
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y M AY 2 0 2 2 51

W ith the development of the semiconduc-
tor industry, the process size of chips has
reached the nanometer level. The prob-
lems of “storage wall” and “power wall”

inherent in von Neumann architectures are becoming
increasingly noticeable. As an abstract computing sys-
tem, the human brain has very high parallel computing
capability (simultaneously performing visual recogni-
tion, reasoning, body control, and movement) but low
energy consumption (about 20 W). There are two strik-
ing differences between the computing principles of
human brains and von Neumann computers. First, the
human brain has a network of billions of neurons inter-
connected through trillions of synapses. Neurons are the

computational primitive elements of
the brain that exchange or transfer
information through discrete action
potentials or spikes, and synapses
are the storage elements underlying
memory and learning. The human
brain unifies computing and stor-
age through neurons and synapses,
solving memory wall problems. Sec-
ond, neurons in the brain transfer
information through event-driven or

time-dependent spikes. Spike-based temporal processing
allows sparse and efficient information transfers in the
brain, resulting in impressive low power consumption,
which solves the problems of power wall.1

A spiking neural network (SNN), as shown in Figure
1 and categorized as the third generation of neural net-
works, is the most representative concept in the field of
brain-inspired computing. Imitating the brain in terms
of both neuron and synaptic connection models, SNNs
feature rich spatial-temporal information and event-
driven and high biological plausibility.

The advantage of low power consumption of brain-in-
spired computing cannot be fully exploited by running an
SNN on a general-purpose processor. Researchers have
launched several projects to develop neuromorphic chips
and computers, including BrainScaleS,2 SpiNNaker,3
TrueNorth,4 Loihi,5 Tianjic,6 and Darwin.7

COMPUTING PRACTICES

Darwin-S: A
Reference Software
Architecture for
Brain-Inspired
Computers
Shuiguang Deng, Pan Lv, and Ouwen Jin, Zhejiang University

Schahram Dustdar, Distributed Systems Group

Ying Li, De Ma, Zhaohui Wu, and Gang Pan, Zhejiang University

With the reduction of the semiconductor

process size, the problems of “memory wall”

and “power wall” in von Neumann architectures

are becoming increasingly prominent.

To solve these problems, brain-inspired

computing unifies computing and storage.

Digital Object Identifier 10.1109/MC.2022.3144397
Date of current version: 6 May 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

52 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

Efficiently managing and utilizing
brain-inspired computer hardware
resources has remained an unsolved
challenge due to their large scale and
complexity. BrainScaleS’ operating
system (OS),8 developed by Heidelberg
University, creates software develop-
ment and a runtime environment for
the BrainScaleS system. The software
system initiated by the University of
Manchester in the United Kingdom for
the SpiNNaker system9 comprises soft-
ware programs executing on the SpiN-
Naker system and the software tool-
chain SpiNNTools.10 IBM established
a relatively complete software ecosys-
tem around its TrueNorth chip, cover-
ing system, software, application, and
other aspects.11 Intel’s Loihi develop-
ment toolchain designs a Python-based
application programming interface,
compiler, runtime, a software simula-
tor, and field-programmable gate array
(FPGA) emulator.

The main software-related work
of various brain-inspired computing
systems focuses on training, model
conversion, mapping, emulators, and so
forth. Meanwhile, all software systems’
support in runtime environments is
merely considered from the perspec-
tive of a runtime library or a tradi-
tional OS (such as TrueNorth adopting
a Linux system and SpiNNaker adopt-
ing a real-time OS). Therefore, we pro-
pose a more complete and concise soft-
ware reference architecture called
Darwin-S. It involves a brain-inspired
OS and an integrated development
environment (IDE).

A REFERENCE SOFTWARE
ARCHITECTURE FOR BRAIN-
INSPIRED COMPUTERS
Darwin-S aims to provide application
development and operation reference
architecture for brain-inspired com-
puters so that researchers can develop

applications without having to under-
stand implementation details of the
underlying hardware. The applica-
tion of brain-inspired computers
mainly includes a spike codec process
and an SNN. The Spike codec process
encodes input data (such as images)
into the spike sequence and decodes
the output spike sequence. The SNN
processes spikes through its inter-
nal multilayer neurons and sends out
result spikes through the output layer.
Darwin-S entails an IDE that supports
application development and an OS
that provides a running environment
for applications.

The idea of hierarchy and modu-
larization can well realize decoupling
between software architectures. Right-
level abs traction makes the implemen-
tation details of hierarchy transparent
to each other, which brings favor-
able extensibility and compatibility, as
shown in Figure 2.

A general-purpose architecture
Darwin-S is designed to be applicable
across different underlying hardware
architectures, and this generality is fun-
damentally based on our abstraction of
brain-inspired computers. The archi-
tecture and implementation methods
among different brain-inspired hard-
ware platforms are utterly different.
However, the basic design principle is
the same:

 › using a large number of spe-
cially designed neurosynaptic
cores (for example, crossbars on
Loihi and TrueNorth, and ARM
cores on SpiNNaker)

 › simulating neurons dynamics
in parallel

 › storing synapses’ weight data
within or near each neurosynap-
tic core

FIGURE 1. The structure of an SNN.

Neuron Model

Synaptic Integration

Network Topology

Dendrite

Soma

Axon

Synapsis

Cm
dV
dt

= GL(EL – V) + I

If (V > Vth)V = Vreset

A

D C

N M

O K
J

L
I

B E F

G

H

Vj (t) = Vj (t – 1) +Σ
N – 1

i = 0

Wi (t)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 53

 › neurosynaptic cores switch spik-
ing messages through specially
designed connection paths (for
example, networks on chip or
Ethernet).

Based on these common features
of bra i n-i n s pi red computers, we
h ave m ade t wo c r it ica l at tempt s
to achieve hardware decoup l i n g
a s follows.

First, we adopted a hardware abstract
layer in a brain-inspired OS to shield the
hardware differences of brain-inspired

computers and abstract the hardware
into three parts: storage, communication,
and neural resources. Second, an inter-
mediate model definition language
to describe the upper SNN is involved
in the brain-inspired application IDE,
which makes the lower implementa-
tion entirely transparent for the upper
layer development environment.

Brain-inspired OS
Compared with the concept of task
and resource in traditional computer
system software, we defined the SNN

running on a brain-inspired computer
as a neural task. Accordingly, neurons
and synapses are termed as neural
resources. Therefore, the brain-inspired
OS is a customized software system
for neural task operation and neural
resource management.

From a hardware perspective, it
implements the encapsulation and
shielding of underlying neuromor-
phological computing resources, ab -
stracts them as neural resources for
unified management and scheduling,
and supports operation of the upper

FIGURE 2. The reference software architecture for a brain-inspired computer.

Brain-Inspired
Application IDE

Model Definition Language

Model
Development

Tool Kit

VisualizationAnalysis TrackDebug Tool

Conversion CompilerSimulatorTraining

Brain-Inspired Computer

Brain-Inspired
OS

External
Access Layer

Brain-Inspired
Functional Layer

Resource
Management

Layer

Hardware
Abstract Layer

Resource Status Management Neural Resource Scheduling

Spike Codec Library Neural Task Scheduling SNN Model Library

State Interface Data Interface Debug Interface

Brain-Inspired Application

Storage Communication Neural Resource

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

neural tasks. From a software perspec-
tive, the OS dynamically allocates neu-
ral resources for neural tasks and pro-
vides an operating environment for
scheduling multiple neural tasks. Con-
currently, it also provides the inter-
nal information interface of neural

resources and a control spike release
process, and offers debugging means
for users to develop neural tasks. The
OS consists of the following four layers:

1. The hardware abstraction
layer enables standardized
hardware access interfaces to
be compatible with different
hardware.

2. The resource manage-
ment layer realizes neural
resource management and
scheduling.

3. The brain-inspired functional
layer supports the operation
of neural tasks by providing a
spike codec library, neural task
scheduling, and an SNN model
library.

4. The external access layer
provides three kinds of access
interfaces for the state, data,
and debugging of the brain-in-
spired computer.

Brain-inspired application IDE
At present, the development of SNN
applications is closely related to the

hardware of brain-inspired comput-
ers. Therefore, we propose an applica-
tion development and debugging tool,
which enables users to efficiently
build and debug an SNN application
without caring about the underly-
ing hardware.

The model development kit sup-
ports the use of direct training to
obtain an SNN, or the conversion of
a trained artificial neural network
(ANN) to an SNN. We define a model
description language to uniformly
describe the SNNs obtained in these two
methods. Then the SNN is simulated
by a simulator. The model parameters
are optimized according to the execu-
tion results to better performance. The
compiler maps spiking neurons and
synapses in the SNN to neurosynap-
tic cores. Finally, the SNN is compiled
into an executable model code that the
brain-inspired computer can run. After
the application is deployed and run-
ning, users can observe the execution of
the application through the visualiza-
tion and analysis functions provided by
the debugging tool.

DARWIN-S: THE
IMPLEMENTATION
The specific implementation version
of Darwin-S focuses on the Darwin
application IDE (DarwinIDE) and Dar-
win brain-inspired OS (DarwinOS).
DarwinIDE realizes the functions of

application debugging and model
development, ranging from a conver-
sion tool, simulator, and compiler,
to model definition language. Dar-
winOS can support the running of the
application and management of the
brain-inspired computer.

DarwinOS: Management
and scheduling
DarwinOS serves as the primary soft-
ware operation platform of the Dar-
win brain-inspired computer. It makes
full use of the computer’s distributed
architecture based on a hybrid comput-
ing architecture. An ARM chip realized
by an FPGA completes the logic part of
the OS, and the neural task is fulfilled
by a neuromorphic chip, the Darwin 2.
The critical functions of DarwinOS are
the management and scheduling of
neural resources and tasks, as depicted
in Figure 3.

Darwin Mouse: A Darwin brain-
inspired computer. Darwin Mouse,
a brain-inspired computer, is devel-
oped on the basis of neuromorphic
chips, the Darwin 2. It adopts a mesh
and tree hybrid architecture and sup-
ports 120 million neurons and 72 bil-
lion synapses. As displayed in Figure 3,
on the first level, the Darwin 2 chip
is organized in a mesh structure and
connected by a high-speed, interchip
interface. On the second level, the chips
communicate through an FPGA, and
on the third level the FPGA communi-
cates with each other through Ethernet
to form a tree structure. The mesh
structure is adopted at the lowest level,
which uses more local communication
and less cross-regional communication
of neuromorphic chips. considers the
delay of cross-regional communica-
tion while ensuring the link through-
put. However, the disadvantage of the

THE CRITICAL FUNCTIONS OF
DARWINOS ARE THE MANAGEMENT

AND SCHEDULING OF NEURAL
RESOURCES AND TASKS.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 55

mesh structure is that it cannot con-
nect a large number of neuromorphic
chips, so the highest level adopts the
tree structure to solve this prob-
lem. We take the second level as
the basic module of Darwin Mouse.
Darwin Mouse consists of 66 such
modules, and each basic module con-
tains 12 interconnected chips and an
FPGA bridge. The latter is responsi-
ble for spike transmission between
the underlying chips and interaction
with the other basic module. The
connected chip transmits the spike

within the chip or between adjacent
chips through the on-chip network, as
shown in Figure 4.

Hardware abstract layer. This layer
shields the hardware differences of
brain-inspired computers and achieves
the hardware-related abstraction of
storage, communication, and neural
resources so that the reference archi-
tecture can sustain different brain-in-
spired hardware.

Drawing on the three-tier hybrid
architecture of Darwin Mouse, we

implement real-time communication
middleware and a distributed file sys-
tem to facilitate real-time communica-
tion between FPGAs and the storage of
large-scale SNN model files. By means of
a publish/subscribe mode, the real-time
communication middleware featuring
data ensures quality-of-service strat-
egies and makes it possible to trans-
mit spikes between FPGAs simulta-
neously, efficiently, and f lexibly.
The distributed file system uniformly
manages and abstracts all the stor-
age resources of Darwin Mouse and

FIGURE 3. The implementation of a brain-inspired OS for a Darwin brain-inspired computer.

DarwinOS

Brain-Inspired Application

DarwinIDE

Communication Bus

Darwin Mouse

FPGA
With
ARM
Core

FPGA
With
ARM
Core

FPGA
With
ARM
CoreDarwin 2

Darwin 2

Darwin 2

Darwin 2

First Level

Second Level . . .

.

External
Access Layer

Brain-Inspired
Functional

Layer

Resource
Management

Layer

Hardware
Abstract Layer

Resource Status Management Neural Resource Scheduling

Spike Codec Library Neural Task Scheduling SNN Model Library

State Interface Data Interface Debug Interface

Distributed File System Real-Time
Communication Middleware

Neural Resource

Darwin 2

Darwin 2

Darwin 2

Darwin 2

First Level

Second Level . . .

Darwin 2

Darwin 2

Darwin 2

Darwin 2

First Level

Second Level . . .

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

creates a unified file operation inter-
face for the upper software. At the
same time, the distributed file system
supports redundant backup, which
improves the reliability of file storage.
Neural resource abstraction unifies
the operation of neurons, synapses,
and other neural resources in neuro-
morphic chips into a standard opera-
tion interface. It mainly includes neu-
ron behavior configuration, synaptic
weight parameter read/write, neuron
connection routing configuration, and
so on. This design makes it possible to
support a wide variety of types of neu-
romorphic chips.

Resource management layer. Dar-
winOS realizes the state management

and scheduling of neural resources
through the resource management
layer. Its resource management abil-
ity and allocation efficiency directly
determine the overall performance of
Darwin Mouse.

The primary resource state manage-
ment is composed of the occupation of
neuron resources and synaptic resources,
neuron membrane potential, and failure
state. On the one hand, resource state
management can offer external users
overall resource occupancy and system
failure state. On the other hand, it can set
resource constraints for neural resource
scheduling. Neural resource scheduling
performs dynamic neural task migration
aligned with the resource requirements
of different neural tasks and the current

resource’s idle state. Through resource
scheduling, the neural tasks that lack
a long-time input spike are primarily
exported to the external file system.
The neural resources are subsequently
allocated to the neural tasks that need
to run urgently to meet the computing
needs of users’ neural tasks to the great-
est extent. The system’s optimal power
consumption and performance can be
fully achieved by reasonable allocation of
neural resources through load balancing.

Brain-inspired functional layer.
The brain-inspired functional layer
provides a runtime environment for
neural tasks, such as spike encoding
and decoding, neural task scheduling,
and the SNN model library. It enables

FIGURE 4. The basic module structure of Darwin Mouse.

FPGA With ARM Core

Chip Interconnect

C
hi

p
In

te
rc

on
ne

ct

C
hi

p
In

te
rc

on
ne

ct

Chip Interconnect

Router Router

Router Router

Router

Router

Core

Core

Core

Core

Core

Core

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 57

the brain-inspired computer to sup-
port large-scale neural tasks such as
brain simulation and the application of
small-scale neural tasks in scenes like
edge computing.

The information is transmitted and
processed by discrete spikes within the
SNN, so the input data of smell, image,
and voice must be coded into a spike
sequence. The brain-inspired OS pro-
vides a spike codec library for applica-
tion. The brain-inspired computer can
run neural tasks with the assistance of
neural task scheduling, which consists
of neural task decomposition, neural
resource allocation, dynamic network
mapping, and neural network loading.

Based on the occupation of neural
resources, the neural task, disassem-
bled into multiple executive subtasks,
is dynamically mapped and loaded into
the neuromorphic chip of a brain-in-
spired computer for operation.

The SNN model library contains
trained standard models, such as voice
and image recognition, and has a cor-
responding spike codec library. The OS
can dynamically load different SNNs
and codec libraries to realize different
brain-inspired applications in accor-
dance with user needs.

External access layer. To tackle the exter-
nal interaction problem of brain-inspired

computers, the OS mainly provides the
neural resource state access interface
and fulfills input and output opera-
tions of the SNN and its spike encod-
ing and decoding file through the data
interaction interface. Users can call the
debugging interface to obtain the run-
ning state of the application, especially
neurosynaptic core information such as
membrane voltage.

DarwinIDE: Development, language,
and compiler. When neuroscien-
tists or SNN algorithm researchers
develop brain-inspired models based
on a Da r w i n bra i n-i nspi red com-
puter, they confront big challenges

FIGURE 5. The implementation of a brain-inspired application IDE. DarwinMDTK: Darwin model development tool kit; DarwinMDL:
Darwin model definition language.

D
ar

w
in

ID
E

VisualizationAnalysis TrackDebug Tool

Brain-Inspired
Application

Parser

Mapper

D
ar

w
in

M
D

T
K

Compiler

Image Recognition Voice Recognition Brain Simulation

DarwinOS

Darwin Mouse

Simulator

Operation Monitor

Output Process

Input Process

Training

Network
Design

Algorithm
Iteration

Conversion

Construct

Adjust

Configure

Parse

DarwinMDL Keywords Syntax Rules

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

due to an insufficient understanding
of hardware constraints. Therefore,
to enable users to efficiently build
neural networks with resource con-
straints and observe the operation of
neural networks, we implement Dar-
winIDE based on a Darwin-S software
reference architecture. As presented
in Figure 5, DarwinIDE consists of two
parts: a Darwin model development
tool kit (DarwinMDTK) and debugging
tool. DarwinMDTK implements model
training, conversion, simulation, and
compilation. The debugging tool has
the functions of visualization, analy-
sis, and execution tracking.

Due to massive neurons in the
neural network (up to billions of neu-
rons), it is impossible to manually
complete the neurons’ connection and
the configuration of weight parameters.
Instead, the construction of the SNN
needs to be completed automatically
through DarwinMDTK. First, the SNN
is trained directly by the training tool,
or the ANN is converted into the SNN
described by Darwin model defini-
tion language (DarwinMDL) using the
conversion tool, and then the model
is simulated by the simulator. After
the simulation run is passed, the com-
piler parses the model, completes the
model mapping, and converts it into
a hardware-executable model code.
The debugging tool is oriented to the
execution process of the executable

model. It obtains the information of
neuron spike release and membrane
voltage by calling the debugging inter-
face provided by the OS and displays it
graphically to analyze or track.

Model definition language. Darwin-
MDL specifies standardized descrip-
tion syntax rules and keywords with
high neural correlation so as to describe
the SNN more accurately and standard-
ized. As a language independent of a
hardware platform, DarwinMDL pro-
vides an intermediate description lan-
guage for the SNN model using train-
ing, transformation, simulation, and

compilation tools. The SNN described
by DarwinMDL can also be displayed
synchronously through graphics to
visually check the correctness of the
internal structure of the SNN, and to
minimize editing and syntax errors.

Model conversion. At present, there
are primarily two ways to achieve
the SNN. One is to obtain the avail-
able SNN by adjusting and converting
the trained ANN through the neu-
ral network layer and fine-tuning
the connection’s weight parameters.12
Another approach is to obtain an SNN
through a direct training algorithm.13
These large-scale SNNs that yield
state-of-the-art performance are most
likely obtained by conversion-based
approaches.14,15 Considering this

aspect, we include a model-conversion
tool in our DarwinMDTK to help devel-
opers convert their ANN trained with
PyTorch or TensorFlow into the SNN
described by DarwinMDL. Moreover, a
detailed instance will be presented
in the “Case Study” section to clarify
this workflow.

The workflow of the tool can be
divided into four main steps. The first
step is model parsing. After the deep
learning library is used to build the
ANN and the training is completed,
the model parser parses the ANN to
generate an intermediate representa-
tion of the model.16 Some neural net-
work layers in the ANN are removed or
replaced according to the need, and an
intermediate ANN is obtained. Next, an
equivalent SNN model structure is con-
structed for the connection relationship
between neurons in the ANN. After-
ward, the weight parameters in the SNN
are further adjusted and then assigned
to the corresponding synapse of the
SNN. Finally, the parameters of the neu-
rons and synapses in the SNN are con-
figured to accomplish the construction
of the SNN.

Model training. In addition to conver-
sion, direct training is another way to
obtain an SNN. To enable developers
to cultivate SNNs as efficiently as pos-
sible from scratch, we integrated an
SNN training framework called Spike-
based Artificial Intelligence Computing
(SPAIC) (https://github.com/Zhejian
glabNCRC/SPAIC) into DarwinMDTK.
Developers need only define the SNN
network structure, training algo-
rithm, and relevant training parame-
ters, and the training process will be
automatically carried out. The output
of this process is the SNN defined by
DarwinMDL, which is ready to be used
in the next step of the simulation.

THE TRAINING PROCESS OF SNNS IS
SIMILAR TO THAT OF DEEP NEURAL

NETWORKS, EXCEPT THAT SNNS NEED TO
ENCODE INFORMATION WITH SPIKES.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 59

Several training algorithms, such
as the spatio-temporal credit assign-
ment one,17 are integrated into the
SPAIC. The training process of SNNs
is similar to that of deep neural net-
works, except that SNNs need to
encode information with spikes. A
typical training process is as follows.
First, according to the design of the
network structure, network connec-
tions (synapses) and parameters are
initialized. Then, several iterations of
the learning algorithm are carried out.
Each iteration usually consists of a for-
ward pass, where the SNN is simulated
for certain time steps with the inputs
(outputs) and encoded (decoded) to
(from) the spikes, and a backward
pass, where the error is backpropa-
gated through spikes to the network
parameters, and then the parameters
are updated by an optimizer according
to the gradient. Finally, the trained
SNN will be packaged into a Darwin-
MDL standard format.

Model simulator. Before compi l-
i ng the application, the simulator is
used to simulate the converted SNN to
evaluate the model performance and
decide whether to adjust the conver-
sion parameters for optimization. The
simulator is divided into three parts
from top to bottom: the input process,
operation monitoring of the SNN, and
model output process. The input pro-
cess provides the pretreatment and
encoding of input data. The encoding
data are fed into the SNN executing on
the simulator. The operational status
of the SNN, including neurons, synap-
tic connections, and firing spikes, will
be continuously monitored during
operation. Ultimately, the output of
the model needs to be processed. If the
frequency coding method is adopted,
each neuron’s spike excitation in the

final output layer of the SNN needs to
be counted to achieve the final result.

In executing the SNN on the sim-
ulator and processing data, the neu-
ron state of each layer is monitored by
defining the neuron state monitor, and
the spike excitation of the neurons at
each layer is obtained by defining the
spike-excitation monitor. On the one
hand, the two monitors can monitor
neurons’ state changes for the perfor-
mance analysis of the model, and ana-
lyze and deal with neurons that fire
too fast or do not fire for a long time.
On the other hand, the performance
bottleneck in the model-calculation
process can be analyzed in time during
the simulation application. The model
can be iterated and optimized in time
through simulation at the software
level to obtain better performance
when it is deployed on hardware.

Model compiler. The compiler consists
of a language parser and a mapper. The
language parser converts the model
into an intermediate code, syntax
tree for mapping. Then the mapper
binds it to specific neural resources.

 › Model language parser: The pro-
cess of language parsing, like a
traditional compiler, undergoes
the stages of lexical, syntax, and
semantic analyses. A lexical
analysis scans and identifies
words, compares keywords, and
establishes corresponding symbol
lists. A syntax analysis identifies
corresponding syntax categories
according to the syntax rules of
DarwinMDL, while a semantic
analysis checks the overall net-
work’s model structure. Addition-
ally, error checking and handling
are performed at each stage. In
the semantic analysis stage, we

optimize the compilation in terms
of the characteristics of the neural
network. During construction of
the SNN, the order of the defini-
tions of layers and the order of
neurons’ attributes in a single
layer is utterly distinct. Addi-
tionally, some parameters can be
omitted and default values can be
used. Language analysis needs to
optimize semantic parsing, obtain
the correct hierarchical order
according to the context, and put
the value into the corresponding
attribute key to complete seman-
tic matching.

 › Model mapping: The mapping of
the SNN falls into two stages:
coarse- and fine-grained dis-
tribution. The coarse-grained
distribution stage aims to
determine whether a brain-in-
spired computer can meet the
demand of network mapping. If
the resources of a brain-inspired
computer can fulfill network
requirements, the next fine-
grained allocation phase will
continue. After inputting the
SNN to be mapped, a resource
evaluation is executed. The total
number of resources required
by the network is calculated.
If the results do not exceed
the available resources of the
hardware, the next calculation
can be executed. Otherwise,
the network cannot be mapped
to the hardware. According to
different SNN structures, a fine-
grained allocation stage can be
accomplished in two ways. The
number of neurons allocated
to each node can be calculated
if the SNN is topographically
well structured, such as a fully
connected layer, convolutional

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

structure. Another method is
for an irregular connection. The
connection number of neurons
at the same layer may vary sig-
nificantly. The first adaptation
algorithm is used to calculate
the number of nodes needed to
use as few nodes as possible. The
problem can be transformed into
a packing problem. Each node,
regarded as a box, puts neurons
and corresponding connections.
The box will be full when the
number of neurons reaches the
threshold, or another neuron’s
connections cannot be put.
According to the data flow,
we reverse the allocation of
resources and gain an equal,
one-to-one network correspond-
ing to the network and hard-
ware neurons. In the mapping
process, a greedy algorithm can
be employed to optimize power
consumption.

CASE STUDY
Based on Darwin Mouse, we take the
Modified National Institute of Standards

FIGURE 6. SNN model development, and the execution process.

Model
Conversion

Debug

Spike
Encoded

Spike Decoded

Simulator

DarwinOS

Darwin Mouse

Model Compile

Model
Training

Trained ANN
by TensorFlow

Image
in MNIST

SNN Model by
DarwinMDL

Executable
Model File

Spike
of Image

Spike of
Recognition

Result

ANN:

SNN:

1 at 28 × 28
4 at 12 × 12

1 × 576

1 × 64
1 × 10

CONV2D Flatten

Input: 784 Layer One: 576 Layer Two: 64 Layer Three: 10

FIGURE 7. ANN and SNN model structures. CONV2D: convolution 2D.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 61

and Technology-based, handwritten
numeral recognition model to illustrate
the whole process of an SNN model’s
development, compilation, and execu-
tion on a brain-inspired computer, as
illustrated in Figure 6.

In this case, the SNN model is
developed by conversion. Initially, a
classification ANN is constructed and
trained using the traditional ANN
framework TensorFlow. The weight
parameters in the ANN are then opti-
mized by means of parameter adjust-
ment based on data-based weight
normalization. Finally, using a mod-
el-conversion tool, the ANN is con-
verted into the SNN. The algorithm
it uses can be customized in line with
user requirements.

We use the method presented by
Diehl et al.18 to convert a simple con-
volutiona l ANN into an SNN. The

output SNN contains four layers, 784
virtual input nodes, 650 computa-
tional neurons, and 41,600 synapses,
as depicted in Figure 7. The simulation
time step is set to 1 ms, and the recog-
nition time window is 100 ms. Finally,
it takes a total of 19.123 s to convert
the ANN into the SNN using our mod-
el-conversion tool.

Before the model is deployed to the
actual brain-inspired computer, it is
simulated by the simulator to ver-
ify the correctness and performance
of the model. First, the number and
type of neurons in each layer and the
connection weight between layers are
parsed from the model file described
by DarwinMDL, and the SNN is cre-
ated and initialized. Then, it is put
on the simulator to run. After several
simulation runs, the network param-
eters are optimized according to the

results to improve the performance of
the model.

After verifying the SNN on the sim-
ulator, the compiler compiles the Dar-
winMDL file, generates the executable
model file, and submits it to the Dar-
winOS to be deployed on Darwin Mouse
for operation. Then, under the control
of DarwinOS, the image to be recog-
nized is encoded into spikes and input
into the computer, and the correspond-
ing output is decoded to obtain the final
result. The debugging tool provided by
DarwinIDE is used to display the neural
resource status and neural task execu-
tion results, as shown in Figure 8.

After working through the work-
flow described previously, our final
result is as follows: On average, it took
56.063 ms to process an image. The
SNN achieved 92.8 and 83% accuracy
while running on the simulator and

FIGURE 8. The state monitoring and execution result interface of DarwinIDE.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

brain-inspired computer, respectively.
Compared with the 93.27% accuracy
obtained by the trained ANN fed into
a model-conversion tool, the accuracy

loss was 0.47 and 10.27%, respectively.
The result is a little worse than the
state-of-the-art method.15 However,
considering we did not specifically

optimize the training and conversion
process, and most of the parameters
are just set defaults, we consider this
result acceptable.

ABOUT THE AUTHORS
SHUIGUANG DENG is a full professor in the College of Com-
puter Science and Technology, Zhejiang University, Hang-
zhou, 310027, China. His research interests include edge
computing, service computing, and cloud computing. Deng
received a Ph.D. in computer science from Zhejiang Univer-
sity. He serves as an associate editor for IEEE Transactions
on Services Computing, Knowledge and Information Sys-
tems, Computing, and IET Cyber-Physical Systems: Theory &
Applications. He is a Senior Member of IEEE and a fellow of
the Institution of Engineering and Technology. Contact him at
dengsg@zju.edu.cn.

PAN LV is a doctoral student at Zhejiang University, Hang-
zhou, 310027, China. His main research interests include
intelligent systems, embedded real-time systems, and
brain-inspired computing. LV received an M.Sc. in computer
science and technology from Zhejiang University. Contact
him at lvp@zju.edu.cn.

OUWEN JIN is a doctoral student at Zhejiang University,
Hangzhou, 310027, China. His main research interests include
computer architecture and brain-inspired computing. Jin
received a bachelor's degree in computer science from the
University of Electronic Science and Technology. Contact
him at jinouwen@zju.edu.cn.

SCHAHRAM DUSTDAR is a professor of computer sci-
ence with the Distributed Systems Group, TU Wien, Vienna,
Austria. His research interests include service-oriented archi-
tectures and computing, mobile and ubiquitous computing,
complex and adaptive systems, and context-aware comput-
ing. Dustdar received a Ph.D. in business informatics from
the University of Linz, Austria. He is an elected member of
Academia Europaea, where he is chairman of the Informatics
Section. He serves as coeditor in chief of ACM Transactions
on Internet of Things and editor in chief of Computing. He
also serves as an associate editor of IEEE Transactions on

Services Computing, IEEE Transactions on Cloud Comput-
ing, ACM Transactions on the Web, and ACM Transactions
on Internet Technology. He serves on the editorial boards
of IEEE Internet Computing and Computer. He is a Fellow of
IEEE. Contact him at dustdar@dsg.tuwien.ac.at.

YING LI is an associate professor in the College of Computer
Science, Zhejiang University, Hangzhou, 310027, China. His
research interests include compiler techniques, service com-
puting, and data science. Li received a Ph.D. in computer sci-
ence from Zhejiang University. Contact him at cnliying@zju.
edu.cn.

DE MA is an associate professor in the college of Computer
Science and Technology, Zhejiang University, Hangzhou,
310027, China. His research interests include neuromorphic
hardware, VLSI design, and system-on-chip architecture. Ma
received a Ph.D. in electrical and information engineering
from the Institute of VLSI Design, Zhejiang University. Con-
tact him at made@zju.edu.cn.

ZHAOHUI WU is a professor of computer science at Zhejiang
University, Hangzhou, 310027, China. His current research
interests include intelligent systems, brain–machine inter-
faces, and service computing. Wu received a Ph.D. in com-
puter science from Zhejiang University. He is a Fellow of IEEE,
a fellow of the World Academy of Sciences, and a member of
the Chinese Academy of Sciences. Contact him at wzh@zju.
edu.cn.

GANG PAN is a professor in the College of Computer Science
and Technology, Zhejiang University, Hangzhou, 310027,
China. His research interests include neuromorphic comput-
ing, brain–machine interfaces, and artificial intelligence. Pan
received a Ph.D. in computer science from Zhjiang University.
He is the corresponding author of this article. Contact him at
gpan@zju.edu.cn.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

 M AY 2 0 2 2 63

W hen it comes to brain-in-
spired computer software
architectures, although aca-

demic and industrial circles have not
reached a unified understanding of the
standard, throughout existing brain-in-
spired computing systems, the direc-
tion of efforts remains the same. The
abstract hardware details are expected
to construct the primary software run-
time environment and further estab-
lish the programming development
environment and OS to simplify the
programming method. In the future,
brain-inspired computer software
systems will gradually realize stan-
dardization from such aspects as the
OS, programming language, and pro-
gramming paradigm to promote the
rapid and benign development of a
brain-inspired computing ecology.

ACKNOWLEDGMENTS
This work was supported by the National
Key Research and Development Program
of China (No.2021YFB2501300), the Nat-
ional Natural Science Foundation of
China (No.U20A20220), and the National
Important Science & Technology Spe-
cific Projects (No.2017ZX01038201).

REFERENCES
1. K. Roy, A. Jaiswal, and P. Panda,

“Towards spike-based machine
intelligence with neuromorphic
computing,” Nature, vol. 575, no.
7784, pp. 607–617, 2019, doi: 10.1038/
s41586-019-1677-2.

2. S. Scholze et al., “A 32 GBit/s commu-
nication SoC for a waferscale neuro-
morphic system,” Integration, vol. 45,
no. 1, pp. 61–75, 2012, doi: 10.1016/j.
vlsi.2011.05.003.

3. E. Painkras et al., “SpiNNaker:
A 1-W 18-core system-on-chip
for massively-parallel neural

network simulation,” IEEE J. Sol-
id-State Circuits, vol. 48, no. 8, pp.
1943–1953, 2013, doi: 10.1109/
JSSC.2013.2259038.

4. F. Akopyan et al., “TrueNorth: Design
and tool flow of a 65 mW 1 million
neuron programmable neurosy-
naptic chip,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst.,
vol. 34, no. 10, pp. 1537–1557, 2015,
doi: 10.1109/TCAD.2015.2474396.

5. M. Davies et al., “Loihi: A neuro-
morphic manycore processor with
on-chip learning,” IEEE Micro,
vol. 38, no. 1, pp. 82–99, 2018, doi:
10.1109/MM.2018.112130359.

6. J. Pei et al., “Towards artificial
general intelligence with hybrid
Tianjic chip architecture,” Nature,
vol. 572, no. 7767, pp. 106–111, 2019,
doi: 10.1038/s41586-019-1424-8.

7. D. Ma et al., “Darwin: A neuromor-
phic hardware co-processor based
on spiking neural networks,” J. Syst.
Archit., vol. 77, pp. 43–51, Jun. 2017,
doi: 10.1016/j.sysarc.2017.01.003.

8. E. Müller et al., “The operating system
of the neuromorphic brainScaleS-1
system,” 2020, arXiv:2003.13749.

9. S. B. Furber et al., “Overview of the
SpiNNaker system architecture,” IEEE
Trans. Comput., vol. 62, no. 12, pp. 2454–
2467, 2013, doi: 10.1109/TC.2012.142.

10. A. G. D. Rowley et al., “SpiNNTools:
The execution engine for the SpiN-
Naker platform,” Frontiers Neurosci.,
vol. 13, pp. 231–231, Mar. 2019, doi:
10.3389/fnins.2019.00231.

11. J. Sawada et al., “TrueNorth ecosys-
tem for brain-inspired computing:
Scalable systems, software, and appli-
cations,” in Proc. Int. Conf. High Perf.
Comput., Netw., Storage Analy., 2016,
pp. 130–141, doi: 10.1109/SC.2016.11.

12. J. A. Pérez-Carrasco et al., “Mapping
from frame-driven to frame-free

event-driven vision systems by low-
rate rate coding and coincidence pro-
cessing--Application to feedforward
ConvNets,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 11, pp. 2706–
2719, 2013, doi: 10.1109/TPAMI.2013.71.

13. Z. Bing, I. Baumann, Z. Jiang,
K. Huang, C. Cai, and A.
Knoll, “Supervised learning
in SNN via reward-modulated
spike-timing-dependent plasticity
for a target reaching vehicle,” Fron-
tiers Neurorobot., vol. 13, p. 18, May
2019, doi: 10.3389/fnbot.2019.00018.

14. B. Rueckauer and S.-C. Liu, “Con-
version of analog to spiking neural
networks using sparse temporal
coding,” in Proc. 2018 IEEE Int. Symp.
Circuits Syst., pp. 1–5, doi: 10.1109/
ISCAS.2018.8351295.

15. B. Rueckauer, I. A. Lungu, Y. Hu, M.
Pfeiffer, and S.-C. Liu, “Conversion
of continuous-valued deep networks
to efficient event-driven networks
for image classification,” Frontiers
Neurosci., vol. 11, p. 682, Dec. 2017,
doi: 10.3389/fnins.2017.00682.

16. Y. Cao, Y. Chen, and D. Khosla,
“Spiking deep convolutional neural
networks for energy-efficient object
recognition,” Int. J. Comput. Vis.,
vol. 113, no. 1, pp. 54–66, 2014, doi:
10.1007/s11263-014-0788-3.

17. P. Gu, R. Xiao, G. Pan, and H. Tang,
“STCA: Spatio-temporal credit assign-
ment with delayed feedback in deep
spiking neural networks,” in Proc. 2019
Int. Joint Conf. Artif. Intell., pp. 1366–
1372, doi: 10.24963/ijcai.2019/189.

18. P. U. Diehl, D. Neil, J. Binas, M. Cook,
S.-C. Liu, and M. Pfeiffer, “Fast-clas-
sifying, high-accuracy spiking
deep networks through weight and
threshold balancing,” in Proc. 2015
Int. Joint Conf. Neural Netw., pp. 1–8,
doi: 10.1109/IJCNN.2015.7280696.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:41:55 UTC from IEEE Xplore. Restrictions apply.

