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a b s t r a c t

Classifiers based on evidential reasoning (ER) rule can well handle the uncertainty in the mapping
relationship between input attributes and output classes. To avoid the number of model parameters
increasing with the growing number of input attributes, this paper proposes a classification model
based on attribute vectorization and evidential reasoning (AV-ER). Firstly, different input attributes are
combined into attribute vectors by using principal component analysis (PCA). Then, all training samples
are casted into reference attribute vectors , and the reference evidence matrix (REM) is generated by
likelihood function normalization. After that, all pieces of activated evidence are fused through ER
theory to generate the final classification decision. In the fusion process, parameters of the initial
classification model are optimized by genetic algorithm (GA), and Akaike information criterion (AIC)
is used to evaluate the model performance comprehensively considering the model complexity and
classification accuracy. Finally, typical UCI benchmark datasets are applied to verify the proposed AV-ER
classification model, and the results indicate that the classification performance of the AV-ER model
is satisfying while the number of the model parameters decrease obviously as well.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In machine learning and statistics, data classification is one
f the most important topics [1]. It aims to determine the class
f a new observed sample by training a model based on data
amples with the known class. To be specific, suppose there are
input attributes {x1, x2, . . . , xJ } and P output classes {y1, y2,

. . , yP } in a classification problem, the essential of a classifier
s to build a linear or nonlinear relationship between the input
x1, x2, . . . , xJ } and its corresponding output class. Data clas-
ification has been widely applied in variety of field, such as
edical diagnosis [2], image process [3], fault diagnosis [4], risk
nalysis [5], cyber security [6] and etc. As a hot topic, many al-
orithms are proposed to solve classification problems, including
rtificial neural network [7], factor analysis [8], support vector
achine (SVM) [9], naive bayes [10], decision tree [11], and other
ew technologies, such as deep learning [12], belief rule-based
nference methodology [13]. In practical, different classifiers have

∗ Corresponding authors.
E-mail address: xuxiaobin1980@163.com (X. Xu).
ttps://doi.org/10.1016/j.asoc.2022.108712
568-4946/© 2022 Elsevier B.V. All rights reserved.
their own advantages in dealing with different fields of data.
However, almost all methods have to face uncertainty problem
in classification. From the perspective of uncertain information
processing, the inaccurate or wrong classification result is caused
by the uncertain attribute boundaries among different classes,
thus the class of a sample cannot be determined with its input
attributes [14–16].

Dempster–Shafer (DS) evidence theory offers an effective
mechanism to deal with uncertainty in classification. Firstly, DS
theory defines a framework of discernment (FoD) containing all
classes in a problem. Then, a basic belief assignment (BBA) is
determined based on the observed values of attributes, which is
a belief distribution function on the power set element of the
FoD. BBA represents the belief degree that every element and
subset of the FoD occurs, and it is named evidence in evidential
reasoning (ER) theory. The belief distribution given by BBA is
different from the traditional probability distribution. The former
distribution can assign the belief to a single proposition of the
FoD and any subset composed by the propositions as well, which
consequently is the most natural and flexible generalization of

the latter distribution. Currently, various methods can be used

https://doi.org/10.1016/j.asoc.2022.108712
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
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o generate BBA from different kinds of attribute information,
uch as kernel samples [14], neural network [15], k-NN [16]
nd expert system [13]. Finally, all pieces of evidence offered
y attributes are fused by evidence combination rules, and the
lass of a sample is made according to the fusion result. The aim
f evidence fusion is to reduce the uncertainty in classification
hrough fusing multi-source information.

Evidential reasoning (ER) rule is the extension of DS evidence
heory, and can also solve the classification problem [17]. Many
esearchers further use ER rule for classification problems in var-
ous areas by using quantity data or qualitative information [17–
9]. In traditional ER rule, every attribute is assigned a reliability
actor r and an importance weight w, and has its own REM.
onsequently, when ER rule is used to deal with samples having
igh dimensional attributes, the model structure becomes more
omplex with the rising number of input attributes. Meanwhile,
he fusion times of evidence, the number of model parameters,
nd the calculation amount increase as well.
To control the structural complexity and calculation amount

f ER classifiers for high dimensional input attributes, this paper
roposes a new ER classifier on the basis of attribute vectorization
i.e. AV-ER classifier), which effectively extends the flexibility of
vidential reasoning for general classification problems. Firstly,
ompared with other methods for feature reduction as studied
n Ref. [20], PCA is adopted to calculate the importance weight
f every input attribute with the training dataset, and the high
imensional attributes are decomposed into multiple attribute
ectors according to the training dataset. Meanwhile, the relia-
ility factor of every attribute vector r is determined. Secondly,
he method on fine tuning the importance weight w of the AV-
R classifier is described, and the optimized classifier is used
o identify the classes of testing data samples. Finally, typical
atabases in machine learning are used to verify the performance
f the proposed classifier. Under the AIC criteria, the AV-ER clas-
ifier and the ER classifier are compared in detail from structural
omplexity and classification accuracy, and the results indicate
hat the new classifier has better comprehensive performance.

The main contributions of this paper are as follows. Firstly,
he paper proposes a method to vectorize the input attributes
hrough calculating the importance of every input attribute to
he principal components based on PCA. In the process, any input
ttribute is neither deleted nor transformed into other compo-
ents. Secondly, determining referential values and generating
EM for every attribute in ER rule method are improved so that
t is appropriate for the input attribute vectors. Lastly, the AV-ER
odel proposed in this paper increases the flexibility of ER rule
ethod, especially when ER rule is applied in high-dimension
roblems. The complexity of the AV-ER model can be reduced
ompared with ER rule method, while the AV-ER model still has
good interpretability.

. Theory on ER rule

Suppose Θ={y1, y2,. . . , yP } is the FoD, where y is the proposi-
ion to be studied, which is the category label in a classification
roblem. Every proposition is mutually exclusive and collective
ith each other. The power set of Θ is represented by P(Θ) or 2Θ .

n ER rule, a piece of evidence for attribute xj which is extracted
rom observed samples can be profiles by Eq. (1).

j = {(θ, pθ,j)|∀θ ⊆ Θ,
∑

θ∈Θ
pθ,j = 1} (1)

Where (θ , pθ,j) represents that evidence ej supports the proposi-
tion θ with the belief degree pθ,j. θ can be any element of P(Θ)
or any subset of Θ .

ER rule defines the reliability factor rj and importance weight
wj of evidence ej (i.e. input attribute xj). Specifically, rj rep-
resents the ability of the information source x for e to offer
j j

2

the accurate assessment for a specific problem. wj defines the
relative importance of ej compared with other evidence, which
depends on the evidence to be fused, the evidence users, and the
application scenarios. From the above definitions, it is known that
the reliability factor and importance weight are totally different.
rj is the inherent property of evidence which purely depends
n the reliability of information source, while wj is subjective
nd depends on the information sources of other evidence in the
usion process.

The evidence modified by rj and wj which is also called BBA is
efined as follows [21]:

j = {(θ, m̃θ,j)|∀θ ⊆ Θ; (P(Θ), m̃P(Θ),j)} (2)

here m̃θ,j measures the supporting degree of ej to θ considering
j and wj, and it is defined as Eq. (3).

˜ θ,j =

⎧⎪⎨⎪⎩
0 θ = ∅

crw,jmθ,j θ ⊆ Θ, θ ̸= ∅

crw,j(1 − rj) θ = P(Θ)

(3)

In Eq. (3), mθ,j = wjpθ,j, crw,j = 1/(1 + wj − rj) is a normalization
factor, ensuring

∑
θ∈Θ m̃θ,j + m̃P(Θ),j = 1 given that

∑
θ∈Θ pθ,j =

1. ER rule defines the residual support degree (1-rj) discounted
by reliability factor as the unreliability of evidence, and it is
assigned to the power set P(Θ), indicating that it may support
the universal set Θ or any subset of Θ . This discounting method
ensures ej and mj have the same probability characteristics, that
is to say the relative ratio among the belief degree of every θ in
ej are the same with that in mj.

For the mutual independent evidence e1 and e2 from two
different information sources, the belief degree of e1 and e2 jointly
supporting θ which is represented by pθ,e(2) can be generated by
ER fusion as shown in Eq. (4).

e(2) = {(θ, pθ,e(2))|∀θ ⊆ Θ,
∑

θ⊆Θ
pθ,e(2) = 1} (4a)

pθ,e(2) =

⎧⎨⎩
0 θ = ∅

m̂θ,e(2)∑
D⊆Θ m̂D,e(2)

θ ⊆ Θ, θ ̸= ∅

m̂θ,e(2) = [(1 − r2)mθ,1 + (1 − r1)mθ,2]

+

∑
B∩C=θ

mB,1mC,2 ∀θ ⊆ Θ

(4b)

From the above description, it can be known that each piece
f evidence is modified by rj and wj at first in ER rule to generate
he belief distribution function considering reliability factor and
mportance weight of evidence. After that, two independent belief
istribution functions are fused by ER rule to achieve the joint
upporting degree of the two pieces of independent evidence to
certain proposition in FoD.
For J pieces of evidence {e1, e2, . . . , eJ } from J information

ources which are independent with each other, Eq. (4b) can be
eneralized to combine multiple pieces of evidence, and the fused
vidence is denoted as Eq. (5).

(J) = {(θ, pθ,e(J))|∀θ ⊆ Θ,
∑

θ⊆Θ
pθ,e(J) = 1} (5a)

pθ,e(J) =

⎧⎨⎩
0 θ = ∅

m̂θ,e(J)∑
A⊆Θ m̂A,e(J)

θ ̸= ∅ (5b)

In Eq. (5b), m̂θ,e(J) is acquired after the recursive fusion by
ER rule as illustrated by Eq. (6a), mθ,e(j−1) and mP(Θ),e(j−1) (j =

1,2,. . . , J) in Eq. (6a) can be generated by Eq. (6b) and Eq. (6c)
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Fig. 1. The algorithm process of ER rule-based classification.
espectively.

ˆ θ,e(j) = [(1−rj)mθ,e(j−1)+mP(Θ),e(j−1)mθ,j]+
∑

B∩C=θ

mB,e(j−1)mC,j, θ ⊆ Θ

(6a)

mθ,e(j−1) = [m1 ⊕ · · · ⊕ mj−1](θ )

=

⎧⎨⎩
0 θ = ∅

m̂θ,e(j−1)∑
D⊆Θ m̂D,e(j−1) + m̂P(Θ),e(j−1)

θ ̸= ∅
(6b)

m̂P(Θ),e(j−1) = (1 − rj−1)mP(Θ),e(j−2) (6c)

In Eq. (6b), mj represents the jth piece of evidence to be
fused, and is calculated by Eq. (2). In the iterative calculation,∑

θ⊆Θ mθ,e(j) + mP(Θ),e(j) = 1, j = 1, 2, . . . , J .
When ER rule method is applied for classification, the algo-

rithm process can be divided into five steps as shown in Fig. 1.
Firstly, the input attributes and FoD (i.e. the output classes of
the ER rule model) should be determined. Secondly, to acquire
evidence, we should determine the reference values of every
attribute and generate its corresponding REM based on the his-
torical data or expert experience. Specifically, likelihood function
normalization is an effective method to generate REMs. Then, the
importance weight and reliability factor of evidence should be
determined. Different methods have been proposed to determine
reliability factors, as Refs. [17,19]. The importance weight of
evidence is generally fine-tuned by optimization algorithms, such
as genetic algorithm (GA). After that, all pieces of evidence will
be fused by evidential reasoning algorithm. Each piece of evi-
dence corresponds to an attribute. Finally, an optimization model
is constructed, and the parameters of ER rule model including
importance weight of evidence will be trained by optimization
algorithms based on historical data. The optimized ER rule model
will be used to identify the class of a new sample. Ref. [17]
presents the detailed process of ER rule-based classification. To
easily understand the large number of symbolic variables con-
tained in this paper, the abbreviations and detailed explanations
of these symbolic variables are given in Appendix A.

3. Classifier via attribute vectorization and ER rule

Assume that the sample set contains T samples in a classifi-
cation problem, and each sample has J attributes x={x1, x2, . . . ,
x }, pointing to P classes. Then, the FoD is Θ={y , . . . , y ,. . . , y },
J 1 p P

3

where yp denotes that the sample belongs to the pth class. This
paper uses the J attributes as the input of AV-ER classifier, and
the output are the P classes.

For the dataset containing J attributes {x1, x2, . . . , xJ }, the evi-
dence ej corresponding to every attribute xj, the reliability factor
of the evidence rj, and the importance weight of the evidence wj
are essential for the utilization of ER rule. If more attributes are
involved in the classification problem, the amount of evidence to
be fused, the number of parameters rj and wj to be optimized,
and the fusion time will increase, causing the rising calculation
amount. Therefore, the AV-ER classifier can effectively reduce the
amount of evidence and the number of the model parameters in
the premise that the classification accuracy can be ensured.

Fig. 2 is the flowchart of AV-ER classifier. As illustrated in
Fig. 2, the proposed method can be divided into four steps:

(1) The generation of attribute vectors based on PCA. In order
to reduce the input feature dimension and ensure the good inter-
pretability of the model. Calculate the contributions of principal
components to acquire the reliability factor of every attribute, and
rank the reliability factors to transform the J attributes into K
attribute vectors. Meanwhile, determine the reliability factor r of
every attribute vector.

(2) Generate REM through statistically analyzing samples of
attribute vectors. Cast the training samples into reference vectors,
and acquire the REM by likelihood function normalization.

(3) Inference process based on ER rule. The attribute vectors
of every testing sample will act all reference evidence in REM. All
pieces of active evidence are fused by evidential reasoning, and
the classification decision is made according to the fusion result.

(4) Optimize the parameters of AV-ER classifier. To improve
the accuracy of the model, a genetic algorithm was used to fine-
tune the parameters of the initial AV-ER model to achieve the best
performance.

After the four steps, the classifier can be evaluated based on
AIC. Vary the number of attribute vectors K and evaluate the
structural complexity and classification accuracy of the classifier
by using AIC. Table B.1 list the pseudocode of the attribute vec-
torization based on PCA, and the inference process based on ER
rule which includes REM generations for attribute vectors, infer-
ence process, parameters optimization of AV[HYPHEN]ER classi-
fier, and performance evaluation of the classifier based on AIC can
be refered to Table B.2.

3.1. Attribute vectorization based on PCA

As a multivariate statistics, PCA can realize the multi-
dimensional orthometric linear transformation, which is gen-
erally used to extract features. PCA has been widely applied
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Fig. 2. The flowchart of AV-ER classifier.
in pattern recognition, image processing, chemistry, and etc.
The variable obtained by PCA (i.e principal component) is a
linear combination of the original variables, and the principal
components are sorted from largest to smallest by their contribu-
tions [22]. With PCA, the important features in high dimensional
data can be reserved, while the noise and less important features
can be removed. As a result, the data processing speed can be
accelerated. In this section, we will fully use the characteristic of
PCA that the principal components are ranked by contributions
to sort the importance of every original attribute. Based on
the sorted result, K attribute vectors with different importance
weights are acquired. The detailed processes are as follows:

Step 3.1.1:Transformation from attribute variables to principal
components

In the dataset X={x1, . . . , xj,. . . , xJ }, xj=[xj(1), . . . , xj(t), . . . , xj(T )]T
is the vector containing T samples for the jth attribute variable,
and T represents transposition. Use PCA to process the dataset in
order to map the J attributes to the principal components space.
Consequently, J principal components can be acquired as Eq. (7).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = w11x1 + w21x2 + · · · + wJ1xJ

F2 = w12x1 + w22x2 + · · · + wJ2xJ
...

Fi = w1ix1 + w2ix2 + · · · + wJixJ
...

FJ = w1Jx1 + w2Jx2 + · · · + wJJxJ

(7)

Here Fi = w1ix1+ w2ix2+. . . +wjixj+. . . +wJixJ , where xj is a T -
dimensional vector, and wji denotes the weighting coefficient of
the jth attribute to the ith principal component which is also
a T -dimensional vector. The principal components should meet
4

the following constrains: (1) Fi and Fj (i̸=j; i, j = 1, 2, . . . , J)

are uncorrelated; (2) the variances of the principal components

are in decreasing order, i.e. the variance of F1 is bigger than

that of F2, the variance of F2 is bigger than that of F3, and so

on. Then, the transformation matrix W composed of weighting

coefficients can be given, and with W, the formula calculating

principal component is F=[F1, F2, . . . , FJ ]= XW.

W =

⎡⎢⎢⎢⎢⎣
w11 w12 · · · w1i · · · w1J

w21 w22 · · · w2i · · · w2J
...

...
...

...

wJ1 wJ2 · · · wJi · · · wJJ

⎤⎥⎥⎥⎥⎦
Step 3.1.2: Calculate the contribution of principal component
and the attribute reliability

To acquire the principal component of the original attribute

variables, these samples in dataset X should be centralized ac-

cording to Eq. (8).

x̃j(t) = xj(t) − µj (8)

Where µj is the mean value of xj, and can be calculated as Eq. (9).

µj =
1
T

T∑
xj(t) (9)
t=1
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he matrix after centralization is represented by

˜ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1(1) x̃2(1) · · · x̃j(1) · · · x̃J (1)

x̃1(2) x̃2(2) · · · x̃j(2) · · · x̃J (2)
...

...
...

...

x̃1(t) x̃2(t) x̃j(t) x̃j(t)
...

...
...

...

x̃1(T ) x̃2(T ) · · · x̃j(T ) · · · x̃J (T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
And the correlation coefficient matrix of X̃ is denoted by Eq. (10).

V =
1

T − 1
X̃T X̃ (10)

Through eigenvalue decomposition for V, J eigenvalues λ1 ≥

2 ≥ · · · ≥ λJ and their corresponding eigenvector ωj(j=1,2,. . . ,
) can be obtained, and the contribution of the jth principal
omponent can be calculated by Eq. (11).

j =
λj
J∑

j=1
λj

(11)

In practical application, the first D (D<J) principal components
re selected, making the cumulative variance contribution over
.9, i.e. MD≥0.9. The larger cumulative contribution indicates that
he first D principal components can better cover the information
n the original data samples. Eq. (12) is the formula to calculate
he cumulative variance contribution.

D =

D∑
i=1

λi

J∑
i=1

λi

(12)

The eigenvalues corresponding to the first D principal com-
onents Λ = diag[λ1, λ2, . . . , λD] and their eigenvector WD =

[ω1, ω2, . . . , ωD] are used as the base of the subspace. The ex-
tracted D principal components are as Eq. (13).

FD = X̃WD (13)

Then, the reliability factors of attribute variables can be deter-
mined. Since every principal component has its own contribution
as Eq. (11), and the weighting coefficient of the jth attribute to
the ith principal component wji (i = 1, 2, . . . , D, j = 1, 2, . . . , J) can
be acquired by Eq. (7), the importance of the jth attribute to all
principal components can be calculated by Eq. (14a) by compre-
hensively considering the coefficient of the principal component
wji and its contribution ϕj.

ϕj =

D∑
i=1

ϕiwji (14a)

he reliability factor of the jth attribute can be determined with
he importance ϕj according to Eq. (14b).

j =
ϕj

max
j=1,...,J

(ϕj)
(14b)

Step 3.1.3: Attribute vectorization based on attribute
importance

Rank the attributes from large to small and renumber them
as x′ , x′ , . . . , x′ . After that, the J attributes in the new order are
1 2 J R

5

Table 1
Casting result of samples (Rk , y) on attribute vector Rk .

y Rk

Ak
1 . . . Ak

n . . . Ak
N

y1 a1,1 . . . a1,n . . . a1,N
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

yp ap,1 . . . ap,n . . . ap,N
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

yP aP,1 . . . aP,n . . . aP,N

Table 2
REM for input attribute vector Rk .

y Rk

ek1 . . . ekn . . . ekN

Ak
1 . . . Ak

n . . . Ak
N

y1 µk
1,1 . . . µk

1,n . . . µk
1,N

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

yp µk
p,1 . . . µk

p,n . . . µk
p,N

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

yP µk
P,1 . . . µk

P,n . . . µk
P,N

divided into K sub-vectors as follows:
R1 = [x′

1, x
′

2, . . . , x
′

h]

R2 = [x′

h+1, x
′

h+2, . . . , x
′

2h]

...

Rk = [x′

(k−1)h+1, x
′

(k−1)h+2, . . . , x
′

kh]

...

RK = [x′

(K−1)h+1, x
′

(K−1)h+2, . . . , x
′

J ]

Where K is the total number of the attribute vectors, and h is the
number of attributes that every vector contains. The reliability
factor of the attribute vector Rk can be represented by rRk and
defined by Eq. (15).

rRk =
1
h

kh∑
j=(k−1)h+1

rj (15)

3.2. REM generation for attribute vectors

According to the attribute vectors, rearrange the dataset X
used in PCA to generate the training dataset U={R(t)=[(R1(t),
. . . , Rk(t), . . . , RK (t)), y(t)]| t = 1, 2, . . . , T, y(t)∈ Θ}. With the
ikelihood function normalization described in Ref. [23], generate
he reference evidence of every attribute vector from the training
ataset U as illustrated in the following.

tep 3.2.1: Determine the reference vector of every attribute
ector by k-means clustering.
In this section, k-means is used to determine the reference

ectors of the K attribute vectors in Section 3.1. Every sample
(t) in the training dataset U is divided into the cluster which
k
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Table 3
The reliability factors of input attributes.

x
′

1
(x14)

x
′

2
(x32)

x
′

3
(x8)

x
′

4
(x10)

x
′

5
(x12)

x
′

6
(x28)

x
′

7
(x24)

x
′

8
(x18)

x
′

9
(x16)

x
′

10
(x22)

x
′

11
(x6)

1 0.9675 0.9635 0.9628 0.9513 0.9481 0.9434 0.9433 0.9424 0.9412 0.9377

x
′

12
(x20)

x
′

13
(x30)

x
′

14
(x26)

x
′

15
(x7)

x
′

16
(x9)

x
′

17
(x4)

x
′

18
(x13)

x
′

19
(x11)

x
′

20
(x15)

x
′

21
(x27)

x
′

22
(x21)

0.9358 0.9350 0.9144 0.8644 0.8550 0.8229 0.7996 0.7976 0.7645 0.7373 0.7314

x
′

23
(x2)

x
′

24
(x25)

x
′

25
(x3)

x
′

26
(x29)

x
′

27
(x5)

x
′

28
(x23)

x
′

29
(x17)

x
′

30
(x31)

x
′

31
(x33)

x
′

32
(x1)

x
′

33
(x19)

0.7158 0.6857 0.6753 0.6745 0.6733 0.6046 0.6046 0.5995 0.5496 0.5307 0.5147
b
v
R

has the shortest distance between the cluster center and the
sample. Through clustering algorithm, N cluster centers for the
ttribute vector Rk can be found, that is to say every cluster center
s regarded as a reference vector of Rk. As the result, N reference
ector of the kth attribute vector can be acquired and denoted by
k = {Ak

1, A
k
2, . . . , A

k
n, . . . , A

k
N}, where Ak

n=[α
1
k,n, α

2
k,n,. . . , α

h
k,n].

tep 3.2.2: Statistically analyze samples on attribute vectors
nd cast these samples to the reference vectors.
Firstly, the relationship between attribute vector Rk and the

lass y should be transformed into the relationship between the
eference vector Ak={Ak

n|n = 1,. . . , N} of Rk and the class y. Ak
n

s initially determined by k-means clustering, and then is opti-
ized by a mount of training samples under a specific optimized
bjective function. For attribute vector Rk(t), it will be compared
ith every reference vector Ak

n, and the similarity distribution
hat Rk(t) matches Ak

n is as Eq. (16) [21].

I (Rk(t)) = {(Ak
n, βk,n)|k = 1, . . . , K ; n = 1, . . . ,N} (16)

In Eq. (16), βk,n represents the similarity that Rk(t) matches
he nth reference vector Ak

n, and is defined by Eq. (17).

k,n =
γ k
n∑N

n=1 γ k
n

(17a)

k
n = exp(−

√
(Rk(t) − Ak

n) × (Rk(t) − Ak
n)T ) (17b)

q. (17b) indicates that the shorter distance between attribute
ector Rk(t) and reference vector Ak

n, the larger similarity that
Rk(t) matches Ak

n.
All sample pairs (Rk(t), y(t)) in dataset U are transformed into

the belief distribution (βk,1, . . . , βk,N ) indicating the similarity
between sample and reference vectors. Table 1 shows the casting
result of samples (Rk, y) on attribute vector Rk, where ap,n repre-
sents the sum of the integrated similarity that the attribute vector
Rk(t) of all samples matches reference vector Ak

n and belongs to
class yp.

Step 3.2.3: REM generation based on likelihood function
normalization.

Based on the casting result shown in Table 1, the belief degree
that input attribute vector Rk(t) matches the reference vector Ak

n
and the corresponding output y(t) matches the reference value yp
can be acquired by Eq. (18).

µk
p,n =

ap,n/δp∑P
l=1(al,n/δl)

(18)

In Eq. (18), δp =
∑N

n=1 ap,n denotes the sum of the integrated
imilarity degree of the samples that belong to class yp, and
≤ µk

p,n ≤ 1,
∑P

p=1 µk
p,n = 1. The evidence corresponds to the

eference vector Ak
n is defined as Eq. (19).

k
= [µk , µk , . . . , µk

] (19)
n 1,n 2,n P,n

6

Consequently, the evidence matrix describing the relationship
etween input attribute vector Rk and N classes y can be de-
eloped. Table 2 gives the evidence matrix of attribute vector
k.
In Table 2, µk

p,n denotes that the belief degree that a sample
belongs to yp given that the attribute vector Rk takes the reference
vector Ak

n.

3.3. Inference process based on ER rule

After the observed values of a set of reference vectors are ob-
tained, the input attribute vector Rk(t) will activate the reference
evidence { ek1,. . . , e

k
n,. . . , e

k
N } that the reference vector corresponds

to in Table 2, and then these pieces of reference evidence are
weighting added based on the similarities that Rk(t) matches Ak

n
to generate the final evidence ek corresponding to Rk(t).

ek = {(yp, pp,k), p = 1, . . . , P} (20a)

pp,k =

N∑
n=1

βk,nµ
k
p,n (20b)

By using Eq. (20a) and Eq. (20b), we could acquire K pieces of
evidence e1,. . . , ek,. . . , eK corresponding to the K input attribute
vectors, and set the initial importance weight wk to be equal to
the reliability factor rRk . e1,. . . , ek,. . . , eK are fused by ER rule as
Eq. (5), and the fusion result is

O(R(t)) = {(yp, pp,e(K )), p = 1, . . . , P} (21)

The class of the sample can be determined which corresponds
to the largest belief degree in the fusion result.

3.4. Parameters optimization of AV-ER classifier based on genetic
algorithm

The parameters of the initial ER classifier include the reference
vectors Ak = {Ak

n|n = 1, . . .,N} and the importance weights of
evidence wk(k = 1, . . . , K ). The initial classifier cannot accurately
describe the complex mapping relationship between attribute
vector Rk(k = 1, . . . , K ) and the class yp, and therefore the
classifier parameters should be fine tuned by training dataset U to
improve the performance of the AV-ER classifier. The parameters
optimization model is as Eq. (22).

min ξ (P) =

T∑
t=1

dE(O(R(t)), V t ) (22a)

s.t. 0 ≤ wk ≤ 1, k = 1, . . . , K

min(x(k−1)h+1(t)) ≤ α1
k,n ≤ max(x(k−1)h+1(t))

min(x (t)) ≤ α2
≤ max(x (t))
(k−1)h+2 k,n (k−1)h+2
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Table 4
The initial reference vectors of attribute vector R1 .

A1
1 0.9305 0.8419 0.9260 0.9260 0.9285 0.8409 0.8532 0.9081

A1
2 −0.7200 0.1780 −0.1044 −0.2026 −0.5489 0.6099 0.3671 −0.4095

A1
3 0.0110 −0.1434 0.2891 0.1016 0.2049 −0.2903 −0.2854 −0.0588

A1
4 0.5548 0.3376 0.6197 0.6304 0.5345 0.4084 0.4957 0.5617
Table 5
The initial reference vectors of attribute vector R2 .

A2
1 0.8106 0.7781 0.8442 0.7853 0.6915 0.7673 −0.0180 0.0169

A2
2 −0.4902 −0.2294 0.4164 −0.3900 0.1276 0.1009 0.7413 0.7597

A2
3 0.3379 0.0273 −0.8078 −0.7322 −0.5080 0.9254 0.4199 −0.1792

A2
4 0.2320 0.0095 0.3086 0.1903 −0.0534 0.4292 −0.2170 0.1167
Table 6
The initial reference vectors of attribute vector R3 .

A3
1 0.6709 0.5413 0.8624 0.2658 −0.4983 −0.4547 0.7236 −0.6542

A3
2 0.8837 0.5938 0.4757 0.5437 0.4975 0.6661 0.9071 0.4527

A3
3 −0.2977 −0.1497 0.0171 −0.0325 −0.2979 −0.0826 0.0712 0.0541

A3
4 0.8267 −0.0957 −0.0504 −0.0664 −0.0373 −0.0244 0.7797 −0.1098
Table 7
The initial reference vectors of attribute vector R4 .

A4
1 0.1233 0.0341 0.1795 −0.1703 −0.1111 0.0478 0.1321 0.9226 −0.0843

A4
2 −0.0316 −0.3762 −0.1544 −0.1137 −0.2163 −0.5330 −0.4419 0.9322 −0.2852

A4
3 −0.7755 −0.6710 0.7203 −0.2575 0.1554 0.7971 0.1197 0.5294 −0.6118

A4
4 0.1587 0.4630 0.1134 0.3637 0.5649 0.2983 0.2078 0.8571 0.6572
... (22b)

min(xkh(t)) ≤ αh
k,n ≤ max(xkh(t))

In Eq. (22a), ξ (P) is the object function of the optimization
model, where dE is the Euclidean distance between the fusion
result O(R(t)) = (p1,e(K ), p2,e(K ), . . . , pP,e(K )) (i.e. the vector consti-
tuting belief degrees in Eq. (19)) and the reference output vector
V t which is also denoted by belief distribution. The vector of
reference belief degrees V t assigns the absolute belief degree to
the real class yp of sample R(t), for example, for a typical three-
class problem, if the real class of R(t) is y3, then V t=(0,0,1). P={
Ak
n, wk|k = 1, . . . , K ; n = 1, . . . ,N} is the parameter set to be

optimized. Eq. (22b) lists the constrains that the optimization
model should be satisfied.

This paper uses genetic algorithm (GA) as the optimization
engine, and according to the criterion that survival of the fittest,
the proximate optimal solution can be generated by evolving
the initial populations generationally. In every generation, the
individuals are selected based on the fitness values of individuals
in the parameters set, and then are optimized. New populations
represented the new solutions are generated by crossover and
variation of genetic operator [24]. With the iterative optimization
of populations, the belief degrees in REM as Table 2 reach to the
optimal value gradually with the adjustment of reference vectors.
7

3.5. Performance evaluation of classifier based on AIC

Generally, besides classification accuracy, model complexity is
also an important indicator to evaluate classifiers. In the clas-
sification for high dimensional attributes, the number of model
parameters will increase with the rising dimensions of input
attributes. Consequently, the classification model becomes com-
plicated and redundant. To solve the problem, Akaike information
criterion (AIC) is adopted as the criteria for model evaluation. AIC
is a reasonable criterion to measure the model fitness, and can
be used to keep balance between the accuracy and complexity of
classifiers [25]. Eq. (23) gives the calculation of AIC.

AIC = T×ln(T×MSE) + 2Num (23)

Where T is the sample size of the training dataset, MSE is the
mean square error between the model output and the real result,
and Num is the number of model parameters. The model is closer
to the optimal with a smaller AIC value.

In AV-ER classifier, the number of attribute vectors K has
an effect on model parameters w and the number of reference
vectors, and further influences model complexity. Hence, Eq. (23)
can be used to calculate AIC values under different K value,
and we could choose an appropriate K value to develop the
best classifier. In order to compare the performance of classifiers
under different K value, Eq. (24) gives the relative AIC calculation.
In the following classification experiments, Eq. (24) will be used
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Table 8
The optimal reference vectors of attribute vector R1 .

A1
1 0.1154 −0.8831 0.8501 0.1793 0.3806 0.1969 0.7506 0.8407

A1
2 −0.3679 0.7277 −0.1481 −0.4092 −0.4254 0.4150 −0.3148 0.2390

A1
3 −0.1245 0.4169 0.5238 0.0662 0.6671 0.0808 −0.9084 −0.9916

A1
4 −0.3557 0.6637 −0.8913 0.6399 −0.0463 0.1890 −0.5934 −0.3133
Table 9
The optimal reference vectors of attribute vector R2 .

A2
1 −0.0115 −0.2412 −0.3317 0.7326 0.5352 0.6106 −0.0990 0.3308

A2
2 0.4622 0.7164 0.1855 0.0968 0.1431 −0.0392 −0.0632 0.8483

A2
3 −0.2386 0.5434 −0.6338 0.1057 0.3494 −0.1289 −0.6408 −0.3894

A2
4 0.7770 0.5598 −0.1344 −0.8988 0.4599 0.0618 −0.6507 −0.8359
Table 10
The optimal reference vectors of attribute vector R3 .

A3
1 −0.5639 −0.3467 0.0834 0.9038 −0.9125 −0.0194 −0.1979 0.9468

A3
2 −0.6685 −0.6747 0.6568 −0.5755 0.4971 0.7429 −0.6416 0.2854

A3
3 −0.6626 −0.4210 −0.5193 0.6434 −0.7947 0.9633 0.9969 −0.0239

A3
4 0.6567 −0.8430 −0.8071 −0.5258 −0.4504 −0.6967 0.2937 0.3149
Table 11
The optimal reference vectors of attribute vector R4 .

A4
1 −0.7430 −0.7923 0.8863 0.0570 −0.5914 −0.8143 −0.8088 0.7923 0.5658

A4
2 −0.6838 −0.5889 −0.4799 0.2077 0.9265 0.5948 0.9106 0.2422 0.7930

A4
3 0.8102 0.7671 0.5180 0.3350 0.2221 0.7158 0.8543 0.6306 0.8395

A4
4 0.4602 −0.7879 −0.8080 −0.7236 −0.5218 −0.3141 0.7289 0.9238 −0.3563
Table 12
The optimal casting result of (R1 ,y).

y R1

A1
1 A1

2 A1
3 A1

4 Total

y1 57.5603 63.4936 44.6871 14.2590 180

y2 30.8730 35.5221 17.8399 15.7651 100

Total 88.4333 99.0157 62.5270 30.0241 280

Table 13
The optimal casting result of (R2 ,y).

y R2

A2
1 A2

2 A2
3 A2

4 Total

y1 43.3955 103.4298 15.3056 17.8690 180

y2 29.7067 39.2819 13.4192 17.5923 100

Total 73.1022 142.7117 28.7247 35.4613 280
8

Table 14
The optimal casting result of (R3 ,y).

y R3

A3
1 A3

2 A3
3 A3

4 Total

y1 31.4777 15.0345 17.0479 116.4399 180

y2 20.1395 23.6540 17.0311 39.1754 100

Total 51.6173 38.6885 34.0790 155.6153 280

Table 15
The optimal casting result of (R4 ,y).

y R4

A4
1 A4

2 A4
3 A4

4 Total

y1 25.2246 14.3826 107.0670 33.3258 180

y2 18.0123 16.3743 42.5085 23.1049 100

Total 43.2369 30.7569 149.5755 56.4307 280
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Table 16
REM of attribute vector R1 .

y R1

e11 e12 e13 e14

A1
1 A1

2 A1
3 A1

4

y1 0.5088 0.4982 0.5819 0.3344

y2 0.4912 0.5018 0.4181 0.6656

Table 17
REM of attribute vector R2 .

y R2

e21 e22 e23 e24

A2
1 A2

2 A2
3 A2

4

y1 0.4480 0.5940 0.3879 0.3607

y2 0.5520 0.4060 0.6121 0.6393

Table 18
REM of attribute vector R3 .

y R3

e31 e32 e33 e34

A3
1 A3

2 A3
3 A3

4

y1 0.4648 0.2610 0.3574 0.6228

y2 0.5352 0.7390 0.6426 0.3772

Table 19
REM of attribute vector R4 .

y R4

e41 e42 e43 e44

A4
1 A4

2 A4
3 A4

4

y1 0.4376 0.3279 0.5832 0.4449

y2 0.5624 0.6721 0.4168 0.5551

to evaluate the performance of AV-ER classifier under different K
value, and cAIC represents the relative AIC.

cAICk =
AICk

max(AICk)
(24)

. Experiments

In this section, the benchmark in machine learning ‘‘Iono-
phere’’ dataset is used to illustrate the design of the AV-ER
lassifier in detail. Based on AIC, the complexity and accuracy
f classifiers under different K values are compared, and the

results show that the performance of the AV-ER classifier under
a suitable K is superior to that of the ER classifier proposed
in Ref. [26]. To further verify the flexibility, the accuracy and
complexity of the AV-ER classifier are compared with those of the
ER classifier by using another six typical datasets [27,28].
9

4.1. Experiments with Ionosphere dataset

In the Ionosphere dataset, Radar echo of the ionosphere is used
to identify whether the ionosphere shows a specific structure.
There are 351 samples in the dataset, and each sample has 34
input attributes. Specifically, the radar receives 17 pulse signals,
and two features can be extracted from every signals. Conse-
quently, there are 34 attributes in total. Since the values of the
samples on one attribute are all zero, only the rest 33 attributes
x1∼x33 are used as the input attributes. The Ionosphere dataset is
on a binary classification, of which the results are ‘‘Yes’’ and ‘‘No’’,
and therefore the FoD is Θ={y1, y2}. There are 225 samples on y1
class and 126 samples on y2 class.

Five-fold cross validation is conducted on the Ionosphere
dataset. Specifically, the whole Ionosphere dataset is divided into
five parts, and four parts are used as training dataset while the
rest part is used as the testing part in every fold validation. The
validation is conducted for five times in turn. Take the first-cross
validation as the example to illustrate the model construction.
The training dataset is X=[x1, . . . , xj,. . . , x33], where xj=[xj(1), . . . ,
xj(t), . . . , xj(280)]T , the rest data samples constitute the testing
dataset to verify the model performance in the following.

33 attributes are used to form the attribute vectors with PCA
described in Section 3.1. Here, taking K = 4 as an example
to show how to design the AV-ER classifier. Rank the attributes
x1∼x33 according to their reliability factors r (Eq. (14b)) in decent
order, and renumber them as x′

1∼x′

33. Table 3 lists the attribute
numbers before and after the sorting and their corresponding
reliability factors.

As K = 4, four attribute vectors can be acquired by Eq. (14)
which are R1=[x′

1, x
′

2, . . . , x
′

8]; R2=[x′

9, x
′

10, . . . , x
′

16]; R3=[x′

17, x
′

18,
. . . , x′

24]; R4=[x′

25, x
′

26, . . . , x
′

33]. The reliability factors of the four
attribute vectors are obtained by Eq. (15), and they are rR1 =

0.9600, rR2 = 0.9157, rR3 = 0.7569, rR4 = 0.6030. After that,
rearrange the dataset X in the form of attribute vectors, and the
training dataset is U={R(t)=[R1(t), R2(t), R3(t), R4(t), y(t)]| t = 1, 2,
. . . , T, T = 211, y(t)∈ Θ}. By using the k-means clustering method
in Section 3.2, the initial reference vectors of R1∼R4 are listed in
Tables 4–7.

By using the training samples, the initial casting results of
the attribute vectors and the evidence matrixes can be gener-
ated by information transform technology and likelihood function
normalization described in Section 3.2. The initial value of im-
portance weight wi (i = 1,..,4) is set as wi = rRi . The pieces of
evidence activated by any attribute set [R1(t), R2(t), R3(t), R4(t)]
in training dataset U are fused by ER rule, and the category of the
attribute set can be determined according to the fusion result.

Finally, the set of optimal parameters P is acquired with
the optimization model of AV-ER classifier given in Section 3.4.
Tables 8–11 list the reference vectors of R1∼R4 after optimization
and cast the training samples based on the optimal reference
vectors to generate casting results of R1∼R4 as shown in Ta-
bles 12–15. Tables 16–19 give the optimized REMs after likeli-
hood function normalization. Additionally, the best importance
weight of R1∼R4 are w1 = 0.7854, w2 = 0.4641, w3 = 0.8424,
w4 = 0.9449 respectively.

Finally, the AV-ER classifier optimized by the training dataset
can predict any sample in training dataset and testing dataset. The
AV-ER classifier developed by the reference vectors in Tables 8–
11 can identify the training dataset with the accuracy 0.9607 and
the testing dataset with the accuracy 0.9014. However, the clas-
sification accuracy of the training dataset and that of the testing
dataset are only 0.7964 and 0.7493 respectively by the AV-ER
classifier developed by the initial reference vectors in Tables 4–7.
It can be seen that the optimization model proposed in Section 3.4
has an significant effect on improving classifier accuracy.
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Table 20
The results comparison under different K value.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 33 0.9117 0.8714 0.9429 0.0245 2524.5 2401.3 2629.2 78.04

AV-ER

K = 3 3 0.8803 0.8286 0.9143 0.0296 2549.8 2455.3 2650.0 66.11

K = 4 4 0.8833 0.8429 0.9286 0.0383 2545.0 2406.0 2627.6 101.44

K = 5 5 0.9031 0.8857 0.9286 0.0140 2494.4 2408.0 2540.1 44.04

K = 6 6 0.9316 0.9000 0.9571 0.0211 2398.6 2266.5 2504.6 86.02

K = 7 7 0.9089 0.8873 0.9429 0.0190 2481.4 2349.3 2544.1 67.37
K = 8 8 0.9259 0.9000 0.9429 0.0140 2416.4 2342.9 2499.6 50.16
Table 21
Basic information of eight benchmark datasets.

No Name Total number of
samples

The number of
classes

The number of
attributes

Remarks

1 Australian 690 2 14 Some data is missing in the
dataset, and the missing data
is filled by random forest
regression.

2 Seeds 210 3 7 /

3 Hepatitis 155 2 19 Some data is missing in the
dataset, and the missing data
is filled by random forest
regression.

4 Heart 270 2 13 /

5 Wine 178 3 13 /

6 Sonar 208 2 60 /

7 Dry bean 13611 7 16 /
8 Musk(version2) 6598 2 168 /
Table 22
The results comparison under different K value on Australian dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 14 0.8755 0.8273 0.8978 0.0250 5376.3 5262.9 5559.8 103.29

AV-ER

K = 3 3 0.7348 0.6115 0.8489 0.1008 5781.6 5474.9 5996.3 220.92

K = 4 4 0.8088 0.7826 0.8540 0.0244 5614.2 5460.7 5684.9 78.26

K = 5 5 0.7697 0.7319 0.8613 0.0465 5696.9 5413.1 5780.3 135.58

K = 6 6 0.8550 0.8248 0.8841 0.0202 5464.7 5341.3 5565.5 76.99

K = 7 7 0.8800 0.8589 0.8968 0.0124 5319.2 5266.3 5482.9 71.19

K = 8 8 0.7667 0.7246 0.8623 0.0509 5732.1 5440.3 5823.6 143.02
Table 23
The results comparison under different K value on Seeds dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 7 0.9079 0.8551 0.9662 0.0388 1305.4 989.1 1558.8 191.06

AV-ER K = 2 2 0.8524 0.6905 0.9524 0.0921 1313.6 1123.5 1437.9 110.41

K = 3 3 0.9125 0.8333 0.9762 0.0465 1285.4 1009.1 1335.9 110.17
10
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Table 24
The results comparison under different K value on Hepatitis dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 19 0.8884 0.8467 0.9577 0.0410 988.4 830.7 1002.6 64.77

AV-ER

K = 3 3 0.8642 0.8333 0.8750 0.0157 984.3 978.2 1006.0 11.16

K = 4 4 0.8203 0.6774 0.9333 0.0867 1014.3 886.6 1086.2 67.48

K = 5 5 0.8190 0.7742 0.8438 0.0276 1024.2 1010.0 1052.1 17.01

K = 6 6 0.8786 0.8125 0.9667 0.0533 962.7 798.5 1018.9 77.79

K = 7 7 0.8457 0.7742 0.9333 0.0508 1008.9 899.5 1056.1 52.61

K = 8 8 0.8638 0.8065 0.9375 0.0442 986.6 894.6 1030.9 46.19
Table 25
The results comparison under different K value on Heart dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 13 0.8667 0.8148 0.9259 0.0395 1792.3 1665.4 1863.3 69.99

AV-ER

K = 3 3 0.8074 0.7778 0.8333 0.0189 1851.8 1820.5 1882.7 21.05

K = 4 4 0.8111 0.7593 0.8519 0.0319 1849.6 1797.1 1901.9 35.97

K = 5 5 0.8444 0.7963 0.8889 0.0343 1809.6 1736.9 1867.9 48.19

K = 6 6 0.8519 0.7593 0.9259 0.0586 1801.1 1651.4 1905.9 88.19

K = 7 7 0.8296 0.7407 0.8704 0.0459 1833.3 1774.2 1923.9 51.63

K = 8 8 0.8630 0.8148 0.9259 0.0432 1788.2 1655.4 1853.3 74.28
Table 26
The results comparison under different K value on Wine dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 13 0.9744 0.9678 0.9835 0.0052 897.5 815.6 936.2 38.73

AV-ER

K = 3 3 0.9214 0.8611 0.9714 0.0412 1009.2 862.9 1091.5 81.14

K = 4 4 0.9373 0.8108 0.9990 0.0698 969.8 802.5 1133.0 129.36

K = 5 5 0.9685 0.9429 0.9856 0.0140 936.0 846.6 979.4 48.13

K = 6 6 0.9713 0.9167 0.9943 0.0283 883.3 807.3 1032.4 81.88

K = 7 7 0.9627 0.9143 0.9963 0.0303 943.3 843.2 1034.4 73.62

K = 8 8 0.9663 0.9444 0.9990 0.0204 898.8 802.5 971.4 65.02
s
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a
0
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e
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Here, a testing sample R=[R1,R2,R3,R4] is used to describe the
etailed inference process of the AV-ER classifier. The attribute
ectors in R are:

1 = [1, 0.9893, 0.9929, 0.9574, 0.9716, 0.9485, 0.9840, 0.9858]

2 = [0.9787, 0.9449, 1, 0.9716, 0.9911, 0.9754, 0.0195, 0.0160]

3 = [0.9858, 0.0355, 0.0231, 0.0373, 0.0648, 0.0480,
0.9751, 0.0355]

4 = [0.0071, 0.0817, 0.0195, 0.0551, 0.0213, 0.0622,
0.0995, 1, 0.0568]

By using Eq. (17), the similarity between every attribute vec-
or and its corresponding reference vector in Tables 16–19 are
alculated. R1 acts evidence e11 ∼ e14 with the similarity (0.0644,
.7402, 0.1073, 0.0881), R acts evidence e2 ∼ e2 with the
2 1 4 a

11
imilarity (0.2845, 0.4527, 0.2486, 0.0142), R3 acts evidence e31 ∼
3
4 with the similarity (0.0860, 0.0214, 0.0169, 0.8757), and R4
cts evidence e41 ∼ e44 with the similarity (0.0109, 0.0467, 0.8956,
.0467). Then, the evidence of every attribute vector is calculated
ccording to Eq. (20a) which are e1={(y1,0.5251), (y2,0.4749)},
2={(y1,0.5108), (y2,0.4892)}, e3={(y1,0.5797), (y2,0.4203)}, e4={(y1,
.5292), (y2, 0.4708) }. These pieces of evidence are fused by ER
ule with Eq. (5) to generate the fusion result O(R)={(y1, 0.5965),
y2,0.4035)}, where the belief degree of y1 is larger than that of
2. Consequently, the class of the sample R is determined to be
1, and it is in accordance with the real class of sample R.
It is obvious that the number of attribute vectors K signifi-

antly influences the performance of classifiers. Institutively, if
he K value is larger, the number of attribute vectors is bigger,
nd more evidence is fused, which means that the information in
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Table 27
The results comparison under different K value on Sonar dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 60 0.8871 0.810 0.9512 0.0434 1764.4 1621.2 1873.3 88.28

AV-ER

K = 5 5 0.7172 0.6047 0.7619 0.0597 1805.8 1778.4 1866.4 34.27

K = 6 6 0.7216 0.6667 0.7805 0.0490 1813.9 1771.5 1845.3 32.42

K = 10 10 0.8417 0.7857 0.9024 0.0377 1727.7 1644.1 1779.5 44.64

K = 12 12 0.8037 0.6667 0.9268 0.0990 1759.4 1592.5 1848.2 99.02

K = 15 15 0.8798 0.8095 0.9286 0.0426 1691.4 1606.1 1769.9 57.66

K = 20 20 0.8557 0.7619 0.9070 0.0544 1731.8 1664.1 1817.1 59.05
Table 28
The results comparison under different K value on Dry bean dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 16 0.9541 0.9498 0.9577 0.0078 9761.4 9538.4 9977.2 171.8

AV-ER

K = 3 3 0.6473 0.6129 0.6734 0.0226 11783.3 11707.5 11876.4 61.75

K = 4 4 0.7644 0.5680 0.8871 0.1180 11306.8 10665.7 12008.6 477.49

K = 5 5 0.8236 0.7229 0.9231 0.0859 10957.4 10236.3 11514.9 530.34

K = 6 6 0.9372 0.9153 0.9677 0.0190 10041.6 9422.1 10382.5 362.89

K = 7 7 0.9525 0.9402 0.9677 0.0111 9776.2 9413.8 10039.2 249.43

K = 8 8 0.9348 0.9028 0.9516 0.0194 10086.2 9818.8 10508.6 270.56
Table 29
The results comparison under different K value on Musk (version 2) dataset.

Model The number
of w

Accuracy AIC

Average Min value Max value SD Average Min value Max value SD

ER 166 0.7417 0.6842 0.7895 0.0422 5261.7 5187.3 5341.4 63.80

AV-ER

K = 15 15 0.7500 0.6000 0.8229 0.0889 4934.9 4823.6 5129.2 121.19

K = 20 20 0.8006 0.7500 0.8511 0.0365 4870.2 4759.8 4964.6 74.14

K = 25 25 0.7693 0.7579 0.8511 0.0392 4907.9 4789.7 4979.9 79.56

K = 30 30 0.8130 0.8000 0.8737 0.0364 4864.4 4721.2 4933.9 82.79

K = 50 50 0.8781 0.8122 0.8958 0.0360 4837.4 4691.9 4935.8 92.72

K = 80 80 0.8345 0.7668 0.8646 0.0461 4979.4 4851.6 5100.1 89.59
attributes can be processed in detail. As a result, the accuracy of
classification will increase with the rising K value, but the model
omplexity will grow which as well prolongs the inference and
ptimization time. Oppositely, a smaller K value will decrease
he parameter number of classifiers, the classification accuracy,
nd the model complexity. However, the above intuition believes
he relationship between K value and the model accuracy or
odel complexity is linear, but the relationship between input
ttributes and output classes is significantly nonlinear and uncer-
ain in practical. Hence, the optimal K value should be determined
hrough experiments, which means the model parameters should
e less in the premise that the model has a high accuracy. In this
ondition, the computational burden caused by evidence fusion
nd model optimization can be controlled, and the model can be
n a balanced state.
12
To achieve a balanced model, we select different K values,
and the five-fold cross validation is conducted for every K value.
Table 20 lists the AIC value of testing datasets in the five-fold
cross validation, average classification accuracy (ACA), and the
number of importance weight w which should be fine-tuned
for the testing datasets. Additionally, the minimum values (Min
value), the maximum values (Max value), and the standard de-
viations (SD) of classification accuracy and AIC in the five-fold
cross validation are also described in Table 20, which reflect the
stability of the AV-ER model in five-fold cross validation. From
Table 20, it can be found that the ACA and cAIC can reach a best
balance when K equals to 6, which means the evidence to be
fused and the importance weight to be optimized will decrease
strongly compared with the ER classifier, but the classification
accuracy of AV-ER classifier is superior to that of ER classifier.
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Table 30
ACAs of the seven classifiers on the nine datasets.

Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

Ionosphere 0.8829 0.9000 0.8800 0.8914 0.9429 0.9088 0.9088 0.9117 0.9316

Australian 0.8014 0.7943 0.6957 0.7246 0.8507 0.8435 0.8638 0.8755 0.8800

Seeds 0.8571 0.8499 0.8000 0.8857 0.8619 0.9038 0.8948 0.9079 0.9125

Hepatitis 0.5742 0.6452 0.5548 0.4516 0.5806 0.8517 0.8452 0.8884 0.8786

Heart 0.7222 0.8333 0.6519 0.7111 0.8370 0.7815 0.8148 0.8667 0.8630

Wine 0.9000 0.9778 0.7296 0.8056 0.9722 0.9238 0.9043 0.9744 0.9713

Sonar 0.6952 0.6333 0.7952 0.7905 0.8048 0.7782 0.8268 0.8871 0.8798

Dry bean 0.8374 0.9473 0.9080 0.9151 0.9154 0.8543 0.8383 0.9541 0.9525

Musk (V2) 0.7880 0.7396 0.8571 0.8310 0.8446 0.8277 0.8423 0.7417 0.8781

Average 0.7842 0.8134 0.7635 0.7785 0.8455 0.8548 0.8599 0.8897 0.9052
Table 31
cAICs of the seven classifiers on the nine datasets.

Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

Ionosphere 0.9967 0.9778 1 0.9872 0.9333 0.9486 0.9381 0.9605 0.9127

Australian 0.8680 0.8759 1 0.9600 0.8177 0.9871 0.9729 0.8073 0.7987

Seeds 0.9334 0.9413 1 0.9014 0.9282 0.8676 0.9402 0.9122 0.8983

Hepatitis 0.8415 0.7895 0.8631 1 0.8346 0.9632 0.9348 0.7711 0.7511

Heart 0.9027 0.7823 1 0.9167 0.7789 0.9686 0.9523 0.7653 0.7636

Wine 0.8107 0.7462 1 0.9057 0.7505 0.8510 0.9061 0.7590 0.7471

Sonar 0.9110 1 0.7964 0.8011 0.7869 0.9647 0.9501 0.8105 0.7770

Dry bean 0.9654 0.9847 0.9778 0.9556 0.9634 0.9845 0.9933 0.9784 0.9739

Musk (V2) 0.9820 0.9649 0.9779 0.9731 0.9884 0.9648 0.9553 0.9851 0.9801

Average 0.9123 0.8954 0.9572 0.9334 0.8646 0.9444 0.9492 0.8610 0.8447
Table 32
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Ionosphere.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.8918 0.9079 0.8876 0.8991 0.9451 0.9142 0.9159 0.9201 0.9462

SDCA 0.0314 0.0376 0.0284 0.0302 0.0318 0.0337 0.0388 0.0326 0.0280

30% ACA 0.8879 0.9058 0.8834 0.8957 0.9439 0.9105 0.9129 0.9165 0.9405

SDCA 0.0301 0.0326 0.0297 0.0365 0.0288 0.0333 0.0355 0.0319 0.0275

40% ACA 0.8840 0.9008 0.8832 0.8889 0.9404 0.9041 0.9015 0.9145 0.9356

SDCA 0.0294 0.0304 0.0287 0.0334 0.0261 0.0321 0.0331 0.0298 0.0264

50% ACA 0.8778 0.8921 0.8711 0.8794 0.9369 0.9005 0.8972 0.9089 0.9289

SDCA 0.0288 0.0312 0.0296 0.0329 0.0247 0.0322 0.0318 0.0304 0.0241
4.2. Experiments on eight benchmark datasets

To further verify the flexibility and effectiveness of the AV-ER
lassifier, this model will be applied in eight benchmark datasets
n UCI database for machine learning which are Hepatitis dataset,
eart dataset, Sonar dataset, Australian dataset, Seeds dataset,
ine dataset, Musk (version 2) dataset, and dry bean dataset.
able 21 lists the basic information of these datasets. In detail,
13
the Hepatitis dataset is to predict whether a patient has hepatitis
according to the relevant diagnostic indexes; the Heart dataset
is to predict whether a patient has a heart disease, and the
attributes in the dataset are general personal information and
some relevant test results; the Sonar dataset is to identify the
target is rock or mine by using the signal strength of Sonar return
from the targets in different angles; the Australian dataset is on
credit card application, which include eight attributes and six
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Table 33
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Australian.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.8112 0.7998 0.7054 0.7315 0.8624 0.8521 0.8719 0.8818 0.8867

SDCA 0.0342 0.0412 0.0370 0.0312 0.0297 0.0344 0.0319 0.0261 0.0266

30% ACA 0.8082 0.7966 0.7012 0.7281 0.8567 0.8460 0.8694 0.8787 0.8844

SDCA 0.0326 0.0374 0.0357 0.0323 0.0315 0.0328 0.0342 0.0264 0.0242

40% ACA 0.8041 0.7910 0.6941 0.7278 0.8495 0.8471 0.8677 0.8734 0.8828

SDCA 0.0311 0.0355 0.0365 0.0347 0.0312 0.0333 0.0319 0.0271 0.0234

50% ACA 0.7979 0.7887 0.6919 0.7208 0.8465 0.8344 0.8626 0.8708 0.8769

SDCA 0.0316 0.0311 0.0352 0.0319 0.0334 0.0347 0.0317 0.0262 0.0221
Table 34
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Seeds.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.8612 0.8575 0.8122 0.8954 0.8704 0.9189 0.9040 0.9169 0.9188

SDCA 0.0227 0.0241 0.0250 0.0324 0.0257 0.0197 0.0218 0.0221 0.0191

30% ACA 0.8585 0.8546 0.8076 0.8887 0.8671 0.9154 0.9001 0.9137 0.9160

SDCA 0.0214 0.0225 0.0287 0.0319 0.0247 0.0262 0.0227 0.0182 0.0187

40% ACA 0.8545 0.8527 0.8025 0.8837 0.8619 0.9087 0.8977 0.9107 0.9128

SDCA 0.0234 0.0241 0.0301 0.0334 0.0267 0.0228 0.0245 0.0189 0.0166

50% ACA 0.8519 0.8441 0.7995 0.8789 0.8585 0.9005 0.8901 0.9042 0.9100

SDCA 0.0262 0.0249 0.0284 0.0307 0.0301 0.0289 0.0252 0.0182 0.0175
Table 35
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Hepatitis.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.5920 0.6556 0.5645 0.4677 0.5934 0.8631 0.8571 0.8945 0.8838

SDCA 0.0244 0.0227 0.0227 0.0334 0.0279 0.0191 0.0252 0.0179 0.0131

30% ACA 0.5865 0.6502 0.5597 0.4631 0.5895 0.8597 0.8546 0.8913 0.8797

SDCA 0.0268 0.0261 0.0189 0.0308 0.0261 0.0239 0.0277 0.0138 0.0144

40% ACA 0.5788 0.6503 0.5534 0.4582 0.5859 0.8564 0.8500 0.8864 0.8713

SDCA 0.0231 0.0208 0.0164 0.0287 0.0289 0.0192 0.0274 0.0160 0.0157

50% ACA 0.5682 0.6411 0.5507 0.4479 0.5775 0.8488 0.8445 0.8855 0.8724

SDCA 0.0217 0.0227 0.0140 0.0240 0.0234 0.0165 0.0248 0.0146 0.0164
numerical labels; the Seeds dataset is to determine the categories
of wheat seeds; the Wine dataset provides the chemical analysis
of three kinds of wine; the dry bean dataset uses 16 features
to describe seven dry beans types; the musk (version 2) dataset
describes a set of 102 molecules of which 39 are judged by human
experts to be musks and the remaining 63 molecules are judged
to be non-musks. Table 21 lists the detailed information of the
eight datasets.

Similarly, five-fold cross-validation was performed on the
bove datasets and Tables 22–29 show the comparisons between
he AV-ER classifier and the ER classifier on the eight datasets
espectively.
14
As shown by the above experiment results, the classification
accuracies of the AV-ER classifier on Australian dataset (K = 7),
Seeds dataset (K = 3), and Musk (version 2) dataset (K = 50)
are higher than those of ER classifier, while the classification
accuracies of the AV-ER classifier on Hepatitis dataset (K = 6),
Heart dataset (K = 7), Wine dataset (K = 6), Sonar dataset
(K = 15) and Dry bean dataset (K = 7) are slightly lower than
those of ER classifier. However, for all the datasets except the
dry bean dataset, the model complexity of the AV-ER classifier
is obviously smaller than that of ER classifier. The AIC of AV-ER
classifier for dry bean dataset is quite similar with that of ER
classifier for the dataset. In Tables 22–29, the number of attribute
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Table 36
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Heart.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.7344 0.8419 0.6611 0.7188 0.8469 0.7880 0.8215 0.8746 0.8769

SDCA 0.0289 0.0245 0.0339 0.0353 0.0288 0.0430 0.0311 0.0281 0.0289

30% ACA 0.7302 0.8378 0.6556 0.7154 0.8421 0.7827 0.8184 0.8691 0.8705

SDCA 0.0261 0.0230 0.0267 0.0310 0.0257 0.0366 0.0273 0.0255 0.0246

40% ACA 0.7275 0.8283 0.6586 0.7074 0.8357 0.7791 0.8104 0.8614 0.8641

SDCA 0.0231 0.0269 0.0226 0.0323 0.0231 0.0318 0.0246 0.0228 0.0230

50% ACA 0.7203 0.8167 0.6478 0.7031 0.8319 0.7767 0.8086 0.8585 0.8589

SDCA 0.0219 0.0222 0.0204 0.0267 0.0219 0.0274 0.0221 0.201 0.186
Table 37
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Wine.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.9069 0.9821 0.7379 0.8125 0.9788 0.9284 0.9123 0.9791 0.9825

SDCA 0.0326 0.0359 0.0325 0.0397 0.0334 0.0366 0.0402 0.0334 0.0300

30% ACA 0.9027 0.9777 0.7318 0.8071 0.9741 0.9247 0.9087 0.9751 0.9769

SDCA 0.0297 0.0311 0.0285 0.0355 0.0289 0.0321 0.0358 0.0308 0.0276

40% ACA 0.8975 0.9728 0.7251 0.8014 0.9687 0.9194 0.9011 0.9711 0.9732

SDCA 0.0264 0.0256 0.0263 0.0327 0.0260 0.0288 0.0349 0.0299 0.0237

50% ACA 0.8924 0.9700 0.7210 0.8000 0.9650 0.9166 0.8981 0.9665 0.9680

SDCA 0.0233 0.0227 0.0255 0.0304 0.0230 0.0256 0.0327 0.0239 0.0219
Table 38
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Sonar.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.7025 0.6425 0.8037 0.8013 0.8113 0.7885 0.8325 0.8931 0.8943

SDCA 0.0315 0.0326 0.0364 0.0311 0.0289 0.0337 0.0268 0.0254 0.0233

30% ACA 0.6970 0.6389 0.7983 0.7986 0.8076 0.7857 0.8286 0.8865 0.8871

SDCA 0.0285 0.0337 0.0351 0.0288 0.0267 0.0314 0.0251 0.0242 0.0217

40% ACA 0.6929 0.6365 0.7940 0.7940 0.8011 0.7814 0.8250 0.8820 0.8826

SDCA 0.0272 0.0313 0.0324 0.0266 0.0246 0.0288 0.0235 0.0224 0.0240

50% ACA 0.6904 0.6305 0.7911 0.7869 0.7985 0.7767 0.8207 0.8781 0.8750

SDCA 0.0264 0.0300 0.0304 0.0251 0.0255 0.0274 0.0221 0.0216 0.0231
vectors influences the performance of AV-ER classifier both in
accuracy and AIC. The AV-ER classifier can perform well with an
appropriate K value. In the five-fold cross validation, for most
atasets, the differences between minimum value and maximum
alue of accuracy are not obvious, and the standard deviations are
elow 0.05 except for that of the Hepatitis dataset. The AIC values
n the five-fold cross validation also vary slightly which are all
elow 100 except dry bean dataset and the seed dataset. Overall,
IC can assist the decision maker to determine the appropriate
arameters of the AV-ER classifier and keep balance between
lassification accuracy and model complexity.
15
4.3. Comparisons with some mainstream classifiers on nine
benchmark datasets

To further verify the effectiveness of the ER classifier, the AV-
ER classifier are compared with eight typical classifiers which are
decision tree, naïve Bayse, k-nearest neighbor algorithm, SVM,
random forest, BP neural network (BPNN), ensemble learning, and
ER classifier. Similarly, hyperparametric optimization and five-
fold cross validation are also conducted on the nine datasets by
using every typical algorithm respectively. The hyperparameters
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Table 39
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Dry bean.

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.8445 0.9548 0.9148 0.9200 0.9221 0.8612 0.8441 0.9582 0.9594

SDCA 0.0289 0.0277 0.0324 0.0313 0.0387 0.0298 0.0327 0.0264 0.0240

30% ACA 0.8395 0.9526 0.9105 0.9164 0.9182 0.8587 0.8411 0.9564 0.9560

SDCA 0.0264 0.0252 0.0311 0.0303 0.0376 0.0277 0.0296 0.0230 0.0235

40% ACA 0.8352 0.9490 0.9052 0.9129 0.9159 0.8561 0.8357 0.9522 0.9538

SDCA 0.0274 0.0264 0.0281 0.0279 0.0334 0.0252 0.0305 0.0237 0.0220

50% ACA 0.8316 0.9438 0.9017 0.9104 0.9126 0.8515 0.8314 0.9491 0.9510

SDCA 0.0254 0.0239 0.0266 0.0258 0.0310 0.0228 0.0278 0.0225 0.0202
Table 40
The statistical analyses of ACA&SDCA for different percentages of test samples (PT) in dataset Musk (V2).

PT SI Decision tree Naïve Bayse k-nearest
neighbor

SVM Random
forest

BPNN Ensemble
learning

ER AV-ER

20% ACA 0.7994 0.7486 0.8650 0.8381 0.8527 0.8346 0.8500 0.7494 0.8859

SDCA 0.0354 0.0352 0.0411 0.0337 0.0294 0.0343 0.0316 0.0252 0.0267

30% ACA 0.7924 0.7451 0.8615 0.8349 0.8502 0.8312 0.8467 0.7460 0.8824

SDCA 0.0317 0.0313 0.0386 0.0306 0.0277 0.0282 0.0323 0.0267 0.0241

40% ACA 0.7861 0.7405 0.8580 0.8279 0.8479 0.8250 0.8386 0.7410 0.8790

SDCA 0.0323 0.0283 0.0308 0.0264 0.0259 0.0252 0.0301 0.0244 0.0238

50% ACA 0.7830 0.7362 0.8519 0.8251 0.8405 0.8226 0.8347 0.7356 0.8761

SDCA 0.0288 0.0301 0.0269 0.0240 0.0267 0.0239 0.0304 0.0231 0.0220
selected by eight classifiers are detailed in Appendix C. The per-
formance of every classifier on the nine datasets is shown in
Tables 30 and 31.

From Tables 30 and 31, it can be found that AV-ER classifier
as outstanding classification accuracy. Although the accuracy of
V-ER classifier is lower than random forest on Sonar dataset,
ower than ER classifier on Hepatitis dataset, Heart dataset and
ry bean dataset, lower than Naïve Bayse on Wine dataset, the
lassification accuracy of AV-ER classifier is always in top three,
nd it has the best average accuracy. AV-ER classifier well keeps
he balance between model complexity and accuracy and has the
mallest cAIC value on most dataset except Wine dataset, dry
bean dataset, and Musk (Version 2) dataset. AV-ER classifier is
also has the smallest average cAIC value.

4.4. The refined statistical analysis of classification experiment
results

In the above five-fold cross-validation experiment, the per-
centage of test samples (PT) is only set as 20% of the total samples.
In order to test for the stability of the AV-ER, here we further
choose more cases (PT = 20%,30%,40%,50%) in respective 100
times random experiments of nine datasets classification to verify
the performance of AV-ER. In Table 32 to Table 40, the above
seven classifiers and ER classifier are selected to compare with
the AV-ER classifier in different PT cases.

Here two main statistical indices (SI) of the nine classifiers are
calculated including ACA and the standard deviation of classifi-

cation accuracy (SDCA). SDCA describes the deviation between
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the mean value of classification accuracy and single classification
accuracy obtained in one random experiment. The small value
of SDCA means the corresponding classifier can provide relative
stable performance in every test, namely there is rarely overly-
well or overly-poor classification result. From Tables 32–40, it can
be seen that AV-ER provides a relatively small SDCA compared
with the other methods, meanwhile its ACA is always in the
top three in all PT cases. This shows that AV-ER has high clas-
sification performance and algorithmic stability. Certainly, with
the increase of PT from 20% to 50%, the percentage of training
samples (PT) decreases for 80% to 50%, respectively. Moreover,
the number of training samples for modeling these nine classifiers
also decreases at the same time, which causes their ACAs are all
reduce gradually.

5. Conclusions

This paper proposes a classifier based on attribute vectoriza-
tion and evidential reasoning. Firstly, form the attribute vectors
with the attribute variables, and determine the reliability factors
of the attribute vectors. Then, generate the REMs by likelihood
function normalization with the training dataset, and fuse the
activated evidence by ER rule to make the classification decision.
In the optimization process, fine tune the parameters of the initial
classifier to improve the model performance, and use AIC to
comprehensively evaluate the complexity and accuracy of the
classifier. Finally, choose the typical benchmark datasets in the
UCI database to verify the effectiveness and flexibility of the
proposed method compared with the ER classifier.
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Table A.1
Notations.

ER Evidential reasoning T The total numbers of samples in sample set

AV-ER Attribute vectorization based
evidential reasoning

K The total numbers of attribute vectors

PCA Principal component analysis X The dataset containing T samples with J
attributes

AIC Akaike information criterion Fi The ith principal component after PCA

SVM Support vector machine wji The weighting coefficient of the jth
attribute to the ith principal component

DS Dempster–Shafer W Transformation matrix composed of
weighting coefficients

FoD A framework of discernment X̃ The matrix after centralization

BBA Basic belief assignment V the correlation coefficient matrix of X̃

REM Reference evidence matrix λ Eigenvalues of V

MSE Mean square error ω Eigenvector of V

Num The number of model
parameters

ϕj The contribution of the jth principal
component

cAIC The relative AIC MD The cumulative variance contribution in
PCA

ACA Average classification accuracy ϕj The importance of the jth attribute to all
principal components

SD Standard deviations Rk Attribute vector

Θ the framework of discernment rRk The reliability factor of Rk

P(Θ) The power set of Θ Ak The reference vector for Rk

xj The jth attribute extracted
from observed samples

Ak
n The nth reference vector in Ak

yp The sample belongs to the pth
class

βk,n The similarity that Rk(t) matches the nth
reference vector Ak

n

θ A proposition in Θ ap,n The sum of the integrated similarity that
Rk(t) of all samples matches Ak

n and belongs
to yp

ej The jth piece of evidence
supporting θ

µk
p,n The belief degree that Rk(t) matches Ak

n

rj Reliability factor of evidence ej ekn Evidence corresponds to Ak
n

wj Importance weight of evidence
ej

ek The final evidence corresponding to Rk

pθ,j The belief degree that ej
supporting θ

ξ (P) Objective function in parameters
optimization

m̃θ,j The supporting degree of ej to
θ considering rj and wj

P Parameters to be optimized

mθ j The supporting degree of ej to
θ considering wj

V t Reference output vector

pθ,e(2) The belief degree of evidence
e1 and e2 jointly supporting θ
The new method inherits the advantages of the ER classifier on
ealing with uncertain information fusion, and further solves the
roblems on model complexity and computation burden caused
y high dimensional input attributes. The superiorities of the
17
AV-ER classifier are as follows: (1) In the process of evidence
acquisition, the REMs are generated based on the casting results
of the attribute vectors. A newly obtained sample will activate
all pieces of evidence in the REMs that the reference attribute
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Table B.1
PCA pseudocode.
vectors correspond to so that the acquired evidence can con-
tain more useful information. (2) Divide the high dimensional
attributes into multiple attribute vectors according to the impor-
tance ranking of every attribute, which reduces the number of
input attribute and the number of importance weightw. With this
ethod, the model complexity decreases, while the model accu-

acy can be ensured, in order that the optimal balance between
lassification accuracy and model complexity can be achieved.
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Table B.2
ER rule and GA pseudocodes.
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Table C.1
Hyperparametric information of classical classification methods.

Ionosphere Australian Seeds Heart Sonar Dry bean Musk (V2)

Decision tree MinLeafSize 8 5 5 9 9 6 1

Naïve Bayse Data distributions kernel Gaussian Gaussian Gaussian kernel Gaussian kernel

k-nearest
neighbor

Width 0.3624 – 2.0711 – 0.0871 – 3.6932

Distance cityblock seuclidean seuclidean seuclidean spearman mahalanobis seuclidean

NumNeighbors 1 25 1 8 1 1 14

SVM C 12.757 21.876 0.9055 242.06 0.1105 49.248 0.0015

KernelScale 1.5007 60.232 0.0085 6.5783 0.0761 117.21 10.186

Random forest NumPredictorsToSample 6 4 3 8 8 4 13

BPNN

MinLeafSize 2 5 2 4 1 3 7

Hidden layer 1 1 1 2 2 2 2

Neuron node 22 8 31 [26 33] [20 18] [40 35] [45 80]

Ensemble
learning

Method LogitBoost AdaBoostM1 AdaBoostM2 LogitBoost AdaBoostM1 AdaBoostM2 AdaBoostM1

NumLearningCycles 500 16 10 33 177 14 76

LearnRate 0.0739 0.2702 0.6606 0.6679 0.9865 0.9021 0.8406

MinLeafSize 4 24 4 3 1 3 1
Table C.2
Description of parameter interpretation.

Decision tree MinLeafSize Minimum number of leaf node observations.

Naïve Bayse
Data distributions Kernel smoothing density estimate/Multinomial distribution/Multivariate

multinomial distribution/Normal (Gaussian) distribution.

Width Kernel smoothing window width. (optional when distribution ’kernel’)

k-nearest neighbor

Distance Distance Metric
Names.(cityblock/chebychev/correlation/cosine/euclidean/euclidean/
euclidean/mahalanobis/minkowski/minkowski/spearman)

NumNeighbors Number of nearest neighbors to find.

SVM

C Penalty factor.

KernelScale Kernel scale parameter. The random basis of random feature extension is
obtained by using kernel scale parameters.

Random forest
NumPredictorsToSample Number of variables to select at random for each decision split.

MinLeafSize Minimum number of observations per tree leaf.

BPNN
Hidden layer Number of hidden layers.

Neuron node Number of neuron nodes in each hidden layer.

Ensemble learning

Method Ensemble aggregation method .
(Bag/Subspace/AdaBoostM1/AdaBoostM2/GentleBoost/LogitBoost/LogitBoost/
RobustBoost/RUSBoost/TotalBoost)

NumLearningCycles Number of ensemble learning cycles.

LearnRate Learning rate for shrinkage.

MinLeafSize Minimum number of observations per tree leaf.
20
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