that the

wearable end devices have different brands, different systems,
and computing architectures, which make it difficult to per-
form communication and collaborative DNN inference. To
this end, eDDNN implements distributed DNN inference over
heterogeneous end devices based on cross-platform Web tech-
nology and the WebRTC protocol. The main process includes
task preprocessing, distributed inference, and merging results.

A. Distributed and Parallelizing Inference of eDDNN

In Fig. 5, we describe how to perform distributed DNN
inference among ubiquitous end devices in parallel, consist-
ing of establishing the connection, dividing the task and
DNN models, distributed inference, verifying and merging the
results. The detailed eDDNN process is as follows.

Step 1: Establishing D2D connections among end devices
and updating connections with the help of the edge server.
Generally, the edge server selects end devices that have avail-
able and idle resources as much as possible for participation.
In the event of an end-device failure or loss of connection, the
edge server updates the connections among end devices.

Step 2: The task requestor (i.e., Glass in Fig. 4) sends a
request signal to the edge server, consisting of the task size,
required DNN model, and available resource of the current
end device that can provide.

Step 3: Once the edge server receives the request from
the requestor, it divides the task and DNN models into Num
pieces by DecisionMaker, which provides dynamic allocation
according to the current status. Also, it establishes an infer-
ence dependency table based on the allocation, which mainly
supports the inference of the convolutional layer at the split
edge of pieces and then broadcasts the dependency table, sub-
tasks, and submodels. Note that Num is generally determined
according to the size of the input and DNN models.

Step 4: End devices execute subinference according to the
dependency table and send response results to the requestor
immediately. There may occur some abnormalities during dis-
tributed execution, such as the connection loss or insufficient
computing resource, making the collaborative device offline
and unavailable Besides, the end device with low computing
capability consumes much time on DNN inference, triggering
the failure. Thus, we set a response latency for each end device
to monitor the status by the edge server. Once an end device is
found to be offline, it immediately forwards its corresponding
computations to other available end devices and updates the
dependency table to keep consistency.

Step 5: When the requestor collects the results returned by
all collaborative devices, it immediately merges subresults to
output the final results. The requestor verifies that all dis-
tributed calculation results have been received; otherwise, it
will execute or request the edge server for the rest inference.

We present distributed DNN inference on the convolutional
layer and dense layer in detail. We first illustrate the depen-
dency table of three end devices in Table I. We divide the input
evenly into three pieces for a given input and generate a depen-
dency table according to pieces. For example, Table I shows
the dependency relations of piece_1, piece_2, and piece_3 of
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Fig. 5. eDDNN inference procedure.

TABLE I
DEPENDENCY TABLE FOR DISTRIBUTED INFERENCE

the sample image on device_1, device_3, and device_2, respec-
tively. Contents of the dependency column in the table indicate
that the current piece relies on some edge information on other
pieces.

For instance, piece_1 and piece_2 have a specific depen-
dency relationship at the dividing edge of the initial image.
This is because computational calculation requires partial edge
inputs of two pieces. Thus, with the dependency table, it is
possible to execute partial DNN execution almost indepen-
dently and reduce the amount of data dependency compared
with traditional DNN inference In also can directly obtain
dependency data from other end devices. Besides, we use this
dependency table to monitor and update offline end devices in
time, and forward tasks to other available devices, increasing
the robustness.

We discuss how to solve distributed independent DNN infer-
ence in the convolutional layer by adding redundant edge data
based on the dependency table. Fig. 6(a) shows the input size
and output size of general conversational layers. Moreover,
Fig. 6(b) describes distributed inference when the image is
divided into two pieces. To obtain the same inference results
as in Fig. 6(a), we have to add a small portion of redun-
dant edge data to each image piece for obtaining the correct
result the filter. The redundant input data may result in the
error and be transmitted to the final inference results. Besides,
the dependent inference is only a small part of the input data
involved at the edge of pieces. Thus, in practice, pieces without

(a)

(b)

Fig. 6. Convolutional layer computation. (a) General convolutional layer.
(b) Distributed convolutional layer.

dependency data can be performed independently, accelerating
the inference.

Fig. 7 describes how to perform distributed DNN layer infer-
ence in terms of a dense layer or fully connection (FC) layer. In
Fig. 7(a), each activation is calculated from the sum of inputs
and weights for two dense layers. These parameters are deter-
mined during the training phase and remaining constant in the
inference process. We present a computing schematic diagram
of a basic unit composed of 2-layer FC, which divides it into
two parts according to the input size of the first FC layer and
distributes them to different end devices. We only need to sum
the results of two end devices during the merging phase, which
has correct results and has been tested on classic DNNs and
data sets. Additionally, we directly distribute the last FC layer
on the requestor when the end device has sufficient resources.
It can avoid redundant calculations caused by dividing the last
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(a) (b)

Fig. 7. FC layer computation. (a) General FC. (b) Distributed FC.

layer. Hence, the requestor receives the result of the first FC
layer calculated by others, merges these results, and executes
the last FC layer.

B. DecisionMaker for Online Allocating in eDDNN

When a target end device requests the edge server for
allocation, the edge server calculates an optimal allocation
according to the task and available resource status of par-
ticipating end devices. Note that the computing capabilities
of ubiquitous end devices are various, and the current com-
puting status of end devices and available resources are
dynamically changing. Therefore, for a DNN task request,
the edge server should provide a comprehensive allocation
by considering the resource status of all end devices and
global status. To this end, we come up with a dynamic
allocation algorithm based on deep reinforcement learning,
named DecisionMaker, from the perspective of reducing
complexity.

Let D = {d1, d2, . . . , dM} denote the end-device set of
M end devices. We define the task processing capability of
each end device as C = {c1, c2, . . . , cM}. The current avail-
able computing resource of each end device at time t is
Rt = {r1

t , r2
t , . . . , rM

t }. Each end device can run multiple DNN
subtasks, which can not be further divided at time t. End
device generates a DNN task of H = {h1, h2, . . . , hN} with
the probability of αi ∈ (0, 1), which obeys the Poisson dis-
tribution. Let T = {1, 2, . . . , N} be all DNN subtasks set at
a time slot. hj = <pj, qj>, j ∈ T denotes jth subtask of all
DNN subtasks that need to be inferenced, where pj and qj are
the amounts of computing resource and data communication
required for the inference, respectively. Since any subtask can
be distributed on any end device, we use βi,j,k, (i ≤ k) define
the probability that di offloads subtask hi,j to dk for collabora-
tion. Besides, we define the uplink transmission rate between
di and dk as

ri,k = B log2

(
1 + gi,kPi

BN0

)
(1)

where B denotes D2D communication bandwidth, Pi is
the transmitting power of di, gi is the information gain,
and N0 is white Gaussian noise variance. Thus, we can
describe the inference latency of hi,j on di as tinf

i,j =
(pi,j/ci). Note that we ignore the communication cost of
the broadcasting dependency table over the edge server and
end devices. When di requires collaboration from dk for
the subtask hi,j, communication latency can be defined as
tcom
i,j,k = (qi,j/ri,j). Based on these definitions, we describe
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Fig. 8. DecisionMaker for online subtasks allocation.

the task allocation as minimizing the overall latency of
executing all DNN subtasks over distributed end devices
as

min
M∑

i=1

N∑
j=1

M∑
k=1

βi,j,k

(
tcom
i,j,k + tinf

k,j

)
+ (

1 − βi,j,k
)
tinf
i,j . (2)

It is hard to meet the real-time allocation for eDDNN by
using optimization algorithms such as genetic algorithms for
solving the above problem. For a given environment in Fig. 8,
we assume that an agent is interacting with it. During each
time interval t, the agent chooses an action at via observing
state st. By executing the selected action, the state is chang-
ing from st to st+1. The agent decides its actions according
to the policy, which is a probability distribution π(s, a) and
is performed by a DNN. Also, we collect historical records
from the online allocating phase to: 1) provide more training
samples for the offline DRL model and 2) more importantly,
we use the historical records to train a reward prediction
model based on another DNN model. This is because using
the learning-based rewards can effectively address our inabil-
ity to obtain sufficient training samples [22]. In general, the
offline training phase of DecisionMaker includes the training
of the reward model and the DRL-policy model. We formulate
dynamic task allocation as a DRL-based question and describe
DecisionMaker’s design by emphasizing the state space, the
action space, and the reward.

State Space: The input state st = {x,Rt, B} includes the
DNN subtasks, available computing resources of devices.
B = M × M represents the network conditions between M
collaborative devices. Commonly, the number of collaborative
devices and the number of subtasks are dynamically changing.
It increases the obstacles to design and train the policy due to
the fixed input layer. We define a large M for the collaborative
devices. When the number of collaborative devices M′ is less
than M, we set M−M′ tasks as ∅. It is impossible to set a max
value effectively for representing dynamic subtasks due to a
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Fig. 9. Example of state, with four devices and subtasks.

large number of subtasks, which may cause training difficulties
in convergence when the actual number of subtasks is small.
To this end, we use a trick by defining a subtask pool to store
incoming subtasks for each time interval. (i.e., at each time
interval [18], [23]. L subtasks are scheduled from the subtask
pool where L is the input length of the DNN subtasks in st.
This means that we need to freeze the time and use multiple
allocations to complete all the subtasks in the subtask pool
at each time interval. Also, Fig. 9 gives a clear case of state
space for better understanding by describing each end device’s
currently available computing resource and subtasks waiting
to be allocated. Red blocks denote computing resource, and
blue blocks are the communication cost. When an end device
requests a DNN computing collaboration, it divides the DNN
task into multiple subtasks and adds to the task queue to be
allocated. Note that device2 cannot cooperate to complete any
subtask in the current state; thus, these subtasks are allocated
to other end devices.

Action Space: As mentioned in the state space, since we use
a subtask pool to fix the input of the policy network effec-
tively, this also allows us to reduce the action space from
MN down to linear in L. Thus, the action space is given by
at = {a1, a2, . . . , aL}. ai = 0 means that the ith subtask will
not be assigned, and ai = dj, j ∈ [1, M] indicates allocating
the ith subtask to the jth device. At each time interval, time
is frozen until it completes the assignment of all subtasks in
the subtask pool. By defining such subtask pool and multiple
allocating mechanisms in each time interval, the agent accom-
plishes the dynamic assignment and maintains a linear action
space in L.

Rewards: Our goal is to minimize the average subtask com-
pletion time by training the DNN policy network. Thus, the
completion time of subtasks can be set as the reward, which is
defined as

∑
l∈N (−1/Tl). N is all subtasks that are currently

assigned and pending. DecisionMaker is to maximize the long-
term reward; thus, the reward is the negative sum of all latency
at each time step. The agent only receives the reward until
the current subtasks in the pool are allocated entirely, which
means the agent has no rewards of intermediate actions in a
time interval. Thus, we can maximize the cumulative reward
to mimic, minimizing overall complement time when setting
the discount factor as γ = 0.9.

Design and Training of the DNN Models: We first introduce
the DNN model used for the policy network in DecisionMaker.
N subtasks and M collaborative devices are connected to a
fully connected layer, and the next two hidden layers have
196 neurons, respectively. Before the output layer, another
hidden layer with 128 neurons are used. Then, since we use

another DNN model to predict the reward given the incom-
ing subtasks and collaborative device states, we can generate
many samples for training the reward prediction model. We
also use three hidden layers with 128 neurons in the reward
prediction network before the output layer. Then, we intro-
duce the training of the policy network of DecisionMaker. The
policy network is trained in various episodes, which inputs N
subtasks for each episode for allocating according to the policy
network until all subtasks are allocated. In each training epoch
for each task set that simulates E episodes, we compute the
probabilistic space of actions with the policy and improve the
policy for all subtasks by the inference results. Note that the
state, action, and reward of each episode are used to compute
the cumulative reward of vt. Generally, the optimized objec-
tive is to maximize the expected reward, and the gradient of
the objective can be described as

�Eθ

[∑
γ trt

]
= Eπθ

[
�θ log πθ(s, a)Qπθ (s, a)

]
(3)

where Eθ [
∑

γ trt] represents the expected cumulative reward.
γ ∈ [0, 1] is to discount reward and we set it as 0.9 in
the experiment. Qπθ (s, a) is the expected reward. Besides,
we use the following gradient-descent method to update the
parameters for the policy network:

θ ⇐ θ + α
∑

t

�θ log πθ (st, at)vt (4)

where α denotes the adjustment size. Since our policy gradi-
ent of (3) has a high variance on gradient estimation, we use
the average value of the return results of the same time step
across all episodes with the same task set. Once we acquire
the trained DRL-based DecisionMaker, eDDNN chooses to
top Num collaborators for executing distributed DNN infer-
ence following the detailed eDDNN process in Fig. 5. Also,
we describe in detail how to train the reward prediction model.
By collecting the history records, we use these samples to train
the reward DNN model by supervised learning. We define the
loss function as

L(g, g′) = 1

|G|
∑

n∈[N]

∣∣g′
n − gn

∣∣
g′

n
(5)

where gn and g′
n represent predicted inference latency and the

ground truth label [22].

IV. EVALUATION

A. Experimental Setup

1) Data Sets and Benchmarks: We evaluate the correct-
ness and effectiveness of eDDNN using typical DNNs, such
as AlexNet [24], ResNet-50 [25], and ShuffleNet [26] on
CIFAR-10 [27] and ImageNet-150K [28]. ImageNet-150K is
the subset of ILSVRC ImageNet and contains 183K train-
ing images and 7.5K testing images belonging to the top 150
most popular object categories. We illustrate the improvements
of our DecisionMaker allocation regarding the latency, the
mobile energy, and resource utilization against some base-
line methods, including two typical methods: 1) Random
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Fig. 10. Network topology in a real scenario.

allocation and 2) Distance-prior, respectively. Random allo-
cation distributes DNN computations to the connected end
devices randomly, and the Distance-prior method prefers to
select nearby end devices for collaboration. We also compare
the DecisionMaker with the two latest DRL-based allocation
methods, including DRLoS [18] and DeepRM [23] to highlight
the strengths and effectiveness. Finally, we compare eDDNN
with other noncollaborative DNN inference schemes, mobile-
only and cloud-only, and existing collaborative inference meth-
ods, such as Neurosurgeon [12], JointDNN [14], LCRS [16],
and DeepAdapter [17] to demonstrate the improvements.

2) End Devices and Edge Server Setup: To establish a real
scenario for mobile Web AR application with three smart-
phones, all installing Chrome browser and running Andriod
8.0, a HUAWEI Mate10 with 4-GB RAM, Samsung Galaxy
S5 with 4-GB RAM, and iPhone X with 3-GB RAM, respec-
tively. We use a common server with a six-core Interprocessor
of 2.9 GHz and 16-GB RAM running Ubuntu 18.04 LTS,
which is deployed near the base station. We present the core
network topology with a max uplink bandwidth of 150 Mb/s
and a max downlink bandwidth of 600 Mb/s. It is a commercial
5G network provided with communication latency between
the mobile device and the edge server of 5–10 ms by China
Unicom in Fig. 10. As for the D2D communication links,
mobile devices are interconnected via the D2D (Wi-Fi Direct)
communication technique with a bandwidth of 85-300 Mb/s
and a latency of 5–20 ms. We use a HUAWEI 5G CPE to
connect to the base station and use a Wonder Shaper [29] to
control the network on the edge server.

3) Measurements: We introduce tools and methodologies to
measure the latency, mobile energy, and resource utilization as
follows.

1) Latency Measurement: The entire latency can be cal-
culated based on two timestamps before and after a
complete DNN computation request. We repeat the same
DNN task request multiple times and use the aver-
age latency as the final latency performance to reduce
random errors.

2) Mobile Energy Measurement: We use a hardware power
monitor with a model number of AAA10F [30]. We also
use it to provide a stable voltage of 3.7 V for mobile
devices and obtain the system energy cost, such as the
screen brightness cost in the standby state.

3) Resource Utilization Measurement: We define the
resource utilization as the computing resource variance
of participated end devices. The resource usage vari-
ance of dt = {d1

t , d2
t , . . . , dm

t } at time slot t can be
calculated as

RU2
t =

∑m
i=1

(
di

t − d̄t
)

m − 1
(6)

where d̄t denotes the mean value of the resource usage
of end devices at time slot t.

B. Performance of eDDNN

We simulate deploying a large number of end devices to
verify the effectiveness of eDDNN in Fig. 11, and evalu-
ate a small number of end devices for a real-world scenario.
Mobile energy consumption is based on the benchmark of the
actual mobile transmission energy and DNN inference energy,
measured by the method in Section IV-A. The parameters
involved in the experiment are as follows: the downlink band-
width is 400 Mb/s, and the uplink bandwidth is 100 Mb/s.
The amount of end devices is 100. Task sizes of ImageNet
and CIFAR-10 are 127 and 3 kB, respectively. Moreover,
DNN model sizes are 221 and 76.3 MB of AlexNet, 90.7 and
31.6 MB of ResNet-50, and 8.22 and 2.4 MB of ShuffleNet for
ImageNet and CIFAR-10, respectively. We simulate a DNN
task requestor that obeys the Bernoulli distribution with a
request frequency range from 10% to 130%, and randomly
set α and β. For three DRL-based methods, we use the Adam
optimizer [31] with a learning rate of 0.0001 and a minibatch
of 64. The reward discount factor of DecisionMaker, DeepRM,
and DRLoS is set as 0.9, 1.0, and 1.0, respectively. Besides,
we set the task processing batch and the output size of the pol-
icy network L as 100. And the training iteration of all methods
is 1500. DRLoS’s reward differs from the other two methods
in that it maximizes resource utilization.

We see the following.
1) DecisionMaker performs better than other allocation

methods in all indicators. This is because DecisionMaker
considers the system status of all end devices and lever-
ages them to acquire for the best allocation iteratively.
However, the other two methods only consider allocation
on the part of end devices.

2) When the number reaches 10, we observe that the
latency drops significantly, the mobile energy also shows
a large decrease, while the resource utilization variance
of all end devices increases significantly. Concretely,
when the number of collaborative end devices is set at
3, the latency decreases, and the probability of acquiring
collaboration for the requestor increases. However, when
the number of end devices increases to 20 or more, the
latency tends to be stable without further improvements.
As for mobile energy consumption, with the increase
of collaborative end devices, mobile energy consump-
tion shows a similar trend to latency. Meanwhile, the
mobile energy of data transmission is greater than that
of inference, resulting in that the whole mobile energy
tends to decrease with the collaboration of increasing
end devices. However, the resource utilization variance
of all end devices shows a strong upward trend when
the number of end devices reaches 10. This is because
the indicator calculates the resource utilization variance
of all end devices, and the number of collaborative end
devices is definite. End devices without participating in
collaboration have a large increase and perform a higher
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Performance of eDDNN on various data sets and typical DNNs. We increase the number of end devices, and the y-axis represents performance
of various indicators, such as the latency, mobile energy, and resource utilization variance. (a) AlexNet on CIFAR-10. (b) AlexNet on ImageNet-150K.
(c) ResNet-50 on CIFAR-10. (d) ResNet-50 on ImageNet-150K. (e) ShuffleNet on CIFAR-10. (f) ShuffleNet on ImageNet-150K.

resource utilization variance. Besides, with the contin-
uous increase of the number of end devices, resource
utilization variance of all allocation methods gradually
becomes consistent.

3) Judging from the performance on different data sets and
DNN networks, DecisionMaker shows a similar curve
trend. Whether it is an extensive network or a small
network, in a distributed inference, DecisionMaker is
more beneficial to search for the optimal collaborative
end devices to the requestor.

When we compare DecisionMaker with other advanced
DRL-based allocation methods, we see the following.

1) DecisionMaker has lower latency and mobile energy
performance than others. This is because traditional
DRL methods are challenging to learn all the possi-
ble samples and influence the convergence of the policy
network with insufficient training samples. The advan-
tage of our DecisionMaker is that it can automatically
learn the reward from the historical records and avoid
using manual features, thus improving the convergence.
When applied to the eDDNN, it also shows better system
latency and mobile energy performance.

2) Another noteworthy point is that DRLoS performs better
than DecisionMaker and DeepRM in resource utiliza-
tion. This is mainly because the optimization goal of
DRLoS is resource utilization, which is directly intro-
ducing its poor performance in the other two indicators.
Although DRLoS has better performance in resource
utilization, our DecisionMaker is outstanding in all

Fig. 12. Average slowdown at different device loads.

indicators than others, especially in latency and mobile
energy.

In Fig. 12, we further discuss the influence of the aver-
age subtask slowdown of various allocation algorithms on the
average load of collaborative devices. Since we can use the
Android debug bridge (ADB) [32] to control the CPU load of
Android devices, we use three Android devices as collabora-
tive devices in the experiment in Fig. 12. The data of each
point are the average value of 100 experiments, which are not
used to train the DRL model. We see that: 1) the increase
of the average load of collaborative devices directly increases
the average slowdown. It also shows that the reward prediction
method has the improvement when the training samples are
not enough. In addition, we notice that when the average load
of collaborative devices is more than 90%, the performance
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(a) (b)

(c) (d)

Fig. 13. Robustness performance of eDDNN. (a) Latency performance.
(b) Mobile energy performance. (c) Resource utilization. (d) Performance on
various DNNs.

difference of these DRL-based methods is not apparent. When
the available resources of collaborative devices are insufficient,
the direct factor affecting the performance will be the short-
age of computing resources, while the subtask allocation has
a small impact.

C. Robustness Analysis of eDDNN

eDDNN requires the collaborative computing of multiple
end devices, thus depending on a reliable communication
condition and sufficient computing resources. Although we
give priority to those end devices with sufficient comput-
ing resources and good communication conditions during the
DecisionMaker allocation phase, end devices may still be
in trouble, such as disconnecting and canceling the current
collaboration. To cope with unstable conditions and ensure
reliable inference results, we use the edge server to obtain
the response of end devices in real time, monitor each end
device’s status, and then set it as 200 ms. We simulate exper-
iments with collaborative end devices P = 10, which assumes
that the task and DNN model can be divided into P4e pieces.
We show the latency, mobile energy, and resource utilization
performance when reducing the number of available collabo-
rative end devices in Fig. 13. The simulation results show the
following.

1) With the continuous decrease of available end devices,
the whole processing latency and mobile energy cost of
eDDNN are constantly increasing. This indicates that
failed end devices will cause repeat task distribution
and inference, whose dependency area also affects the
whole inference. Besides, resource utilization of eDDNN
is lower than the other two methods, which show that
DecisionMaker is more conducive to optimizing task
allocation and improving resource utilization.

(a)

(b)

Fig. 14. Comparisons between eDDNN with Selfish-Exe. (a) Performance
with various collaborators (N is the number of collaborators). (b) Performance
with concurrent tasks.

2) We also observe that when the available end devices
decrease, the system’s resource utilization continues
to decrease, and eDDNN performs better than others.
This decrease phenomenon is because all participated
end devices calculate resource utilization variance, and
eDDNN enables other available end devices in collabo-
ration, thus improving the resource utilization. This also
indicates that although lost end devices increase latency
and mobile energy consumption, other end devices are
enabled to participate in collaborative computing.

3) In Fig. 13(d), we see that different DNN networks and
tasks are affected by the number of abnormal devices. In
a small DNN network, since there is no need for many
end devices for collaboration, few subtasks need to be
forwarded and repeated. Hence, it avoids redundant cal-
culations and mobile energy consumption caused by the
failure of end devices. For a large DNN network, the
whole inference needs more end devices to participate
in than small DNN, and then it increases additional cal-
culations and data transmission. This indicates that it
is necessary to ensure a reliable communication condi-
tion, and the number of collaborative end devices should
be appropriate. Otherwise, with an unstable condition,
the latency and mobile energy consumption performance
will be challenging to accept in practical applications.
When an end device participates in another end device’s
computation, it may also have the computing require-
ment at the same time. Generally, the end device inclines
to stop the current collaboration and turns to a task of
its own, denoted as Selfish-Exe.

We describe the performance of latency, mobile energy,
and resource utilization of eDDNN against the Selfish-Exe
method in Fig. 14(a). The parameters are the same as the above
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Fig. 15. Mobile Web AR application with three end devices.

experiments. We see that: 1) eDDNN can use the computing
resources of ubiquitous end devices, whose DecisionMaker
allocation algorithm guarantees the payoff of each end device.
This also says that end devices that share the computing
resource can also get others resources for their tasks. Thus,
eDDNN performs a higher resource utilization than that of
Selfish-Exe. This also indicates that only with more participa-
tion in collaborative computing can collaboration with other
end devices be obtained. In Fig. 14(b), we study the latency,
mobile energy consumption, and resource utilization as the
increase of collaborative end devices. The results show that as
the number of concurrent tasks participating in the collabo-
ration device increases, the number of participating devices
continues to increase. Especially, when Num equals 3, the
number of participating end devices reaches 8, which indi-
cates that at least two end devices participating in the task
calculation of other end devices at the same time It shows the
improvement of eDDNN compared with Selfish-Exe.

D. Application of eDDNN in Mobile Web AR

We employ eDDNN into a mobile Web AR application,
consisting of scanning and recognizing images and then ren-
dering 3-D models to the mobile Web browser, interacting with
users, and improving the user’s AR experience. We use the
ShuffleNet training on ImageNet as recognition DNN, and the
entire AR application service is deployed on the edge server,
and experimental settings can be found in the above descrip-
tion. In Fig. 15, we define the Huawei Mate10 as the requestor
and the other two smartphones as the collaborators. The DNN
execution follows the description in Section III.

We present the performance of eDDNN against other
approaches, such as mobile-only and edge-only on the latency,
mobile energy, and resource cost of the edge server in
Fig. 16. Also, we compare and analyze eDDNN against the
traditional vertical partition-offloading and typical collabo-
rative schemes, such as Edgent, Neurosurgeon, JointDNN,
LCRS, and DeepAdapter from the latency, mobile energy,
and resource utilization. The partition-offloading methods
include Edgent, Neurosurgeon, and JointDNN, whose main
optimization objective is the latency. The lightweight branch
used in LCRS and DeepAdapter is trained in advance. The
network and other experimental settings are consistent with the
above. Note that the resource cost mainly refers to the CPU
consumption of the edge server during the AR recognization.
We observe the following.

(a)

(b)

(c)

Fig. 16. Comparing eDDNN with other inference schemes. (a) Latency.
(b) Mobile energy cost. (c) Resource cost.

1) eDDNN performs better than that of Neurosurgeon in
terms of latency, mobile energy cost, and resource cost.
This is because eDDNN transmits a small amount of
data among smartphones, such as dependency data.
However, Neurosurgeon requires transmitting a large
number of intermediate results between the smartphone
and the edge server. Similarly, Edgent and JointDNN
are similar to the partition-offloading scheme adopted
by Neurosurgeon, so they have a similar performance
to Neurosurgeon in performance and are not as good as
eDDNN.

2) Mobile-only has the worst performance in terms of
mobile energy cost and inference latency. Thus, although
this approach has little resource consumption of the
edge server, it is still difficult to widely use due to
poor experience on the latency and mobile energy cost.
Compared with the edge-only approach, eDDNN does
not perform edge-only in terms of latency and mobile
energy consumption, while it dramatically reduces the
edge server’s resource cost and computing pressure. In
summary, eDDNN can achieve the goal of using ubiq-
uitous end devices to reduce 2.98× execution latency
and mobile energy cost by 1.8×, and relieve the com-
puting pressure of the edge server by 2.57×, against
Neurosurgeon.

V. RELATED WORK

Deep Learning (DL) With Cross-Platform Web:
Implementing DL inference with cross-platform Web
reduces the deployment and service cost on ubiquitous
end devices. Caffe.js [33] and Karas.js [34] represent the
typical libraries for implementing DNNs using JavaScript
on the Web. Recently, WebAssembly [35] becomes a new
standard language of the Web, dramatically accelerates the
possibility of performing efficient DNNs on the Web. For
instance, TensorFlow.js [36] is a popular DL framework that
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provides training and inference on the Web using various
accelerating technology (e.g., WebAssembly, WebGPU).
Also, WebDNN [37] and ONNX.js [38] provide a tool that
can optimize, compile, and deploy any DNN models trained
with other backend DNN frameworks onto a Web-executable
WebAssembly file. Our work takes full advantage of the
cross-platform Web to provide the possibility of implementing
more efficient distributed DNN on heterogeneous end devices.

Distributed Deep Learning: The distributed DL infer-
ence scheme is mainly categorized into the collaboration
between a single device and the cloud and execution among
multiple devices and the cloud. For the first category,
Neurosurgeon [12] and Edgent [13] use a single partition point
to distribute the inference between the device and the cloud
optimally. JointDNN [14] partitions the DNN into multiple
small modules and dynamically assigns these modules to be
executed cooperatively on the device or the edge. Besides,
LCRS [16] and LcDNN [18] propose a lightweight collabo-
rative scheme based on binary neural networks, which also
offloading the computation between the device and the cloud.
Similarly, DeepAdapter [17] provides a dynamic and adap-
tive compression model based on the device’s computing
capability. For the second category, DNNs are sliced and dis-
tributed to different devices or clouds (including the edge
cloud and remote cloud) using vertical or horizontal parti-
tioning. DDNN [15] further extends BranchyNet [39] and
distributes DL inference hierarchy over the cloud, the edge,
and devices. Although Musical Chair [40]–[42] distributes the
DL inference over multiple IoT devices using data and model
parallelism methods, these efforts are still in urgent need of
better solutions for cross-platform collaboration on heteroge-
neous devices and scheduling of collaboration. Besides, there
is some work focusing on distributed DL, mainly in discussing
how to provide parallel training. BPT-CNN [43] proposes
a two-layer parallel training architecture for the large-scale
CNNs and addresses the key issues, such as data communica-
tion, synchronization, and workload balancing. Poseidon [44]
is an efficient communication architecture for distributed DL
on GPUs, reducing bursty network communication. In this arti-
cle, our work focuses more on how to provide cross-platform
distributed DL inference services on ubiquitous end devices
and considers how to maximize the resources of devices to
obtain optimal inference latency and mobile energy.

Deep Reinforcement Learning for Scheduling: Online task
and resource scheduling is another important issue of dis-
tributed DL. Deep reinforcement learning has achieved
promising results for online resource scheduling and task
assignment in recent years. Mao et al. [23] viewed the task-
packing problem as a learning problem that learns from experi-
ence to manage resources. MORL-BD [45] is a multiobjective
reinforcement learning, which focuses on solving the problem
of scheduling at optimal paths and applying it to the multi-
route bicycle scheduling problem. More similar to our work
are Harmony [22] and DRLoS [18]. However, Harmony pri-
marily addresses machine learning cluster scheduling, aiming
to place training jobs that minimize interference and maximize
performance. DRLoS [18] is more concerned with how to
schedule DL request tasks across multiple edge centers rather

than the more fine-grained distributed collaborative inference
scheduling faced in this work. Hence, our work addresses how
to maximize resource utilization for optimal inference expe-
rience over ubiquitous end device, rather than average task
completion time, and more fully utilize the computing resource
of end devices.

VI. CONCLUSION

This work proposed the eDDNN aiming at implementing
distributed DNN over heterogeneous end devices by dividing
the task and DNN model and executing them on end devices
almost independently with a shared dependency table. We also
provided a dynamic task allocation algorithm (DecisionMaker)
to make full use of these collaborative end devices, which
show advantages in reducing overall latency and reducing the
computing pressure of the edge server. Experimental results
and actual application have indicated the effectiveness of
eDDNN. We only evaluated eDDNN on image recognition
over heterogeneous end devices, and it can also be generalized
to support other networks and applications. Besides, we plan
to explore more robust and more stable execution to improve
fault tolerance and availability in complex environments.
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