
Dependent Function Embedding for Distributed
Serverless Edge Computing

Shuiguang Deng , Senior Member, IEEE, Hailiang Zhao , Zhengzhe Xiang ,Member, IEEE,

Cheng Zhang, Rong Jiang , Ying Li , Jianwei Yin ,

Schahram Dustdar , Fellow, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—Edge computing is booming as a promising paradigm to extend service provisioning from the centralized cloud to the

network edge. Benefit from the development of serverless computing, an edge server can be configured as a carrier of limited

serverless functions, in the way of deploying Docker runtime and Kubernetes engine. Meanwhile, an application generally takes the

form of directed acyclic graphs (DAGs), where vertices represent dependent functions and edges represent data traffic. The status quo

of minimizing the completion time (a.k.a. makespan) of the application motivates the study on optimal function placement. However,

current approaches lose sight of proactively splitting and mapping the traffic to the logical data paths between the heterogeneous edge

servers, which could affect the makespan significantly. To remedy that, we propose an algorithm, termed as Dependent Function

Embedding (DPE), to get the optimal edge server for each function to execute and the moment it starts executing. DPE finds the best

segmentation of each data traffic by exquisitely solving several infinity norm minimization problems. DPE is theoretically verified to

achieve the global optimality. Extensive experiments on Alibaba cluster trace show that DPE significantly outperforms two baseline

algorithms in makespan by 43.19% and 40.71%, respectively.

Index Terms—Edge computing, dependent function embedding, directed acyclic graph, function placement, task scheduling

Ç

1 INTRODUCTION

IN recent years, the micro-services application architecture
has achieved rapid advances. By changing applications

from monolithic to small pieces of code as functions, Func-
tion-as-a-Service (FaaS) is leading its way to the future ser-
vice pattern of cloud computing [1], [2]. Combing FaaS with
lightweight containerization and service orchestration tools,
such as the Docker runtime [3] and the Kubernetes engine

[4], the concept of serverless computing becomes increas-
ingly popular [5]. Serverless computing offers a platform
that allows the execution of software without providing any
notion of the underlying computing clusters, operating sys-
tems, VMs or containers [6]. It is a one step forward in the
abstraction staircase from Infrastructure-as-a-Service (IaaS)
to Platform-as-a-Service (PaaS) [2].

Meanwhile, with more and more applications offloaded to
remote cloud data-centers, it is hard to meet the QoS require-
ments of latency-sensitive applications [7]. Tomitigate latency,
near-data processing within the network edge is a more appli-
cable way to gain insights, which leads to the birth of edge
computing. Generally, edge computing refers to leveraging
the computation and communication enabled servers, located
at the network edge, tomake quick response tomobile and IoT
applications [8], [9]. Edge servers can be co-located with tele-
communication equipment in multiple places across radio
access networks (RAN) to the core network (5GC), in the way
of small-scale data-centers ormachine rooms [10].

Demonstrating common features with the requirements of
Internet of Things (IoT) applications, the adaptation of server-

less in edge computing has attracted special attention from
both industrial community and academia, leading to the birth

of serverless edge computing [11]. The paradigm of serverless

edge computing allows users to execute their differentiated
applications without managing the underlying servers and

clusters. Serverless has proved to be more cost-efficient and

user-friendly compared with a traditional IaaS architecture in

many pilot projects for edge computing [2]. Nevertheless,
serverless edge computing faces a series of problems need

to be solved urgently. One of the problems restricting its

development concerns the scheduling of the functions with

� Shuiguang Deng is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310058, China, and also with the Institute
of Intelligence Applications, Yunnan University of Finance and Econom-
ics, Kunming 650221, China. E-mail: dengsg@zju.edu.cn.

� Hailiang Zhao, Cheng Zhang, Ying Li, and Jianwei Yin are with the
College of Computer Science and Technology, Zhejiang University, Hang-
zhou 310058, China. E-mail: {hliangzhao, coolzc, cnliying, zjuyjw}@zju.
edu.cn.

� Zhengzhe Xiang is with Zhejiang University City College, Hangzhou
310015, China. E-mail: xiangzz@zucc.edu.cn.

� Rong Jiang is with the Institute of Intelligence Applications, Yunnan Uni-
versity of Finance and Economics, Kunming 650221, China.
E-mail: jiang_rong@aliyun.com.

� Schahram Dustdar is with Distributed Systems Group, Technische Uni-
versit€atWien, 1040 Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

� Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Sydney, NSW 2006, Australia. E-mail: albert.zomaya@sydney.
edu.au.

Manuscript received 24 Apr. 2021; revised 15 Oct. 2021; accepted 19 Dec.
2021. Date of publication 29 Dec. 2021; date of current version 7 Mar. 2022.
This work was supported in part by the Key Research Project of Zhejiang Prov-
ince under Grant 2022C01145 and in part by the National Science Foundation
of China under Grants U20A20173 and 62125206. Schahram Dustdar’s work
was supported by the Zhejiang University De-qing Institute of Advanced tech-
nology and Industrilization (ZDATI).
(Corresponding author: Ying Li.)
Recommended for acceptance by D. Medhi.
Digital Object Identifier no. 10.1109/TPDS.2021.3137380

2346 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/0000-0001-8873-6810
https://orcid.org/ 0000-0003-1503-8725
https://orcid.org/ 0000-0003-1503-8725
https://orcid.org/ 0000-0003-1503-8725
https://orcid.org/ 0000-0003-1503-8725
https://orcid.org/ 0000-0003-1503-8725
https://orcid.org/0000-0003-4703-7348
https://orcid.org/0000-0003-4703-7348
https://orcid.org/0000-0003-4703-7348
https://orcid.org/0000-0003-4703-7348
https://orcid.org/0000-0003-4703-7348
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:dengsg@zju.edu.cn
mailto:hliangzhao@zju.edu.cn
mailto:coolzc@zju.edu.cn
mailto:cnliying@zju.edu.cn
mailto:zjuyjw@zju.edu.cn
mailto:xiangzz@zucc.edu.cn
mailto:jiang_rong@aliyun.com
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au

complex inter-task dependency to the resource-constrained

edge [11], [12], [13]. To address this issue, works studying opti-
mal function placement across the heterogeneous edge servers

are conducted [14], [15], [16]. In these works, applications are

structured as a service function chain (SFC) or a directed acyclic

graph (DAG) composed of dependent functions, and the place-

ment of each function is obtained byminimizing themakespan

of the application, under the trade-off between function proc-
essing time and cross-server data transferring overhead.

However, when minimizing the makespan of the appli-
cation, state-of-the-art approaches only optimize the place-
ment of functions, but how the request to call the function’s
successors being routed and how the corresponding data
stream being mapped onto the virtual links between edge
servers are ignored [14], [15]. Actually, routing and manage-
ment of flow traffic are of great importance for cloud-native
applications. In Kubernetes-native systems, Istio is popular
for traffic management. It relies on the Envoy proxies co-
configured along with the functions [17]. Istio enables the
manager of the edge-cloud cluster to configure how each
function’s request calls its successors, along with its internal
output data, routes within an Istio service mesh. Based on
flexible and smart configurations, we can find that better
utilization of traffic routing and stream mapping can result
in less makespan even though the corresponding function
placement is not optimal. This phenomenon is captured in
Fig. 1. The top half of this figure is an undirected connected
graph of six edge servers, abstracted from the physical
infrastructure of the heterogeneous edge (In Sections 2 and
3 we will explain how this connected graph is modeled).
The numbers tagged in each vertex and beside each edge of
the graph are the processing power (measured in gflop/s)
and guaranteed bandwidth (measured in GB/s), respec-
tively. The bottom half is an SFC with three functions. The
number tagged inside each function is the required process-
ing power (measured in gflops). The number tagged beside
each data stream is the size of it (measured in GB). Fig. 1
demonstrates two solutions of function placement. The
numbers tagged beside vertices and edges of each solution
are the time consumed. Just in terms of function placement,
solution 1 enjoys lower function processing time (2:5 < 4).
However, the makespan of solution 2 is 1.5 lesser than solu-
tion 1 because it has a better traffic routing policy.

The above example implies that different traffic routing pol-
icies could affect the makespan of an application significantly.

It leads us to take traffic routing into consideration proactively.
In this paper, we name the combination of function placement
and streammapping as function embedding.Moreover, if stream
splitting is allowed, i.e., the internal output of a function can be
split and routed on multiple paths, the makespan decreases
further. This phenomenon is captured in Fig. 2. The structure
of this figure is the same as Fig. 1. It demonstrates two function
embedding solutions with stream splitting allowed or not,
respectively. In solution 2, the output stream of the first func-
tion is divided into two parts, each with 2 or 3 units. Corre-
spondingly, the times consumed on routing are 3 and 2.5,
respectively. Although the two solutions have the same func-
tion placement, themakespan of solution 2,which is calculated
as 1þmaxf3; 2:5g þ 1þ 1:5þ 1 ¼ 7:5, is 4.5 lesser than
solution 1.

To capture the importance of proactive traffic routing, in
this paper we study the dependent function embedding prob-
lem with stream splitting at the serverless edge. For a DAG
with complicated structure, the problem is combinatorial
and difficult to solve when the DAG scales up. In this paper,
we first present the optimal substructure of the problem.
Then, we solve each substructure optimally with dynamic
programming. Specifically, for each substructure, we sepa-
rate several infinity norm minimization sub-problems and
solve them optimally by following the analytical solutions.
Our paper makes the following contributions:

� Model contribution: We study the dependent function
embedding problem at the serverless edge. Other than
existing works where only function placement is stud-
ied, our novel contribution takes proactive traffic rout-
ing and data splitting into consideration and leverages
dynamic programming as the approach to embed
DAGs onto the heterogeneous edge.

� Algorithm contribution: We present an algorithm that
solves the dependent function embedding problem
optimally. We first find the optimal substructure of
the problem. In each substructure, we derive the
optimal data splitting for the internal data.

� Experiment contribution: We conduct extensive experi-
ments on a cluster trace with 2119 unique DAGs from
Alibaba [18]. Experimental results show that our algo-
rithm significantly outperforms two algorithms, FixDoc
[14] and HEFT [19], on the average completion time by
43.19% and 40.71%, respectively.

Fig. 1. Two function placement solutions for an SFC with different traffic
routing policies.

Fig. 2. Two function placement solutions with stream splitting allowed or
not, respectively.

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2347

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present a working example of the serverless func-
tions. In Section 3, we present system model and formulate
the problem. In Section 4, we present the proposed algorithm
DPE and several auxiliary algorithms. Performance guarantee
and complexity analysis are provided in the same place. The
experiment results are demonstrated in Section 5. In Section 6,
we review related works on functions placement on the het-
erogeneous edge. Section 7 concludes this paper.

2 A WORKING EXAMPLE

In this section, we demonstrate a working example on
dependent functions at the serverless edge.

The edge network is organized as a weighted directed graph
[20], [21], where the vertices are edge servers with heteroge-
neous processing power and the edges are virtual links
with certain propagation speed.

The edge network is managed with a lightweight Kuber-
netes platform, for example, the KubeEdge [22]. Let us deploy
an application of surveillance video processing. The procedure
is captured in Fig. 3. An edge device, i.e., a surveillance camera,
uploads the raw video and pre-prepared configurations1 to a
nearby edge server periodically. With raw video input, the
functions are pulled from remote Docker registries and trig-
gered immediately. For video processing, ffmpeg2 could be
used to produce the corresponding Docker images. When it is
done, the processed results are saved into a PersistentVolume
(PV) configured in thePVC. In the aboveprocedure, the camera
only needs to upload the raw video data. The functions will be
triggered automatically. The intermediate data produced by

each function is saved into a local volume located at some host
path.

To make the most of the quick response of the serverless
edge, we need to study where each function is processed
and how the flow traffic is mapped, to minimize the com-
pletion time as much as possible.

3 SYSTEM MODEL

Let us formulate the heterogeneous edge network as an undi-
rected connected graph G , ðN ;LÞ, where N , fn1; . . . ; nNg is
the set of edge servers and L , flijgni;nj2N is the set of virtual
links. A virtual link lij ¼ ðni; njÞ is an augmented link between
edge servers ni and nj. In G, each edge server n 2 N has a
processing power cn, measured in tflop/s while each virtual
link lij 2 L has a maximum bandwidth bmax

ij , measured in GB/
s. We assume bmax

ij ¼ bmax
ji . When ni ¼ nj, we simply set the

data transferring time as 0 since the intra-server processing is
usually negligible. The computation of functions, which is
non-preemptive, can be overlappedwith communication.

Let us use Pðni; njÞ to denote the set of simple paths3 from
source ni to target nj. For arbitrary given edge network, all
the simple paths fPðni; njÞg8ni;nj2N can be obtained through
depth-first search (DFS). The algorithm designed in this
paper needs to know the simple paths between any two
edge servers as a priori. In Section 4.4, we give a simple
algorithm to calculate them based on DFS.

Key symbols and notations used in this paper are sum-
marized in Table 1.

3.1 Application as a DAG

Each IoT application with dependent functions is modeled as
a DAG. Let us use ðF ; EÞ to represent the DAG, where

Fig. 3. The architecture of surveillance video processing by leveraging
the elastic edge.

TABLE 1
Summary of Key Notations

Notation Description

G , ðN ;LÞ The graph abstracted from the edge network
N The set of edge servers
ni 2 N The ith edge server in G
fcng8n2N Processing power of each edge server n
L The set of virtual links
lij 2 L A virtual link from source ni to target nj in G
fbmax

ij g8l2L Maximum bandwidth of the virtual link lij
Pðni; njÞ The set of simple paths from server ni to nj

ðF ; EÞ The DAG abstracted from an IoT application
ffg8f2F The set of dependent functions
ci; 8fi 2 F The number of floating point operations of fi
eij; 8fi; fj 2 F The data stream from function fi to fj
sij; 8fi; fj 2 F The data stream size from function fi to fj
pðfÞ 2 N The placement of function f 2 F
% 2 Pðni; njÞ A simple path in the set Pðni; njÞ
z% The data stream size route through %
T
�
pðfiÞ

�
The finish time of fi when scheduled onto pðfiÞ

tðeijÞ The time consumed for transferring sij
t
�
pðfiÞ

�
The time consumed for processing fi on pðfiÞ

in The earliest idle time of edge server n
sð�; �Þ The communication start-up cost
b%mn The bandwidth allocated to z% on lmn

1. A configuration file is used to define Kubernetes object. It should
describes the object’s name, functions (Docker container instances) to
call, PersistentVolumeClaims (PVC), and input & output relations of
functions, etc.

2. https://www.ffmpeg.org/
3. A simple path from ni to nj is a path from source ni to target nj

which contains no loop.

2348 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

F , ff1; . . . ; fFg is the set of F dependent functions listed in

topological order4. 8fi; fj 2 F ; i 6¼ j, if the output stream of fi is
the input of its downstream function fj, a directed edge eij
exists. E , feijj8fi; fj 2 Fg is the set of all directed edges. For
each function fi 2 F , we write ci for the required number of
floating point operations of it. For each directed link eij 2 E,
the data stream size is denoted as sij (measured inGB).

An entry function is a function which does not have
predecessors. An exit function is a function which does not
have successors. We write F entry for the set of entry func-
tions and F exit � F for the set of exit functions of the DAG.
In this paper, we make no restrictions on the shape of
DAGs. They could be single-entry single-exit, or multi-entry
multi-exit.

3.2 Dependent Function Embedding

The dependent function embedding problem is decom-
posed into two sub-problems, where each function to be dis-
patched to and how each data stream is mapped onto
virtual links.

We write pðfÞ 2 N for the chosen edge server which
f 2 F to be dispatched to. For any function pair ðfi; fjÞ and
the associated edge eij 2 E, the data stream of size sij can be
splitted and route through different paths in P�pðfiÞ; pðfjÞ�.
8% 2 P�pðfiÞ; pðfjÞ�, let us use z% to represent the allocated
non-negative data stream size for path %. Then, 8eij 2 E, we
have the following constraint:

X
%2P

�
pðfiÞ;pðfjÞ

� z% ¼ sij:

Notice that if pðfiÞ ¼ pðfjÞ, i.e., fi and fj are dispatched to
the same edge server, then PðeijÞ ¼ ? and the data transfer-
ring time is zero.

Fig. 4 gives an example for data splitting. The connected
graph has four edge servers and five virtual links. There are
four simple paths between n1 and n4. The two squares rep-
resent the source function fi and the destination function fj.
From the edge server pðfiÞ to the edge server pðfjÞ, eij routes
through three out of four simple paths with data size of 3
GB, 2 GB, and 1 GB, respectively. In this example, sij ¼ 6.
On closer observation, we can find that two data streams
route through l1. Each of them is from path %1 and %2 with 3
GB and 2 GB, respectively.

Theoretically, overhead exists in the splitting and merg-
ing operations of the data stream eij at the source pðfiÞ and
the target pðfjÞ, respectively. However, in our video trans-
coding scenarios, this overhead is negligible compared with
extensive computation of functions or transferring of data
streams in gigabytes.

3.3 Involution Function of Finish Time

Let us use T
�
pðfiÞ

�
to denote the finish time of fi if it is

scheduled to the edge server pðfiÞ. Considering that the
functions of the DAG have dependent relations, for each
function fj 2 FnF entry, T

�
pðfjÞ

�
should involve according to

T
�
pðfjÞ

� ¼max

�
ipðfjÞ;max8i:eij2E

�
T
�
pðfiÞ

�þ tðeijÞ
��

þ t
�
pðfjÞ

�
: (1)

In (1), ipðfjÞ is the earliest idle time of the edge server pðfjÞ. In
our model, the processing of functions is non-preemptive,
thus an edge server is idle iff the functions assigned to it
complete. tðeijÞ is the transferring time of data stream eij
and t

�
pðfjÞ

�
is the processing time of fj on edge server pðfjÞ.

Corresponding to (1), for each entry function fi 2 F entry

T
�
pðfiÞ

� ¼ ipðfjÞ þ t
�
pðfiÞ

�
; (2)

since fi has no predecessors. In the following, we demon-
strate the calculation of tðeijÞ and t

�
pðfjÞ

�
in turn.

tðeijÞ is constitutive of two parts, where the first is the com-
munication start-up cost between the two functions fi and fj.
This cost is mainly decided by the configurations in kube-

proxy in this edge-cloudKubernetes cluster [23]. For example,
if we use Envoy to implement the network proxy and commu-
nication bus for the cluster, data transfer is mainly handled by
Envoy route filters. Before data transfer, Envoy proxy needs to
do somepreparatoryworks. For example, looking for the route
tables to get the actual routing paths.We simply use sðfi; fjÞ to
represent the communication start-up cost. The second is the
actual communication cost between pðfiÞ and pðfjÞ, which is
actually decided by the slowest data transferring time of z%
among all % 2 P�pðfiÞ; pðfjÞ�. Considering that the edge net-
work serves for thousands of services and applications, we
assume that for each data stream z%, during its transferring, the
bandwidth allocated to it on each virtual link lmn 2 % is fixed as
b%mn, and b%mn � bmax

mn holds. To sumup, tðeijÞ is defined as

tðeijÞ , sðfi; fjÞ þmax
%2P

�
pðfiÞ;pðfjÞ

� X
lmn2%

z%
b%mn

: (3)

Note that the above formulation ignores the data splitting
and merging costs as we have mentioned earlier. In real-
world scenarios, the real-time bandwidth for transferring
some data stream at some point is unknowable because
the network status is always in dynamic changes. Even
so, our assumption on the fixed bandwidth allocation is
reasonable since it can be guaranteed by the QoS level
defined in the generic network slice template (GST) [24].
Besides, our model does not require that each function
pair of the DAG enjoys the same bandwidth on each vir-
tual link.
8fj 2 F , t

�
pðfjÞ

�
is decided by the processing power of

the chosen edge server pðfjÞ. Since the processing of

Fig. 4. An example of data stream splitting.

4. A topological order of a DAG is a linear ordering of all the vertices
such that for every directed edge ðfi; fjÞ in this DAG, fi comes before fj
in this ordering.

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2349

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

functions is non-preemptive, each function is executed with
full power. Hence, t

�
pðfjÞ

�
is defined as

t
�
pðfjÞ

�
,

cj
cpðfjÞ

: (4)

3.4 Problem Formulation

After all functions are scheduled, the makespan will be the
finish time of the slowest exit function (i.e., the function
without successors). Our target is to minimize the make-
span of the DAG by finding the optimal pp , fpðfÞg8f2F and
the optimal zz , fz%j8% 2 P

�
pðfiÞ; pðfjÞ

�geij2E . Thus, the
dependent function embedding problem is formulated as

P : minpp;zzmaxf2F exit
T
�
pðfÞ�

s:t:
X

%2P
�
pðfiÞ;pðfjÞ

�z% ¼ sij; 8eij 2 E; (5)

zz � 00: (6)

4 ALGORITHM DESIGN

In this section, we first give the optimal substructure hidden
in P. Then, we propose the DPE algorithm and provide the-
oretical analysis on its optimality and complexity. In the
end, we give a method to obtain simple paths for the given
edge network based on DFS. To simplify the notations, in
the following, we replace P�pðfiÞ; pðfjÞ� and s

�
pðfiÞ; pðfjÞ

�
by Pij and sij, respectively.

4.1 Finding Optimal Substructure

In consideration of the dependency relationship between
the fore-and-aft functions, the optimal placement of func-
tions and optimal mapping of data streams cannot be
obtained at the same time. Nevertheless, we can solve it
optimally step-by-step based on its optimal substructure.

Let us use T
?
�
pðfÞ� to denote the earliest finish time of

function f when it is placed on edge server pðfÞ. Based on
(1), 8fj 2 FnF entry, we have

T
? �
pðfjÞ

� ¼ max

�
max8i:eij2E

�
minpðfiÞ;fz%g8%2Pij

�
T

? �
pðfiÞ

�þ tðeijÞ
�	

; ipðfjÞ

�

þt�pðfjÞ: (7Þ
Besides, for all the entry functions fi 2 F entry, T

?
�
pðfiÞ

�
is

calculated by (2) immediately.
With (7), for each function pair ðfi; fjÞ where eij exists,

we can define the sub-problem Psub

Psub : minpðfiÞ;fz%g8%2PijFij ,
�
T

? �
pðfiÞ

�þ tðeijÞ
�

s:t:
X

%2Pij
z% ¼ sij; (8)

z% � 0; 8% 2 Pij: (9)

Note that (8) and (9) are from a subset of constraints (5) and
(6), respectively. In Psub, we need to decide where fi is
placed and how eij is mapped. By solving Psub, we can
obtain the earliest finish time T

?
�
pðfjÞ

�
by (7). In this way, P

is solved optimally by calculating the earliest finish time of
each function in topological order.

4.2 Optimal Data Splitting

To solve Psub optimally, we first fix the position of fi, i.e.,
pðfiÞ, then concentrate on the optimal mapping of eij.

To minimize tðeijÞ, let us define a diagonal matrix A as
follows:

A , diag

 X
lmn2%1

1

b
%1
mn

;
X

lmn2%2

1

b
%2
mn

; . . . ;
X

lmn2%jPij j

1

b
%jPij j
mn

�
:

Obviously, all the diagonal elements of A are positive real
numbers. The variables that need to be determined can be
written as zzij , ½z%1 ; z%2 ; . . . ; z%jPij j �

> 2 RjPijj. Thus, Psub is con-
verted into

Pnorm : minzzijkAzzijk1

s:t:
11>zzij ¼ sij;

zzij � 00:

(
(10)

We drop T
?
�
pðfiÞ

�
and sij readily since constant does not

change the optimal solution zz
?

ij. Pnorm is an infinity norm
minimization problem. By introducing slack variables t 2 R

and yy 2 RjPijj, Pnorm can be transformed into the following
slack form

P0slack : min
zz0
ij , ½zz>ij ;yy>�

>
t

s:t:

P
%2Pij z% ¼ sij;

Azzij þ yy ¼ t � 11;
zz0ij � 00:

8><
>:

P0slack is feasible and its optimal objective value is finite. As a
result, simplex method and interior point method can be
applied to obtain the optimal solution efficiently.

However, these standard methods might be unaccept-
able when the scale of G increases since simplex method has
exponential complexity and interior point method is at least
Oðjzz0ijj3:5Þ in the worst case [25]. Luckily, we can directly
obtain the analytical expression of the optimal zz

?

ij. The result
is introduced in the following theorem.

Theorem 1. The optimal objective value of Pnorm is

min
zzij
kAzzijk1 ¼

sijPjPijj
k¼1 1=Ak;k

; (11)

iff

Au;uzz
ðuÞ
ij ¼ Av;vzz

ðvÞ
ij ; 1 � u 6¼ v � jPijj; (12)

where zz
ðuÞ
ij is the uth component of vector zzij and Au;u is the

uth diagonal element of A.

Proof. For Pnorm, we have

kAzzijk1 , max
k

n
jAk;kzz

ðkÞ
ij j

o
¼ lim

x!1

ffiXjPijj
k¼1

�
Ak;kzz

ðkÞ
ij

�xx

vuut ;

because 8k;Ak;k > 0; zz
ðkÞ
ij � 0. According to the AM–GM

inequality, the following inequality always holds:

2350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

PjPijj
k¼1

�
Ak;kzz

ðkÞ
ij

�x

jPijj �

ffiYjPijj
k¼1

�
Ak;kzz

ðkÞ
ij

�xjPijj

vuut ; (13)

iff (12) is satisfied. It yields that 8x > 0

ffiPjPijj
k¼1

�
Ak;kzz

ðkÞ
ij

�x

jPijj
x

vuut �

ffiYjPijj
k¼1

Ak;kzz
ðkÞ
ij

jPijj

vuut : (14)

Multiply both sides of (14) by
ffiffi½p
x�jPijj, we have

ffiXjPijj
k¼1

�
Ak;kzz

ðkÞ
ij

�xx

vuut �
ffiffiffiffiffiffiffiffiffi
jPijjx

q
�

ffiYjPijj
k¼1

Ak;kzz
ðkÞ
ij

jPijj

vuut : (15)

By taking the limit of (15), we have

kAzzijk1 � lim
x!1

ffiffiffiffiffiffiffiffiffi
jPijjx

q
�

ffiYjPijj
k¼1

Ak;kzz
ðkÞ
ij

jPijj

vuut : (16)

Combining with (10) and (12), the right side of (16) is
actually a constant. In other words

min
zzij
kAzzijk1 ¼ lim

x!1

ffiffiffiffiffiffiffiffiffi
jPijjx

q
�

ffiYjPijj
k¼1

Ak;kzz
ðkÞ
ij

½jPij j�

vuut

¼

ffiYjPijj
k¼1

Ak;kzz
ðkÞ
ij

½jPij j�

vuut ⊳with (10)

¼ sijPjPijj
k¼1 1=Ak;k

:

The result shows that (11) and (12) are the optimal objec-
tive value and corresponding optimal condition of Pnorm,
respectively. tu
Base on (12), we can infer that the optimal variable

zz
?

ij > 0 holds, which means that 8% 2 Pij, z
?

% 6¼ 0. To sum
up, the way to obtain the optimal data splitting and map-
ping is summarized into Algorithm 1 (OSM) as follows.

Algorithm 1. Optimal StreamMapping (OSM)

Input: G, the function pair ðfi; fjÞ, and pðfjÞ
Output: The optimalF

?

ij, p
? ðfiÞ, and zz

?

ij

1 for eachm 2 N do in parallel
2 pðfiÞ m
3 / * Obtain themth optimalFij by (11)* /

4 F
ðmÞ
ij sijP

k
1=A

ðmÞ
k;k

þ T
?
�
pðfiÞ

�
5 end for
6 p

? ðfiÞ argminm2NFF
ðmÞ
ij

7 Calculate zz
?

ij by (10) and (12) with A ¼ Aðp
? ðfiÞÞ

From line 1 to line 5, we can find that OSM solves Pnorm by
solving jN j times of Psub in parallel, each with a different
pðfiÞ. The procedure can be executed in parallel because inter-
coupling is nonexistent. In line 4, the objective of Psub is
obtained with the analytical solution (11) directly. The most
time-consuming operation lies in line 4 and line 6 since they

have at least one traversal over edge servers and simple paths,
respectively.OSM is inO

�
maxfjN j; jPijjg

�
-complexity.

4.3 Dynamic Programming-Based Embedding

Combing OSM with dynamic programming, we have the
algorithm DPE (Dynamic Programming-based Embedding).

In DPE, the loop starts from non-entry functions with a
topological order. For each non-entry function fj 2 Nn
N entry, DPE first fixes its placement pðfjÞ as some edge
server n in line 3. Then, from line 4 to line 12, DPE solves the
sub-problem P

ðiÞ
sub by calling OSM for the function pairs

ðfi; fjÞ; eij 2 E in turn. If p
? ðfiÞ has been decided beforehand

(under the case where a function is a predecessor of multi-
ple functions), DPE will skip fi and go to process the next
predecessor fi0 (line 5 	 line 7). At the end, DPE updates the
finish time of fj based on the solution of fPðiÞsubg8eij2E in line
13. Note that the finish time of each entry function fi should
be calculated with (2) before solving P

ðiÞ
sub. When all the fin-

ish time of functions have been calculated, the global mini-
mal makespan of the DAG can be obtained by

max
f2F exit

argmin
p?

T
? �
p
? ðfÞ�:

The optimal embedding of each function can be retrieved
from zz

?
and pp

?
.

Algorithm 2. DP-Based Embedding (DPE)

Input: G and ðF ; EÞ
Output: Optimal value and corresponding solution

1 for j ¼ jF entryj þ 1 to jF j do
2 for each n 2 N do
3 pðfjÞ n // Fix the placement of fj
4 for each fi 2 ffijeij existsg do
5 if p

? ðfiÞ has been decided then
6 continue
7 end if
8 if fi 2 F entry then
9 8pðfiÞ 2 N , update T

?
�
pðfiÞ

�
by (2)

10 end if
11 Obtain the optimalF

?

ij, p
? ðfiÞ, and zz

?

ij by calling OSM

12 end for
13 Update T

?
�
pðfjÞ

�
by (7)

14 end for
15 end for
16 returnmaxf2F exit

argminp
T
?
�
p
ðfÞ�, zz?

, and pp
?

Fig. 5 demonstrates an example on how PDE works. The
top left portion of the figure is a DAG randomly sampled
from the Alibaba cluster trace, where all the functions are
named in the manner of topological order. 8fi 2 F , ci is set
as 1. The top right is the edge server cluster G. The bottom
demonstrates how the functions are placed and scheduled
by DPE.

In the following, we demonstrate the complexity of DPE.

Theorem 2. In the worst case, the complexity of DPEDPE is

O
�
jN j � jEj �max

jN j;maxni;nj jPijj
��

:

Proof. For each fj 2 FnF entry, the average number of prede-

cessors is jEj
F�jF entryj . Thus, for each placement of fj, OSM is

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2351

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

called jEj
F�jFentry j times on average. Thus, OSM is called

�
jF j � jF entryj

�
� jN j � jEj

jF j � jF entryj ;

times in theworst case (underwhich a function is not a pre-

decessor ofmore than one function). Due to the complexity

ofOSM isO
�
maxfjN j; jPijjg

�
, the result is immediate. tu

4.4 Recursion-Based Path Finding

In this subsection, we demonstrate how to obtain the simple
paths for each vertex pair in the undirected graph G. All the
simple paths can be calculated, based on the method pro-
posed in the following, and saved into a shareable table for
each edge server. The calculation of simple paths is to be a
once-and-done operation, and it is calculated immediately
after the creation of the Kubernetes cluster. Once the edge
network status changes, for example, an edge server is inac-
cessible or a new edge server is configured into the network,
only the related entries in this table need to be re-calculated.
The modification has much lower complexity.

Before introducing our algorithm for path finding, we
first prove that the simple path finding problem is NP-hard.

Proposition 1. Finding all the simple paths for all the vertex
pairs in the undirected connected graph G is NP-hard.5

Proof. Suppose there exists a polynomial algorithm A
which can obtain all the simple paths between any source
vertex pðfiÞ 2 N and any destination vertex pðfjÞ 2 N .
Because G is a connected graph, P�pðfiÞ; pðfjÞ� is not
empty. Since A lists all the simple paths in P�pðfiÞ; pðfjÞ�,
we can easily design another simple polynomial

algorithm A0, based on the results of A, to judge which
simple path in P�pðfiÞ; pðfjÞ� is the longest path. Since G
is undirected and connected, we can claim that this lon-
gest simple path has to traverse all vertices of G. It means
that we have found a Hamiltonian Path in polynomial
time, which is well known to be NP-hard. As a result, we
can conclude that, unless P ¼ NP, A is very unlikely to
exist. Therefore, finding all the simple paths between any
two vertices of an undirected connected graph is NP-
hard. Based on this, we can easily prove that finding all
the simple paths for all the vertex pairs of a undirected
connected graph is also NP-hard. tu
Let us introduce a new notation, Vðni; nj;MÞ, to repre-

sent the set of simple paths from ni to nj where no path
goes through vertices from the setM
 N . The set of simple
paths from ni to nj we want, i.e., Pij, is equal to Vðni; nj;?Þ.
8n 2 N , let us use AðnÞ to represent the set of edge servers
adjacent to n. Then, Vðni; nj;MÞ can be calculated by the
following recursion formula:

Vðni; nj;MÞ ¼
n
Jð%; niÞ

��� [
m2SV

�
m;nj;M[fnig

�o
;

where S , AðniÞ �M[fnig, and Jð%; niÞ is a function that
joins the node ni to the path % and returns the new joint
path % [fnig.

Based on the above recursion formula,we introduceAlgo-
rithm 3, RPF (Recursion-based Path Finding). Before calling
RPF, we need to initialize the global variables. Specifically,
Pij stores all the simple paths, which is initialized as ? . V, as
the set of visited vertices, is initialized as ? . %, as the path to
be calculated currently, which is also initialized as ? .

Algorithm 3. Recursion-Based Path Finding (RPF)

Input: ni; nj 2 N
Output: Pij

1 V; %;Pij ? ;? ;?
2 n ni

3 if n ¼¼ nj then
4 Pij:append

�
Jð%; nÞ� // Store the path Jð%; nÞ

5 else
6 %:pushðnÞ; V:addðnÞ
7 for each n0 2 AðnÞ � V do
8 RPFðni; n

0; njÞ // Recursive call

9 end for
10 %:popðÞ; V:deleteðnÞ
11 end if

Although the calling of RPF is a once-and-done operation,
we still give the complexity of it as follows. Let us use kði; jÞ
to denote the flops required to compute all the simple paths
between ni and nj. If G is fully connected

kð1; jN jÞ ¼
XjN j�1
i¼2

�
k
�
i; jN j�þ 1

�
þ 1

¼ ðjN j � 1Þ þ ðjN j � 2Þ � kð2; jN jÞ:

Further, we use ki to replace kði; jN jÞ by fixing the target
vertices as the jN jth vertex. We can conclude that
8i 2 f1; . . . ; jN j � 1g

Fig. 5. Embedding of a DAG with the DPE algorithm.

5. The proof of this proposition is based on the discussions in the
web page https://stackoverflow.com/questions/9535819/find-all-
paths-between-two-graph-nodes.

2352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

https://stackoverflow.com/questions/9535819/find-all-paths-between-two-graph-nodes
https://stackoverflow.com/questions/9535819/find-all-paths-between-two-graph-nodes

ki ¼
�jN j � i

�þ �jN j � i� 1
� � kiþ1: (17)

Based on the recursion formula (17), we have

k1 ¼ ðjN j � 2Þ! �
XjN j�1
i¼1

jN j � i

ðjN j � i� 1Þ!

¼ ðjN j � 2Þ! �
XjN j�1
i¼1

ðjN j � iÞ2
ðjN j � iÞ!

¼ ðjN j � 2Þ! �
XjN j�1
i¼1

i2

i!
; (18)

which is the maximum flops required to compute all the
simple paths between any two edge servers. To get the
upper bound of k1, in the following, we introduce several
lemmas.

Lemma 1. 8N � 7 and N 2 Nþ, N ! > N3ðN þ 1Þ.
Proof. The proof is based on induction. When N ¼ 7,

N ! ¼ 5040 > N3ðN þ 1Þ ¼ 2744. The lemma holds.
Assume that the lemma holds for N ¼ q, i.e.,
q! > q3ðq þ 1Þ (induction hypothesis). Then, for N ¼ q þ 1,
we have

ðq þ 1Þ! ¼ ðq þ 1Þ � q! > ðq þ 1Þ2q3: (19)

Notice that the function gðqÞ , ð1q þ 2
q2
þ 4

q3
Þ�1 monotoni-

cally increases when q 2 Nþ � f1; 2g. Hence gðqÞ � gð3Þ ¼
27
25 > 1, and

1 <
q3

ðq þ 2Þ2 <
q3

ðq þ 1Þðq þ 2Þ ;

which indicates that

q3 > ðq þ 1Þðq þ 2Þ: (20)

Multiply both sides of (20) by ðq þ 1Þ2, we get

ðq þ 1Þ � q3 � ðq þ 1Þ > ðq þ 1Þ3ðq þ 2Þ;

which means the induction hypothesis is not violated,
and the lemma holds for q þ 1. tu

Lemma 2. 8N � 2 and N 2 Nþ,
PN�1

i¼1
i2

i! < 6� 1
N .

Proof. We can verify that when N 2 ½2; 7� \Nþ, the lemma
holds. In the following we prove the lemma holds for
N > 7 by induction. Assume that the lemma holds for
N ¼ q, i.e.,

Pq�1
i¼1

i2

i! < 6� 1
q (induction hypothesis). Then, for

N ¼ q þ 1, we have

Xq
i¼1

i2

i!
< 6� 1

q
þ q2

q!
: (21)

By applying Lemma 1, we get

Xq
i¼1

i2

i!
< 6� 1

q þ 1
;

which means the lemma holds for q þ 1. tu

Based on the above lemmas, we can obtain the complex-
ity of RPF, as illustrated in the following theorem:

Theorem 3. In the worst case, where G is a fully connected graph
and jN j � 2, the complexity of RPF is O

�ðjN j � 2Þ!�.
Proof. According to Lemma 2

lim
jN j!1

XjN j�1
i¼1

i2

i!
< 6:

Hence limjN j!1 k1 < 6ðjN j � 2Þ! ¼ O
�
ðjN j � 2Þ!

�
. tu

In real-world edge computing scenario for IoT stream
processing, G might not be fully connected. Even though,
the number of edge servers is small. Thus, the real complex-
ity is much lower. Besides, note that the calling of RPF is
actually a once-and-done operation. As a priori to DPE, query
in this shareable table is of linear complexity. This conclu-
sion is immediate by analyzing line 4 of OSM.

4.5 Extending to Multiple DAGs

DPE can be performed for multiple DAGs. To do this, we
only need to concatenate all the DAGs into one augmented
DAG. Specifically, if a DAG has more than one entry func-
tion, we add a dummy head function fh and several
directed edges fehi j 8fi 2 F entryg such that the required
floating point operations of fh is zero and all the shi are
zero. In the same way, if a DAG has more than one exit
function, we add a dummy tail function and corresponding
directed edges. Based on that, we add a directed edge
between the (dummy) tail function of the DAG before and
the (dummy) head function of the DAG after. Take the aug-
mented DAG as the input of DPE, we get the embedding
results.

5 EXPERIMENTAL VALIDATION

In this section, we conduct extensive experiments to evalu-
ate the effectiveness and efficiency of DPE. Based on a real-
world dataset, the Alibaba’s cluster trace [18], we first verify
the performance of DPE against several popular algorithms
on makespan. Then, we analyze the impact of several sys-
tem parameters.

We summarize the key findings of our experiments as
follows, and details can be found in Section 5.2.

� Compared with a well-known heuristic HEFT [19],
and a recent algorithm FixDoc [14], DPE achieves the
smallest makespan over all the 2119 DAGs with
absolute superiority under arbitrary parameters.

� DPE is robust to the system parameters. The advan-
tage of DPE is magnified when the scale of the edge
network increases.

5.1 Experiment Setup

IoT Stream Processing Workloads. The simulation is conducted
based on Alibaba’s cluster trace of data analysis. This data-
set contains more than 3 million jobs (called applications in
this work), and 20365 jobs with unique DAG information.
Considering that there are too many DAGs with only sin-
gle-digit functions, we sampled 2119 DAGs with different

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2353

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

sizes from the dataset. The distribution of the samples is
visualized in Fig. 6. For each f 2 F , the processing power
required and output data size are extracted from the corre-
sponding job in the dataset and scaled to ½1; 10� � 102 gflops
and ½5; 15� � 102 MB, respectively.

Heterogeneous Edge Servers. In our simulation, the number
of edge servers is 10 in default. Considering that the edge
servers are required to formulate a connected graph, the
impact of the sparsity of the graph is also studied. The proc-
essing power of edge servers and the allocated of band-
width for each data flow are uniformly sampled from
½20; 40� gflops and ½30; 80� � 102 MB/s in default, respectively.

Algorithms Compared. We compare DPE with the follow-
ing algorithms.

� FixDoc [14]: FixDoc is a function placement and DAG
scheduling algorithm with fixed function configura-
tion for the serverless edge computing platform. Fix-
Doc places each function onto homogeneous edge
servers optimally to minimize the DAG completion
time. Actually, [14] also proposes an improved ver-
sion, GenDoc, with function configuration opti-
mized, too. However, for IoT applications such as
video transcoding, on-demand function configura-
tion is not necessary since the tools such as ffmpeg
can be installed and configured beforehand easily.
Thus, we only compare DPE with FixDoc.

� Heterogeneous Earliest-Finish-Time (HEFT) [19]: HEFT
is a classic heuristic to schedule a set of dependent
tasks onto heterogeneous workers with communica-
tion time taken into account. Starting with the highest
priority, tasks are assigned to different workers to
heuristically minimize the overall completion time.
HEFT is an algorithm that stands the test of time.

5.2 Experimental Results

All the experiments are implemented in Python 3.7 on
macOS Catalina equipped with 3.1 GHz Quad-Core Intel
Core i7 and 16 GB RAM. In the following, the unit of the left
y-axis is 100 seconds.

5.2.1 Theoretical Performance Verification

Fig. 7 illustrates the overall performance of the three algo-
rithms. For different data batches, DPE can reduce 43:19% and
40:71% of the completion time on average over FixDoc and
HEFT on 2119 DAGs. The advantage of DPE is more obvious
when the scale of DAG is large because the parallelism is fully

guaranteed. Fig. 8 shows the accumulative distribution of
2119 DAGs’ completion time. DPE is superior to HEFT and
FixDoc on 100% of the DAGs. In Fig. 8, themaximum comple-
tion time of a DAG achieved by DPE is 124 seconds. By con-
trast, only less than 94% of DAGs’ completion times achieved
byHEFT and FixDoc are smaller than this value.

Figs. 7 and 8 verify the superiority of proactive streammap-
ping and data splitting. By spreading data streams overmulti-
ple virtual links, data transferring time is greatly reduced.
Besides, the optimal substructure makes sure DPE can find
the optimal placement of each function simultaneously.

5.2.2 Scalability Analysis

Figs. 9 and 10 show the impact of the scale of the heteroge-
neous edge G. In Fig. 9, we can find that the average comple-
tion time achieved by all algorithms decreases as the edge
server increases. The result is obvious because more idle
servers available, more functions can be executed in parallel
without delay. For all data batches, DPE achieves the best
result. It is interesting to find that the gap between other
algorithms and DPE gets widened when the scale of G
increases. This is because the available simple paths become
more and the data transmission time is reduced even fur-
ther. Fig. 9 also shows the run time of different algorithms
at the right y-axis. The results show that DPE has the mini-
mum running time overhead.

Fig. 10 shows the impact of sparsity of G. The horizontal
axis is the overall number of simple paths G. As it increases, G
becomes more denser. Because DPE can reduce transmission

Fig. 7. Average completion time achieved by different algorithms.

Fig. 8. The accumulative distributions of the completion time achieved by
three algorithms, respectively.

Fig. 6. Data distribution sampled from the cluster trace.

2354 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

time with optimal data splitting and mapping, average com-
pletion time achieved by it decreases pretty evident. By con-
trast, FixDoc andHEFT have no obvious change.

5.2.3 Sensitivity Analysis

Figs. 11 and 12 demonstrate the impact of system parameters,
cn and bl. Notice that 8n 2 N ; l 2 L, cn and bl are sampled
from the interval ½clower;cupper� and ½blower; bupper� uniformly,
respectively. When the processing power and throughput
increase, the computation and transmission time achieved by
all algorithms are reduced. The results are immediate because
a larger processing power directly reduce the computation
time of functions while a larger throughput reduces the data
transferring time directly. Even so, DPE achieves the smallest
average completion time, which verifies the robustness of DPE
adequately.

6 RELATED WORKS

In this section,we review relatedworks on function placement
andDAG scheduling in serverless edge computation systems.

Studying the optimal function placement is not new. Since
cloud computing paradigm became popular, it has been
extensively studied in the literature [26], [27], [28]. When
bringing function placement into the paradigm of edge com-
puting, especially for the IoT stream processing, different con-
straints, such as the response time requirement of latency-
critical applications, availability of function instances on the
heterogeneous edge servers, and the wireless and wired net-
work throughput, etc., should be taken into consideration

[29], [30], [31]. In edge computing, the optimal function place-
ment strategy can be used to maximize the network utility
[32], minimize the inter-node traffic [33], [34], [35], minimize
the makespan of the applications [14], [15], [16], or even mini-
mize the budget of application service providers [36].

In edge computing, the application is either modeled as an
individual black-box or a DAG with complicated composite
patterns. Considering that the IoT stream processing applica-
tions at the edge usually have dependent correlations between
the fore-and-aft functions, dependent function placement
problem has a strong correlation with DAG dispatching and
scheduling. Scheduling algorithms for edge computation tasks
have been extensively studied in recent years [19], [37], [38],
[39]. In edge computing, the joint optimization of DAG sched-
uling and function placement is usually NP-hard. As a result,
manyworks can only achieve a near optimal solution based on
heuristic or greedy policy. For example, Gedeon et al. proposed
a heuristic-based solution for function placement across a
three-tier edge-fog-cloud heterogeneous infrastructure [40].
Cat et al. proposed a greedy algorithm for function placement
by estimating the response time of paths in a DAGwith queue
theory [41]. Although FixDoc [14] can achieve the global opti-
mal function placement, the completion time can be reduced
further by optimizing the streammapping.

7 CONCLUSION

In this paper, we study the optimal dependent function
embedding problem at the serverless edge. We first point out

Fig. 11. Average completion time under different processing powers of
servers.

Fig. 12. Average completion time under different throughputs of links.
Fig. 10. Average completion time under different sparsities of G.

Fig. 9. Average completion time of DAGs and the computer’s run time
achieved by each algorithm under different numbers of edge servers.

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2355

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

that proactive streammapping anddata splitting could have a
strong impact on the makespan of DAGs with several use
cases. Based on these observations, we design the DPE algo-
rithm, which is theoretically verified to achieve the global
optimality for an arbitrary DAG when the topological order
of functions is given.DPE obtains the optimal streammapping
for each function pair with dependent relations. Extensive
simulations based on the Alibaba cluster trace dataset verify
that our algorithms can reduce the makespan significantly
compared with a state-of-the-art function placement and
scheduling methods, FixDoc, and a widely accepted algo-
rithm, HEFT. The algorithms proposed in this paper is an off-
line algorithm. We leave the extension to online scenarios to
our futurework.

REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise
of serverless computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54,
Nov. 2019.

[2] M. S. Aslanpour et al., “Serverless edge computing: Vision and
challenges,” in Proc. Australas. Comput. Sci. Week Multiconf., 2021,
pp. 1–10.

[3] “Docker: Accelerate how you build, share and run modern
applications.” Accessed: Oct. 2020. [Online]. Available: https://
www.docker.com/

[4] “Kubernetes: Production-grade container orchestration.” Accessed:
Oct. 2020. [Online]. Available: https://kubernetes.io/

[5] E. Jonas et al., “Cloud programming simplified: A berkeley view
on serverless computing,” CoRR, vol. abs/1902.03383, 2019.

[6] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uţ�a, and A. Iosup,
“Serverless is more: From PAAS to present cloud computing,”
IEEE Internet Comput., vol. 22, no. 5, pp. 8–17, Sep./Oct. 2018.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,”
IEEE Commun. Surveys Tut., vol. 19, no. 4, pp. 2322–2358,
Oct.–Dec. 2017.

[8] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T.
Taleb, “Survey on multi-access edge computing for Internet of
Things realization,” IEEE Commun. Surveys Tut., vol. 20, no. 4,
pp. 2961–2991, Oct.–Dec. 2018.

[9] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[10] 5G PPP Architecture Working Group, “View on 5G architecture:
Version 3.0,” Feb. 2020. [Online]. Available: https://doi.org/
10.5281/zenodo.3265031

[11] B. Javadi, J. Sun, and R. Ranjan, “Serverless architecture for edge
computing,” Edge Comput.: Models, Technol. Appl., pp. 249–264, 2020.

[12] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K.
Satzke, and M. Stein, “Will serverless computing revolutionize
NFV?” Proc. IEEE, vol. 107, no. 4, pp. 667–678, Apr. 2019.

[13] L. Baresi, D. Filgueira Mendonça, and M. Garriga, “Empowering
low-latency applications through a serverless edge computing
architecture,” in Proc. Serv. -Oriented Cloud Compu., F. De Paoli, S.
Schulte, and E. Broch Johnsen, Eds. 2017, pp. 196–210.

[14] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configura-
tion in edge computing,” inProc. Int. Symp. Qual. Serv., 2019, pp. 1–10.

[15] S. Khare et al., “Linearize, predict and place: Minimizing the
makespan for edge-based stream processing of directed acyclic
graphs,” in Proc. 4th ACM/IEEE Symp. Edge Comput., New York,
NY, USA, 2019, pp. 1–14.

[16] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge
service function chaining for cost-efficient edge computing,” IEEE
J. Sel. Areas Commun., vol. 37, no. 8, pp. 1866–1880, Aug. 2019.

[17] “Istio: Connect, secure, control, and observe services.” Accessed:
Oct. 2020. [Online]. Available: https://istio.io/latest/

[18] “Alibaba cluster trace program.” Accessed: Oct. 2020. [Online].
Available: https://github.com/alibaba/clusterdata

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,
Mar. 2002.

[20] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina,
“Network slicing in 5G: Survey and challenges,” IEEE Commun.
Mag., vol. 55, no. 5, pp. 94–100, May 2017.

[21] S. Vassilaras et al., “The algorithmic aspects of network slicing,”
IEEE Commun. Mag., vol. 55, no. 8, pp. 112–119, Aug. 2017.

[22] “Kubeedge: An open platform to enable edge computing.” Accessed:
Oct. 2020. [Online]. Available: https://kubeedge.io/en/

[23] “Envoy: An open source edge and service proxy, designed for
cloud-native applications.” Accessed: Oct. 2020. [Online]. Available:
https://www.envoyproxy.io/

[24] GSM Association, “Official document ng.116 - generic network
slice template v4.0,” Nov. 2020. [Online]. Available: https://
www.gsma.com/newsroom/wp-content/uploads//NG.116-
v4.0-2.pdf

[25] J. Fearnley and R. Savani, “The complexity of the simplex
method,” in Proc. 47th Annu. ACM Symp. Theory Comput., 2015,
pp. 201–208.

[26] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for
internet-scale data stream systems,” IEEE Internet Comput., vol. 12,
no. 6, pp. 50–60, Nov./Dec. 2008.

[27] L. Tom and V. R. Bindu, “Task scheduling algorithms in cloud
computing: A survey,” in Inventive Computation Technologies, S.
Smys, R. Bestak, and �A. Rocha, Eds. Cham, Switzerland: Springer,
2020, pp. 342–350.

[28] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE 4th
Int. Conf. Cloud Netw., 2015, pp. 171–177.

[29] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware
application placement in mobile edge computing: A stochastic
optimization approach,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 04, pp. 909–922, Apr. 2020.

[30] M. Nardelli, V. Cardellini, V. Grassi, and F. Presti, “Efficient oper-
ator placement for distributed data stream processing
applications,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 08,
pp. 1753–1767, Aug. 2019.

[31] Z. Ning et al., “Distributed and dynamic service placement in per-
vasive edge computing networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 06, pp. 1277–1292, Jun. 2021.

[32] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in Proc. INFO-
COM Conf. Comput. Commun., 2018, pp. 2177–2185.

[33] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in Proc. IEEE 34th Int. Conf. Distrib. Comput.
Syst., 2014, pp. 535–544.

[34] L. Liu, S. Guo, G. Liu, and Y. Yang, “Joint dynamical VNF place-
ment and SFC routing in NFV-enabled SDNS,” IEEE Trans. Netw.
Serv. Manage., vol. 18, no. 4, pp. 4263–4276, Dec. 2021.

[35] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge
clouds,” IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 445–459,
Feb. 2021.

[36] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wireless
Commun., vol. 17, no. 12, pp. 8388–8401, Dec. 2018.

[37] Y. Kao, B. Krishnamachari,M. Ra, and F. Bai, “Hermes: Latency opti-
mal task assignment for resource-constrained mobile computing,”
IEEE Trans.Mobile Comput., vol. 16, no. 11, pp. 3056–3069,Nov. 2017.

[38] S. Sundar and B. Liang, “Offloading dependent tasks with com-
munication delay and deadline constraint,” in Proc. IEEE INFO-
COM Conf. Comput. Commun., 2018, pp. 37–45.

[39] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in
edge computing,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 2287–2295.

[40] J. Gedeon, M. Stein, L. Wang, and M. Muehlhaeuser, “On scalable
in-network operator placement for edge computing,” in Proc. 27th
Int. Conf. Comput. Commun. Netw., 2018, pp. 1–9.

[41] X. Cai, H. Kuang, H. Hu, W. Song, and J. L€u, “Response time aware
operator placement for complex event processing in edge
computing,” in Service-Oriented Computing, C. Pahl, M. Vukovic, J.
Yin, andQ. Yu, Eds. Cham, Switzerland: Springer, 2018, pp. 264–278.

2356 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://doi.org/10.5281/zenodo.3265031
https://doi.org/10.5281/zenodo.3265031
https://istio.io/latest/
https://github.com/alibaba/clusterdata
https://kubeedge.io/en/
https://www.envoyproxy.io/
https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v4.0-2.pdf
https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v4.0-2.pdf
https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v4.0-2.pdf

ShuiguangDeng (SeniorMember, IEEE) received
the BS and PhD degree in computer science from
the College of Computer Science and Technology,
Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a full professor with the
College of Computer Science and Technology,
Zhejiang University. He was visiting scholar with
the Massachusetts Institute of Technology in 2014
and Stanford University in 2015. He has authored
or coauthored more than 100 papers in journals
and refereed conferences. His research interests

include edge computing, service computing, cloud computing, and busi-
ness process management. He is currently an associate editor for the jour-
nal IEEETransactions onServices Computing, Knowledge and Information
Systems, Computing and IET Cyber-Physical Systems: Theory & Applica-
tions. He was the recipient of Rising Star Award by IEEE TCSVC in 2018.
He is a fellow of IET.

Hailiang Zhao received the BS degree from the
School of computer science and technology,
Wuhan University of Technology, Wuhan, China,
in 2019. He is currently working toward the PhD
degree with the College of Computer Science
and Technology, Zhejiang University, Hangzhou,
China. His research interests include edge com-
puting, service computing, and machine learning.
He was the recipient of Best Student Paper
Award of IEEE ICWS 2019.

Zhengzhe Xiang (Member, IEEE) received theBS
and PhD degrees in computer science and technol-
ogy from Zhejiang University, Hangzhou, China.
He was a visiting student with Karlstad University,
Sweden, in 2018. He is currently a lecturer with
Zhejiang University City College, Hangzhou, China.
His research interests include service computing,
cloud computing, and edge computing.

Cheng Zhang received the MS degree in 2013 in
electrical engineering from Zhejiang University,
China, where he is currently working toward the
PhD degree in computer science and technology.
His research interests include edge computing
and edge intelligence.

Rong Jiang received the PhD degree in system
analysis and integration from the School of Soft-
ware, Yunnan University, China. He is currently the
deputy dean with the Institute of Intelligence Appli-
cations, a distinguished professor, and the doctoral
supervisor with the Yunnan University of Finance
andEconomics, Kunming, China.He is an excellent
professional and technical talent with outstanding
contributions in Yunnan Province, an expert enjoy-
ing special government allowances in Yunnan
Province, a young and middle-aged academic and

technical leader and an excellent teacher in Yunnan Province. He is the
director of Key Laboratory of Service Computing and security management
of Yunnan Provincial Universities, and the director of Kunming Key Labora-
tory of Information Economy and Information Management. He has auth-
ored or coauthored more than 60 papers. His research interests include
cloud computing, big data, block chain, AI application and information man-
agement, digital economy, and software engineering. He was the recipient
ofmore than 70 prizes in recent years.

Ying Li is currently an associate professor with
the College of Computer Science and Technol-
ogy, Zhejiang University, Hangzhou, China. His
research interests include service computing,
cloud computing, and data science.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU) in 2001. He
was a visiting scholar with the Georgia Institute of
Technology. He is currently a full professor with the
College of Computer Science, ZJU. He has auth-
ored or coauthored more than 100 papers in top
international journals and conferences. His research
interests include service computing and business
process management. He is an associate editor for
IEEETransactions onServicesComputing.

Schahram Dustdar (Fellow, IEEE) is currently a
full professor of computer science informatics with a
focus on internet technologies heading the Distrib-
uted Systems Group, TU Wien. Since December
2016, he has been the chairman of the Informatics
Section of the Academia Europaea. From 2004 to
2010, he was an honorary professor of information
systems with the Department of Computing Sci-
ence, University of Groningen (RuG), The Nether-
lands. FromDecember 2016 until January 2017, he
was a visiting professor with the University of Sev-

illa, Spain, and from January until June 2017, he was a visiting professor
with UC Berkeley, USA. He has been a member of the IEEE Conference
Activities Committee (CAC) since 2016, of the Section Committee of Infor-
matics of the Academia Europaea since 2015, and a member of the Acade-
mia Europaea: TheAcademy of Europe, Informatics Section since 2013. He
was the recipient of the ACM Distinguished Scientist Award (2009) and the
IBM Faculty Award (2012). He is an associate editor for IEEE Transactions
on Services Computing,ACMTransactions on theWeb, andACMTransac-
tions on Internet Technology. He is on the editorial board of IEEE Internet
Computing. He is the editor-in-chief ofComputing (an SCI-ranked journal of
Springer).

Albert Y. Zomaya (Fellow, IEEE) is currently the
chair professor of high-performance computing and
networking with the School of Computer Science
and the director of the Centre for Distributed and
High-Performance Computing with the University of
Sydney. He has authored or coauthored more than
600 scientific papers andarticles and is the co-author
or the editor ofmore than30 books. As a sought-after
speaker, he has delivered more than 190 keynote
addresses, invited seminars, and media briefings.
His research interests include parallel and distributed

computing and complex systems. He is currently the editor in chief of the
ACMComputingSurveys andwas the editor in chief of IEEETransactions on
Computers from 2010 to 2014 and IEEE Transactions on Sustainable Com-
puting from2016 to2020.He is a decorated scholarwith numerousaccolades
including the fellowship of the American Association for the Advancement of
Science, and the Institution of Engineering and Technology, U.K. He is an
elected fellow of the Royal Society of New South Wales and an elected for-
eign member of Academia Europaea. He was the recipient of 1997 Edge-
worth David Medal from the Royal Society of New South Wales for
outstanding contributions to Australian Science, the IEEE Technical Commit-
tee on Parallel Processing Outstanding Service Award (2011), IEEE Techni-
cal Committee on Scalable Computing Medal for Excellence in Scalable
Computing (2011), IEEE Computer Society Technical Achievement Award
(2014), ACM MSWIM Reginald A. Fessenden Award (2017), and the New
South Wales Premier’s Prize of Excellence in Engineering and Information
andCommunications Technology (2019).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

DENG ET AL.: DEPENDENT FUNCTION EMBEDDING FOR DISTRIBUTED SERVERLESS EDGE COMPUTING 2357

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 14,2022 at 10:47:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

