
Distributed Redundant Placement for
Microservice-based Applications at the Edge

Hailiang Zhao , Shuiguang Deng , Senior Member, IEEE, Zijie Liu ,

Jianwei Yin, and Schahram Dustdar , Fellow, IEEE

Abstract—Multi-access edge computing (MEC) is booming as a promising paradigm to push the computation and communication

resources from cloud to the network edge to provide services and to perform computations. With container technologies, mobile devices

with small memory footprint can run compositemicroservice-based applicationswithout time-consuming backbone. Service placement

at the edge is of importance to put MEC from theory into practice. However, current state-of-the-art research does not sufficiently take the

composite property of services into consideration. Besides, although Kubernetes has certain abilities to heal container failures, high

availability cannot be ensured due to heterogeneity and variability of edge sites. To deal with these problems, we propose a distributed

redundant placement framework SAA-RPand aGA-based Server Selection (GASS) algorithm for microservice-based applicationswith

sequential combinatorial structure.We formulate a stochastic optimization problemwith the uncertainty of microservice request

considered, and then decide for eachmicroservice, how it should be deployed and with howmany instances aswell as on which edge

sites to place them. Benchmark policies are implemented in two scenarios, where redundancy is allowed and not, respectively. Numerical

results based on a real-world dataset verify that GASS significantly outperforms all the benchmark policies.

Index Terms—Redundancy, service placement, multi-access edge computing, composite service, sample average approximation

Ç

1 INTRODUCTION

NOWADAYS, mobile applications are becoming more and
more computation-intensive, location-aware, and delay-

sensitive, which puts a great pressure on the traditional
Cloud Computing paradigm to guarantee the Quality of Ser-
vice (QoS) [1]. To address the challenge, Multi-access Edge
Computing was proposed to provide services and to perform
computations at the network edge without time-consuming
backbone transmission, so as to enable fast responses for
mobile devices [2], [3], [4].

MEC offers not only the development on the network
architecture, but also the innovation in service patterns.
Considering that small-scale data-centers can be deployed
near cellular tower sites, there are exciting possibilities that
microservice-based applications can be delivered to mobile
devices without backbone transmission, in virtue of setting
up a unified service provision platform. Container technolo-
gies, represented by Docker [5], and its dominant orchestra-
tion and maintenance tool, Kubernetes [6], are becoming the
mainstream solution for packaging, deploying, maintaining,
and healing applications. Each microservice decoupled
from the application can be packaged as a Docker image
and each microservice instance is a Docker container. Here
we take Kubernetes for example. Kubernetes is naturally

suitable for building cloud-native applications by leveraging
the benefits of the distributed edge because it can hide the
complexity of microservice orchestration while managing
their availability with lightweight Virtual Machines (VMs),
which greatly motivates Application Service Providers
(ASPs) to participate in service provision within the access
and core networks.

Service deployment fromASPs is the carrier of service pro-
vision, which touches onwhere to place the services and how
to deploy their instances. In the last two years, there exist
works study the placement at the network edge from the per-
spective of Quality of Experience (QoE) of end users or the
budget of ASPs [7], [8], [9], [10], [11], [12], [13]. However,
those works commonly have two limitations. First, the to-be-
deployed service only be studied in an atomic way. It is often
treated as a single abstract functionwith given input and out-
put data size. Time series or composition property of services
are not fully taken into consideration. Second, high availabil-
ity of deployed service is not carefully studied. Due to the
heterogeneity of edge sites, such as different CPU cycle fre-
quency and memory footprint, varying background load,
transient network interrupts and so on, the service provision
platform might face greatly slowdowns or even runtime
crash. However, the default assignment, deployment, and
management of containers does not fully take the heterogene-
ity in both physical and virtualized nodes into consideration.
Besides, the healing capability of Kubernetes is principally
monitoring the status of containers, pods, and nodes and
timely restarting the failures, which is not enough for high
availability. Vayghan et al. find that in the specific test envi-
ronment, when the pod failure happens, the outage time of
the corresponding service could be dozens of seconds. When
node failure happens, the outage time could be dozens
of minutes [14], [15]. Therefore, with the vanilla version of

� Hailiang Zhao, Shuiguang Deng, Zijie Liu, and Jianwei Yin are with the
College of Computer Science and Technology, ZhejiangUniversity, Hangzhou
310058, China. E-mail: {hliangzhao, dengsg, liuzijie, zjuyjw}@zju.edu.cn.

� Schahram Dustdar is with the Distributed Systems Group, Technische
Universit€at Wien, 1040 Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

Manuscript received 8 Nov. 2019; revised 19 July 2020; accepted 29 July 2020.
Date of publication 3 Aug. 2020; date of current version 15 June 2022.
(Corresponding author: Shuiguang Deng.)
Digital Object Identifier no. 10.1109/TSC.2020.3013600

1732 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

1939-1374 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0002-4215-5778
https://orcid.org/0000-0002-4215-5778
https://orcid.org/0000-0002-4215-5778
https://orcid.org/0000-0002-4215-5778
https://orcid.org/0000-0002-4215-5778
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:hliangzhao@zju.edu.cn
mailto:dengsg@zju.edu.cn
mailto:liuzijie@zju.edu.cn
mailto:zjuyjw@zju.edu.cn
mailto:dustdar@dsg.tuwien.ac.at


Kubernetes, high availabilitymight not be ensured, especially
for the latency-critical cloud-native applications. Besides, one
microservice could have several alternative execution solu-
tions. For example, electronic payment, as a microservice of a
composite service, can be executed by PayPal, WeChat Pay,
and AliPay.1 In this paper, let us call them candidates (of micro-
services). This status quo complicates the placement problem
further. Because it is the instances of candidates that need to
be placed, which greatly scales up the problem.

In order to solve the above problems, we propose a dis-
tributed redundant placement framework, i.e., Sample Aver-
age Approximation-based Redundancy Placement (SAA-
RP), for a microservice-based applications with sequential
combinatorial structure. For this application, if all of the can-
didates are placed on one edge site, network congestion is
inevitable. Therefore, we adopt a distributed placement
scheme, which is naturally suitable for the distributed edge.
Redundancy is the core of SAA-RP, which allows that one
candidate to be dispatched tomultiple edge sites. By creating
multiple candidate instances, it boosts a faster response to
service requests. To be specific, it alleviates the risk of a long
delay incurred when a candidate is assigned to only one
edge site. With one candidate deployed on more than one
edge site, requests from different end users at different loca-
tions can be balanced, so as to ensure the high availability of
service and the robustness of the provision platform. Actu-
ally, performance of redundancy has been extensively stud-
ied under various system models and assumptions, such as
the Redundancy-d model, the ðn; kÞ system, and the S&X
model [16]. However, which kind of candidate requires
redundancy and how many instances should be deployed
cannot be decided if out of a concrete situation. Currently,
the main strategy of job redundancy usually releases the
resource occupancy after completion, which is not befitting
for geographically distributed edge sites. This is because ser-
vice requests are continuously generated from different end
users. The destruction of candidate instances have to be cre-
ated again, which will certainly lead to the delay in service
responses. Besides, redundancy is not always a win and
might be dangerous sometimes, since practical studies have
shown that creating toomany instances can lead to unaccept-
ably high response times and even instability [16].

As a result, we do not release the candidate instances but
periodically update them based on the observations of ser-
vice demand status during that period. Specifically, we
derive expressions to decide each candidate should be dis-
patched with how many instances and which edge sites to
place them. By collecting user requests for different service
composition schemes, we model the distributed redundant
placement as a stochastic discrete optimization problem and
approximate the expected value through Monte Carlo sam-
pling. During each sampling, we solve the deterministic
problem based on an efficient evolutionary algorithm. Per-
formance analysis and numerical results are provided to ver-
ify its practicability. Ourmain contributions are as follows.

1) We model the distributed placement scenario at
the edge for general microservice-based chained

applications and design a distributed redundant
placement framework SAA-RP. SAA-RP can decide
each candidate should be dispatched with howmany
instances and which edge sites to placement them. It
makes up with the shortcoming of the default sched-
uler of Kubernetes, i.e. kube-scheduler [17], when
encountering theMEC.

2) We take both the uncertainty of end users’ service
requests and the heterogeneity of edge sites into con-
sideration and formulate a stochastic optimization
problem. Based on the long-term observation on end
users’ service requests, we approximate the stochas-
tic problem by sampling and averaging.

3) Simulations are conducted based on the real-world
EUA Dataset [18]. We also provide the performance
analysis on algorithm optimality and convergence
rate. The numerical results verify the practicability
and superiority of our algorithm, compared with
several typical benchmark policies.

The organization of this paper is as follows. Section 2
demonstrates the motivation scenario. Section 3 introduces
the system model and formulates a stochastic optimization
problem. The SAA-RP framework is proposed in Section 4
and its performance analysis is conducted in Section 5. We
show the simulation results in Section 6. In Section 7, we
review related works on service placement at the edge and
typical redundancy models. Section 8 concludes this paper.

2 MOTIVATION SCENARIOS

2.1 The Heterogeneous Network

Let us consider a typical scenario for the pre-5G Heteroge-
neous Network (HetNet), which is the physical foundation
of redundant service placement at the edge. As demon-
strated in Fig. 1, for a given region, the wireless infrastruc-
ture of the access network can be simplified into a Macro Base
Station (MBS) and several Small-cell Base Stations (SBSs).
The MBS is indispensable in any HetNet to provide ubiqui-
tous coverage and support capacity, whose cell radius
ranges from 8 km to 30 km. The SBSs, including femtocells,
micro cells, and pico cells, are part of the network densifica-
tion for densely populated urban areas. Without loss of gen-
erality, WiFi access points, routers, and gateways are viewed

Fig. 1. A typical scenario for a pre-5G HetNet.

1. Both Alipay and WeChat Pay are third-party mobile and online
payment platforms, established in China.

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1733

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



as SBSs for simplification. Their cell radius ranges from 0.01
km to 2 km. The SBSs can be logically interconnected to trans-
fer signaling, broadcast message, and select routes. It might
be too luxurious if all SBSs are fully interconnected, and not
necessarily achievable if they are set up by different Mobile
Telecom Carriers (MTCs),2 but we reasonably assume that
each SBS is mutually reachable to formulate an undirected
connected graph. This can be seen in Fig. 1. Each SBS has a cor-
responding small-scale data-center attached for the deploy-
ment of microservices and the allocating of resources.

In this scenario, end users with their mobile devices can
move arbitrarily within a certain range. For example, end
users work within a building or rest at home. In this case,
the connected SBS of each end user does not change.

2.2 Response Time of Microservices

A microservice-based application consists of multiple
microservices. Each microservice can be executed by many
available candidates. Take an arbitrary e-commerce applica-
tion as an example. When we shop on a client browser, we
first search the items we want, which can be realized by
many site search APIs. Second, we add them to the cart and
pay for them. The electronic payment can be accomplished
by Alipay, WeChat Pay, or PayPal by invoking their APIs.
After that, we can review and rate for those purchased
items. In this example, each microservice is focused on sin-
gle business capability. In addition, the considered applica-
tion might have complex compositional structures and
complex correlations between the fore-and-aft candidates
because of bundle sales. For example, when we are shopping
on Taobao,3 only Alipay is supported for online payment.
The application in the above example has a linear structure.
As a beginning, this paper only cares about the sequentially
composed application. In practice, a general directed acyclic
graph (DAG) can be decomposed into several linear chains
by applying Flow Decomposition Theorem (located in
Chapter 03) [19]. We leave the extension to future work.

The pre-5G HetNet allows SBSs to share a mobile service
provision platform, where user configurations and contex-
tual information can be uniformly managed [20]. As we
have mentioned before, the unified platform can be imple-
mented by Kubernetes. In our scenario, each mobile device
sends its service request to the nearest SBS for the strongest
signal of the established link. However, if there are no SBSs
accessible, the request has to be responded by the MBS and
processed by cloud data-centers. All the possibilities of the
response status of the first microservice is discussed below.

1) The requested candidate is deployed at the chosen
SBS. It will be processed by this SBS instantly.

2) The requested candidate is not deployed at the nearest
SBS but accessible on other SBSs, which leads tomulti-
hop transfers between the SBSs until the request is
responded by another SBS. That is, the request will
route through the HetNet until it is responded by an
SBSwho deploys the required candidate.

3) The requested candidate is not deployed on any SBSs
in the HetNet. It can only be processed by cloud
through backbone transmission.

For the subsequent microservices, the response status
also faces many possibilities:

1) The previous candidate is processed by an SBS.
Under this circumstance, for candidate of this micro-
service, if its instance can be found in the HetNet,
multi-hop transfer is required. Otherwise, it has to
be processed by cloud.

2) The previous candidate is processed by cloud. Under
this circumstance, the candidates of subsequent
microservices should always be responded by cloud
without unnecessary backhaul.

Our job is to find an optimal redundant placement policy
with the trade-offs between resource occupation and response
time considered. We should know which candidates who
might aswell be redundant andwhere to deploy them.

2.3 A Working Example

This subsection describes a small-scale working example.
Microservices and Candidates. Fig. 2 demonstrates a chained

application constitutive of four microservices. Each micro-
service has 2, 1, 2, and 2 candidates, respectively. The first
service composition scheme is c11 ! c21 ! c31 ! c42, and the
second service composition scheme is c12 ! c21 ! c32 ! c41.
In practice, the composition scheme is decided by the daily
usage habits of end users. It might be strongly biased.
Besides, because of bundle sales, part of the composition
might be fixed. We will describe the composition in terms of
a joint probability distribution in Section 3.1.

Service Placement of Instances. In Fig. 3, the undirected con-
nected graph consists of 6 SBSs. The number tagged inside
each SBS is its maximum number of placeable candidates.
For example, SBS2 can be placed at most 4 candidates. This
constraint exists because the edge sites have very limited
computation and storage resources, compared with cloud
data-centers. The squares beside each SBS are the deployed
candidates. For example, SBS1 deploys two candidates, c11
and c21. Notice that because of the redundancy mechanism,
the same candidate can be deployed on multiple SBSs. For
example, c21 is dispatched to both SBS1 and SBS2.

Fig. 3 also demonstrates two mobile devices, MD1 and
MD2, which are located beside SBS1 and SBS5, respectively.
It means that the SBSs closest to MD1 and MD2 are SBS1
and SBS5, respectively. As we have already mentioned in
Section 2.2, the service request of each mobile device is
responded by the nearest SBS. Thus, for MD1 and MD2,

Fig. 2. Two service composition schemes for a 4-microservice app.

2. Whether SBSs are logically connected comes down to their IP
segments.

3. Taobao is the world’s biggest e-commerce website, established in
China.

1734 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



SBS1 and SBS5 are the corresponding SBS for responding,
respectively.

Response Time Calculation. We assume that the service
composition scheme of MD1 is the red one in Fig. 2, and
MD2’s is the blue one. The number tagged inside each can-
didate is the executing sequence. Let us take a closer look at
MD1.

1) c11: Because c11 is deployed on SBS1, the response
time of c11 is equal to the sum of the expenditure of
time on wireless access between MD1 and SBS1 and
the processing time of c11 on SBS1.

2) c21: Because c21 can also be found on SBS1, the expen-
diture time is zero. The response time of c21 consists
of only the processing time of c21 on SBS1.

3) c31: c31 can only be found on SBS2, thus the expendi-
ture time of it is equal to the routing time from SBS1
to SBS2. In this paper, we assume that the routing
between two nodes always selects the nearest path in
the undirected graph. Thus, only one hop is required
(SBS1! SBS2). Thus, the response time of c31 consists
of the routing time from SBS1 to SBS2 and the proc-
essing time of c31 on SBS2.

4) c42: c42 can only be found on SBS6. Thus, the expendi-
ture requires 2 hops (SBS2! SBS4! SBS6 or SBS2!
SBS5 ! SBS6). Finally, the output of c42 need to be
transferred back to MD1 via SBS1. The nearest path
from SBS6 to SBS1 requires 3 hops. There are three
alternatives: ðiÞ SBS6! SBS4! SBS2! SBS1 or ðiiÞ
SBS6! SBS5! SBS2! SBS1 or ðiiiÞ SBS6! SBS5!
SBS3! SBS1. Thus, the response time of c42 consists
of the routing time from SBS2 to SBS6, the processing
time of c42 on SBS6, the routing time from SBS6 to
SBS1, and the wireless transmission time from SBS1
toMD1.

The response time of the 1st composition scheme is the
sum of the response time of c11, c21, c31, and c42. The same
procedure applies to MD2. In addition, there are two unex-
pected cases need to be addressed. The first one is that if a
mobile device is covered by no SBS, the response should be
made by the MBS and all the microservices are processed by
cloud. The second one is that if a required candidate is not
deployed on any SBS, then a communication link from the
SBS processing the last candidate to the cloud should be
established. This candidate and all the candidates of the rest
microservices will be processed on cloud. The response time
is calculated in a different way for these cases. Nevertheless,

all the contingencies are taken into account in our system
model, elaborated in Section 3.

Obviously, a better service placement policy can lead to
less time spent. Our job is to find a service placement policy
to minimize the response time of all mobile devices. What
need to determine are not only howmany instances required
for each candidate, but also which edge sites to place them.
The next section will demonstrate the rigorous formulation
of systemmodel.

3 SYSTEM MODEL

The HetNet consists of N mobile devices, indexed by N ,
f1; . . . ; i; . . . ; Ng, M SBSs, indexed byM , f1; . . . ; j; . . . ;Mg,
and one MBS, indexed by 0. Considering that each mobile
device might be covered by many SBSs, let us use Mi to
denote the set of SBSs whose wireless signal covers the ith
mobile devices. Correspondingly, N j denotes the set of
mobile devices that are covered by the jth SBS. Notice that
the service request from a mobile device is responded by its
nearest available SBS, otherwise the MBS. The MBS here is
to provide ubiquitous signal coverage and is always con-
nectable to each mobile device. Both the SBSs and the MBS
are connected to the backbone. Table 1 lists key notations in
this paper.

3.1 Describing the Correlated Microservices

We consider an application with Q sequential composite
microservices ht1; . . . ; tQi, indexed by Q. 8q 2 Q, microser-
vice tq has Cq candidates fs1q ; . . . ; scq; . . . ; sCq

q g, indexed by Cq.
Let us useDðscqÞ � M to denote the set of SBSs on which scq is
deployed. Our redundancymechanism allows that jDðscqÞj >
1, which means one candidate instance could be dispatched
to more than one SBS. Besides, let us use EðscqÞ; c 2 Cq to
represent that for microservice tq, the cth candidate is
selected for execution. EðscqÞ can be viewed as a random

Fig. 3. The placement of each candidates on the HetNet.

TABLE 1
Summary of Key Notations

Notation Description

M the number of SBSs,M ¼ jMj
N the number of mobile devices, N ¼ jN j
Q the number of microservices in the

application, Q ¼ jQj
tq; q 2 Q the qth microservice in the application
Mi the set of SBSs that can be connected by the ith

mobile device
N j the set of mobile devices that can be connected by

the jth SBS
Cq the number of candidates of the qth microservice,

Cq ¼ jCq j; q 2 Q
scq; c 2 Cq the cth candidate of the qth microservice

DðscqÞ the set of SBSs on which scq is deployed

EðscqÞ the random event that for microservice tq , the
cth candidate is selected for execution

j?i the nearest SBS to the ith mobile device
jpðscqÞ the SBS who actually processes the candidate scq
dði; jÞ the euclidean distance between the ith

mobile device and the jth SBS
tinðscqÞ the data uplink transmission time of the candidate scq
texeðjpðscqÞÞ the execution time of the candidate scq on the jpth SBS
zðj1; j2Þ the hop-count between the j1th SBS and the j2th SBS
bj the maximum number of microservice instances

can be deployed on the jth SBS

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1735

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



event with an unknown distribution. Further, PðEðscqÞÞ
denote the probability that EðscqÞ happens. Thus, for each
mobile device, its selected candidates can be described
as a Q-tuple:

EðssÞ , hEðsc11 Þ; . . . ; Eðs
cQ
Q Þi; (1)

where q 2 Q; cq 2 Cq.
The sequential composite application might have correla-

tions between the fore-and-aft candidates. The definition
below gives a rigorous mathematical description.

Definition 3.1 Correlations of Composite Service. 8q 2
Qnf1g, c1 2 Cq�1, and c2 2 Cq, candidate sc2q and s

c1
q�1 are

correlated iff PðEðsc2q ÞjEðsc1q�1ÞÞ � 1, and 8c02 2 Cqnfc2g,
PðEðsc

0
2
q ÞjEðsc1q�1ÞÞ � 0.

With the above definition, the probability PðEðssÞÞ can be
calculated by

PðEðssÞÞ ¼

PðEðsc11 ÞÞ �
YQ
q¼2

PðEðscqq ÞjEðs
cq�1
q�1 ÞÞ:

(2)

3.2 Calculating the Respone Time

The response time of one candidate consists of data uplink
transmission time, service execution time, and data down-
link transmission time. The data uploaded is mainly
encoded service requests and configurations while the out-
put is mainly the feedback on successful service execution
or a request to invoke the next candidate. If all requests are
responded within the access network, most of the time is
spent on routing with multi-hops between SBSs. Notice that
except the last one, each candidate’s data uplink transmis-
sion time is equal to the data downlink transmission time of
the candidate of its previous microservice.

3.2.1 For the Initial Candidate

For the ith mobile device and its selected candidate s
c1
1 ðiÞ of

the initial microservice t1, where c1 2 C1, (I) if the ith mobile
device is not covered by any SBSs around, i.e.,Mi ¼ ? , the
request has to be responded by the MBS and processed by
cloud data-center. (II) If Mi 6¼ ? , as we have mentioned
before, the nearest SBS j?i 2 Mi is chosen and connected.
Under this circumstance, a classified discussion is required.

1) If the candidate s
c1
1 ðiÞ is not deployed on any SBSs

fromM, i.e., Dðsc11 ðiÞÞ ¼ ? , the request still has to be
forwarded to cloud data-center through backbone
transmission.

2) If Dðsc11 ðiÞÞ 6¼ ? and j?i 2 Dðsc11 ðiÞÞ, the request can be
directly processed by SBS j?i without any hops.

3) If Dðsc11 ðiÞÞ 6¼ ? and j?i =2 Dðsc11 ðiÞÞ, the request has to
be responded by j?i and processed by another SBS
from Dðsc11 ðiÞÞ.

We use jpðsÞ to denote the SBS who actually processes s.
Remember that the routing between two nodes always
selects the nearest path. Thus, for q ¼ 1, jpðsc11 ðiÞÞ can be
obatined by (3), where zðj1; j2Þ is the shortest number of
hops from node j1 to node j2.

In this paragragh, we calculate the response time of
s
c1
1 ðiÞ. We use dði; jÞ to denote the reciprocal of the band-
width between i and j. Obviously, the expenditure of time
on wireless access is inversely proportional to the band-
width of the link. Besides, the expenditure of time on rout-
ing is directly proportional to the number of hops between
the source node and destination node. As a result, the data
uplink transmission time tinðsc11 ðiÞÞ is summarized in (4),
where tb is the time on backbone transmission, a is size of
input data stream from each mobile device to the initial
candidate (measured in bits), and b is a positive constant
representing the rate of wired link between SBSs. We use
texeðjpðsc11 ðiÞÞÞ to denote the microservice execution time on

jpðsc11 ðiÞÞ ¼
cloud; Mi ¼ ? or Dðsc11 ðiÞÞ ¼ ? ;
j?i ; Dðsc11 ðiÞÞ 6¼ ? ; j?i 2 Dðsc11 ðiÞÞ;
argminj�2Dðsc1

1
ðiÞÞzðj?i ; j�Þ; otherwise

8<
: (3)

tinðsc11 ðiÞÞ ¼
a � dði; 0Þ þ tb; Mi ¼ ? ;
a � dði; j?i Þ þ tb; Mi 6¼ ? ;Dðsc11 ðiÞÞ ¼ ? ;
a � dði; j?i Þ; Mi 6¼ ? ; j?i 2 Dðsc11 ðiÞÞ;
a � dði; j?i Þ þ b �minj�2Dðsc1

1
ðiÞÞzðj?i ; j�Þ; otherwise

8>><
>>: (4)

jpðscqq ðiÞÞ ¼
cloud; Mi ¼ ? or Dðscqq ðiÞÞ ¼ ? ;

jpðscq�1q�1 ðiÞÞ; Dðscqq ðiÞÞ 6¼ ? ; jpðscq�1q�1 ðiÞÞ 2 Dðscqq ðiÞÞ;
argmin

j�2Dðscqq ðiÞÞzðjpðs
cq�1
q�1 ðiÞÞ; j�Þ; otherwise

8><
>: (5)

tinðscqq ðiÞÞ ¼
0; jpðscq�1q�1 ðiÞÞ 2 Dðscqq ðiÞÞ or jpðs

cq�1
q�1 ðiÞÞ ¼ cloud;

tb; jpðscq�1q�1 ðiÞÞ 6¼ 0;Dðscqq ðiÞÞ ¼ ? ;

b �min
j�2Dðscqq ðiÞÞzðjpðs

cq�1
q�1 ðiÞÞÞ; j�Þ; otherwise

8>><
>>: (6)

toutðscQQ ðiÞÞ ¼
tb þ a � dði; 0Þ; jpðscQQ ðiÞÞ ¼ cloud;

b � zðjpðscQQ ðiÞÞ; j?i Þ þ a � dði; j?i Þ; otherwise:

(
(7)

1736 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



the SBS jp for the candidate s
c1
1 ðiÞ. The data downlink trans-

mission time is the same as the uplink time of the next
microservice, which is discussed hereinafter.

3.2.2 For the Intermediate Candidates

For the ith mobile device and its selected candidate s
cq
q ðiÞ of

microservice tq, where q 2 Qnf1; Qg, cq 2 Cq, the analysis
of its data uplink transmission time is correlated with
jpðscq�1q�1 ðiÞÞ, i.e., the SBS who processes s

cq�1
q�1 ðiÞ. 8q 2 Qnf1g,

the calculation of jpðscqq ðiÞÞ is summarized in (5). This for-
mula is closely related to (3).

In this paragragh, we calculate the response time of

s
cq
q ðiÞ. (I) If jpðscq�1q�1 ðiÞÞ 2 Dðscqq ðiÞÞ, then the data downlink
transmission time of previous candidate s

cq�1
q�1 ðiÞ, which is

also the data uplink transmission time of current candidate
s
cq
q ðiÞ, is zero. That is, toutðscq�1q�1 ðiÞÞ ¼ tinðscqq ðiÞÞ ¼ 0. It is

because both s
cq�1
q�1 ðiÞ and s

cq
q ðiÞ are deployed on the SBS

jpðscq�1q�1 ðiÞÞ, which leads to the number of hops being zero.

(II) If jpðscq�1q�1 ðiÞÞ =2 Dðscqq ðiÞÞ, a classified discussion has to be
launched.

1) If jpðscq�1q�1 ðiÞÞ ¼ cloud, which means the request of
tq�1 from the ith mobile device is responded by
cloud data-center. In this case, the invocation for tq
can be directly processed by cloud without back-
haul. Thus, the data uplink transmission time of tq
is zero, too.

2) If jpðscq�1q�1 ðiÞÞ 6¼ 0 and Dðscqq ðiÞÞ ¼ ? , which means
s
cq
q ðiÞ is not deployed on any SBSs in the HetNet. As
a result, the invocation for tq has to be responded by
cloud data-center through backbone transmission.

3) If jpðscq�1q�1 ðiÞÞ 6¼ 0, Dðscqq ðiÞÞ 6¼ ? but jpðscq�1q�1 ðiÞÞ =2
Dðscqq ðiÞÞ, which means both s

cq�1
q�1 ðiÞ and s

cq
q ðiÞ are

processed by the SBSs in the HetNet but not the same
one. In this case, we can calculate the data uplink
transmission time by finding the shortest path from
jpðscq�1q�1 ðiÞÞ to a SBS inDðscqq ðiÞÞ.

The above analysis is summarized in (6).

3.2.3 For the Last Candidate

For the ith mobile device and its selected candidate s
cQ
Q ðiÞ of

the last microservice tQ, where cQ 2 CQ, the data uplink
transmission time tinðscQQ ðiÞÞ is also calculated by (6), with
every q replaced byQ. However, for the data downlink trans-
mission time toutðscQQ ðiÞÞ, a classified discussion is required:
(I) If jpðscQQ ðiÞÞ ¼ 0, which means the chosen candidate of the
last microservice is processed by cloud data-center, the proc-
essed result need to be returned from cloud to the ith mobile
device through backhaul transmission.4 (II) If jpðscQQ ðiÞÞ 6¼ 0,
which means the chosen candidate of the last microservice is
processed by a SBS in the HetNet. In this case, the result
should be delivered to the ith mobile device via jpðscQQ ðiÞÞ
and j?i .

5 (7) summarizes the calculation of toutðscQQ ðiÞÞ.
Based on the above analysis, the response time of the ith

mobile device is

tðEðssðiÞÞÞ ¼
XQ
q¼1

�
tinðscqq ðiÞÞ þ texe

�
jpðscqq ðiÞÞ

��

þ toutðscQQ ðiÞÞ:
(8)

So far, the systemmodel has been elaborated. The assump-
tions in this paper are summarized as follows.

1) We assume that the edge sites can form an undi-
rected connected graph. In MEC, this assumption is
rational and frequently-used, especially for the
research on Network Slicing [21].

2) We assume that it is the nearest SBS that responses to
the initial microservice of a mobile device. This
assumption is naive and widely-used because it
leads to the minimal first-step communication cost.

3) We only consider the composite application with lin-
ear structure. The model proposed in this paper
applies mainly to chain query, but not suitable for
general services. As we have mentioned, a general
DAG can be decomposed into several linear chains,
thus we leave the extension to future work.

4) We assume that the expenditure of time on routing is
directly proportional to the number of hops. In MEC,
the HetNet is a given region whose range is within
tens of kilometers. The transmission time is mainly
spent on routing and transit. Thus, this assumption
is rational.

5) We assume that the backhaul can only be transferred
through the MBS. There are multiple alternatives for
backhaul in 5G communications. We make the
assumption to simplify the problem formulation for
the chosen candidate of the last microservice.

3.3 Problem Formulation

Our job is to find an optimal redundant placement policy to
minimize the overall latency under the limited capability of
SBSs. The heterogeneity of edge sites is directly embodied
in the number of can-be-deployed candidates. Let us use bj to
denote this number for the jth SBS. In the heterogenous
edge, bj could vary considerably. The following constraint
should be satisfied:X

q2Q

X
c2Cq

1fj 2 Dðscqq Þg � bj; 8j 2 M; (9)

where 1f�g is the indicator function. Finally, the optimal
placement problem can be formulated as:

P1 : min
Dðscqq Þ

XN
i¼1

tðEðssðiÞÞÞ;

s.t. (9)
where the decision variables are Dðscqq ðiÞÞ; 8q 2 Q; c 2 Cq,

and the optimization goal is the sum of response time of all
mobile devices.

4 ALGORITHM DESIGN

In this section, we elaborate our algorithm for P1. First, we
recode the decision variables as xx to shrink the size of feasible

4. We assume that the backhaul can only be transferred through the
MBS.

5. jpðscQQ ðiÞÞ and j?i could be the same one. In this case, the number of
hops between them is zero.

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1737

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



region. Based on that, we propose the SAA-RP framework.
It includes a subroutine, named Genetic Algorithm-based
Server Selection (GASS) algorithm. The details are presented
as follows.

4.1 Variable Recoding

Let us use WWðiÞ , ðcanIdxðt1Þ; . . . ; canIdxðtQÞÞ to denote the
random vector on the chosen service composition scheme of
the ith mobile device, where canIdxðtqÞ returns the index of
the chosen candidate of the qth microservice. WWðiÞ and
EðssðiÞÞ describe the same thing from different perspectives.
However, the former is more concise. Then, we use WW ,
ðWWð1Þ; . . . ;WWðNÞÞ to denote the global random vector by
taking all mobile devices into account. Let us use xx ,
½xxðb1Þ; . . . ; xxðbMÞ�> to recode the global deploy-or-not vector.
8j 2M; xxðbjÞ is a deployment vector for SBS j, whose
length is bj. By doing this, the constraint (9) can be removed
because it is reflected in how xx encodes. 8j 2 M, each ele-
ment of xxðbjÞ is chosen from f0; 1; . . . ;Pq¼1 Cqg, i.e., the
global index of each candidate. That is, any candidate can
appear in any number of SBSs in the HetNet. Thus, the
redundancy mechanism is also reflected in how xx encodes.
8j 2M, xxðbjÞ ¼ 00 means that the jth SBS does not deploy
any candidate.

xx is a new encoding of Dðscqq ðiÞÞ. As a result, we can
reconstitute tðEðssðiÞÞÞ as tðxx;WWðiÞÞ. As such, the optimiza-
tion goal can be written as

gðxxÞ , E½Gðxx;WWÞ� ¼ E
XN
i¼1

tðxx;WWðiÞÞ
" #

; (10)

and the optimal placement problem is

P2 : min
xx2X

gðxxÞ:

P2 is a stochasti independent variable xx, where X is the fea-
sible region. X , although finite, is very large. Therefore, enu-
meration approach is inadvisable. Besides, the problem has
an uncertain random vector WW with probability distribution
PðEðssðiÞÞÞ.

4.2 The SAA-RP Framework

Let us take a closer look at P2. First, the random vector WW is
exogenous because the decision on xx does not affect the distri-
bution of WW . Second, for a given WW , Gðxx;WWÞ can be easily
evaluated for any xx. Thus, the observation of Gðxx;WWÞ is con-
structive. As a result, we can apply the Sample Average
Approximation (SAA) approach to P1 [22] to handle with
the uncertainty.

SAA is a classic Monte Carlo simulation-based method.
In the following section, we elaborate how we apply the
SAA method to P2. Formally, we define the SAA problem
P3. Let WW 1;WW 2; . . . ;WWR be an independently and identi-
cally distributed (i.i.d.) random sample of R realizations of
the random vectorWW . The SAA function is defined as

ĝRðxxÞ , 1

R

XR
r¼1

Gðxx;WWrÞ; (11)

and the SAA problem P3 is defined as

P3 : min
xx2X

ĝRðxxÞ:

By Monte Carlo Sampling, with support from the Law of
Large Numbers [23], when R is large enough, the optimal
value of ĝRðxxÞ can converge to the optimal value of gðxxÞ
with probability one (w.p.1). As a result, we only need to
care about how to solve P3 as optimal as possible.

Algorithm 1. SAA-Based Redundant Placement (SAA-RP)

1: Choose initial sample size R and R0 (R0 	 R)
2: Choose the number of replications L (indexed by L)
3: Set up a gap tolerance �
4: for l = 1 to L in parallel do
5: Generate R independent samplesWW 1

l ; . . . ;WW
R
l

6: Call GASS to obtain the minimum value of ĝRðxxlÞwith the
form of 1

R

PR
r¼1 Gðxxl;WW

r
l Þ

7: Record the optimal goal ĝRðx̂x
l Þ and the corresponding
variable x̂x
l returned from GASS

8: end for
9: �v
R  1

L

PL
l¼1 ĝRðx̂x
l Þ

10: for l = 1 to L in parallel do
11: Generate R0 independent samplesWW 1

l ; . . . ;WW
R0
l

12: vlR0  1
R0
PR0

r0¼1 Gðx̂x
l ;WWr0
l Þ

13: end for
14: Get the worst replication v�R0  maxl2LvlR0
15: if the gap v�R0 � �v
R < � then
16: Choose the best solution x̂x
l among all L replicationss
17: else
18: Increase R (for drill) and R0 (for evaluation)
19: goto Step. 4
20: end if
21: returnthe best solution x̂x
l

The SAA-RP framework is presented in Algorithm 1.
First, we need to select the sample size R and R0 appropri-
ately. As the sample size R increases, the optimal solution
of the SAA problem P2 converges to its true problem P1.
However, the computational complexity for solving P2

increases at least linearly, even exponentially, in the sample
size R [22]. Therefore, when we choose R, the trade-off
between the quality of the optimality and the computation
effort should be taken into account. Besides, R0 here is used
to obtain an estimate of P1 with the obtained solution of P2.
In order to obtain an accurate estimate, we have every rea-
son to choose a relatively large sample size R0 (R0 	 R).
Secondlly, inspired by [22], we replicate generating and solv-
ing P2 with L i.i.d. replications. From Step. 4 to Step. 8, we
call the algorithmGASS to obtain the asymptotically optimal
solution of P2 and record the best-so-far results. From Step.
10 to Step. 13, we estimate the true value of P1 for each repli-
cation. After that, those estimates are compared with the
average of those optimal solutions of P2. If the maximum
gap is smaller than the tolerance, SAA-RP returns the best
solution among L replications and the algorithm terminates,
otherwisewe increaseR andR0 and drill again.

4.3 The GASS Algorithm

GASS is implemented based on the well-konwn Genetic
Algorithm (GA). The detailed procedure is demonstrated in

1738 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2. First, we initialize the necessary parameters,
including the population size P , the number of iterations
it, and the probability of crossover Pc and mutation Pm,
respectively. After that, we randomly generate the initial
population from the domain X . From Step. 6 to Step. 10,
GASS executes the crossover operation. At the beginning of
this operation, GASS checks whether crossover need to be
executed. If yes, GASS choose the best two chromosomes
according to their fitness values. With that, the latter part of
xxp1 and xxp2 are exchanged since the position xxðbjÞ. From
Step. 11 to Step. 13, GASS executes the mutation operation.
At the beginning of this operation, it checks whether each
chromosome can mutate according to the mutation proba-
bility Pm. At the end, only the chromosome with the best fit-
ness value can be returned.

Algorithm 2. GA-Based Server Selection (GASS)

1: Initialize the population size P , number of iterations it, the
probability of crossover Pc and mutation Pm

2: Randomly generate P chromosomes xx1; . . . ; xxP 2 X
3: for t ¼ 1 to it do
4: 8p 2 f1; . . . ; Pg, renew the optimization goal of P2, i.e.,

ĝRðxxpÞ, according to (11)
5: for p ¼ 1 to P do
6: if randðÞ < Pc then
7: Choose two chromosomes p1 and p2 according to the

probability distribution:

Pðp is chosenÞ ¼ 1=ĝRðxpxpÞPP
p0¼1 1=ĝRðxp0xp0 Þ

8: Randomly choose SBS j 2 M
9: Crossover the segement of xxp1 and xxp2 after the

partitioning point xxðbj�1Þ:

½xxp1ðbjÞ; . . . ; xxp1ðbMÞ� $ ½xxp2ðbjÞ; . . . ; xxp2ðbMÞ�

10: end if
11: if randðÞ < Pm then
12: Randomly choose SBS j 2 M and re-generate the

segement xxpðbjÞ
13: end if
14: end for
15: end for
16: return argminpĝðxpxpÞ from P chromosomes

4.4 Strength and Advantages

This subsection summarizes the strength and advantages of
SAA-RP and GASS.

1) Notice that SAA-RP is not deployed online. It can be
periodically re-run to follow up end users’ service
demand pattern. During each period, for example, a
month or a quarter, end users’ microservice compo-
sition preferences can be collected (under authoriza-
tion of privacy). Pods can be reconstructed based on
the result from SAA-RP. This process can be carried
out through rolling upgrade with Kubernetes.

2) With the recoded decision variable xx, GASS is simple
to operate and it enjoys a fast convergence rate.
In the domain of P1, the number of elements is

expfPq2Q Cq � lnMg, which exponentially increases
with the scale of microservices. However, after re-
encoding, the number of elements in domain X isQ

j2M
�
bjð
P

q2Q Cq þ 1Þ � bj
2 ðbj � 1Þ�, which increases

polynomiallywith the scale of microservices. The con-
clusion will be proved in Section 5.2 and verified in
Section 6.3.2.

3) SAA-RP makes up with the shortcoming of the
default scheduler of Kubernetes when encountering
the MEC. Kube-scheduler is a component responsible
for the deployment of configured pods and microser-
vices, which selects the node for a microservice
instance in a two-step operation: Filtering and Scor-
ing [17]. The filtering step finds the set of nodes who
are feasible to schedule the microservice instance
based on their available resources. In the scoring
step, the kube-scheduler ranks the schedulable
nodes to choose the most suitable one for the place-
ment of the microservice instance. It places microser-
vices only based on resources occupancy of nodes.
By contrast, SAA-RP takes both the service request
pattern of end users and the heterogeneity of the dis-
tributed nodes into consideration. SAA-RP makes a
progress towards the resource orchestration on the
heterogenous edge.

5 THEORETICAL ANALYSIS

In this section, we analyze the optimality of SAA-RP and the
complexity of GASS.

5.1 Solution Optimality

Recall that the domain X of problem P2 and P3 is finite,
whose size is

Q
j2M bj

�P
q2Q Cq þ 1� 1

2 ðbj � 1Þ�. Thus, P2

and P3 have nonempty set of optimal solutions, denoted as
X
 and X̂R, respectively. We let v
 and v̂R denote the opti-
mal values of P2 and P3, respectively. To analysis the opti-
mality, we also define the set of �-optimal solutions.

Definition 5.1 �-optimal Solutions. For � � 0, if xx 2 X and
gðxxÞ � v
 þ �, then we say that xx is an �-optimal solution of
P1. Similarly, if xx 2 X and gðxxÞ � v̂R þ �, xx is an �-optimal
solution of P3.

We use X � and X̂ �
R to denote the set of �-optimal solutions

of P2 and P3, respectively. Then we have the following
proposition.

Proposition 5.1. v̂R ! v
 w.p.1 as R!1; 8� � 0, the event
fX̂ �

R ! X �g happens w.p.1 for R large enough.

Proof. It can be directly obtained from Proposition 2.1 of [22],
not tired in words here. tu
Proposition 5.1 implies that for almost every realization

vv ¼ fWW 1;WW 2; . . .g of the random vector, there exists an inte-
ger RðvvÞ such that v̂R ! v
 and fX̂ �

R ! X �g happen for all
samples fWW 1; . . . ;WWrg from vvwith r � RðvvÞ.

The following proposition demonstrates the convergence
rate of SAA method.

Proposition 5.2. 8� > 0 small enough and $ 2 ½0; �Þ, for the
probability PðfX̂$

R � X �gÞ to be at least 1� a, the number of
sample size R should satisify

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1739

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



R � 3s2
max

ð��$Þ2 �
X
j2M

log

 
bj
a
�
 X

q2Q
Cq þ 3� bj

2

!!
;

where

s2
max , max

xx2XnX�
Var

�
GðuðxxÞ;WW Þ �Gðxx;WWÞ�;

and uð�Þ is a mapping from XnX � into X
, which satisifies that
8xx 2 XnX �; gðuðxxÞÞ � gðxxÞ � v
.

Proof. It can be directly obtained by combing Proposition 2.2
of [22] with the size of X . For more details, please consult
[22] directly. tu
Proposition 5.2 implies that the number of samples R

depends logarithmically on the feature of domain X and the
tolerance probability a.

5.2 Algorithm Complexity

Obviously, GASS works through a mechanism of decompo-
sition and reassembly. The following proposition holds.

Proposition 5.3. For problem P2 and P3, when the number
of SBSs is fixed as M, no matter how many mobile
devices there are, the convergence time of GASS is

O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R �Qj2M
�
bjð
P

q2Q Cq þ 1Þ � bj
2 ðbj � 1Þ�q �

.

Proof. Notice that each candidate only has to be deployed
once on a single SBS. Thus, the number of possible values
of xxðbjÞ is bjð

P
q2Q Cq þ 1Þ � bj

2 ðbj � 1Þ, and the number of
elements in domain X , i.e., the problem size, is R �Qj2M�
bjð
P

q2Q Cq þ 1Þ � bj
2 ðbj � 1Þ�. It follows from the fact that

the kth element of xxðbjÞ has
P

q2Q Cq þ 2� k choices. Con-
sidering the processing building blocks of P3 is of equal
salience, the result can be obtained directly [24], [25]. tu
Proposition 5.3 indicates that the complexity of GASS

increases polynomially with the scale of the application, i.e.,P
q2Q Cq.

6 EXPERIMENTAL EVALUATION

In this section, we verify the superiority of the proposed
algorithms through simulations.

6.1 Benchmark Policies

Our method is compared with several representative base-
lines and a state-of-the-art algorithm, GenDoc [13]. The base-
lines are performed in two scenarios while GenDoc is
performed as it was defined in [13]. In the first scenario,
redundancy is not allowed. Each candidate can only be dis-
patched to only one SBS. It is used to evaluate the superiority
of redundant placement. In the second scenario, redundancy
is allowed. It is used to evaluate the optimality of GASS.
Those benchmark policies, including GenDoc, are used to
replace GASS to generate the best-so-far solution of each
sampling. In both scenarios, those benchmark policies are
run R times and the average value is returned. Details are
summarized as follows.

1) Random Placement in Scenario #1 (RP1). 8q 2 Q; 8cq 2
Cq, dispatch cq to a randomly chosen SBS j and

decrement bj. The procedure terminates if no avail-
able SBS.

2) Random Placement in Scenario #2 (RP2). 8q 2 Q; 8cq 2
Cq, randomly dispatch cq to m SBSs. The numberm 2
fm0 2 Nj0 � m0 �Mg is generated randomly. After
that, for those SBSs, decrement their bj. The proce-
dure terminates if no available SBS.

3) Genetic Algorithm in Scenario #1 (GA1). The chromo-

some is encoded as ½pðs11Þ; . . . ; pðs
CQ

Q Þ�>, where pðsÞ is
the chosen SBS for the placement of the candidate s.
This encoding ensures that each candidate can only
be dispatched to one SBS. Based on that, each genera-
tion of chromosomes are created by selection, recom-
bination, and mutation.

4) Greedy Placement in Scenario #2 (GP2). For each SBS
j 2 M, bj candidates will be deployed on it. It means
that the feasible region lies in the boundary of the
constraint (9). In each iteration, each end user always
chooses the nearest available SBS to execute its
selected candidates.

5) GenDoc. GenDoc is a configuration-aware placement
and scheduling algorithm, proposed in [13]. To apply
GenDoc to our system model, 8j 2 M, we set Cvir

j ¼
bj, where Cvir

j is the maximum virtual capacity of
the jth SBS. More details can be found in Section 4.2
of [13].

6.2 Experimental Settings

All the experiments are implemented in MATLAB R2019b
on macOS Catalina equipped with 3.1 GHz Quad-Core Intel
Core i7 and 16 GB RAM. The parameter settings are demon-
strated in Table 2 and discussed as follows.

The Microservices and Candidates. The number of microser-
vices in the application Q is set as 10 in default. For each
microservice q, the number of its candidates is uniformly
sampled from the integer interval [2, 5]. In each replication
WWr, the service composition scheme of the ith end user is
sampled according to PðEðssðiÞÞÞ. Considering that there is no
commonly used dataset for microservice composition, 8q 2
Q; 8c 2 Cq, we generate PðEðscqÞÞ uniformly to avoid any bias.

The Pre-5G HetNet. The experiment is conducted based
on the geolocation information of base stations and end
users within the Melbourne CBD area contained in the EUA
dataset [18]. In our simulations, we choose 500 end users
and 40 SBSs uniformly from the dataset in default. The

TABLE 2
Parameter Settings

Parameter Value Parameter Value

Q 10 8q; Cq ½2; 5�
N 500 M 40
bl 3 bu 5
a [1,8] kbits b 5 ms
tb 0.1 s L 5
8s; texeðjpðsÞÞ ½1; 2�ms signal radius ½200; 600�m
R 500 R0 100000
L 10 � 2 10�4
P 10 it 300
Pm 10% Pc 80%

1740 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



coverage radius of each SBS is sampled from [200,600]
meters uniformly. 8i 2 N , 8j 2 M, 1

dði;jÞ ¼ 1 MHz. In addi-
tion, the maximum hops between any two SBSs can not
larger than 4. 8j 2 M, bj is chosen from the integer interval
½bl; bu�. We set bl ¼ 3; bu ¼ 5 in default.

6.3 Experiment Results

The experiments are conducted to analyze the optimality
and scalability of the proposed algorithm.

6.3.1 Optimality

As shown in Fig. 4a, GASS outperforms all the other algo-
rithms in the overall response time, i.e.,

P
i2N tðEðssðiÞÞÞ.

Specifically, within 300 iterations, GASS outperforms Gen-
Doc, GP2, RS2, GA1, and RS1 by 10.81, 16.20, 44.81, 67.66,
and 196.43 percent, respectively. The result verifies both the
rationality of redundant placement and the optimality of our
algorithm. As for the former, it is verified by that all the algo-
rithms implemented in scenario #2 perform better than the
algorithms implemented in scenario #1. The superiority of
redundant placement lies in that it takes full advantage of
the distributed SBSs’ limited resources. In this case, the proc-
essing of end users’ service requests can surely be balanced.
As for the latter, it is verified by that GASS can converge to
an approximate optimal solution, i.e., 111.1040 ms at a very
rapid rate. The solution achieved at the 21th iteration is
already better than all the other algorithms.

In addition to the above phenomena, it is interesting to see
that GP2 can obtain a relatively good result. We can verify
that for each deployment, what GP2 adopts is the optimal
operation. For each microservice, only the most frequently
requested candidate has the privilege to be deployed, which
ensures that the maximum number of mobile devices can
enjoy their optimal situation. In comparison, GenDoc con-
sists of greedy placement (server configuration) and dynamic
programming-based microservice scheduling, which is not
overbearing.

Fig. 4b shows that GASS can keep on top under different
conditions. In this figure, the horizontal axis is the mean
value of can-be-deployed candidates of each SBS j, i.e., bj.
We can find that for those algorithms which are imple-
mented in scenario #1, b has no significant effect on their

performance. The reason is that whatever bj takes, only one
candidate can be deployed on each SBS j. It is also why GA1
can achieve a similar result with GASS when b ¼ 1. By con-
trast, with the increase in b, all the algorithms implemented
in scenario #2 enjoy less response time. The result is obvious
because bj decides the upper limit of resources, which is the
key influence factor of time consumption. It is alsoworth not-
ing that when b increases, the gap between GASS, GP2, and
GenDoc is likely to narrow. This is exactly the embodiment
of the trade-off between algorithm improvement and
resource promotion. When resources are rich, even poorly
performing algorithms can produce good results.

6.3.2 Scalability

Scalability is embodied in two aspects, the HetNet and the
application (microservices and candidates).

TheHetNet. the scale of theHetNet is embodied in two vari-
ables, the number of SBSsM and the number of mobile devi-
ces N . The left of Fig. 5 demonstrates the impact of M on the
overall response time. Generally, asM increases, the response
time decreases. This is because more SBSs can provide more
resources, which greatly helps to realize near-request process-
ing. Even so, the superiority of GASS is obvious, as it is always
the best of five algorithms whatever M takes (RS1 is dis-
carded). Thus, the scalability of GASS holds. Besides, there
are some noteworthy phenomena. First, the response time of
GA1 has a slightly rising trend when M increases from 40 to

Fig. 4. Algorithm performace comparison.

Fig. 5. Overall response time versus scale of the HetNet.

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1741

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



80. This is because whenM increases, the dimension of feasi-
ble solution increases, which greatly expands the solution
space. Meanwhile, the connected graph of SBSs become
sparse, which leads to more hops to transfer data streams.
Under this circumstances, 300 iterations might not be enough
to achieve an optimal enough solution. However, GASS is not
effected because the solution space of GASS is much smaller.
The phenomenon verifies the second advantage displayed in
Section 4.4. Second, when M increases, the gap between
GASS, GP2, and GenDoc is likely to narrow. This phenome-
non has been captured in Fig. 4b. No matter increasing M or
b, the resources of SBSs are increasing, and poorly performing
algorithms can produce good results.

The right of Fig. 5 demonstrates the impact of M on the
overall response time. For all the implemented algorithms,
the overall response time increases as N increases while the
solution achieved by GASS is always the best. It is interest-
ing that the gaps between those benchmark policies and
GASS increase as N increases. It indicates that GASS is
robust to the computation complexity of the fitness func-
tion. Thus, the scalability of GASS holds.

The Application. the scale of the application is embodied in
two variables, the number of microservices Q and the aver-
age number of candidates per microserviceC , 1

Q

P
q2Q Cq. It

can be concluded that GenDoc and GP2 are competitive

while RS1, RS2 and GA1 are obviously lagging behind. Thus,
in the following analysis, we only compare GASS with Gen-
Doc andGP2 in terms of the average completion time.

Fig. 6 and 7 demonstrates the impact of the scale of micro-
services. From Fig. 6 we can find that GASS can keep on top
whateverQ is. Correspondingly, Fig. 7 demonstrates the invo-
lution of the average completion time permobile devicewhen
Q is 5, 10, 15, and 20, respectively. In all cases, GASS achieves
the minimum average completion time no matter how many
microservices have been finished. In our experiments, the
maximum E½Pq2Q Cq� is 70 while E½Pj2M bj� is 160. Theoreti-
cally, if the expected number of all candidates E½Pq2Q Cq�
does not exceed the expected number of all the can-be-
deployed candidatesE½Pj2M bj�, GASS canmaintain its com-
petitive edge. This is because no requests from end users need
to be processed by cloud, and the time-consuming backbone
can be saved. This advantage is not held by the benchmark
policies. Figs. 8 and 9 demonstrates the impact of the scale of
candidates. Similarly, from Fig. 8, we can find that GASS out-
performs GP2 and GenDoc in most cases. From Fig. 9 we can
find that GASS always achieves the minimum average com-
pletion timewhenC is 2, 3, 4, and 5.

Figs. 6, 7, 8, and 9 verifies that the scalability of GASS
holds in terms of the number ofmicroservices and candidates.

Fig. 6. Overall response time versus number of the microservices.

Fig. 7. Average response time versus number of the microservices.

Fig. 8. Overall response time versus C.

Fig. 9. Average response time versus C.

1742 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



Ths Superparameters of GASS. Table 3 demonstrates the
overall response time of GASS under different population
size, probability of mutation Pm, and probability of cross-
over Pc, respectively. We can find that their impact is minor
on the optimality of GASS. As a result, no more detailed dis-
cussion is launched.

7 RELATED WORKS

Service computing based on traditional cloud data-centers
has been extensively studied in the last several years, espe-
cially service selection for composition [26], [27], [28], ser-
vice provision [29], discovery [30], scheduling [31] and so
on. However, putting everything about services onto the dis-
tributed and heterogenous edge is still an area waiting for
exploration. Multi-access Edge computing, as a increasingly
popular computation paradigm, is facing the transition
from theory to practice. The key to the transition is the
placement and deployment of service instances.

In the last two years, service placement at the distributed
edge has been tentatively explored from the perspective of
Quality of Experience (QoE) of end users or the budget of
ASPs [32], [33]. For example, Ouyang et al. study the problem
in a mobility-aware and dynamic way [7]. Their goal is to
optimize the long-term time averaged migration cost trig-
gered by user mobility. They develop two efficient heuristic
schemes based on the Markov approximation and best
response update techniques to approach a near-optimal
solution. System stability is also guaranteed by Laypunov
optimization technique. Chen et al. study the problem in a
spatio-temporal way, under a limited budget of ASPs [10].
They pose the problem as a combinatorial contextual bandit
learning problem and utilizeMulti-armed Bandit (MAB) the-
ory to learn the optimal placement policy. However, the pro-
posed algorithm is time-consuming and faces the curse of
dimensionality. A low-complex particle-swarm-optimiza-
tion-based metaheuristic and a greedy heuristic are pro-
posed for solving the joint container placement and task
provisioning problem in dynamic fog computing environ-
ment [34]. Hu et al. proposed an algorithm to adjust the task
placement and resource allocation by making a good trade-
off between energy consumption and task execution time
[35]. This paper demonstrates a feasible placement scheme
with much lower energy consumption. Except for the typical
examples listed above, there also exist works dedicated on
joint resource allocation and load balancing in service place-
ment [8], [9], [11], [36]. However, as we have mentioned
before, those works only study the to-be-placed services in
an atomic way. The correlated and composite property of
services is not taken into consideration. Besides, those works

do not tell us how to apply their algorithms to the service
deployment in a practical system. To address these deficien-
cies, we navigate the service placement and deployment
from the view of production practices. Specifically, we adopt
redundant placement to the correlated microservices, which
can be unifiedmanaged by Kubernetes.

The idea of redundancy has been studied in parallel-
server systems and computing clusters [37], [38], [39]. The
basic idea of redundancy is dispatching the same job to mul-
tiple servers. The job is considered done as soon as it com-
pletes service on any one server [16]. Typical job redundancy
model is the S&X model, where X is the job’s inherent size,
and S is the server slowdown. It is designed based on the
weakness of the traditional Independent Runtimes (IR)
model, where a job’s replicas experience independent run-
times across servers. Unfortunately, although the S&X
model indeed captures the practical characteristics of real
systems, it still face great challenges to put it into use in ser-
vice deployment at the edge bacause the geographically dis-
tribution and heterogeneity of edge sites are not considered.
To solve the problem, in this paper we redesign the entire
model while the idea of redundancy is kept.

This work significantly extends our preliminary work
[40]. To improve the practicability, we analyze the response
time of each mobile device in a more rigorous manner, and
improve it by always finding the nearest available edge site.
We also take the uncertainty of end users’ service composi-
tion scheme into consideration. It greatly increases the com-
plexity but is of signality. Most important of all, we embedd
the idea of redundancy into the problem and design an
algorithm with a faster convergence rate.

8 CONCLUSION

In this paper, we study a redundant placement policy for the
deployment of microservice-based applications at the dis-
tributed edge. We first demonstrate the typical HetNet in the
near future, and then explore the possibilities of the deploy-
ment of composite microservices with containers and Kuber-
netes. After that, we model the redundant placement as a
stochastic optimization problem. For the application with
composite and correlatedmicroservices, we design the SAA-
based framework SAA-RP and the GASS algorithm to dis-
patchmicroservice instances into edge sites. By creatingmul-
tiple access to services, our policy boosts a faster response for
mobile devices significantly. SAA-RP not only take the
uncertainty of microservice composition schemes of end
users, but also the heterogeneity of edge sites into consider-
ation. The experimental results based on a real-world dataset
show both the optimality of redundant placement and the
efficiency of GASS. In addition, we give guidance on the
implementation of SAA-RP with Kubernetes. In our future
work, we will hammer at the implementation of the redun-
dant deployment of complex DAGswith arbitrary shape.

ACKNOWLEDGMENTS

This research was supported in part by the National
Key Research and Development Program of China (No.
2017YFB1400601), Key Research and Development Project
of Zhejiang Province (No. 2017C01015), National Science

TABLE 3
Impact of Population Size, Crossover Probability,

and Mutation Probability

P
P

i2N ti Pc

P
i2N ti Pm

P
i2N ti

5 114.6762 20% 114.5866 20% 110.4808
10 109.9742 40% 112.2296 40% 105.8360
15 109.6814 60% 116.8252 60% 112.7771
20 113.4527 80% 111.4439 80% 109.2450
25 111.8812 100% 116.1299 100% 112.6478

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1743

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



Foundation of China (No. 61772461), Natural Science Foun-
dation of Zhejiang Province (No. LR18F020003 and No.
LY17F020014).

REFERENCES

[1] M. H. Ghahramani, M. Zhou, and C. T. Hon, “Toward cloud com-
puting QoS architecture: Analysis of cloud systems and cloud
services,” IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 6–18,
Jan. 2017.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth
Quarter 2017.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G
network edge cloud architecture and orchestration,” IEEE Com-
mun. Surveys Tuts., vol. 19, no. 3, pp. 1657–1681, Third Quarter
2017.

[4] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artifi-
cial intelligence,” in IEEE Internet Things J., to be published,
doi: 10.1109/JIOT.2020.2984887.

[5] “Docker: Modernize your applications, accelerate innovation,”
[n.d.]. [Online]. Available: https://www.docker.com/

[6] “Kubernetes: Production-grade container orchestration,” [n.d.].
[Online]. Available: https://kubernetes.io/

[7] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobil-
ity-aware dynamic service placement for mobile edge computing,”
IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[8] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
hard to share: Joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources,” in Proc.
IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 365–375.

[9] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting
line: Joint network selection and service placement for mobile
edge computing,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 1459–1467.

[10] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wireless
Commun., vol. 17, no. 12, pp. 8388–8401, Dec. 2018.

[11] F. A. Salaht, F. Desprez, A. Lebre, C. Prud’homme, and
M. Abderrahim, “Service placement in fog computing using con-
straint programming,” in Proc. IEEE Int. Conf. Services Comput., 2019,
pp. 19–27.

[12] Y. Chen, S. Deng, H. Zhao, Q. He, Y. Li, andH. Gao, “Data-intensive
application deployment at edge: A deep reinforcement learning
approach,” in Proc. IEEE Int. Conf. Web Services., 2019, pp. 355–359.

[13] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configu-
ration in edge computing,” in Proc. Int. Symp. Qual. Service, 2019,
pp. 1–10. [Online].Available: https://doi.org/10.1145/3326285.3329055

[14] L. A. Vayghan,M. A. Saied,M. Toeroe, and F. Khendek, “Deploying
microservice based applications with kubernetes: Experiments and
lessons learned,” in Proc. IEEE 11th Int. Conf. Cloud Comput., 2018,
pp. 970–973.

[15] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Kubernetes as an availability manager for microservice
applications,” CoRR, vol. abs/1901.04946, 2019. [Online].
Available: http://arxiv.org/abs/1901.04946

[16] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and B. Van
Houdt, “A better model for job redundancy: Decoupling server
slowdown and job size,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3353–3367, Dec. 2017.

[17] “Kubernetes scheduler,” [n.d.]. [Online]. Available: https://
kubernetes.io/docs/concepts/scheduling/kube-scheduler/

[18] P. Lai et al., “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Service-Oriented Computing.
Cham, Switzerland: Springer, 2018, pp. 230–245.

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows,” in
Combinatorial Optimization. Algorithms and Combinatorics. Berlin,
Germany: Springer, 1988.

[20] “Developing software for multi-access edge computing,”
2019. [Online]. Available: https://www.etsi.org/images/files/
ETSIWhitePapers/etsi_wp20ed2_MEC_SoftwareDevelopment.pdf

[21] X. Foukas, G. Patounas, A. Elmokashfi, andM.K.Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Magazine,
vol. 55, no. 5, pp. 94–100, May 2017.

[22] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, “The sample
average approximation method for stochastic discrete opti-
mization,” SIAM J. Optim., vol. 12, no. 2, pp. 479–502, 2002.

[23] C. Robert and G. Casella, Monte Carlo Statistical Methods. Berlin,
Germany: Springer, 2013.

[24] E. K. Burke et al., Search Methodologies. Berlin, Germany: Springer,
2005.

[25] B. L. Miller et al., “Genetic algorithms, tournament selection, and
the effects of noise,” Complex Syst., vol. 9, no. 3, pp. 193–212, 1995.

[26] S. Deng, H. Wu, W. Tan, Z. Xiang, and Z. Wu, “Mobile service
selection for composition: An energy consumption perspective,”
IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1478–1490,
Jul. 2017.

[27] H. Yuan, J. Bi, and M. Zhou, “Temporal task scheduling of multiple
delay-constrained applications in green hybrid cloud,” in IEEE Trans.
Services Comput., to be published, doi: 10.1109/TSC.2018.2878561.

[28] Q. Wu, M. Zhou, Q. Zhu, and Y. Xia, “VCG auction-based
dynamic pricing for multigranularity service composition,” IEEE
Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 796–805, Apr. 2018.

[29] H. Wu et al., “Revenue-driven service provisioning for resource
sharing in mobile cloud computing,” in Proc. Int. Conf. Service-Ori-
ented Comput., 2017, pp. 625–640.

[30] W. Chen, I. Paik, and P. C. K. Hung, “Constructing a global social
service network for better quality of Web service discovery,” IEEE
Trans. Services Comput., vol. 8, no. 2, pp. 284–298, Mar. 2015.

[31] H. Yuan, J. Bi, and M. Zhou, “Multiqueue scheduling of heteroge-
neous tasks with bounded response time in hybrid green IaaS
clouds,” IEEE Trans. Ind. Informat., vol. 15, no. 10, pp. 5404–5412,
Oct. 2019.

[32] S. Deng, et al., “Dynamical resource allocation in edge for trustable
internet-of-things systems: A reinforcement learning method,”
IEEE Trans. Ind. Informat., vol. 16, no. 9, pp. 6103–6113, Sep. 2020.

[33] S. Deng et al., “Optimal application deployment in resource
constrained distributed edges,” in IEEE Trans. Mobile Comput.,
to be published, doi: 10.1109/TMC.2020.2970698.

[34] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint container
placement and task provisioning in dynamic fog computing,”
IEEE Internet Things J., vol. 6, no. 6, pp. 10 028–10 040, Dec. 2019.

[35] B. Hu, Z. Cao, and M. Zhou, “Scheduling real-time parallel appli-
cations in cloud to minimize energy consumption,” in IEEE Trans.
Cloud Comput., to be published, doi: 10.1109/TCC.2019.2956498.

[36] Q. Fan and N. Ansari, “On cost aware cloudlet placement for
mobile edge computing,” IEEE/CAA J. Automatica Sinica, vol. 6,
no. 4, pp. 926–937, Jul. 2019.

[37] H. Deng, T. Zhao, and I. Hou, “Online routing and scheduling with
capacity redundancy for timely delivery guarantees in multihop
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1258–1271,
Jun. 2019.

[38] A. abdi, A. Girault, and H. R. Zarandi, “ERPOT: A quad-criteria
scheduling heuristic to optimize execution time, reliability, power
consumption and temperature in multicores,” IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 10, pp. 2193–2210, Oct. 2019.

[39] H. Xu, G. De Veciana, W. C. Lau, and K. Zhou, “Online job sched-
uling with redundancy and opportunistic checkpointing: A
speedup-function-based analysis,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 4, pp. 897–909, Apr. 2019.

[40] Y. Chen, S. Deng, H. Ma, and J. Yin, “Deploying data-intensive
applications with multiple services components on edge,” Mobile
Netw. Appl., vol. 25, pp. 426–441, Apr. 2019.

Hailiang Zhao received the BS degree from the
school of computer science and technology,
Wuhan University of Technology, Wuhan, China,
in 2019. He is currently working toward the PhD
degree with the College of Computer Science
and Technology, Zhejiang University, Hangzhou,
China. He has been a recipient of the Best
Student Paper Award of IEEE ICWS 2019. His
research interests include edge computing, ser-
vice computing and machine learning.

1744 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JIOT.2020.2984887
https://www.docker.com/
https://kubernetes.io/
https://doi.org/10.1145/3326285.3329055
http://arxiv.org/abs/1901.04946
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp20ed2_MEC_SoftwareDevelopment.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp20ed2_MEC_SoftwareDevelopment.pdf
http://dx.doi.org/10.1109/TSC.2018.2878561
http://dx.doi.org/10.1109/TMC.2020.2970698
http://dx.doi.org/10.1109/TCC.2019.2956498


ShuiguangDeng (Senior Member, IEEE) received
the BSand PhDdegrees in computer science, from
the College of Computer Science and Technology,
in Zhejiang University, China, in 2002 and 2007,
respectively, where he is currently a full professor.
He previously worked at the Massachusetts Insti-
tute of Technology, in 2014 and Stanford University,
in 2015 as a visiting scholar. His research interests
include edge computing, service computing,
mobile computing, and business process manage-
ment. He serves as the associate editor for the

journal IEEE Access and IET Cyber-Physical Systems: Theory & Applica-
tions. Up to now, he has published more than 100 papers in journals and
refereed conferences. In 2018, he was granted the Rising Star Award by
IEEETCSVC. He is a fellowof IET.

Zijie Liu received the BS degree from the school
of computer science and technology, Huazhong
University of Science an Technology, Wuhan,
China, in 2018. He is currently working toward
the master’s degree with the College of Computer
Science and Technology, Zhejiang University,
Hangzhou, China. His research interests include
edge computing and software engineering.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU), in 2001.
He was a visiting scholar with the Georgia Institute
of Technology. He is currently a full professor with
the College of Computer Science, ZJU. Till now,
he has published more than 100 papers in top
international journals and conferences. His current
research interests include service computing and
business process management. He is an associ-
ate editor of the IEEE Transactions on Services
Computing.

Schahram Dustdar (Fellow, IEEE) is currently a
full professor of computer science (informatics)
with a focus on Internet Technologies heading the
Distributed Systems Group at the TUWien. He is a
chairman of the Informatics Section of the Acade-
mia Europaea, since December 9, 2016. From
2004-2010 he was honorary professor of informa-
tion systems at the Department of Computing Sci-
ence at the University of Groningen (RuG), The
Netherlands. From December 2016 until January
2017 hewas a visiting professor at the University of

Sevilla, Spain, and fromJanuary until June 2017hewasa visiting professor
at UC Berkeley, USA. He is a member of the IEEE Conference Activities
Committee (CAC), since 2016, the Section Committee of Informatics of the
Academia Europaea, since 2015, a member of the Academia Europaea:
The Academy of Europe, Informatics Section, since 2013. He is a recipient
of the ACM Distinguished Scientist Award (2009) and the IBM Faculty
Award (2012). He is an associate editor of IEEE Transactions on Services
Computing, ACM Transactions on the Web, and ACM Transactions on
Internet Technology and on the editorial board of IEEE Internet Computing.
He is the editor-in-chief ofComputing (an SCI-ranked journal of Springer).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHAO ETAL.: DISTRIBUTED REDUNDANT PLACEMENT FOR MICROSERVICE-BASEDAPPLICATIONS AT THE EDGE 1745

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 20,2022 at 06:52:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


