IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

3877

EdgeFlow—Developing and Deploying
Latency-Sensitive IoT Edge Applications

Cosmin Avasalcai

Abstract—Demanding latency-sensitive IoT applications have
stringent requirements, such as low latency, better privacy, and
security. To meet such requirements, researchers proposed a new
paradigm, i.e., edge computing. Edge computing consists of dis-
tributed computational resources and enables the execution of
IoT applications closer to the edge of the network. However,
the distributed nature of this paradigm makes the application
deployment and development process more challenging since
the developer must divide the application’s functionality into
multiple parts, assigning for each a set of requirements. As a
result, the developer must: 1) define the application’s require-
ments and validate them at design time and 2) find a deployment
strategy on the target edge computing platform. In this arti-
cle, we propose EdgeFlow, a new IoT framework capable of
assisting the developer in the application development process.
Specifically, we introduce a methodology for latency-sensitive IoT
applications development and deployment, consisting of three dif-
ferent stages, i.e., the development, validation, and deployment.
To this end, we propose an extension of the flow-based pro-
gramming paradigm with new timing requirements and provide
a resource allocation technique to assist with the deployment
and validation of latency-sensitive IoT applications. Finally, we
evaluate EdgeFlow by: 1) presenting the application develop-
ment methodology and 2) performing a quantitative evaluation
demonstrating our resource allocation technique’s capabilities to
find feasible and optimal deployment strategies. The experimen-
tal results illustrate the effectiveness of our methodology to assist
the developer throughout the entire application development
process.

Index Terms—Edge computing, flow-based programming
(FBP), Internet of Things (IoT) application development, resource
management.

I. INTRODUCTION

ATENCY-SENSITIVE Internet of Things (IoT) applica-
L tions have stringent requirements, e.g., low latency, better
privacy, and security. Current cloud-centric solutions fail to
satisfy these requirements since high volumes of data must
be transferred to the cloud [1]. Hence, to successfully meet
the application’s requirements, we must take advantage of the

Manuscript received December 21, 2020; revised April 15, 2021; accepted
July 21, 2021. Date of publication July 30, 2021; date of current version
February 21, 2022. This work was supported by the EU’s H2020 Research
and Innovation Programme through the Marie Sktodowska-Curie FORA—
Fog Computing for Robotics and Industrial Automation under Grant 764785.
(Corresponding author: Cosmin Avasalcai.)

Cosmin Avasalcai and Schahram Dustdar are with Distributed Systems
Group, Vienna University of Technology, 1040 Vienna, Austria (e-mail:
c.avasalcai @dsg.tuwien.ac.at; dustdar@dsg.tuwien.ac.at).

Bahram Zarrin is with the Business Application Group, Microsoft
Development Center Copenhagen, 2800 Kongens Lyngby, Denmark (e-mail:
bahramzarrin @microsoft.com).

Digital Object Identifier 10.1109/JI0T.2021.3101449

, Student Member, IEEE, Bahram Zarrin, and Schahram Dustdar

, Fellow, IEEE,

distributed computational nodes found in an IoT system. As a
result, a latency-sensitive IoT application consists of multiple
interconnected components; a component is capable of exe-
cuting one part of the application’s functionality. However,
developing and deploying such an application model are not
a trivial task since the developer must: 1) define and vali-
date the application’s requirements at design time and 2) find
a deployment strategy such that it satisfies all application
requirements.

To address the shortcoming of cloud computing, researchers
have proposed edge computing [2]. Edge computing enables
the utilization of available computation resources found at
the edge of the network [3], [4]—a paradigm consisting of
multiple geo-distributed resource-constrained devices capable
of hosting deployed IoT applications. Edge computing assists
cloud computing in satisfying the stringent requirements of
latency-sensitive IoT applications, where components may be
deployed on edge nodes. Some advantages of edge comput-
ing include low latency and data locality [5]. Nevertheless,
deploying an application on an edge computing platform is
challenging since heterogeneity and limited resource capa-
bilities define an edge node. As a result, the successful
deployment of latency-sensitive applications is dependent on
new resource allocation techniques.

Edge computing brings many advantages for the deploy-
ment of latency-sensitive IoT applications. However, edge
computing makes the application development process more
challenging, since the developer must divide the application’s
functionality and define different requirements for each com-
ponent [6]. Previously, in a cloud-centric system, a single
component contains the entire application’s functionality and
it is deployed in a single location, i.e., in the cloud. In con-
trast, in an edge computing platform, the application model
consists of multiple components that are distributed among dif-
ferent edge devices. An application model that is in line with
the flow-based programming (FBP) paradigm [7] concepts; an
application has a communication flow that connects differ-
ent components to achieve certain functionality. Several FBP
tools, such as noFlo [8], node-RED [9], and drawFBP [10],
exist to aid the developer in creating new IoT application
models and define their communication flow. However, it
is still challenging to define and validate the application’s
timing and resource requirements during the development
stage.

In this article, we propose EdgeFlow, a new IoT framework
for latency-sensitive IoT applications development and deploy-
ment. Our main contribution is a methodology for aiding the

2327-4662 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8925-9339
https://orcid.org/0000-0001-6872-8821

3878

developer in the process of creating and deploying applica-
tions by: 1) defining new applications’ timing and resource
requirements; 2) validating all requirements; and 3) finding a
deployment strategy.

Development Stage: We propose an [loT application
modeling paradigm for developing latency-sensitive appli-
cations at design time. The purpose of this stage is to
collect as much information as possible regarding the current
application—information that improves the chances to suc-
cessfully deploy an application on the target edge computing
platform. As a result, we employ the FBP paradigm as an
application model to define latency-sensitive IoT applications
and extend this paradigm with new timing requirements allow-
ing the developer to provide timing and resource requirements.
We allow for a higher granularity when defining the applica-
tion’s timing requirements. As a result, for a latency-sensitive
IoT application, the developer can define an end-to-end (e2e)
delay for many communication flows ranging from the com-
munication link between two components to a flow containing
the entire application (if possible). To evaluate our devel-
opment stage, we create a prototypical framework based on
the drawFBP tool. We describe the application development
methodology by creating an IoT application.

Deployment and Validation Stages: The deployment stage
offers support for deploying latency-sensitive applications on
edge computing platforms. This stage provides validation for
defined application constraints by determining eligible deploy-
ments (if any) of the designed application to the target edge
computing platform. We cast our deployment technique within
the constraint programming (CP) paradigm [11], where we
define the deployment constraints as a constraint satisfaction
problem. Consequently, the deployment stage can generate
feasible or optimal deployment strategies—it provides guar-
antees that if a deployment strategy exists, the technique
can find it. A deployment strategy: 1) satisfies each compo-
nent’s resource requirements while not exceeding the device’s
available resources and 2) meets the communication flow
constraints, i.e., ensuring that the e2e delay of each commu-
nication flow does not exceed the determined one. Finally, we
evaluate our deployment stage performance by assessing the
execution time required to find an optimal deployment strategy.

The contributions of this article are as follows.

1) EdgeFlow: It is the methodology for latency-sensitive
IoT applications development and deployment. Our
proposed methodology aids the developer in defining
and validating timing and resource requirements, as well
as finding optimal and feasible deployment strategies.

2) Development Stage: We propose an extension of the
FBP programming paradigm with new concepts, such
as timing and resource requirements. By introducing
new timing requirements, we support the definition of
multiple e2e delays for different communication flows
for the developed application.

3) Deployment Stage: We introduce a novel resource allo-
cation technique capable of finding optimal or feasible
deployment strategies. Our main objective is to find a
deployment strategy that satisfies all timing and resource
requirements defined in the development stage.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

4) Validation Stage: We provide validation for all appli-
cation requirements introduced during the development
stage using the proposed resource allocation technique
from the deployment stage. As a result, the developer
can refine the defined requirements, considering the
target edge computing platform.

The remainder of this article is structured as follows. In
Section II, we summarize the related work. Section III pro-
vides an overview of EdgeFlow and defines the application
model, edge computing platform, and communication flows
constraints, given as input files to the deployment stage.
In Section IV, we describe the implementation details of
our proposed framework. Section V presents the applica-
tion development methodology, while Section VI shows the
results of our deployment stage evaluation. Finally, Section VII
concludes the article and provides an outlook on future work.

II. RELATED WORK

The adoption of edge computing and the stringent applica-
tion requirements have changed the application’s deployment
and development process. Recently, the consensus, in the
research literature, depicts an application model as a collection
of components to accommodate the distributed nature of edge
computing [12]-[15]. Typically, researchers consider as given
the application model and its associated timing and resource
requirements when proposing new application deployment
techniques. However, developing an application model and
defining all requirements is not a trivial task.

Only recently, researchers have proposed techniques to aid
with the IoT application development process. Giang et al. [16]
presented a distributed dataflow programming model for fog
computing that aids the developer during the application
development process. In this case, the developer defines the
application model as a directed graph, dividing the appli-
cation’s functionality between different application nodes.
Wang et al. [17] proposed a stream processing approach, i.e.,
edge stream, for building new applications for edge computing
systems. Edge stream represents data flows between the appli-
cation’s components as streams. Frasad [18] is another frame-
work that helps with the IoT application development and
makes use of a model-driven design approach to enhance the
reusability, flexibility, and maintainability of sensor software.
Rafique et al. [19] developed an IoT application development
framework using model-driven development and attribute-
driven design. The framework transforms the application’s
requirements into a solution architecture using the attribute-
driven design and then uses model-driven development to
generate models to transform the application’s components
into software artifacts. Other papers make use of FBP for
the IoT applications development process. Szydlo et al. [20]
introduced a heuristic data flow transformation technique to
successfully distribute flows on the target network, while
Belsa et al. [21] presented a solution to interconnect services
from different IoT platforms. Jain and Tata [22] proposed
a mapping technique composed of two stages: 1) the IoT
application is modeled into multiple different tasks annotated
with target location information and 2) each task is deployed
on an edge node based on its location. The authors extend

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

AVASALCAI et al.: EdgeFlow—DEVELOPING AND DEPLOYING LATENCY-SENSITIVE IoT EDGE APPLICATIONS

Node-RED to allow the development of the IoT application
and deployment of defined components to their predefined
location, i.e., cloud or edge. Compared to the related IoT
development approaches, we focus on deployment and vali-
dation of IoT applications on different edge computing plat-
forms without the need to introduce predefined locations for
components—we enable the deployment of applications on
large-scale platforms.

The deployment problem exists in many variants in the sci-
entific literature [23]-[26]. The two most common scenarios
where researchers propose deployment techniques are: 1) ser-
vice placement and 2) service offloading. The former migrates
services that reside in the cloud closer to the edge of the
network, i.e., on edge or fog nodes. In contrast, the latter
moves services from resource-constrained devices, e.g., smart-
phones, to nearby edge nodes, in an attempt to preserve the
energy of devices. Brogi and Forti [27] proposed a deployment
technique having as objective the latency and bandwidth. As
a result, the proposed solution provides Quality of Service
(QoS)-aware deployments of IoT applications on a target fog
computing architecture. Scoca et al. [28] proposed a latency,
bandwidth, and resource-aware scheduling algorithm that finds
a mapping of services to edge nodes. The approach uses a
score-based technique that evaluates the target edge nodes and
communication links and computes a scoring mapping for each
service. The main objective of this technique is to guaran-
tee optimal service quality. Mahmud er al. [29] introduced
a latency-aware technique aiming to deploy the application’s
modules on fog computing such that it satisfies all objectives.
The approach has two objectives, i.e.: 1) to satisfy the applica-
tion’s latency requirements and 2) to optimize the utilization
of the node’s available resources. Liu ef al. [30] proposed a
task offloading technique that aims to minimize the system
cost, i.e., energy and latency. This technique groups the users
into clusters based on their priorities and decided if a clus-
ter should run all its tasks locally or should be offloaded to
an edge server. Bahreini and Grosu [31] introduced an online
heuristic algorithm based on the mixed-integer linear program
to deploy multicomponents applications on edge computing
platforms. As we can see, all approaches strive to achieve
at least one objective, i.e., latency. However, the deployment
problem is implemented as a resource allocation optimization
problem leveraging assumptions about the application model.

Note that in the presented related work, some solutions
consider as target deployment platforms either fog or edge
computing paradigms. These two paradigms have the same
underlying premise of migrating computational resources
closer to the edge of the network [6]. Therefore, from the
perspective of EdgeFlow, using one paradigm over the other
poses no impact on the EdgeFlow functionality—in both cases,
the available resources are shared between the participant
devices. We differentiate ourselves from the aforementioned
related work from two big perspectives: we 1) extend the FBP
paradigm with new timing requirements and 2) propose a new
deployment technique. With the former, we allow the devel-
oper to define new timing requirements for each application
component and communication link. Moreover, we introduce a
new timing constraint for multiple communication flows, i.e.,

3879

Model the application’s Connect components to For each component
€ | components ?L?nctionalit —> achieve desired — providetimingand |«
g P 4 application functionality resource requirements
Q
s 4 Y
g
® Application O Generate JSON files:

a PP L N . .
Developer “ 1. Application model file <@—— Define flow constraints

2. Flow constraints file

8

£ Prepare the edge Provide the three JSON N

3' computing platform > files as input to the Find 2‘(:::)eloyment

=3 JSON file deployment stage o

7

a

s

'ﬁ Start preparing to deploy Analyze the results and

g the application according strategy make the necessary | —

g to deployment strategy optimal or adjustments

easible?
Fig. 1. EdgeFlow methodology overview.

the developer can define individual delays for many commu-
nication flows of different sizes. The latter technique can find
feasible or optimal deployment strategies, fulfilling the timing
and resource requirements. Furthermore, since we are using
CP, the technique can validate the application’s timing and
resource requirements considering the target edge computing
platform.

III. EDGEFLOW: APPLICATION DEVELOPMENT AND
DEPLOYMENT FRAMEWORK

New latency-sensitive IoT application models achieved
through edge computing decompose the application’s func-
tionality into multiple distributed components. As a result, the
developer must define new timing and resource requirements
for each component and the overall application—besides the
maximum e2e delay involved in the correct application func-
tionality, the developer must define specific requirements for
each component. As such, the developer must be able to define
and validate all requirements during the application’s develop-
ment process; since these requirements play an active role in
the application deployment.

In our framework, we provide a methodology to develop and
deploy IoT applications on the target edge computing platform.
For the former, we offer support for creating the application
model and defining the timing and performance requirements.
For the latter, we propose a deployment stage capable of
finding a deployment strategy at design time. Depending on
the type of the target edge computing platform, i.e., static
or dynamic, the deployment stage provides a different utility.
In the case of static architectures, e.g., like in a smart fac-
tory, the deployment stage can generate feasible or optimal
deployment strategies. However, if the target platform is a
dynamic edge computing architecture characterized by high
uncertainty and node mobility, then the deployment stage can
only validate the application requirements; a dynamic network
may change while we search for the optimal deployment strat-
egy at design time. As a result, for dynamic architectures, we
can use a decentralized resource allocation technique capa-
ble of finding deployment strategies at runtime [32]. Fig. 1

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

3880

presents an overview of our EdgeFlow methodology consist-
ing of three distinct stages, i.e.: 1) the development stage;
2) the deployment stage; and 3) the validation stage.

A. Development Stage

The application development stage is an extension of the
FBP programming paradigm, introducing new timing and
resource requirements. The application modeling paradigm
offers the possibility to divide the application’s functionality
into different components and build the application’s com-
munication flow such that the application performs certain
functionality.

The FBP paradigm views an application as a network
of processes, i.e., components, interconnected via predefined
communication links. Each component runs asynchronously
and communicates via streams of data chunks, i.e., information
packets (IPs) [33]. FBP is component oriented, allowing the
developer to develop different applications using the same
network of components—a practice that improves the appli-
cation development process and enhances the reusability of
components. FBP is not a coding language. As a result, it is
ideal to use predefined components from a library.

FBP Extension: The FBP paradigm does not provide the
possibility to define QoS requirements, i.e., timing require-
ments, data locality, affinity and anti-affinity constraints
between components, privacy [34], [35], and security [36],
during the application’s modeling stage. In this article, we tar-
get the development and deployment of latency-sensitive IoT
applications—one of the fundamental concerns of these appli-
cations is latency. To this end, we propose an extension of the
current FBP paradigm with new timing requirements.!

In our opinion, three essential timing requirements define
a latency-sensitive application, i.e., worst case execution time
(WCET), e2e delay for different flows, and worst case com-
munication delay (WCCD). Each application’s component has
associated a WCET representing the time required to produce
a result. Similarly, we define, for each communication link,
a maximum WCCD serving as the time that an IP needs to
reach its destination. Finally, we provide the means to define
an e2e delay for multiple communication flows. Notice that
the first two timing constraints are part of the e2e delay com-
putation since a communication flow consists of one or more
components and communications links alike. Zarrin et al. [37]
formalized the syntax and semantics of flow-based languages,
and they proposed a metamodel for FBP. Fig. 2 presents our
extended metamodel based on their formalism.

Application Model: An application model is defined as an
FBP network, which consists of a set of components C={c1,
Co, ...} that collaborates to perform a certain goal. An appli-
cation may have one or more source components (i.e., the
component that provides the required data) as well as at least
one sink (i.e., a component that acts according to the data
received). In Fig. 3, we present an example of an appli-
cation model having one source and two sinks, where the

Twe identify all other QoS requirements as an interesting path for future
work. Furthermore, researchers can contribute to the IoT application modeling
paradigm by providing extensions for new requirements.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

[eworcremen] (e S [rerventer=]
0.n 1 - St 1 0.n
x x |Eme‘ ring
1
TimingConstraint Parameter ‘ ParameterDef ‘
A 0.n ~| name: String name: String
% % value: Data
[Fiow | [weep | [woeT Process Port
name: Slring‘ 0.1 | Channel | 1 ~| name: String
0.. type: String

! L‘ !4 TX [ouj:on

1
.n

0..1 1.1

‘0..1 source 1.1

InChannel ‘ |OutChanne\ |

Fig. 2. FBP paradigm extension metamodel.

Fig. 3. Latency-sensitive IoT application model.

communication flow starts with the source component, i.e.,
Co, and finishes with two sink components, i.e., C4 and Cg.

A component c; performs a certain functionality and rep-
resents a containerized microservice or serverless function.
Each component is characterized by a set of timing and
resource requirements, Creq={r1, r2,...} as well as a set of
input and output ports, Cin={in, ino, ...} and Cyy={outy,
outp,...}. During the application development process, the
developer defines these requirements according to the appli-
cation’s goals. A resource requirement represents the generic
memory (i.e., RAM), computational power (i.e., CPU), and
storage (i.e., HDD) requirements, while the WCET of a
component is an example of a timing requirement. To fit
better the application’s needs, in future work, we intend to
extend the components’ resource requirements with specific
requirements, e.g., hardware requirements such as GPUs for
high computational components or specific data that must be
present on the host node.

B. Edge Computing Platform

An edge computing platform consists of multiple distributed
edge nodes, having the following characteristics: 1) hetero-
geneity; 2) limited computational resources; and 3) mobility.
Let EN={E4, Eo, ...} be a set of edge nodes found in the
target architecture. Each node is characterized by a set of
available resources, Ejes={r1, ro, ...}, such as RAM, CPU,
and HDD, and a list of communication links Linkcom={link1,
linko, ...}—each linkj having associated a bandwidth.

Based on the platform’s characteristics and the adminis-
trative entity control level, we identify two types of edge
computing platforms, i.e., a dynamic platform and a static plat-
form. The dynamic platform consists of different mobile and
static edge nodes owned by distinct administrative entities. As
a consequence, it introduces a high uncertainty level into the
system, making the deployment of an application at design
time more challenging; an example of such a platform is the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

AVASALCAI et al.: EdgeFlow—DEVELOPING AND DEPLOYING LATENCY-SENSITIVE IoT EDGE APPLICATIONS

typical smart city scenario. In contrast, the static platform
has a low uncertainty where the developer knows the nodes’
characteristics at design time, e.g., a smart factory scenario.

C. Deployment and Validation Stages

The deployment and validation stages use a resource allo-
cation technique aiming to help the developer to validate the
defined application’s requirements considering the target edge
platform’s available resources. Consequently, we develop our
resource allocation technique using CP, which produces both
feasible and optimal deployment strategies. Notice that CP
fits rather well with our deployment stage since our primary
focus is to validate the application’s requirements—CP pro-
vides guarantees that if a deployment strategy is possible,
then it satisfies all requirements. To deploy an application,
the deployment stage requires information regarding the appli-
cation model and the target edge computing platform. The
developer provides all required information as three input
files, i.e., application model file, edge computing platform file,
and flow constraints file; the developer can generate the files
using the loT application modeling stage or can create them
manually.

Application Model File: The development stage provides the
developer with the ability to generate the application model
file—a process that stores all application resource require-
ments in a JSON file. In the end, the JSON file contains
information about the application’s components, such as input
and output ports, the period and data size associated with the
ports, resource requirements (RAM, CPU, and HDD), and the
WCET.

Edge Computing Platform File: Since the edge comput-
ing platform is not modeled with the FBP paradigm, we
assume that the developer obtains this file from the admin-
istrative entity that owns the platform, i.e., considering the
static platform scenario. For the dynamic platform, we assume
that the file represents an estimation of the possible cur-
rent topology determined from the history data stored in
the cloud.

Flow Constraints File: This file contains the application’s
constraints—the deployment strategy uses them as objec-
tives. We offer the developer the possibility to add for each
flow found in the application model an e2e delay constraint.
The e2e delay considers both the WCET of each com-
ponent found on the path as well as the communication
latency used when components exchange IPs. For example,
considering the application shown in Fig. 3, the developer
can create multiple constraint flows between its components.
There are three big flows consisting of the following com-
ponents: 1) Cop —Cp —C5 —Cg; 2) Co — C3 — C5 — Cg; and
3) cp — C1 — C4, respectively. However, the developer can add
a constraint even for a smaller flow consisting of a minimum of
two components, e.g., Cg — C1. In this article, we assume that
the developer provides at least the number of flows required
to involve all communication links and components found
in the application model. If any component remains outside
of a defined flow constraint, then our deployment stage will
consider it as a single component with no dependencies.

3881

<Delay> :: <Number> ms | <Number> ns

<BooleanOp> :: < | > | >= | <= | =

<FlowSource> :: <InPortID> | <DataPacketID>

<FlowSink> :: <OutPortID> | <ComponentFlow>
<ComponentFlow> :: <InPortID> <ComponentID> <OutPortID>
<FlowPath> :: <FlowPath> —-> <ComponentFlow> |

<ComponentFlow>
<Flow> :: <FlowSource> —-> <FlowPath> -> <FlowSink> |
<FlowSource> -> <FlowSink>

<FlowConstraint> :: <FlowID> : <Flow> <BooleanOp> <Delay>
<FlowConstraints> :: <FlowConstraints> ; <FlowConstraint> |
<FlowConstraint>

<FlowConstraintsDef> :: flow constraints <AppID>
<FlowConstraints> end

Grammar 1. Flow constraint language.

The proposed IoT framework utilizes a mini language to
specify the flow constraints (see Grammar 1). The developer
can add the flow constraints using this language to specify the
flow’s path and the maximum e2e delay. In (1), we present an
example of a flow containing two components C4 and Co. In the
flow declaration, the IN and OUT ports represent the name of
the input and output ports used by each component. As we can
observe, the colon separates the flow’s path declaration from
its id, while < shows the relation between the path and the e2e
delay and — represents the direction of the communication.
Furthermore, the last component does not need an output port,
this highlighting that the path is ending

pathy : INc; OUT — INco < e2eDelay. (1
IV. APPLICATION DEVELOPMENT AND
DEPLOYMENT STAGES

In this section, we present the two stages that represent the
core of the EdgeFlow framework, i.e., the development stage
and the deployment stage. For the former, to prove our concept,
we develop a prototype to help the developer in creating new
application models and defining their timing and performance
requirements. For the latter, we propose a deployment tech-
nique capable of providing deployment strategies such that it
satisfies all application’s requirements and constraints.

A. Development Stage Prototype

To prove the benefits of creating a new latency-sensitive
application using our IoT framework, we develop an appli-
cation development prototype based on drawFBP. DrawFBP
uses FBP at its core and allows developers to create dia-
grams using blocks, i.e., components [10]. An advantage of
drawFBP is that developers can generate different compo-
nents that other developers can reuse—the developer can create
them using Java, C#, or JSON. As a result, the developer can
use existing components from the drawFBP library during the
application development process. In this case, the development
process resumes at creating a communication flow between
selected components such that it fulfills the application’s goals.
However, defining the application’s communication flow and
choosing the components are not enough; the developer must
define specific requirements for both the communication flows
and for each component.

We extend drawFBP with new options, such as set com-
ponent requirements, set flow constraints, application model:

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

3882

generate JSON file, and flow constraints: generate JSON file,
offering developers the possibility of adding timing require-
ments. Using the set component requirements option, the
developer can describe for each component the following char-
acteristics, i.e., WCET, period, message size, and resource
requirements (RAM, CPU, and HDD). Furthermore, the devel-
oper can define different e2e delay constraints for custom
communication flows using the set flow constraints option.
Finally, we collect all information into two input files, i.e., the
application model and the communication flow constraints,
using the two generate JSON file options; files that the
deployment stage uses as input.

B. Deployment Stage Technique

Our deployment technique helps the developer to decide if
the application can be deployed on the target edge comput-
ing platform. Depending on the success of the deployment,
the developer gets more clarity in defining the component’s
resource requirements and the application’s constraints. Two
cases lead to deployment failure, i.e.: 1) the application has
very stringent requirements and 2) the target platform lacks
the required available resources. Under these conditions, if
the deployment stage does not find a deployment strategy, the
developer can investigate one of the two cases and make
the required adjustments accordingly. Therefore, the devel-
oper can use the deployment stage to understand if the target
edge computing platform can host the application. As a result,
developers can create better application models suitable for
deployment on a large variety of platforms.

As mentioned in the previous section, we implement the
resource allocation technique using CP. Depending on the
strategy found, CP can return one of the four different status
values, i.e.: 1) optimal; 2) feasible; 3) unknown; and 4) infea-
sible. The deployment technique found a deployment strategy
that meets the requirements if the returned status is 1) or 2).
In contrast, if the returned status is 4), then the technique
cannot find a deployment strategy that meets all require-
ments. An interesting state, i.e., 3), may appear when the
developer decides to limit the execution time of the deploy-
ment stage. Under these conditions, the technique is unable to
decide if the current deployment strategy satisfies all applica-
tion’s requirements—as a result, it returns unknown. To find
a deployment strategy, we model the problem using decision
variables, constraints, and global objective and solve it using
a CP solver.

The procedure starts once the deployment technique
receives the required input files from the developer. Using the
information received as input, we can create a set of decisions
variables used in the CP model. A decision variable repre-
sents a variable for which the CP solver tries to assign a value
chosen from a predefined domain to satisfy the application’s
requirements. In our case, we identify four different decision
variables, i.e., component variables, latency variables, WCET
variables, and resource variables. From all these decision vari-
ables, only the component variables yields an allocation, while
all the other variables are support variables for validating the
chosen deployment strategy.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

Component Variables: The component variables define for
each component a domain containing a list of edge nodes
where the current component can be mapped. For example,
component Cq can be mapped only on nodes E1, Ep, and Eg;
hence, a valid domain for the decision variable of ¢q is D={E1,
Eo, E3}. Under these conditions, the solver can only choose
a node from D to allocate C1.

Latency Variables: These variables are in charge of saving
the communication latency between two components consider-
ing their mapping. Let us consider that two components €4 and
Co communicate with each other—dcq is mapped on Eq and
Cp is mapped on Ep. We can use the IP size and the bandwidth
of the communication link used for communication to find the
communication latency between the two components. To build
the variable’s domain, we use the dependencies between com-
ponents described in the communication flow constraints input
file and all possible locations from their respective domains
devised in the component variables. As a result, to compute the
communication latency between two dependent components,
Ci and ¢j, we take all possible distinct edge node combinations
from their associated domains.

WCET Variables: The WCET variables have the same pur-
pose as the latency variables, i.e., to store the WCET given to
each component. Since the WCET of a component is strictly
dependent on the host’s internal status, obtaining the exact
WCET of a component is challenging; the edge computing
platform consists of multiple heterogeneous devices, requiring
a complete analysis of the WCET of a component on every
edge node. We consider such analysis as out of scope for the
current article. Therefore, to lower the challenge in finding a
suitable WCET, we assume the developer can provide a lower
and an upper bound for the WCET of each component.

Resource Variables: These variables keep track of the edge
node’s available resources. Every node starts with a predefined
set of available resources; resources that decrease with
the resource requirements of new mapped components. An
approach that ensures the correct distribution of components
on nodes without exceeding the node’s available resources.

Once we add all decision variables to the CP model, we
can continue with the introduction of our constraints. Each
constraint represents an important part of our model, guid-
ing the CP solver toward a feasible deployment strategy that
considers the application’s constraints. For this purpose, we
define two different constraints, i.e., components constraints
and flows constraints.

Components Constraints: The components constraints
ensure that the distribution of components on edge nodes does
not exceed the node’s available resources. To achieve such
purpose, the components constraints make use of the follow-
ing decision variables, i.e., component variables and resource
variables. Equations (2), (3), and (4) guarantee that a deploy-
ment strategy does not exceed nodes’ available resource, where
Nc represents the total number of components mapped on the
current node

Nc
usedCPU =) " ccpy < availalbecpy)
i—1

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

AVASALCAI et al.: EdgeFlow—DEVELOPING AND DEPLOYING LATENCY-SENSITIVE IoT EDGE APPLICATIONS

Nc

usedRAM =) " cram < availablegam (3)
i—1
Nc

usedHDD = ZCHDD < availableypp. 4)

i=1

Flows Constraints: By validating the components con-
straints, we can successfully deploy the application on the
target edge computing platform. However, we only consider
the application’s resource requirements as a deployment objec-
tive. Therefore, we introduce a new set of constraints, i.e.,
flows constraints, to consider the flow constraints introduced
in the flow constraints file. We build these constraints based
on the components variables, WCET variables, and latency
variables. By combining the three decision variables, we man-
age to further enforce constraints on the deployment strategy.
In conclusion, we can observe that these constraints consider
both WCET and communication latency. Equation (5) guaran-
tees that the flow’s e2e delay does not exceed the maximum
e2e delay associated with it; the e2e delay of a flow is the
sum of all participants components” WCET and their commu-
nication latency. In (5), It represents the total number of links
found in a flow f, c; is the total number of components part
of a flow f, and maxE2Edelayy represents the maximum e2e
delay allowed for flow f

Iy Ct
e2eDelay = Z linkiatency + Z Cweet < MmaxE2Edelayy. (5)
link c

Global Objective: The purpose of this objective is to min-
imize the e2e delay of each flow. In doing so, we obtain a
solution that offers an optimal deployment strategy if there is
enough time to search for it. Equation (6) shows the global
objective, where ns represents the total number of flow con-
straints defined in the communication flow constraints file and
flowE2E; is the current e2e delay of flow i

Nt
Min(> flowE2E;
i=1

(6)

V. APPLICATION DEVELOPMENT METHODOLOGY

EdgeFlow provides a framework that aids the developer
in creating emergent latency-sensitive IoT applications and
deploy them in an edge computing platform. In this section, we
evaluate the applicability of our IoT framework by presenting
the application development experience. We describe this as a
step-by-step process using one latency-sensitive IoT applica-
tion. First, we describe the development of the IoT application
model and generate the input files that the deployment stage
requires to validate the requirements and find a deployment
strategy to map the application on an edge computing platform.
The application development prototype and the deployment
stage technique are available in our online appendix” and our
git repository.>

As a running exemplar, we model a public safety loT appli-
cation deployed in a smart city scenario. The application aims

2https://dsg.tuwien.ac.at/team/cavasa]cai/projects/EdgeFlow
3 https://github.com/cavasalcai/EdgeFlow

3883

C2: Face IN
Recognition [QUT

C1: Motion
Detection

C4: Send
Alarm

MotionDetd chJn .class FaceRecognition.class SendAlarm.class

IN | C3:Env.
Analysis

ouT

EnvAnalysis.class

Fig. 4. Public safety application DrawFBP model.

to prevent any possible attacks by analyzing all the images and
videos from an area. The application consists of multiple com-
ponents capable of analyzing both the environment as well as
people. For example, the application sends an emergency sig-
nal to the police department if a suspicious package is found in
the monitored area. Since our focus is to show the extensions
and improvements we bring with our proposed IoT framework,
we assume that the public safety application’s components are
available in the drawFBP library. In this setting, the developer
must connect the components and add the timing and resource
requirements.

Considering the safety implications, the smart city appli-
cation must adhere to some timing requirements such as low
e2e delay. To prevent a possible disaster scenario, the appli-
cation must be able to provide alerts without delay. Thus, the
application must execute at the edge of the network. As a con-
sequence, a prerequisite for the developer is to validate the
timing and performance requirements on the target edge com-
puting platform before deploying the application. As we will
show, our IoT framework is capable of performing such valida-
tion. In our case, the application consists of five components,
each enacting a specific functionality.

Development Stage: Using the application development pro-
totype, the developer can create all components required for
the application, add the functionality, and connect them via
ports to create the application’s functionality (see Fig. 4).
Currently, the developer has created the application model
without defining the timing and resource requirements.

Once the model is complete, the developer can specify the
timing and resource requirements using our FBP extension
options presented in Section IV-A. To assign the component’s
requirements, the developer can use the option set compo-
nent requirements available in the component menu; to access
this menu, right click on the target component. The process
of setting the component’s requirements goes through each
requirement and asks the developer to provide a value or a
range (in the case of WCET). To create new flow constraints,
the developer can select the set flow constraints option from
file menu and define a new flow constraint using the template
from (1). We have added support options, i.e., display flow
constraints and delete flow constraints, that help the developer
to display and delete all existing flow constraints.

Finally, there is one more step to perform before the devel-
oper can move to the deployment stage, i.e., to generate the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

3884

TABLE I
EDGE COMPUTING PLATFORM CHARACTERISTICS

Nodes Available Resources . Cpnnections '
RAM [CPU [HDD destination | bandwidth
I R =
O N e
S R =
TABLE II

APPLICATION RESOURCE AND TIMING REQUIREMENTS

Resource Requirements Data
Components |- N T cPU [HDD || VCCT | size
c1 6 7 5 [5, 9] 60
c 13 15 7 [20, 35] 90
c3 10 13 10 [15, 25] 75
[N 3 2 3 [2, 4] 30
[) [] List of flows constraints
ID path e2e delay
1 IN C1 OUT->IN C2 OUT->IN C4 40
f2 IN C1 OUT->IN C3 OUT->IN C4 33
Fig. 5. Flow constraints for public safety application.

application model file and the communication flow constraints.
The developer can generate these files using the two options,
i.e., application model: generate JSON file and flow con-
straints: generate JSON file, from the file menu. As explained
in Section III-C, the developer can obtain the edge computing
platform file from other sources.

Deployment Stage: The contents of the three input files
are presented in Tables I and II and Fig. 5. Table I shows
the target edge computing platform, where we can see the
node’s available resources, connections with other nodes, and
the bandwidth of each communication link. For simplicity, we
choose for each available resource, i.e., RAM, CPU, and HDD,
a value between 15 and 30 units. The deployment stage can
operate with different units, e.g., MB or GB, as long as there
is consistency between the available and required resources.

The application model file contains the timing and resource
requirements of all components; requirements that we present
in Table II. For our public safety application, we choose for
each component the following: all resource requirements have
a value between 1 and 15 units, we randomly select a data
size value between 30 and 115 units, and add a custom range
for the WCET considering each component’s functionality.

Fig. 5 shows the declaration of the flow’s path in the com-
munication flow constraints file where a list of communication
ports, the source, and the destination component describe each
link found in the path. For our application, we assign two dif-
ferent flows, i.e., fy with the path ¢{ — 2 — ¢4 and fz having
the path ¢y — C3 — C4. For f{, we chose an e2e delay equal
to 40 ms and for fp, the maximum e2e delay is 33 ms. To
choose the maximum e2e delay, we consider the sum of the
lower bound of the WCET of all components found on the

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

0.
c2: face ﬁ
0 recogniti 2
" gnition

raw c1: motion c4: send
data detection | E2 alarm

c3: env.

analysis

Fig. 6. Deployment strategy for public safety application.

TABLE III
FLOWS E2E DELAY AND COMMUNICATION LATENCY

Flows Components | Communication Latency | e2e
ID | WCET | destination [Tatency delay
Cc1 5 Co 0
C2 20 Cy4 6

f1 < 5 - - 33
Cc1 5 c3 4
c3 15 [0

fa < 5 . - 26

communication flow. Furthermore, to this, we add a value of
10; this value reflects the impact of the communication latency
between components.

With the three files ready, the developer can start the pro-
cess of finding a satisfiable deployment strategy. Considering
the target edge computing platform, the deployment tech-
nique tries to find an optimal or feasible deployment strategy.
Depending on what status the CP solver returns, the developer
must decide if he/she should change the application’s require-
ments or try to find a more suitable edge computing platform
with more resources. In Fig. 6, we can see the output of the
deployment stage. We highlight the host node of each com-
ponent by placing the node’s id on the top left corner. For
example, component Cq is mapped on Eg and component C»
is mapped on Eq. In this case, the deployment stage finds the
optimal deployment strategy in 10 ms.

The deployment stage returns a detail report showing the
communication latency between components and their WCET
concerning each communication flow constraint. In Table III,
we present the flows’ e2e delay and the communication latency
for the deployment strategy presented in Fig. 6. We can
observe that for the optimal solution, the actual e2e delay of
flow fq is 34 ms, while for fo is 32 ms. Also, we can see that
for f1, the communication latency between components €1 and
Co is equal to 6 ms.

Validation Stage: As we can observe from the results of the
deployment stage, for the current running example applica-
tion, there is no need to redefine the timing requirements—the
deployment stage has found an optimal solution that fulfills all
application’s requirements. However, if the deployment stage
cannot find a solution, then the developer can change the
requirements and employ the deployment stage again.

VI. EVALUATION

In this section, we perform a quantitative evaluation to
assess the deployment stage’s capabilities in terms of the time
required to provide optimal and feasible deployment strate-
gies for different scenarios. We are interested in finding how
certain markers like: 1) the application size; 2) the edge com-
puting platform size; and 3) the number of flow constraints

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

AVASALCAI et al.: EdgeFlow—DEVELOPING AND DEPLOYING LATENCY-SENSITIVE IoT EDGE APPLICATIONS

impact the tool’s performance. Considering our evaluation
objective, we propose three distinct scenarios, each having a
different application model and flow constraints input files.
Furthermore, in every scenario, we deploy the application on
multiple edge computing platforms; each target platform has
a different number of available edge nodes.

We proceed by generating the three input files for each sce-
nario. We can obtain these files using the application modeling
stage, as proven in Section V. However, considering our eval-
uation objective, it is not feasible nor required to develop the
applications and add timing and resource requirements man-
ually. As a result, we randomly generate all input files using
different procedures.

Application Model File (Generation): All considered appli-
cations have one source component and one sink component—
a decision that does not alter the evaluation objective and
results since an application with multiple sources and sinks
only implies a higher initial number of flows. We choose a dif-
ferent number of components for each scenario, starting from
10 for the first scenario up to 30 components for the last one;
in our case, we increase the application size by 10. We first
model the component’s resource requirements as a tuple, i.e.,
(RAM, CPU, and HDD), choosing for each resource a ran-
dom value between [5, 15] units. Next, we choose the WCET
range [l, u] for a component by selecting a value for / and u,
from [4, 10] and [10, 12] ms, respectively. Finally, the period
has a value between [10, 30] ms, the IP’s data size is between
[30, 120] bytes, and we define for each component a total of
two input and output ports.

Edge Platform File (Generation): We create multiple edge
computing platforms, having a size between 10 and 500 nodes.
In each scenario, we gradually increase the size by 10, gener-
ate the edge platform file, and employ the deployment stage
to find an application deployment strategy. Similar to the
components’ resource requirements, we model the available
resources of an edge node as a tuple and choose for each
resources a value between [15, 30] units. Finally, we choose
for each communication link an available bandwidth between
[30, 90] bytes/ms.

Flow Constraints File (Generation): We randomly gener-
ate multiple flow constraints for every application model. The
procedure takes as input the total number of flow constraints
defined in a file and the maximum e2e delay. We set the max-
imum e2e delay to a high value, i.e., 500 ms, for all flows.
Choosing a smaller e2e delay does not impact the deploy-
ment stage’s performance; however, it may influence its ability
to find a deployment strategy if we set the e2e delay to a
very stringent value. Moreover, in Section V, we have demon-
strated the capability to generate deployment strategies under
demanding e2e delay requirements.

After we choose the e2e delay value of a flow, we must pro-
vide the associated communication path. In our case, we define
three flow constraints files for every scenario, i.e., a file con-
taining: 1) one flow constraint; 2) three flow constraints; and
3) a total number of five flows. Remember that the developer
must define flow constraints such that it involves all communi-
cation links and components at least once. As a result, in our
procedure, the first flow will always traverse the application

3885

600 q
—&— scenario_1

scenario_2
500 { —@— scenario_3

400 A

300 A

time [s]

200 -

1001

0 100 200 300 400 500
of nodes

Fig. 7. Execution time of the deployment stage for different scenarios over
different edge computing platform sizes, considering only one flow constraint.

from the source component to the sink component—involving
all other components in between.

To create a communication path between the participating
components, the procedure creates a pair of two components,
i.e., (src, dest), starting from the source component and selects
the next destination components. Next, we create a new pair
using as src the dest component from the previous pair and
choosing as the new dest a new component. The procedure
continues until the destination becomes the sink component.
For example, let us consider that we want to build flow 1 from
Section V. In this case, we have four components involved
in f1, i.e., C={cg, €1, Co, C4}. To build the flow constraint,
the procedure starts from Cg and chooses the destination Cq
forming the first pair (Cg, C1). The next pair is formed by mak-
ing €1 as the source and choosing Co as the new destination,
resulting in the new pair (Cq, C2). Finally, the procedure stops
with the pair (Cp, C4), since C4 is the sink component. For all
other flows, we randomly select the number of participating
components and restart the procedure.

To evaluate the performance of our deployment stage, we
perform 50 deployments for each scenario. In this case, once
we find an optimal deployment strategy for the current edge
computing platform, we increase the platform size and attempt
to find a new deployment strategy for our IoT application.
In Fig. 7, we present the execution time required by the
deployment stage to find an optimal deployment strategy for
all three scenarios. The x-axis represents the total number of
nodes found in the target platform, while y-axis represents the
execution time in seconds.

In Fig. 7, we show the total execution time required by
the deployment stage to yield an optimal deployment strategy.
However, the deployment technique consists of two different
parts, i.e.: 1) building the CP model and 2) solving the model
using a CP solver. As a result, we are interested in finding
how much execution time each part requires (see Fig. 8). In
Fig. 8(b), we present the execution time required to generate
the CP model, while Fig. 8(a) presents the time required by
the CP solver to find an optimal deployment strategy.

In all experiments presented above, we have kept the num-
ber of flow constraints equal to 1. However, we are interested
in observing the impact of multiple flow constraints on the
execution time of both the CP solver and model as well. As a

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

3886

—o— scenario_1
scenario_2
300 { —m— scenario_3

—— scenario_1
scenario_2
2004 —=— scenario_3

time [s]

of nodes

(a) (b)

Fig. 8. Execution time of (a) finding a deployment strategy and (b) building
the CP model over different edge computing platform sizes, considering one
flow constraint.

result, we perform the same set of experiments, increasing the
number of flow constraints as well—we perform 50 deploy-
ments using a total of 3, respectively, five flow constraints. In
Fig. 9, we show the execution time required to solve a model
for each scenario, while in Fig. 10, we show the time required
to build the CP model.

A. Discussion

We have demonstrated that with the proposed deployment
technique, we can successfully find an optimal deployment
strategy. Contrary to how we chose the flows’ maximum e2e
delay in Section V, we have decided to choose a less stringent
maximum e2e delay since this does not impact our evalua-
tion results; we use the same e2e delay for all scenarios. The
results of Fig. 7 show: 1) the number of nodes found in the
target platform and 2) the application’s size impacts the exe-
cution time required to find an optimal deployment strategy.
Breaking down the execution time [see Fig. 8(a) and (b)], we
can observe that the execution time required to build the CP
model or to solve it is dependent on the number of nodes
and components. Note that in scenario 1, when we deploy the
IoT application on an edge computing platform consisting of
500 nodes, building the CP model requires more time than
finding an optimal deployment strategy. In contrast, in sce-
nario 3, the CP solver is more demanding than building the
CP model, requiring more time to find an optimal solution—a
trend that continues with an increase in both application and
edge computing platform size.

In Figs. 7 and 8, we have demonstrated the scalability of our
resource management technique considering the application
and platform size. However, other factors impact the tech-
nique’s execution time, i.e., the number of flow constraints.
From Fig. 10, we can conclude that the number of flow con-
straints marginally increases the time required to generate the
CP model—by adding more flows in the CP model, we must
create more variables for the added flows constraints. We can
observe that the execution time for building the CP model
gradually increases with an increase in the 1) number of nodes;
2) number of components; and 3) number of flow constraints—
an expected behavior, since the number of model variables
and constraints increases in the CP model. Comparing to the
execution time seen in Fig. 8(b), we can conclude that the
flow constraints do not have a big impact on the execution
time required to build the CP model. In contrast, the number

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

of flows has a great impact on the CP solver’s execution time
(see Fig. 9)—the problem to be solved has become more chal-
lenging. Compared to the results seen in Fig. 8(a), the number
of flows severely impacts the execution time required by the
CP solver. On the one hand, we can see that the execution
time fluctuates between different deployments when the edge
platform size grows—a trend that is the result of all the default
optimizations the CP solver has. On the other hand, in some
scenarios [see Fig. 9(c)], the CP solver requires up to x2.5
more time to find a deployment strategy—the addition of dif-
ferent flow constraints makes the problem harder to solve. As
a result, the CP solver’s execution time depends more on how
complex the problem is. Note that the complexity of a problem
depends on the node’s available resources, the application size,
the component’s resource requirements, and the defined flow
constraints. For example, in Fig. 9(c), we can observe that the
solver manages to find a deployment strategy faster when there
are five flows than when we have three flows constraints. A
possible reason for this is that the overall problem complex-
ity is higher with the addition of the three flow constraints.
Therefore, we can conclude that not only the number of flows
impacts the execution time but also the construction of each
flow, i.e., the communication path, number of components, and
the component’s dependencies. However, since we built the
scenarios randomly and the CP solver has its own optimiza-
tions, we cannot say with certainty why this behavior appears
or the fluctuations in execution time.

Finally, one advantage of using CP for our deployment tech-
nique is the ability to allow the developer to limit the CP
solver’s execution time. For example, we can find a feasible
deployment strategy for scenario 3, having one flow constraint,
and 500 nodes [see Fig. 8(a)], in 120 ms. By applying a time
limitation we can lower the total execution time required to
find a deployment strategy—lowering the time required to val-
idate all requirements. However, it is important to mention that
if the time limit is set too low, then the solver may not be able
to decide if a solution exists. Hence, the solver’s output will
be “UNKNOWN”—the solver does not have enough knowl-
edge to determine if the solution is infeasible or feasible. As
a consequence, the developer should pick a reasonable time
for complex problems where finding the optimal deployment
strategy requires too much time.

We acknowledge the high computational demands of our
deployment stage when finding optimal deployment strategies
for scenarios where the problem becomes too complex. We
can see in Fig. 7 that the deployment stage requires around
600 s to find the optimal deployment strategy for scenario 3.
However, we argue that the execution time is not an issue
since the deployment stage takes place at design time when
the application is not operational.

B. Challenges and Limitations

We identify two types of latency-sensitive applications that
would benefit from edge computing, i.e., the hard real-time IoT
applications and soft real-time IoT applications. Both appli-
cations are similar since their correct functionality relies on
having a low e2e delay and meeting their deadlines. However,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

AVASALCAI et al.: EdgeFlow—DEVELOPING AND DEPLOYING LATENCY-SENSITIVE IoT EDGE APPLICATIONS

3887

—o— flow_1
flow_3
—a— flow_5

200 250

200

150

time [s]

100

50

—— flow_1
flow_3

8007 g flow_5

200

200 300

of nodes

(@)

400

300
of nodes

(b)

400 200 300

of nodes

(©)

400

Impact of the number of flow constraints on solver execution time considering all three scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

—o— flow_1
flow_3

200 |- flow_5

80 150

60

time [s]
time [s]

40

20

200 300

of nodes

@

400

Fig. 10.

there is an important distinction between the two, i.e., in the
case of a soft real-time IoT application, violating the deadline
of a component impacts the quality of the application, com-
pared to hard real-time applications where missing a deadline
can have catastrophic events. Hence, in this article, we focus
on the development of soft real-time IoT applications offer-
ing the possibility to validate only the e2e delay set for each
flow, i.e., it does not violate its maximum allowed e2e delay
deadline for a certain flow. We do not provide time analysis
strategies for validating the component’s WCET on the host
node. In conclusion, for the current article, we can only deploy
soft real-time IoT applications.

There are two main challenges for the developer during
the application modeling stage, i.e., assigning the WCET and
the resource requirements for each component. The former
plays an important role in the overall e2e delay while the lat-
ter is critical for the deployment technique; without knowing
the resource requirements of a component, the deployment
technique cannot find a deployment strategy.

Finding the WCET is not a trivial task. The WCET of a
component is directly dependent on the host node, i.e., the
developer must know the internal status of the node (i.e., the
current load and the available resources) and the location of
the component. An approach to determine the component’s
WCET is to compute it at deployment time. We can inte-
grate the WCET analysis into the deployment stage similar to
how we do for the latency communication computation. An
approach that automates the process of finding the WCET and
simplifies the tasks of the application developer. In this article,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on

200

300
of nodes

(b)

400 200 300

of nodes

(©

400

Impact of the number of flow constraints on model execution time considering all three scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

we assume that the developer provides the WCET using an
external tool; the implementation of an automatic approach is
our target for future work. Similar to the WCET computation,
finding the component’s resource requirements is a challeng-
ing task. One option to find and estimate these resources (i.e.,
RAM, CPU, and HDD) is to benchmark the application on
multiple edge computing platforms and take the maximum
usage as an estimate.

Finally, besides finding an allocation of components to
nodes, we must map the input and output virtual ports as well.
There are two approaches that we can follow to achieve port
mapping, i.e., manual and automatic. The former requires that
the engineer performs manually the mapping of virtual ports
to the host node’s real ports following the deployment strat-
egy suggestion; a scenario that is possible only if the target
edge computing platform is known and has a relatively small
size. In comparison, in the latter approach, the resource allo-
cation technique is in charge of mapping the ports and the
components without requiring the help of an engineer.

VII. CONCLUSION

In this article, we presented EdgeFlow, a new IoT frame-
work aiming to assist the developer throughout the entire
application development and deployment process. For this
framework, we proposed a methodology for latency-sensitive
IoT applications consisting of three important stages, i.e., the
development stage, validation stage, and deployment stage.
For the development stage, we proposed an extension of
the FBP paradigm with timing and resource requirements.

February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

3888

These requirements are crucial to the successful deployment
of the application on the target edge computing platform.
Furthermore, we enabled the introduction of multiple com-
munication flow constraints, ensuring that the e2e delay of
a certain communication flow does not exceed a certain e2e
delay. For the deployment and validation stages, we intro-
duced a new resource allocation technique capable of finding
feasible or optimal deployment strategies. In conclusion, our
methodology allows for a more detailed application descrip-
tion and assures that if the resource allocation technique finds
a deployment strategy, then the strategy satisfies all application
requirements.

For future work, we intend to extend our current work
with techniques to analyze and compute the component’s
WCET,; hence, we eliminate the need of introducing a WCET
range, offering a more efficient deployment strategy. By hav-
ing the possibility to compute the WCET of a component,
our IoT framework can assist in the development and deploy-
ment of hard real-time IoT applications as well. Furthermore,
there is one more important set of applications that are rel-
evant in the edge computing context, i.e., edge intelligence
applications—applications that have components that require
machine learning supporting hardware (e.g., GPU and TPU)
and specific data stored locally. As a result, we plan to
extend EdgeFlow to: 1) allow the developer to add the spe-
cific requirements to each component during the application
development process and 2) consider them during the deploy-
ment stage. Finally, we aim to provide further extensions to
the FBP paradigm, i.e., add the possibility to: 1) define QoS
requirements and 2) add privacy and security requirements for
each component.

REFERENCES

[1] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757-6779, 2017.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, Jun. 2017.

[3] E. Ahmed et al., “Bringing computation closer toward the user network:
Is edge computing the solution?”” IEEE Commun. Mag., vol. 55, no. 11,
pp. 138-144, Nov. 2017.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

[5] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78-81, May 2016.

[6] C. Avasalcai, I. Murturi, and S. Dustdar, Edge and Fog: A Survey, Use
Cases, and Future Challenges. Hoboken, NJ, USA: Wiley, 2020, ch. 2,
pp. 43-65.

[7]1 J. P. Morrison, Flow-Based Programming: A New Approach to
Application Development. CreateSpace, Scotts Valley, CA, USA, 2010.

[8] Noflo. Accessed: Oct. 28, 2020. [Online]. Available: https://noflojs.org/

[9]1 Node-Red. Accessed: Oct. 28, 2020. [Online]. Available:

https://nodered.org/

Drawfbp. Accessed: Oct. 28,

https://github.com/jpaulm/drawfbp

F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint

Programming. Amsterdam, The Netherlands: Elsevier, 2006.

V. D. Maio and I. Brandic, “First hop mobile offloading of dag computa-

tions,” in Proc. 18th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput.,

May 2018, pp. 83-92.

M. Barzegaran, V. Karagiannis, C. Avasalcai, P. Pop, S. Schulte, and

S. Dustdar, “Towards extensibility-aware scheduling of industrial appli-

cations on fog nodes,” in Proc. IEEE Int. Conf. Edge Comput. (EDGE),

2020, pp. 1-9.

2020. [Online]. Available:

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275-1296, 2017.

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li,
“LAVEA: Latency-aware video analytics on edge computing plat-
form,” in Proc. 2nd ACM/IEEE Symp. Edge Comput. (SEC), 2017,
p.- 13.

N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, “Developing
IoT applications in the fog: A distributed dataflow approach,” in
Proc. 5th Int. Conf. Internet Things (10T), 2015, pp. 155-162.

X. Wang, Z. Zhou, P. Han, T. Meng, G. Sun, and J. Zhai, “Edge-
stream: A stream processing approach for distributed applications on a
hierarchical edge-computing system,” in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), 2020, pp. 14-27.

X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “FRASAD: A frame-
work for model-driven IoT application development,” in Proc. IEEE 2nd
World Forum Internet Things (WF-1oT), 2015, pp. 387-392.

W. Rafique, X. Zhao, S. Yu, I. Yaqoob, M. Imran, and W. Dou,
“An application development framework for Internet-of-Things service
orchestration,” IEEE Internet Things J., vol. 7, no. 5, pp. 4543-4556,
May 2020.

T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady,
“Flow-based programming for IoT leveraging fog computing,” in Proc.
IEEE 26th Int. Conf. Enabling Technol. Infrastruct. Collaborative
Enterprises (WETICE), 2017, pp. 74-79.

A. Belsa, D. Sarabia-Jacome, C. E. Palau, and M. Esteve, “Flow-based
programming interoperability solution for IoT platform applications,” in
Proc. IEEE Int. Conf. Cloud Eng. (IC2E), 2018, pp. 304-309.

R. Jain and S. Tata, “Cloud to edge: Distributed deployment of process-
aware loT applications,” in Proc. IEEE Int. Conf. Edge Comput.,
Jun. 2017, pp. 182-189.

K. Toczé and S. Nadjm-Tehrani, “A taxonomy for management and
optimization of multiple resources in edge computing,” 2018. [Online].
Available: arxiv.abs/1801.05610.

O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Service Orient. Comput.
Appl., vol. 11, no. 4, pp. 427-443, Dec. 2017.

N. Daneshfar, N. Pappas, V. Polishchuk, and V. Angelakis, “Service
allocation in a mobile fog infrastructure under availability and
QoS constraints,” in Proc. IEEE Global Commun. Conf., 2018,
pp. 1-6.

C. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task offloading
and resource allocation for ultra-reliable low-latency edge computing,”
IEEE Trans. Commun., vol. 67, no. 6, pp. 4132-4150, Jun. 2019.

A. Brogi and S. Forti, “Qos-aware deployment of IoT applications
through the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185-1192,
Oct. 2017.

V. Scoca, A. Aral, I. Brandic, R. De Nicola, and R. B. Uriarte,
“Scheduling latency-sensitive applications in edge computing,” in Proc.
Closer, 2018, pp. 158-168.

R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware appli-
cation module management for fog computing environments,” ACM
Trans. Internet Technol., vol. 19, no. 1, pp. 1-21, Nov. 2018.

X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge
computing in IoT networks via machine learning,” IEEE Internet Things
J., vol. 7, no. 4, pp. 3415-3426, Apr. 2020.

T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proc. 2nd ACM/IEEE Symp.
Edge Comput. (SEC), 2017, pp. 1-11.

C. Avasalcai, B. Zarrin, P. Pop, and S. Dustdar, “Efficient hosting of
robust IoT applications on edge computing platform,” in Proc. IEEE
4th Int. Conf. Fog Edge Comput. (ICFEC), 2020, pp. 1-10.
Flow-Based Programming. Accessed: Oct. 28, 2020. [Online]. Available:
https://jpaulm.github.io/fop/

C. Tsigkanos, C. Avasalcai, and S. Dustdar, “Architectural considera-
tions for privacy on the edge,” IEEE Internet Comput., vol. 23, no. 4,
pp. 76-83, Oct. 2019.

F. Rao and E. Bertino, “Privacy techniques for edge computing systems,”
Proc. IEEE, vol. 107, no. 8, pp. 1632-1654, Aug. 2019.

Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing
security: State of the art and challenges,” Proc. IEEE, vol. 107, no. 8,
pp. 1608-1631, Aug. 2019.

B. Zarrin, H. Baumeister, and H. Sarjoughian, “An integrated framework
to develop domain-specific languages: Extended case study,” in Proc. Int.
Conf. Model Driven Eng. Softw. Develop., 2018, pp. 159-184.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 23,2022 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

