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W ith the development of the semiconduc-
tor industry, the process size of chips has 
reached the nanometer level. The prob-
lems of “storage wall” and “power wall” 

inherent in von Neumann architectures are becoming 
increasingly noticeable. As an abstract computing sys-
tem, the human brain has very high parallel computing 
capability (simultaneously performing visual recogni-
tion, reasoning, body control, and movement) but low 
energy consumption (about 20 W). There are two strik-
ing differences between the computing principles of 
human brains and von Neumann computers. First, the 
human brain has a network of billions of neurons inter-
connected through trillions of synapses. Neurons are the 

computational primitive elements of 
the brain that exchange or transfer 
information through discrete action 
potentials or spikes, and synapses 
are the storage elements underlying 
memory and learning. The human 
brain unifies computing and stor-
age through neurons and synapses, 
solving memory wall problems. Sec-
ond, neurons in the brain transfer 
information through event-driven or 

time-dependent spikes. Spike-based temporal processing 
allows sparse and efficient information transfers in the 
brain, resulting in impressive low power consumption, 
which solves the problems of power wall.1

A spiking neural network (SNN), as shown in Figure 
1 and categorized as the third generation of neural net-
works, is the most representative concept in the field of 
brain-inspired computing. Imitating the brain in terms 
of both neuron and synaptic connection models, SNNs 
feature rich spatial-temporal information and event- 
driven and high biological plausibility.

The advantage of low power consumption of brain-in-
spired computing cannot be fully exploited by running an 
SNN on a general-purpose processor. Researchers have 
launched several projects to develop neuromorphic chips 
and computers, including BrainScaleS,2 SpiNNaker,3 
TrueNorth,4 Loihi,5 Tianjic,6 and Darwin.7
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Efficiently managing and utilizing 
brain-inspired computer hardware 
resources has remained an unsolved 
challenge due to their large scale and 
complexity. BrainScaleS’ operating 
system (OS),8 developed by Heidelberg 
University, creates software develop-
ment and a runtime environment for 
the BrainScaleS system. The software 
system initiated by the University of 
Manchester in the United Kingdom for 
the SpiNNaker system9 comprises soft-
ware programs executing on the SpiN-
Naker system and the software tool-
chain SpiNNTools.10 IBM established 
a relatively complete software ecosys-
tem around its TrueNorth chip, cover-
ing system, software, application, and 
other aspects.11 Intel’s Loihi develop-
ment toolchain designs a Python-based 
application programming interface, 
compiler, runtime, a software simula-
tor, and field-programmable gate array  
(FPGA) emulator.

The main software-related work 
of various brain-inspired computing 
systems focuses on training, model 
conversion, mapping, emulators, and so 
forth. Meanwhile, all software systems’ 
support in runtime environments is 
merely considered from the perspec-
tive of a runtime library or a tradi-
tional OS (such as TrueNorth adopting 
a Linux system and SpiNNaker adopt-
ing a real-time OS). Therefore, we pro-
pose a more complete and concise soft-
ware reference architecture called 
Darwin-S. It involves a brain-inspired 
OS and an integrated development 
environment (IDE).

A REFERENCE SOFTWARE 
ARCHITECTURE FOR BRAIN-
INSPIRED COMPUTERS
Darwin-S aims to provide application 
development and operation reference 
architecture for brain-inspired com-
puters so that researchers can develop 

applications without having to under-
stand implementation details of the 
underlying hardware. The applica-
tion of brain-inspired computers 
mainly includes a spike codec process 
and an SNN. The Spike codec process 
encodes input data (such as images) 
into the spike sequence and decodes 
the output spike sequence. The SNN 
processes spikes through its inter-
nal multilayer neurons and sends out 
result spikes through the output layer. 
Darwin-S entails an IDE that supports 
application development and an OS 
that provides a running environment 
for applications.

The idea of hierarchy and modu-
larization can well realize decoupling 
between software architectures. Right-
level abs traction makes the implemen-
tation details of hierarchy transparent 
to each other, which brings favor-
able extensibility and compatibility, as 
shown in Figure 2.

A general-purpose architecture
Darwin-S is designed to be applicable 
across different underlying hardware 
architectures, and this generality is fun-
damentally based on our abstraction of 
brain-inspired computers. The archi-
tecture and implementation methods 
among different brain-inspired hard-
ware platforms are utterly different. 
However, the basic design principle is 
the same:

 › using a large number of spe-
cially designed neurosynaptic 
cores (for example, crossbars on 
Loihi and TrueNorth, and ARM 
cores on SpiNNaker)

 › simulating neurons dynamics 
in parallel

 › storing synapses’ weight data 
within or near each neurosynap-
tic core

FIGURE 1. The structure of an SNN.
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 › neurosynaptic cores switch spik-
ing messages through specially 
designed connection paths (for 
example, networks on chip or 
Ethernet).

Based on these common features 
of bra i n-i n s pi red computers, we 
h ave m ade t wo c r it ica l at tempt s 
to achieve hardware decoup l i n g 
a s  follows.

First, we adopted a hardware abstract 
layer in a brain-inspired OS to shield the 
hardware differences of brain-inspired 

computers and abstract the hardware 
into three parts: storage, communication, 
and neural resources. Second, an inter-
mediate model definition language 
to describe the upper SNN is involved 
in the brain-inspired application IDE, 
which makes the lower implementa-
tion entirely transparent for the upper 
layer development environment.

Brain-inspired OS
Compared with the concept of task 
and resource in traditional computer 
system software, we defined the SNN 

running on a brain-inspired computer 
as a neural task. Accordingly, neurons 
and synapses are termed as neural 
resources. Therefore, the brain-inspired 
OS is a customized software system 
for neural task operation and neural 
resource management.

From a hardware perspective, it 
implements the encapsulation and 
shielding of underlying neuromor-
phological computing resources, ab -
stracts them as neural resources for 
unified management and scheduling, 
and supports operation of the upper 

FIGURE 2. The reference software architecture for a brain-inspired computer. 
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neural tasks. From a software perspec-
tive, the OS dynamically allocates neu-
ral resources for neural tasks and pro-
vides an operating environment for 
scheduling multiple neural tasks. Con-
currently, it also provides the inter-
nal information interface of neural 

resources and a control spike release 
process, and offers debugging means 
for users to develop neural tasks. The 
OS consists of the following four layers:

1. The hardware abstraction 
layer enables standardized 
hardware access interfaces to 
be compatible with different 
hardware.

2. The resource manage-
ment layer realizes neural 
resource management and 
scheduling.

3. The brain-inspired functional 
layer supports the operation 
of neural tasks by providing a 
spike codec library, neural task 
scheduling, and an SNN model 
library.

4. The external access layer 
provides three kinds of access 
interfaces for the state, data, 
and debugging of the brain-in-
spired computer.

Brain-inspired application IDE
At present, the development of SNN 
applications is closely related to the 

hardware of brain-inspired comput-
ers. Therefore, we propose an applica-
tion development and debugging tool, 
which enables users to efficiently 
build and debug an SNN application 
without caring about the underly-
ing hardware.

The model development kit sup-
ports the use of direct training to 
obtain an SNN, or the conversion of 
a trained artificial neural network 
(ANN) to an SNN. We define a model 
description language to uniformly 
describe the SNNs obtained in these two 
methods. Then the SNN is simulated 
by a simulator. The model parameters 
are optimized according to the execu-
tion results to better performance. The 
compiler maps spiking neurons and 
synapses in the SNN to neurosynap-
tic cores. Finally, the SNN is compiled 
into an executable model code that the 
brain-inspired computer can run. After 
the application is deployed and run-
ning, users can observe the execution of 
the application through the visualiza-
tion and analysis functions provided by 
the debugging tool. 

DARWIN-S: THE 
IMPLEMENTATION
The specific implementation version 
of Darwin-S focuses on the Darwin 
application IDE (DarwinIDE) and Dar-
win brain-inspired OS (DarwinOS). 
DarwinIDE realizes the functions of 

application debugging and model 
development, ranging from a conver-
sion tool, simulator, and compiler, 
to model definition language. Dar-
winOS can support the running of the 
application and management of the 
brain-inspired computer.

DarwinOS: Management 
and scheduling
DarwinOS serves as the primary soft-
ware operation platform of the Dar-
win brain-inspired computer. It makes 
full use of the computer’s distributed 
architecture based on a hybrid comput-
ing architecture. An ARM chip realized 
by an FPGA completes the logic part of 
the OS, and the neural task is fulfilled 
by a neuromorphic chip, the Darwin 2. 
The critical functions of DarwinOS are 
the management and scheduling of 
neural resources and tasks, as depicted 
in Figure 3.

Darwin Mouse: A Darwin brain- 
inspired computer. Darwin Mouse, 
a brain-inspired computer, is devel-
oped on the basis of neuromorphic 
chips, the Darwin 2. It adopts a mesh 
and tree hybrid architecture and sup-
ports 120 million neurons and 72 bil-
lion synapses. As displayed in Figure 3, 
on the first level, the Darwin 2 chip 
is organized in a mesh structure and 
connected by a high-speed, interchip 
interface. On the second level, the chips 
communicate through an FPGA, and 
on the third level the FPGA communi-
cates with each other through Ethernet 
to form a tree structure. The mesh 
structure is adopted at the lowest level, 
which uses more local communication 
and less cross-regional communication 
of neuromorphic chips. considers the 
delay of cross-regional communica-
tion while ensuring the link through-
put. However, the disadvantage of the 

THE CRITICAL FUNCTIONS OF  
DARWINOS ARE THE MANAGEMENT  

AND SCHEDULING OF NEURAL 
RESOURCES AND TASKS.
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mesh structure is that it cannot con-
nect a large number of neuromorphic 
chips, so the highest level adopts the 
tree structure to solve this prob-
lem. We take the second level as 
the basic module of Darwin Mouse. 
Darwin Mouse consists of 66 such 
modules, and each basic module con-
tains 12 interconnected chips and an 
FPGA bridge. The latter is responsi-
ble for spike transmission between 
the underlying chips and interaction 
with the other basic module. The 
connected chip transmits the spike 

within the chip or between adjacent 
chips through the on-chip network, as 
shown in Figure 4.

Hardware abstract layer. This layer 
shields the hardware differences of 
brain-inspired computers and achieves 
the hardware-related abstraction of 
storage, communication, and neural 
resources so that the reference archi-
tecture can sustain different brain-in-
spired hardware.

Drawing on the three-tier hybrid 
architecture of Darwin Mouse, we 

implement real-time communication 
middleware and a distributed file sys-
tem to facilitate real-time communica-
tion between FPGAs and the storage of 
large-scale SNN model files. By means of 
a publish/subscribe mode, the real-time 
communication middleware featuring 
data ensures quality-of-service strat-
egies and makes it possible to trans-
mit spikes between FPGAs simulta-
neously, efficiently, and f lexibly. 
The distributed file system uniformly 
manages and abstracts all the stor-
age resources of Darwin Mouse and 

FIGURE 3. The implementation of a brain-inspired OS for a Darwin brain-inspired computer. 
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creates a unified file operation inter-
face for the upper software. At the 
same time, the distributed file system 
supports redundant backup, which 
improves the reliability of file storage. 
Neural resource abstraction unifies 
the operation of neurons, synapses, 
and other neural resources in neuro-
morphic chips into a standard opera-
tion interface. It mainly includes neu-
ron behavior configuration, synaptic 
weight parameter read/write, neuron 
connection routing configuration, and 
so on. This design makes it possible to 
support a wide variety of types of neu-
romorphic chips.

Resource management layer. Dar-
winOS realizes the state management 

and scheduling of neural resources 
through the resource management 
layer. Its resource management abil-
ity and allocation efficiency directly 
determine the overall performance of 
Darwin Mouse.

The primary resource state manage-
ment is composed of the occupation of 
neuron resources and synaptic resources, 
neuron membrane potential, and failure 
state. On the one hand, resource state 
management can offer external users 
overall resource occupancy and system 
failure state. On the other hand, it can set 
resource constraints for neural resource 
scheduling. Neural resource scheduling 
performs dynamic neural task migration 
aligned with the resource requirements 
of different neural tasks and the current 

resource’s idle state. Through resource 
scheduling, the neural tasks that lack 
a long-time input spike are primarily 
exported to the external file system. 
The neural resources are subsequently 
allocated to the neural tasks that need 
to run urgently to meet the computing 
needs of users’ neural tasks to the great-
est extent. The system’s optimal power 
consumption and performance can be 
fully achieved by reasonable allocation of 
neural resources through load balancing.

Brain-inspired functional layer. 
The brain-inspired functional layer 
provides a runtime environment for 
neural tasks, such as spike encoding 
and decoding, neural task scheduling, 
and the SNN model library. It enables 

FIGURE 4. The basic module structure of Darwin Mouse. 
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the brain-inspired computer to sup-
port large-scale neural tasks such as 
brain simulation and the application of 
small-scale neural tasks in scenes like 
edge computing.

The information is transmitted and 
processed by discrete spikes within the 
SNN, so the input data of smell, image, 
and voice must be coded into a spike 
sequence. The brain-inspired OS pro-
vides a spike codec library for applica-
tion. The brain-inspired computer can 
run neural tasks with the assistance of 
neural task scheduling, which consists 
of neural task decomposition, neural 
resource allocation, dynamic network 
mapping, and neural network loading. 

Based on the occupation of neural 
resources, the neural task, disassem-
bled into multiple executive subtasks, 
is dynamically mapped and loaded into 
the neuromorphic chip of a brain-in-
spired computer for operation.

The SNN model library contains 
trained standard models, such as voice 
and image recognition, and has a cor-
responding spike codec library. The OS 
can dynamically load different SNNs 
and codec libraries to realize different 
brain-inspired applications in accor-
dance with user needs.

External access layer. To tackle the exter-
nal interaction problem of brain-inspired 

computers, the OS mainly provides the 
neural resource state access interface 
and fulfills input and output opera-
tions of the SNN and its spike encod-
ing and decoding file through the data 
interaction interface. Users can call the 
debugging interface to obtain the run-
ning state of the application, especially 
neurosynaptic core information such as 
membrane voltage.

DarwinIDE: Development, language,  
and compiler. When neuroscien-
tists or SNN algorithm researchers 
develop brain-inspired models based 
on a Da r w i n bra i n-i nspi red com-
puter, they confront big challenges 

FIGURE 5. The implementation of a brain-inspired application IDE. DarwinMDTK: Darwin model development tool kit; DarwinMDL: 
Darwin model definition language.
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due to an insufficient understanding 
of hardware constraints. Therefore, 
to enable users to efficiently build 
neural networks with resource con-
straints and observe the operation of 
neural networks, we implement Dar-
winIDE based on a Darwin-S software 
reference architecture. As presented 
in Figure 5, DarwinIDE consists of two 
parts: a Darwin model development 
tool kit (DarwinMDTK) and debugging 
tool. DarwinMDTK implements model 
training, conversion, simulation, and 
compilation. The debugging tool has 
the functions of visualization, analy-
sis, and execution tracking.

Due to massive neurons in the 
neural network (up to billions of neu-
rons), it is impossible to manually 
complete the neurons’ connection and 
the configuration of weight parameters. 
Instead, the construction of the SNN 
needs to be completed automatically 
through DarwinMDTK. First, the SNN 
is trained directly by the training tool, 
or the ANN is converted into the SNN 
described by Darwin model defini-
tion language (DarwinMDL) using the 
conversion tool, and then the model 
is simulated by the simulator. After 
the simulation run is passed, the com-
piler parses the model, completes the 
model mapping, and converts it into 
a hardware-executable model code. 
The debugging tool is oriented to the 
execution process of the executable 

model. It obtains the information of 
neuron spike release and membrane 
voltage by calling the debugging inter-
face provided by the OS and displays it 
graphically to analyze or track.

Model definition language. Darwin-
MDL specifies standardized descrip-
tion syntax rules and keywords with 
high neural correlation so as to describe 
the SNN more accurately and standard-
ized. As a language independent of a 
hardware platform, DarwinMDL pro-
vides an intermediate description lan-
guage for the SNN model using train-
ing, transformation, simulation, and 

compilation tools. The SNN described 
by DarwinMDL can also be displayed 
synchronously through graphics to 
visually check the correctness of the 
internal structure of the SNN, and to 
minimize editing and syntax errors.

Model conversion. At present, there 
are primarily two ways to achieve 
the SNN. One is to obtain the avail-
able SNN by adjusting and converting 
the trained ANN through the neu-
ral network layer and fine-tuning 
the connection’s weight parameters.12 
Another approach is to obtain an SNN 
through a direct training algorithm.13 
These large-scale SNNs that yield 
state-of-the-art performance are most 
likely obtained by conversion-based 
approaches.14,15 Considering this 

aspect, we include a model-conversion 
tool in our DarwinMDTK to help devel-
opers convert their ANN trained with 
PyTorch or TensorFlow into the SNN 
described by DarwinMDL. Moreover, a 
detailed instance will be presented 
in the “Case Study” section to clarify 
this workflow.

The workflow of the tool can be 
divided into four main steps. The first 
step is model parsing. After the deep 
learning library is used to build the 
ANN and the training is completed, 
the model parser parses the ANN to 
generate an intermediate representa-
tion of the model.16 Some neural net-
work layers in the ANN are removed or 
replaced according to the need, and an 
intermediate ANN is obtained. Next, an 
equivalent SNN model structure is con-
structed for the connection relationship 
between neurons in the ANN. After-
ward, the weight parameters in the SNN 
are further adjusted and then assigned 
to the corresponding synapse of the 
SNN. Finally, the parameters of the neu-
rons and synapses in the SNN are con-
figured to accomplish the construction 
of the SNN.

Model training. In addition to conver-
sion, direct training is another way to 
obtain an SNN. To enable developers 
to cultivate SNNs as efficiently as pos-
sible from scratch, we integrated an 
SNN training framework called Spike-
based Artificial Intelligence Computing 
(SPAIC) (https://github.com/Zhejian 
glabNCRC/SPAIC) into DarwinMDTK. 
Developers need only define the SNN 
network structure, training algo-
rithm, and relevant training parame-
ters, and the training process will be 
automatically carried out. The output 
of this process is the SNN defined by 
DarwinMDL, which is ready to be used 
in the next step of the simulation.

THE TRAINING PROCESS OF SNNS IS 
SIMILAR TO THAT OF DEEP NEURAL 

NETWORKS, EXCEPT THAT SNNS NEED TO 
ENCODE INFORMATION WITH SPIKES.
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Several training algorithms, such 
as the spatio-temporal credit assign-
ment one,17 are integrated into the 
SPAIC. The training process of SNNs 
is similar to that of deep neural net-
works, except that SNNs need to 
encode information with spikes. A 
typical training process is as follows. 
First, according to the design of the 
network structure, network connec-
tions (synapses) and parameters are 
initialized. Then, several iterations of 
the learning algorithm are carried out. 
Each iteration usually consists of a for-
ward pass, where the SNN is simulated 
for certain time steps with the inputs 
(outputs) and encoded (decoded) to 
(from) the spikes, and a backward 
pass, where the error is backpropa-
gated through spikes to the network 
parameters, and then the parameters 
are updated by an optimizer according 
to the gradient. Finally, the trained 
SNN will be packaged into a Darwin-
MDL standard format.

Model simulator. Before compi l-
i ng the application, the simulator is 
used to simulate the converted SNN to 
evaluate the model performance and 
decide whether to adjust the conver-
sion parameters for optimization. The 
simulator is divided into three parts 
from top to bottom: the input process, 
operation monitoring of the SNN, and 
model output process. The input pro-
cess provides the pretreatment and 
encoding of input data. The encoding 
data are fed into the SNN executing on 
the simulator. The operational status 
of the SNN, including neurons, synap-
tic connections, and firing spikes, will 
be continuously monitored during 
operation. Ultimately, the output of 
the model needs to be processed. If the 
frequency coding method is adopted, 
each neuron’s spike excitation in the 

final output layer of the SNN needs to 
be counted to achieve the final result.

In executing the SNN on the sim-
ulator and processing data, the neu-
ron state of each layer is monitored by 
defining the neuron state monitor, and 
the spike excitation of the neurons at 
each layer is obtained by defining the 
spike-excitation monitor. On the one 
hand, the two monitors can monitor 
neurons’ state changes for the perfor-
mance analysis of the model, and ana-
lyze and deal with neurons that fire 
too fast or do not fire for a long time. 
On the other hand, the performance 
bottleneck in the model-calculation 
process can be analyzed in time during 
the simulation application. The model 
can be iterated and optimized in time 
through simulation at the software 
level to obtain better performance 
when it is deployed on hardware.

Model compiler. The compiler consists 
of a language parser and a mapper. The 
language parser converts the model 
into an intermediate code, syntax 
tree for mapping. Then the mapper 
binds it to specific neural resources.

 › Model language parser: The pro-
cess of language parsing, like a 
traditional compiler, undergoes 
the stages of lexical, syntax, and 
semantic analyses. A lexical 
analysis scans and identifies 
words, compares keywords, and 
establishes corresponding symbol 
lists. A syntax analysis identifies 
corresponding syntax categories 
according to the syntax rules of 
DarwinMDL, while a semantic 
analysis checks the overall net-
work’s model structure. Addition-
ally, error checking and handling 
are performed at each stage. In 
the semantic analysis stage, we 

optimize the compilation in terms 
of the characteristics of the neural 
network. During construction of 
the SNN, the order of the defini-
tions of layers and the order of 
neurons’ attributes in a single 
layer is utterly distinct. Addi-
tionally, some parameters can be 
omitted and default values can be 
used. Language analysis needs to 
optimize semantic parsing, obtain 
the correct hierarchical order 
according to the context, and put 
the value into the corresponding 
attribute key to complete seman-
tic matching.

 › Model mapping: The mapping of 
the SNN falls into two stages: 
coarse- and fine-grained dis-
tribution. The coarse-grained 
distribution stage aims to 
determine whether a brain-in-
spired computer can meet the 
demand of network mapping. If 
the resources of a brain-inspired 
computer can fulfill network 
requirements, the next fine-
grained allocation phase will 
continue. After inputting the 
SNN to be mapped, a resource 
evaluation is executed. The total 
number of resources required 
by the network is calculated. 
If the results do not exceed 
the available resources of the 
hardware, the next calculation 
can be executed. Otherwise, 
the network cannot be mapped 
to the hardware. According to 
different SNN structures, a fine-
grained allocation stage can be 
accomplished in two ways. The 
number of neurons allocated 
to each node can be calculated 
if the SNN is topographically 
well structured, such as a fully 
connected layer, convolutional 
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structure. Another method is 
for an irregular connection. The 
connection number of neurons 
at the same layer may vary sig-
nificantly. The first adaptation 
algorithm is used to calculate 
the number of nodes needed to 
use as few nodes as possible. The 
problem can be transformed into 
a packing problem. Each node, 
regarded as a box, puts neurons 
and corresponding connections. 
The box will be full when the 
number of neurons reaches the 
threshold, or another neuron’s 
connections cannot be put. 
According to the data flow, 
we reverse the allocation of 
resources and gain an equal, 
one-to-one network correspond-
ing to the network and hard-
ware neurons. In the mapping 
process, a greedy algorithm can 
be employed to optimize power 
consumption.

CASE STUDY
Based on Darwin Mouse, we take the 
Modified National Institute of Standards 

FIGURE 6. SNN model development, and the execution process.
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and Technology-based, handwritten 
numeral recognition model to illustrate 
the whole process of an SNN model’s 
development, compilation, and execu-
tion on a brain-inspired computer, as 
illustrated in Figure 6.

In this case, the SNN model is 
developed by conversion. Initially, a 
classification ANN is constructed and 
trained using the traditional ANN 
framework TensorFlow. The weight 
parameters in the ANN are then opti-
mized by means of parameter adjust-
ment based on data-based weight 
normalization. Finally, using a mod-
el-conversion tool, the ANN is con-
verted into the SNN. The algorithm 
it uses can be customized in line with 
user requirements.

We use the method presented by 
Diehl et al.18 to convert a simple con-
volutiona l ANN into an SNN. The 

output SNN contains four layers, 784 
virtual input nodes, 650 computa-
tional neurons, and 41,600 synapses, 
as depicted in Figure 7. The simulation 
time step is set to 1 ms, and the recog-
nition time window is 100 ms. Finally, 
it takes a total of 19.123 s to convert 
the ANN into the SNN using our mod-
el-conversion tool.

Before the model is deployed to the 
actual brain-inspired computer, it is 
simulated by the simulator to ver-
ify the correctness and performance 
of the model. First, the number and 
type of neurons in each layer and the 
connection weight between layers are 
parsed from the model file described 
by DarwinMDL, and the SNN is cre-
ated and initialized. Then, it is put 
on the simulator to run. After several 
simulation runs, the network param-
eters are optimized according to the 

results to improve the performance of 
the model.

After verifying the SNN on the sim-
ulator, the compiler compiles the Dar-
winMDL file, generates the executable 
model file, and submits it to the Dar-
winOS to be deployed on Darwin Mouse 
for operation. Then, under the control 
of DarwinOS, the image to be recog-
nized is encoded into spikes and input 
into the computer, and the correspond-
ing output is decoded to obtain the final 
result. The debugging tool provided by 
DarwinIDE is used to display the neural 
resource status and neural task execu-
tion results, as shown in Figure 8.

After working through the work-
flow described previously, our final 
result is as follows: On average, it took 
56.063 ms to process an image. The 
SNN achieved 92.8 and 83% accuracy 
while running on the simulator and 

FIGURE 8. The state monitoring and execution result interface of DarwinIDE. 
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brain-inspired computer, respectively. 
Compared with the 93.27% accuracy 
obtained by the trained ANN fed into 
a model-conversion tool, the accuracy 

loss was 0.47 and 10.27%, respectively. 
The result is a little worse than the 
state-of-the-art method.15 However, 
considering we did not specifically 

optimize the training and conversion 
process, and most of the parameters 
are just set defaults, we consider this 
result acceptable.
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W hen it comes to brain-in-
spired computer software 
architectures, although aca-

demic and industrial circles have not 
reached a unified understanding of the 
standard, throughout existing brain-in-
spired computing systems, the direc-
tion of efforts remains the same. The 
abstract hardware details are expected 
to construct the primary software run-
time environment and further estab-
lish the programming development 
environment and OS to simplify the 
programming method. In the future, 
brain-inspired computer software 
systems will gradually realize stan-
dardization from such aspects as the 
OS, programming language, and pro-
gramming paradigm to promote the 
rapid and benign development of a 
brain-inspired computing ecology. 
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