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Abstract—Network slicing is the key to enable virtualized resource sharing among vertical industries in the era of 5G communication.

Efficient resource allocation is of vital importance to realize network slicing in real-world business scenarios. To deal with the high algorithm

complexity, privacy leakage, and unrealistic offline setting of current network slicing algorithms, in this paper we propose a fully decentralized

and low-complexity online algorithm, DPoS, for multi-resource slicing.We first formulate the problemasa global social welfaremaximization

problem. Next, we design the online algorithmDPoSbased on the primal-dual approach and posted pricemechanism. InDPoS, each tenant

is incentivized tomake its own decision based on its true preferenceswithout disclosing any private information to themobile virtual network

operator and other tenants.We provide a rigorous theoretical analysis to show that DPoShas the optimal competitive ratio when the cost

function of each resource is linear. Extensive simulation experiments are conducted to evaluate the performance of DPoS. The results show

that DPoS can not only achieve close-to-offline-optimal performance, but also have low algorithmic overheads.

Index Terms—Network slicing, decentralized algorithm, posted price mechanism, privacy preserving, multi-tenant networks
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1 INTRODUCTION

5G creates tremendous opportunities for social digitali-
zation and industrial interconnection. On top of the

physical infrastructure, diversified service requirements
(eMBB, mMTC, and uRLLC) can be met in the service-ori-
ented end-to-end network slicing (E2E-NS) architecture. The
E2E-NS architecture supports both the co-existent accesses of
multiple standards (5G, LTE, and Wi-Fi), and the coordina-
tion between different site types (macro cell, micro cell, and
pico cell base stations), which is mainly attributed to the flexi-
ble orchestration and on-demand deployment of virtualized
network functions (VNFs) [1], [2], [3].

The substantive characteristics of the E2E-NS architecture
is cloudification. It involves the transformation from traditional
hardbox network functions to the all-on-cloud management
& control planes [4]. In this architecture, network slicing is the
key to enabling networking capabilities for vertical industries.
Many business players, such as infrastructure providers
(InPs), mobile network operators (MNOs), cloud providers

(one kind of InPs actually), edge & cloud service providers (a.
k.a. tenants), service subscribers (i.e., users), service brokers
and mobile virtual network operators (MVNOs) are involved
[5], [6]. For the scenario considered in this paper, the InP offers
the physical network infrastructure to the MVNO by leasing
or selling and is responsible for hardware upgrades and
maintenance. After having control of the physical networks,
the MVNO virtualizes the network resources, divides each
kind of resource into slices, and rents them to the tenants
according to tenants’ demand. Therewith, each tenant creates
service instances based on its slices, and provides services to
its subscribers. Normally, the level of services are stated in
Service Level Agreements (SLAs). SLAs define the metrics to
measure and show if the expected quality of service (QoS) is
achieved or not. The process1 is illustrated in Fig. 1.

The key problem underlying network slicing is efficient
resource allocation for VNFs [7], [8], which is algorithmicaly
NP-hard [9]. There has been lots of research done so far for
different scenarios, including slicing the radio access net-
works (RANs) [10], [11], [12], [13], the core networks (5GCs)
[14], [15], [16], and the federated edge [17], [18], [19], etc. In
these cases, survivability constraints, heterogeneous QoS
requirements, geographical limitations, and other scenario-
specific constraints are taken into considerations to formulate
complicated combinatorial non-convex problems. To solve
them, the most typical and general class of works are based
on fine-tuned heuristics [20] or deep machine learning
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1. To be clear, this is not the only business model in network slicing.
In some scenarios, the MNOs are the owners and maintainers of physi-
cal resources. They create slices on top of the resources, which will be
offered to the MVNOs to perform services to subscribers. For all this,
the network slicing model provided in this paper is applicative.
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models such as deep Q-network (DQN) [18], [21]. These
algorithms can achieve (approximately) optimal solutions
and make the communication systems smart and intelligent
[22], [23]. However, they are usually complex and do not
scale with the types of resources and the number of tenants.
Take Deep Q-Network (DQN) as an example, it could take
days even weeks for obtaining not-particularly-good actions
even though the state and action spaces have been discre-
tized. Although several reinforcement learning methods
can avoid privacy leakage, such as [24] and [25], the central-
ized algorithms are generally built on the complete knowl-
edge regarding all preferences of involved business players,
including the monetary budget of tenants, the number and
purchasing-power of service subscribers, etc. The formula-
tion of the centralized optimization problem itself is a detri-
ment on privacy and trade secrets.

To avoid insufferable complexity and privacy leakage, in
recent years,many researchers establish network slicingmod-
els based on standard economic frameworks, such as Fisher
markets [26], [27], and different auction-based mechanisms,
such as the VCG-Kelly mechanisms [28], [29]. In these works,
all tenants get together and bid for maximizing their profits.
For instance, Wang et al. studied the relationship between
resource efficiency and profit maximization and developed
an optimization framework to maximize net social welfare
[30]. Similarly, Jiang et al. addressed a joint resource and reve-
nue optimization problem and solved it with the auction
mechanisms [31]. Furthermore, some works resort to game
theory to model tenants’ and MVNOs’ strategic (or non-stra-
tegic) behaviors, and take the price of anarchy (PoA) to analyze
the efficiency of potentially existent Nash equilibrium (NE)
[32]. For instance, Caballero et al. studied the resource alloca-
tion mechanism by formulating a network slicing game [33].
They proved that when the game associated with strategic
behavior of tenants, i.e., adjusting their preferences depend-
ing on perceived resource contention, convergence to a Nash
equilibrium (under some specific conditions) can be achieved.
Luu et al. also study a network slicing game, but under spe-
cific constraints of RAN [10]. Generally, auction mechanisms
are efficient and scalable to diversified service requirements.
However, most of these auction-based works are designed
under an offline setting, i.e., theMVNO knows the willingness
to bid and many other private information of all tenants dur-
ing each bidding round. Besides, a tenant’s partial private
information might be disclosed to all the remaining tenants.
Nevertheless, this may not possible in many real-world
business transactions because it is rare that all the tenants

negotiate the rental business details simultaneously. The
MVNO should not know anything about the arrival sequence
of tenants, much less the private information of the served
users of each tenant. It should only have the knowledge on
the resource surplus and the attributes saved in the generic
network slice templates (GSTs) [34]. In addition, a tenant pri-
vate information should not be available to the other tenants.

The above analysis shows that auction mechanisms may
not be ideal for online network slicing problems. In addition to
the above reasons, auctions take time and require multiple
communication rounds between the MVNO and the tenants
[35]. They may have poor performances when the distribution
of bidders’ arrival instance is unknown [36]. By contrast, take-
it-or-leave-it, i.e., posted price, is a more practical option for
online settings. Therefore, in this paper, we design an online
slicing algorithm based on the posted price mechanism. A
decentralized, low-complexity, and privacy-preserving algo-
rithm, DPoS, mainly based on previous theoretical works on
the online primal-dual algorithms [37], [38], and [39], is pro-
posed. Specifically, we extend the basic model proposed in
[38] into multi-resource scenarios. DPoS is consists of two
parts, DPoS�MVNO (agent for the MVNO) and DPoS�
TNTn (agent for the nth tenant), with a complexity of OðNCÞ
and OðCÞ, respectively. Here N is the number of tenants, and
C is the number of type of resources. DPoS runs in a fully
decentralized way. Each time a new tenant n arrives,
DPoS� TNTn decides to rent the demand resources or not
according to the rental prices of each type of resource, pub-
lished by DPoS�MVNO beforehand. Therewith, DPoS�
TNTn sends the decision and payment (if tenant n has thewill-
ingness to pay) to DPoS�MVNO. Then, DPoS�MVNO
checks whether the resource surplus can satisfy tenant n and
inform DPoS� TNTn the transaction is succeeded or failed.
Note that each tenant may experience different prices on the
same kind of resource, which depends on the pricing mecha-
nism the MVNO adopts. In the above procedure, only a small
flow of privacy-irrelevant information are transferred between
the MVNO and each tenant. No information are transferred
among tenants. Trade secrets, especially the information of ser-
vice subscribers and the pricing policies of tenants, will not be
disclosed.

Our main contributions are summarized as follows.

� We design a decentralized, privacy-preserving online
network slicing algorithm, DPoS. This algorithm
enjoys low complexity, and it is practicable under
diversifiedmulti-resource requirements. Trade secrets
and related private information can be fully preserved.

� We find that, when the cost function of each resource
is linear, DPoS achieves the optimal competitive ratio
over all the online algorithms for the maximization
of social welfare.

� We verify the superiority of DPoS from multiple
angles, including social welfare achieved, cross-
agent communication data size, algorithm execution
time, etc. The experimental results show that DPoS
not only achieves close-to-offline-optimal perfor-
mance, but also has low algorithmic overheads.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the system model and formulates the global
offline problem. Section 3 demonstrates the design details

Fig. 1. Business players involved in network slicing and how does the
process works.
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of the algorithm DPoS. Theoretical analysis on the competi-
tive ratio is provided in Section 4. The experiment results
are demonstrated in Section 5. Section 6 reviews related
works and Section 7 concludes this paper.

2 PROBLEM FORMULATION

To simplify the notations without damaging its economic
structure, our model concerns one InP, one MVNO, several
tenants and each tenant’s served users. Our model and algo-
rithm can be directly adapted to multi-MVNO multi-InP sce-
narios. We consider the scenario where multiple network
slices are built upon an SDN/NFV-enabled 5G network infra-
structure, which is rented from the InP by the MVNO.
Roughly, physical resources in this infrastructure can be
divided into computation, storage, and forwarding/band-
width. At great length, physical resources are usually orga-
nized as a weighted directed graph [30], [40], where the node can
be base station at the access, forwarding router in the bearer,
and physical machine or virtual machine in the regional data-
centers, and the edge is a directed linkwith certain propagation
speed. Each node is the carrier of VNFswith different capabili-
ties while link has unique bandwidth and data transfer rate.
To ensure the universality of the model, we do not add any
specific limitation and simply use C , f1; . . . ; Cg to denote the
set of resources. Without loss of generality, the capacity limit
of each resource is normalized to be 1. The key notations used
in this paper are summarized in Table 1.

Let us use N , f1; ::; Ng to denote the set of tenants. In
our model, each tenant requests one (and only one) slice
from the MVNO.2 Generally, a slice is a collection of differ-
ent types of resources, the topology of which can be
mapped onto the substrate network as a connected sub-
graph.3 We use fdcng8c2C to denote the requirements of the

nth tenant (slice), where dcn is the demand of resource of
type c 2 Cn � C, and

dcn
> 0 if c 2 Cn
¼ 0 otherwise:

�
(1)

The traffic demand on the nth slice is denoted by
ffsðg; tÞg8s2Sn , where s is a service subscriber from tenant
n’s served users Sn, and fsðg; tÞ is a data flow with promis-
sory data rate g and latency constraint t from some source
node to some destination node. A slice’s consumption on
resources is embodied in the execution of VNFs and the
occupation of bandwidth. For tenant n, we define a function
sn : ffsðg; tÞg8s2Sn ! R to calculate the payment of user s
for enjoying the data flow fsðg; tÞ. We regard sn as private
because it involves business secrets of the tenant. The esti-
mated revenue of each tenant n is from the payment of its
service subscribers, which is defined as follows:

vn ,
X
s2Sn

%s � sn

�
fsðg; tÞ

�
: (2)

In (2), %s is the level of QoS for subscriber s 2 Sn, which is
decided based on the commitment on delay torelant, reli-
ability, isolation level, etc [41]. A full list of attributes can be
found at [34]. Under normal circumstances, the higher the
level of QoS, the faster data rate and tighter latency con-
straints on the data flow, which in turn leads to more
resource consumption. Note that all the fdcng8c2C are used to
support the data flows ffsðg; tÞg8s2Sn . If we assume that the
mapping function from data flow fsðg; tÞ to the cth resource
occupation is gc : ffsðg; tÞg8s2Sn ! ½0; dcn�, we have the fol-
lowing identity:

dcn ¼
X
s2Sn

gc

�
fsðg; tÞ

�
; 8c 2 Cn:

In practice, vn can be interpreted as the willingness-to-pay
of tenant n for renting the required resources [38]. 8c 2
C; 8n 2 N , we define the earning density ecn as vn=d

c
n. e

c
n can

be interpreted as the estimated revenue per unit of resource
c to the tenant n. Following [38], [42], we define pc and pc as
follows.

8c 2 C : pc � min8n2N :dcn 6¼0e
c
n

pc � max8n2N :dcn 6¼0e
c
n:

�
(3)

The lower bound means that the MVNO will reject the ten-
ant n directly if 9c 2 C; ecn is lower than pc. The role of the
lower bound is to avoid the tenants deliberately overstating
their resource demands to get a discount. In other words,
the tenants are forced to engage the transactions with their
true preferences and no resource will be wasted. The upper
bound in (3) is to eliminate irrational tenants or mock auc-
tions, which exists naturally in a wholesome market.

For each tenant n 2 N , we use xn 2 f0; 1g to indicate
whether the deal is successful. The utility of tenant n is
defined as Un , ðvn � pnÞ � xn, where pn is the payment. The
utility of the MVNO is defined as Uo ,

P
n2N pn � xn �P

c2C fc
�P

n2N dcnxn

�
, where 8c 2 C; fc : ½0; 1� ! R is a non-

TABLE 1
Summary of Key Notations

Notation Description

C The set of network resources
N The set of tenants
Sn The set of users of tenant n 2 N
fdcng8c2C Resource demands of tenant n
vn The revenue in estimation of tenant n
ecn The valuation density of tenant n
pc and pc The lower (upper) bound of earning density
xn 2 f0; 1g The decision variable of tenant n
pn The payment made by tenant n
yc 2 ½0; 1� The resource rent out of type c
ffcg8c2C Non-decreasing zero-startup cost functions
&c and &c The derivative of fcð�Þ at point 0 and 1

f ~fcg8c2C The extended cost functions
fFpcg8c2C The profit functions
fhcg8c2C The maximum profit functions
cn and pc The dual variables corresponding to xn and yc
ffcg8c2C The pricing functions
a Competitive ratio of online algorithms

2. In the following, we may interpret n as the nth tenant or the nth
slice. It depends on the content.

3. There have been lots of works on the VNF placement and map-
ping [7], [15], [17], [33]. But this is not the subject of this paper.
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decreasing zero-startup cost function of resource c. We set fc
as a non-decreasing function because more resources vir-
tualized and sliced, more operating and maintenance costs
on those rent-out slices.

In the above formulation, we take sn and the mapping
ffsðg; tÞg8s2Sn ! Sn as private information of tenant n
which should not be accessible to the MVNO and the other
tenants. The former comes down to the payment models
and pricing strategies adopted by tenant n and reveals the
purchasing power of it served users. The latter establishes
the relationship between data flows and their initiators. In
online settings, the deals between the MVNO and the ten-
ants are made one-by-one according to the arrival sequence
of tenants. Our goal is to (approximately) maximize the
social welfare of this ecosystem, i.e., the sum of the MVNO’s
utility and all the tenants’, in an online and decentralized set-
ting. Before introducing the online algorithm proposed in
this paper, we first formulate the global offline social welfare
maximization problem as follows.

P1 : max
fxng8n2N

X
n2N

vnxn �
X
c2C

fc

�X
n2N

dcnxn

�

s:t:
X
n2N

dcnxn � 1; 8c 2 C; (4a)

xn 2 f0; 1g; 8n 2 N : (4b)

In P1, vn is obtained through (2). Even though the prob-
lem is hard to solve, it is formulated based on the complete
knowledge of the ecosystem. In other words, the formula-
tion of P1 itself is a detriment on privacy. In an online set-
ting, the MVNO should only know the setup information
ffc; pc; pcg8c2C and the attributes defined in the GSTs
f%sg8s2Sn;8n2N handed in by tenants as a priori. It should not
know anything about the private tuple

uu ,
�
fsng8n2N ;

�ffsðg; tÞg8s2Sn ! Sn�8n2N�;
and the arrival sequence of tenants. In addition, each tenant
should know nothing about the other tenants at all. As a
result, to solve the problem in a privacy-preserving decentral-
ized setting, we need to ensure that the deal is made with
only a small flow of information transferred between the
MVNOand each tenant without revealing any sensitive infor-
mation. In the proposed algorithmDPoS, whichwill be intro-
duced in the following, each time when a new tenant n
arrives, the tenant makes the decision xn by itself according to
the disclosed information such as current rental price of
each kind resource. If xn is set as 1, then tenant n sends
ð1;pn; fdcng8c2CÞ to the MVNO. Otherwise ð0; 0; 0Þ is sent. The
MVNOcan only access the data transferred to it.

3 ALGORITHM DESIGN

To maximize the social welfare in an online and decentral-
ized setting, we first introduce some notations, then demon-
strate the designing of the Distributed Privacy-preserving
online Slicing algorithm, DPoS.

3.1 The Primal-Dual Approach

8c 2 C, we introduce the extended cost function ~fc as follows.

~fcðyÞ , fcðyÞ if y 2 ½0; 1�
þ1 if y 2 ð1;þ1Þ;

�
(5)

~fc extends the domain of fc to ½0;þ1Þ. Correspondingly, we
define the profit function Fpc of resource c for the MVNO as
follows:

FpcðycÞ , pcyc � ~fcðycÞ; 8yc 2 ½0;þ1Þ: (6)

Regarding yc as the total resource rented out of type c and pc
as the rental price of resource c, FpcðycÞ is the revenue
obtained by renting out yc unit of resource c minus the
maintainers cost of it. Based on (6), we denote the maximum
profithc of resource cwhen the rental price is pc by

hcðpcÞ , max
yc�0

FpcðycÞ: (7)

Following the primal-dual approach [38], [39], we intro-
duce the Relaxed Primal Problem P2.

P2 : max
xx;yy

X
n2N

X
s2Sn

%s � sn

�
fsðg; tÞ

�
xn �

X
c2C

~fcðycÞ

s:t:
X
n2N

dcnxn � yc; 8c 2 C; (8a)

xx � 1; xx � 00; yy � 00; (8b)

where xx ¼ ½xn�n2N 2 ½0; 1�N , and yy ¼ ½yc�y2C 2 RC . In terms
of the relation between P1 and P2, we have the following
proposition.

Proposition 1. P2 is equivalent to P1 except the relaxation of
fxng8n2N .

Proof. Tomaximize the objective ofP1, the optimal yy
?
must be

located in ½0; 1�N . Because fc is non-decreasing for all kinds
of resource c 2 C, the optimal y

?

c must be the minimum
allowed, i.e.,

P
n2N dcnxn. Thus, except relaxing fxng8n2N to

the continuous interval ½0; 1�N ,P2 is the same asP1. tu
Take P2 as the primal problem, the following proposition

gives the dual problem P3.

Proposition 2. The dual problem of P2 is:

P3 : min
pp;cc

X
n2N

cn þ
X
c2C

hcðpcÞ (9a)

s:t: cn � vn �
X
c2C

pcd
c
n; 8n 2 N ; (9b)

cc � 0; pp � 0; (9c)
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where cc ¼ ½cn�n2N 2 RN and pp ¼ ½pc�c2C 2 RC are the dual
variables corresponding to xx and yy, respectively.

Proof. By introducing the Lagrangian multipliers fpcg8c2C
and fcng8n2N for (8a) and the first inequality of (8b),
respectively, the Lagrangian of P2 is

Lðxx; yy;cc; ppÞ ¼
X
c2C

�
pcyc � ~fcðycÞ

�
þ
X
n2N

cn

þ
X
n2N

xn

 X
s2Sn

%s � sn

�
fsðg; tÞ

�
�
X
c2C

pcd
c
n � cn

!
:

Thus, we have

min
cc;pp

max
xx;yy

L ¼ min
cc;pp

�
max

yy

X
c2C

�
pcyc � ~fcðycÞ

�
þ
X
n2N

cn

�
;

when 8n 2 N , cn � vn �
P

c2C pcd
c
n. Therein,

P
s2Sn %s �

sn

�
fsðg; tÞ

�
is replaced by vn through (2). The result is

immediate with (7). tu
Regarding cn as the utility of tenant n. The objective of

P3 is the aggregate utilities of all tenants plus the optimal
utility of the MVNO. Both the objective of P1 and P3 indi-
cate the social welfare of the ecosystem.

3.2 The DPoS Algorithm

Note that the rental price pc of resource c is a global var-
iable known to all tenants. Thus, if the final optimal
price pp is known to the MVNO, each time a tenant n
arrives, then this tenant can make the rent decision xn
without worrying about whether the optimal social wel-
fare is achieved or not. However, it is impossible to
know the exact value of pp in advance without the arrival
sequence and uu. To tackle with this problem, inspired by
[37], [38] and [39], we design the DPoS algorithm based
on the alternating update of primal & dual variables (of
P2 and P3) and the predict-and-update of pp. In the follow-
ing, we place a hat on top of variables that denote the
decisions made online.

Algorithm 1. DPoS �MVNO

Input: ffc; pc; pc;fcg8c2C
1 8c 2 C, initialize ŷð0Þc as zero, set p̂ð0Þc as fcðŷð0Þc Þ
2 while a new tenant n arrives do
3 Publish the rental price fp̂ðn�1Þc gc2C to DPoS� TNTn

4 Receive x̂n, p̂n, and fdcng8c2C from DPoS� TNTn

5 if x̂n is 1 then
6 if 9c 2 C such that ŷðn�1Þc þ dcn > 1 then
7 Update x̂n as 0
8 Send p̂n and FAIL back to DPoS� TNTn

9 else
10 Update the total resource utilization:

8c 2 C; ŷðnÞc  ŷðn�1Þc þ dcn

11 Send SUCC back to DPoS� TNTn

12 end if
13 else
14 8c 2 C; ŷðnÞc  ŷðn�1Þc

15 end if
16 Update the rental price:

8c 2 C; p̂ðnÞc  fcðŷðnÞc Þ

17 end while

DPoS consists of two parts, DPoS�MVNO and DPoS�
TNTn (each for a tenant). Before a new tenant n arrives,
DPoS�MVNO prices for each resource cwith a function fc:

p̂ðn�1Þc ¼ fcðŷðn�1Þc Þ; 8c 2 C: (10)

The pricing functions ffcgc2C are closely associated to the
properties of the cost functions ffcgc2C. We will provide the
analytic forms of them in the follwing subsection.

DPoS�MVNO discloses the rental prices fp̂ðn�1Þc gc2C to
tenant n. Then, tenant n judges whether it has positive utility
if it decides to rent fdcng8c2C (x̂n  1). If yes, DPoS� TNTn

sets the payment p̂n as
P

c2C d
c
n � p̂ðn�1Þc . Otherwise, both x̂n

and p̂n are set as zero. In the end, DPoS� TNTn sends
ðx̂n; p̂n; fdcng8c2CÞ to DPoS�MVNO.

When DPoS�MVNO receives the message from DPoS�
TNTn, it checks whether the resource surplus can satisfy
tenant n. If yes, DPoS�MVNO sends the indicator SUCC to
DPoS� TNTn to inform the success of this transaction. Oth-
erwise, it sends FAIL and returns the rent p̂n. If succeed,
tenant n hands in the GST and other matters that need to be
provided.

The procedure is visualized in Fig. 2. Note that the data
transfer between DPoS�MVNO and DPoS� TNTn is stop-
and-wait, i.e., a new arrival tenant will not be handed by the
MVNO until the transaction between theMVNO and the pre-
vious tenant is done. In DPoS, only a small flow of privacy-
irrelevent data ðx̂n; p̂n; fdcng8c2CÞ are transferred between
DPoS� TNTn and DPoS�MVNO. The MVNO cannot col-
lect any information from uu. In addition, each tenant knows
nothing about the other tenants. DPoS is implemented in a
posted price manner [43], [44], where the rent decision made
by each tenant is only take-it-or-leave-it. A tenant cannot get

Fig. 2. How DPoS works. Each time a new tenant n arrives, only a small
flow of privacy-irrelevant data are transferred between DPoS�MVNO
and DPoS� TNTn.
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any discount even if it rents relatively large amounts of
resources, which leads to the fact that how much to use, how
much to rent.No resourcewill bewasted.

It is easy to verify that the complexity of DPoS is linear
with the scale of tenants and type of resources. In DPoS�
MVNO, the while-loop terminates after all the jN j tenants fin-
ish their transactions in turn. During the loop, the most time-
consuming operation lies in step 6 and step 10, where the
MVNO needs check whether each type of resource c is
enough to support a transaction and take dcn off if permitted.
In worst case, the number of operations is 2jCj. Considering
that all the left steps can be executed in Oð1Þ-complexity, the
worst-case complexity of DPoS�MVNO is OðjN j � jCjÞ. As
for DPoS� TNTn, time-consumption operations lie in step 2,
step 4, and step 7, all of which are OðjCjÞ-complexity. There-
fore,DPoS� TNTn is ofOðjCjÞ-complexity inworst case.

3.3 The Dynamic Pricing Functions

In DPoS, the only difficulty lies in that how the pricing
functions ffcgc2C are designed. As mentioned before, the
analytic forms of ffcgc2C strongly rely on the properties of
cost functions ffcgc2C. Even so, we claim that in DPoS,
ffcg8c2C are monotonically non-decreasing positive functions.
We set fc as a non-decreasing function because it pro-
foundly reflects the underlying economic phenomenon, i.e.,
a thing is valued in proportion to its rarity. The later the tenant
comes to renting the remaining resources, the higher cost it
has to pay.

Algorithm 2. DPoS� TNT n

Input: fdcng8c2C and un
1 Receive the rental price fp̂ðn�1Þc gc2C from DPoS�MVNO
2 ĉn  max

�
vn �

P
c2C d

c
n � p̂ðn�1Þc ; 0

�
3 if ĉn < 0 then
4 Set x̂n and p̂n, and fdcng8c2C as zero
5 else
6 Set x̂n as 1
7 Set the payment:

p̂n  
X
c2C

dcn � p̂ðn�1Þc

8 end if
9 Send

	
x̂n; p̂n; fdcng8c2C



to DPoS�MVNO

Now, we demonstrate the forms of ffcg8c2C when the
costs are linear. Concretely, if 8c 2 C, the cost function has
the form

fcðyÞ ¼ qcy; (11)

where 0 < qc < pc. Then, in DPoS, the pricing function fc

is set as follows:

fcðyÞ ¼
pc y 2 ½0; wcÞ
qc þ ðpc � qcÞ � ey=wc�1 y 2 ½wc; 1�
þ1 y 2 ð1;þ1Þ;

8<
: (12)

where

wc ¼
�
1þ ln

P
c02Cðpc0 � qc0 Þ
pc � qc

��1
; (13)

is a threshold. Tan et al. also discuss the construction of the
pricing function (for single resource and multiple substitut-
able resources) when the resource’s cost function is strictly-
convex [38], which involves the solving of several first-order
two-point boundary value problems (BVPs) [45]. In the next
section, we will show that the competitive ratio of DPoS is
the optimal one over all the online algorithms when ffcgc2C
are linear.

4 THEORETICAL ANALYSIS

The commonly used measure for online algorithms is the
standard competitive analysis framework [46]. The defini-
tion of competitive ratio for any online algorithm to P1 is
given below.

Definition 1. For any arrival instance 1; 2; . . . ; N , denoted by
A, the competitive ratio for an online algorithm is defined as

a , max
8A

QoffðAÞ
QonðAÞ ; (14)

where QoffðAÞ is the maximum objective value of P1, QonðAÞ
is the objective function value of P1 obtained by this online
algorithm.

Obviously, a � 1 always holds. The smaller a is, the bet-
ter the online algorithm. An online algorithm is competitive
if its competitive ratio is upper bounded. Further, we can
define the optimal competitive ratio as

a
? , inf max

8A
QoffðAÞ
QonðAÞ ; (15)

where the inf is taken w.r.t. all possible online algorithms. In
the following, we drop the parenthesis and A for simplifica-
tion. Note that whether optimal or not, competitive ratio
only gives the worst-case guarantee.

To analyze the competitive ratio achieved by DPoS, we
need to introduce several propositions and theorems before-
hand. We will first verify that DPoS is a-competitive for
some constant a, then prove that it is the optimal one over
all online algorithms when ffcg8c2C are linear. The first
proposition introduced is related to the maximum utility hc.

Proposition 3. 8c 2 C, the function hc, defined in (7), can also
be written as

hcðpcÞ ¼ Fpc

	
f 0�1c ðpcÞ



pc 2 ½&c; &c�

Fpcð1Þ pc 2 ð&c;þ1Þ;
�

(16)

where &c , f 0cð0Þ, &c , f 0cð1Þ, f 0c is the derivative of fc, and f 0�1c

is the inverse of f 0c.

Proof. 8c 2 C, when &c � pc � &c, regarding pc as the deriva-
tive of the non-decreasing fc, then we have f 0�1c ðpcÞ 2
½0; 1�. Now we need to find the y

?

c which maximizes
FpcðycÞ. By analyzing the property of @FpcðycÞ=@yc, which
is pc � f 0cðycÞ, we can find that the exact y

?

c satisfies pc ¼
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f 0ðy?

c Þ. Thus hcðpcÞ is Fpc

	
f 0�1c ðpcÞ



when &c � pc � &c. The

same applies to the second segment of (16). tu
(16) is known as the convex conjugate of ~fc [47]. For a given

online algorithm, denote the objective of P2 and P3 by Qn
P2

and Qn
P3 after processing tenant n, respectively. Also, we

use VP2 ,
	fx̂ng8n2N ; ŷN



and VP3 ,

	fĉng8n2N ; p̂N



to
denote the complete set of online primal and dual solutions,
respectively. In the following, we demonstrate the sufficient
conditions of designing an a-competitive online algorithm
for P1, and then show that DPoS satisfies the conditions.

Proposition 4. (Adapted from proposition 3.1 of [38]) When
ffcg8c 2 C are linear4, an online algorithm is a-competitive if
the following conditions are satisfied:

� All the online primal solutions in VP2 are feasible to
P1;

� All the online dual solutions in VP3 are feasible to P3;
� There exists a tenant k 2 N such that

Qk
P2 �

1

a
Qk
P3 ; (17)

and 8n 2 fkþ 1; . . . ; Ng,

Qn
P2 �Qn�1

P2 �
1

a

	
Qn
P3 �Qn�1

P3


; (18)

holds.

Proof. Let us denote the optimal objective of P2 and P3 as
Q

?

P2 andQ
?

P3 , respectively. Then,

Qoff � Q
?

P2 ¼ Q
?

P3 � QN
P3 : (19)

The reason for the first inequality is that P2 is a relaxation
of P1. The reason for the first equality is that when
ffcg8c2C are linear, strong duality holds between P2 and
P3. Besides, Qon ¼ QN

P2 . As a result, to make a �
Qoff=Qon always hods, we can try to ensure that QN

P2 �
1
a
QN
P3 holds.
According to (18), the following inequalities holds:

X
n2N ;n>k

�
Qn
P2 �Qn�1

P2

�
� 1

a

X
n2N ;n> k

�
Qn
P3 �Qn�1

P3

�

() QN
P2 �Qk

P2 �
1

a

�
QN
P3 �Qk

P3

�
() QN

P2 �
1

a
QN
P3 � Qk

P2 �
1

a
Qk
P3

() QN
P2 �

1

a
QN
P3 : "ð17Þ

We thus complete the proof. tu
Proposition 4 gives three conditions for designing an

a-competitive online algorithm when ffcg8c 2 C are linear.
If we can prove that these conditions hold for DPoS, then
we prove that DPoS is at least a-competitive for some con-
stant a. In the following, we prove that the first and the sec-
ond condition hold.

� It is obvious that VP2 obtained by DPoS is feasible to
P2 because the “if statement” in step 6 of
DPoS�MVNO and step 4 & 6 of DPoS� TNTn

ensure that (4a) and (4b) can never be violated.
� From step 2 of DPoS� TNTn we can find that 8c 2
C; ĉn � vn �

P
c2C d

c
n � p̂ðn�1Þc . Because ffcg8c2C defined

in DPoS are non-decreasing positive functions, the
following inequality

p̂ðNÞc � p̂ðnÞc � p̂ðn�1Þc > 0;

holds. Thus 8n 2 N , ĉn � vn �
P

c2C d
c
np̂
ðNÞ
c holds,

where p̂ðNÞc is the final rental price of resource c, i.e.,
pc in P3. Thus, (9b) not violated. Step 2 of
DPoS� TNTn ensures that ĉc � 00 holds. Also note
that in DPoS ffcg8c2C are non-decreasing positive
functions, which leads to p̂p � 00 always holds. We
thus prove that (9c) is not violated. Since both (9b)
and (9c) are not violated, the second condition in
proposition 4 holds for DPoS.

The proof of that the third condition holds is related to
the design of the pricing functions ffcg8c2C. The following
theorem shows that when ffcg8c2C in DPoS are designed as
(20) 	 (23) indicate, the third condition in Proposition 4
holds.

Theorem 1. (Adapted from Theorem 4.1 of [38]) When ffcg8c2C
are linear and f0 < &c < pcg8c2C holds, if 8c 2 C, the pricing
function fc in DPoS has the form:

fcðyÞ ¼
pc y 2 ½0; wcÞ
’cðyÞ y 2 ½wc; 1�
þ1 y 2 ð1;þ1Þ;

8<
: (20)

where

wc 2
h
0; argmax

y�0
pcy� ~fcðyÞ

i
; (21)

is a threshold that satisfies

FpcðwcÞ � 1

ac
hcðpcÞ; (22)

and ’cðyÞ is an increasing function that satisfies

’0cðyÞ � ac � ’cðyÞ�f
0
cðyÞ

h0cð’cðyÞÞ ; if y 2 ðwc; 1Þ
’cðwcÞ ¼ pc
’cð1Þ � pc þ

P
c02Cnfcg hc0 ðpc0 Þ;

8><
>: (23)

then DPoS ismaxc2Cac-competitive.

Proof. Assume that 8c 2 C; wc ¼
Pk

n¼1 d
c
n, which means that

k is the number of tenants such that the total resource
rented out of type c equals wc. Substitute the definition of
Fpcð�Þ into (22), we have

pc �
�Xk

n¼1
dcn

�
� ~fc

�Xk
n¼1

dcn

�
� 1

ac
hcðpcÞ:

Because ac � 1 holds for each c 2 C and ĉc � 00, the above
inequality leads to

4. Proposition 1 of [38] also requires that f&c < pcg8c2C holds, which
is not required in this proposition.
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�
1� 1

ac

�Xk
n¼1

ĉn þ
X
c2C

 
pc �

�Xk
n¼1

dcn

�
� ~fc

�Xk
n¼1

dcn

�!

�
X
c2C

1

ac
hcðpcÞ:

Further, we have

Xk
n¼1

�
ĉn þ

X
c2C

pc � dcn
�
�
X
c2C

~fc

�Xk
n¼1

dcn

�

� minc02C
1

ac0

�Xk
n¼1

ĉn þ
X
c2C

hcðpcÞ
�
:

(24)

The pricing function in (20) indicates that the require-
ments of all tenants will be satisfied as long as each
resource c’s utilization is below wc. Thus, we have ŷðkÞc ¼Pk

n¼1 d
c
n ¼ wc. Besides, the rental price of resource c these

tenants experienced is the same, i.e., pc. Therefore, (24)
indicates Qk

P2 � minc2C 1
ac
Qk
P3 . Meanwhile, it is obvious

that wc must be less than or equal to argmaxy�0pcy�
~fcðyÞ because the rental price must be larger than or equal
to the marginal cost f 0cðwcÞ (the result is immediate with
(16)).

The above has proved that (17) holds. In the following,
we prove (18) holds. The change in the objective of P2

when a new tenant n arrives is

Qn
P2 �Qn�1

P2 ¼ ĉn þ
X
c2C

fcðŷðn�1Þc Þ
�
ŷðnÞc � ŷðn�1Þc

�

�
X
c2C

�
~fcðŷðnÞc Þ � ~fcðŷðn�1Þc Þ

�
:

The change in the objective of P3 when a new tenant n
arrives is

Qn
P3 �Qn�1

P3 ¼ ĉn þ
X
c2C

�
hcðp̂ðnÞc Þ � hcðp̂ðn�1Þc Þ

�
:

To guarantee (18) holds, it is equivalent to guarantee the
following per-resource inequality

fcðŷðn�1Þc Þ
�
ŷðnÞc � ŷðn�1Þc

�
�
�
~fcðŷðnÞc Þ � ~fcðŷðn�1Þc Þ

�
� 1

ac

�
hcðp̂ðnÞc Þ � hcðp̂ðn�1Þc Þ

�
:

Divide both side of the above inequality by ŷðnÞc � ŷðn�1Þc ,
we get

fcðycÞ � ~f 0cðycÞ �
1

ac
� h0cðfcðycÞÞ � f0cðycÞ (25)

when yc 2 ½wc; 1Þ. This means that if 8yc 2 ½wc; 1Þ, (25)
holds, the incremental inequality in (18) holds for all yc 2
½wc; 1Þ for each type of resource. This result is exactly the
first segment of (23). The second segment of (23) is to
ensure the continuity of fc. The third segment of (23) is
to make up the missing proof for (18) on the exact point
yc ¼ 1, which can be derived by the deformation of

pcwc þ
Z 1

wc

fcðycÞdyc � ~fcð1Þ � 1

ac

X
c2C

hcðpcÞ:

The above inequality is obtained by taking integration of
both sides of (25).

So far, we have proved that when ffcg8c2C in DPoS are
designed as (20) 	 (23) suggested, the thrid condition in
Proposition 4, i.e., (17) and (18) hold. Thus, we have
proved that DPoS ismaxc2Cac-competitive. tu
In the following, we verify that the design of ffcgc2C in

DPoS when ffcg are linear, which is demonstrated in (12),
satisfies the requirements defined in (20) 	 (23). When
fcðyÞ ¼ qcy and qc > 0, the conjugate hcðpcÞ defined in (7) is
given by

hcðpcÞ ¼ 0 pc 2 ½0; qc�
pc � qc pc 2 ðqc;þ1Þ

�
(26)

Note that 0 < qc < pc � pc. In this case, (22) is equal to

pcwc � fðwcÞ � 1

ac

�
pc � fcð1Þ

�
;

which indicates wc � 1
ac
. (23) is thus equal to

’cðyÞ � f 0cðyÞ � 1
ac
� ’0cðyÞ � h0cð’cðyÞÞ; wc < y < 1

’cðwcÞ ¼ pc
’cð1Þ ¼

P
c2C pc �

P
c02Cnfcg qc0 :

8<
:

To minimize ac, it suffices to set wc as 1=ac and thus the
above BVP leads to (12) and (13).

The above analysis leads to the following theorem
immediately.

Theorem 2. When the cost functions ffcg8c2C are linear and
f0 < &c < pcg8c2C holds, the competitive ratio a DPoS
achieves is the optimal one over all possible online algorithms.
Further, its value is

a ¼ max
8c2C

ac ¼ max8c2C
1

wc
; (27)

where wc is defined in (13).

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive simulation experi-
ments to evaluate the effectiveness and efficiency of DPoS.
We first verify the performance of DPoS against several
popular algorithms and handcrafted benchmarking policies
on social welfare, efficiency, and competitive ratio. Then,
we analyze the impact of several system parameters.

We summarize the key findings of our experiments as
follows, and details can be found in Sections 5.2 and 5.3.

� DPoS not only achieves the highest social welfare
among all the online algorithms compared, but also
shows the close-to-offline-optimal performance, espe-
cially when the number of tenants is not more than
100 and the number of resource type is 1.

� In most cases, the ratio of the optimal social welfare
to the social welfare achieved by DPoS (fluctuate
between 1.00 and 2.57) is far less than the worst-case
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guarantee, i.e., the competitive ratio calculated by
(13) and (27) (fluctuate between 5.82 and 8.54).

� DPoS is insensitive to environment parameters such
as the distribution of fdcng8c2C and the value of the
coefficient of the linear cost, fqcg8c2C.

� DPoS achieves a satisfactory balance between the
overheads (corss-agent communication data size,
algorithm’s running time, etc.) and the performance.

5.1 Experiment Setup

By default, we set the number of tenants N as 100. We also
set the number of types of resources as 3 in default because
the resources can be roughly divided into computation,
storage, and forwarding/bandwidth. Note that 100 and 3
are only default settings. In Sections 5.2 and 5.3, we will ana-
lyze the scalability of DPoS extensively.

For each tenant n, fdcng8c2C is uniformly sampled from the
Gaussian distribution Nðm ¼ 1

N ; s ¼ 1
N2Þ. The pay level ln is

randomly sampled from ½2; 6�. The highest level of QoS,
denoted by lhn, is randomly sampled from Uð2; 6Þ. The low-
est level of QoS, denoted by l0n, is free user level. We set the
percentage of free users near 40 percent for each tenant [48].
Moreover, the remaining users are randomly assigned to a
QoS level according to the pyramid structure. The higher
the QoS level, the fewer the users. The payment of user s 2
Sn is proportional to his QoS level. By default, 8n 2 N ; 8s 2
Sn, we set sn as identity function. For each type of resource,
we take linear cost defined in (11). By default, 8c 2 C, qc is
randomly chosen from ½16 pc; 56 pc�. Important parameter set-
tings are summarized in Table 2.

DPoS is compared with the following algorithms. There-
into, CVX and Heuristic are used to obtain the approximate
optimal of the offline problem P1. SCPA [41] is a state-of-
the-art auction-based algorithm. We also design online algo-
rithmsMyopic Slicing and Random Slicing as baselines.

� CVX (offline & centralized): This refers to the algo-
rithm behinds CVXPY.5 We use this as a professional
solver to obtain the approximately optimal solution
of the global offline problem P1.

� Heuristic (offline & centralized): We take Genetic
Algorithm (GA) to obtain the approximate optimal
solution of P1.

� SCPA (offline & decentralized) [41]: To adapt this
algorithm to our model, we made some simple
deformation. In this algorithm, all the tenants and
the MVNO get together. The bids are the utilities.
Specifically, in each bidding around, each tenant

calculate its utility. If the utility is positive, it sends
xn ¼ 1 and fdcng8c2C to the MVNO. The MVNO
selects the exact tenant which can maximize the its
own utility and accepts the transaction if resource
surplus is satisfied. All the left tenants are rejected.
The procedure ends when no tenant has the willing-
ness to bid.

� Myopic Slicing (MS) (online & decentralized): This
algorithm is almost the same with DPoS, expect the
pricing functions. The pricing functions are designed

as follows: 8c 2 C;f0cðyÞ ,
pcþpc
C y when y � 1, other-

wise þ1.
� Random Slicing (RS) (online): Each time when a new

tenant arrives, randomly set xn as 0 or 1. Note that if
xn ¼ 1, the resource surplus must be satisfied.

The following analyze is based on the average returns of
1000 trials.

5.2 Performace Verification

We first analyze the performance under different scales of
tenants. As shown in Fig. 3, all the offline algorithms out-
perform the online algorithms. Therewith, CVX achieves
the highest social welfare whatever the number of tenants.
In the following, we will simply take CVX as the optimal
solution. It is interesting to find that both Heuristic and
SCPA show a trend of performance decline as the number
of tenants increase. For Heuristic, as the solution space
grows exponentially with the increase of tenant size, it
becomes more difficult to find the approximate optimal
solution under the constraints of iteration times and popula-
tion size. When the scale of tenants grows, the performance
of all the online algorithms present a rising trend. This is
becasue the transaction success rate increases (although not
by as much) with scale under the well-designed pricing
functions. Further, we can find that DPoS not only achieves
the highest social welfare among all the online algorithms,
but also shows the close-to-offline-optimal performance. Spe-
cifically, we define the indicator aCVX, aheuristic, and aSCPA,
where each is the ratio of the social welfare achieved by
CVX, Heuristic, and SCPA to DPoS, respectively. From
Fig. 3 we find that even in the worst case (N ¼ 500), the gap
between CVX and DPoS is only 0:815
: This ratio is much
better (lower) compared with previous work [49].

Fig. 3. The social welfare achieved by each algorithm and the ratio of
social welfare achieved by each offline algorithm to DPoS, under differ-
ent number of tenants.

TABLE 2
Default Parameter Settings

Parameter Value Parameter Value

N 100 C 3
fdcng8c2C 	 Nðm ¼ 1

N ; s ¼ 1
N2Þ lhn 	 Uð2; 6Þ

Sn 	 Nðm ¼ 106; s ¼ 105Þ Prðl0nÞ � 40%

qc 	 Uð16 pc; 56 pcÞ sn identity

5. https://www.cvxpy.org/
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Compared with the popular offline Heuristic (GA), the gap is
0:390
 at the peak (N ¼ 200). Compared with the state-of-
the-art offline auciton-based algorithm SCPA [41], the gap is
0:175
 at the peak (N ¼ 100). Becasue of the performance
downgrade of Heuristic and SCPA, the ratio aheuristic and
aSCPA shows a tendency to increase first and then decrease.

Fig. 4 demonstrates that Heuristic has a near-to-1 rental
rate whatever the number of tenants but SCPA’s and
DPoS’s rental rate are much lower (64.37 and 69.89 percent
in average, respectively). However, from Fig. 3 we have
concluded that the performance of Heuristic is much infe-
rior to the optimal especially when N is 500. Thus, we can
conclude that there is no linear relationship between the
sum of net profits and the transaction success rate. In fact,
this conclusion can also be draw by observing the analytic
form of social welfare defined in P1. Besides, the scale of
tenants has no significant impact on the rental rate, whether
it is an offline algorithm, or DPoS. Another interesting point
is that under normal circumstances, the worst-case theoreti-
cal guarantee, i.e., the competitive ratio calculated accord-
ing to (13) and (27), is far from need.

In the following we analyze the performance of DPoS
under different scale of resource types C. From Fig. 5, first,
we find that DPoS is still the best online algorithm and has
a close performance to Heuristic and SCPA. When C ¼ 1,

DPoS can achieve near-to-offline-optimal performance! Sec-
ond, all the algorithms show a downward trend when the
number of resource types increase, except CVX. This is
becasue each tenant has requirements on all the resource
types, and the increase in resource types significantly
reduces the probability of requirements being satisfied.
Ulteriorly, the transaction success rate reduces significantly.
The phenomena can also be found in Fig. 6. For online sce-
narios, the phenomena is amplified by the randomness of
arrival sequence of tenants. Thus, online algorithms per-
form more unsatisfied. Even though, the advantage of
DPoS is clear. In the worst case, i.e., when C ¼ 9, the ratio
aCVX is 2.37, which is still acceptable for online algorithms.
It even outperforms the offline algorithm Heuristic when C
is 5 and 7 by 18.00 and 13.40 percent, respectively.

Fig. 7 demonstrates the impact of scales of tenants and
resource types on the performance ofDPoS comprehensively.
In general, the gap between DPoS and the offline optimal
increases with the increasing scale of the problem. When C is
1 and N is 50, what DPoS achieves is exactly the offline opti-
mal. When C is 9 and N is 500, the gap is the highest, which
reachs 1:57
. Further, we can find that the ratio grows faster
with resource types thanwith tenant size.We leave the design
of resource type-scalable pricing functions as future work.
Table 3 comapares all the algorithms from multiple angles,
including social welfare achieved, cross-agent communica-

Fig. 4. Left y-axis: The average rental rate over 3 kinds of resources of
Heuristic, SCPA, and DPoS. We do not draw the rental rate of CVX
because the value is close to 1 under any circumstances. Right y-axis:
the comparison of aCVX and the theoretical worst-case competitive
ratio a.

Fig. 5. The social welfare achieved by each algorithm and the ratio of
social welfare achieved by each offline algorithm to DPoS, under differ-
ent number of resource types.

Fig. 6. Left y-axis: The average rental rate over 3 kinds of resources of
Heuristic, SCPA, and DPoS. Right y-axis: The comparison of aCVX and
the theoretical worst-case competitive ratio a.

Fig. 7. The ratio of social welfare achieved by DPoS to the optimal, CVX,
under different scales of tenants and resource types.
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tion data size, and algorithm running time. The amount of
data transferred by the decentralized online algorithm refers
to the amount of data communicated between tenants and
theMVNO.Meanwhile, the amount of data transferred by the
centralized algorithm is all data related to problem P1. The
data size is calculated as 4 bytes for each value. Note that we
normalize the running time ofDPoS to 1. We can find that the
superiority of CVXandHeuristic are based on a lot of comput-
ing time overhead. By contrast, DPoS achieves a satisfactory
balance between the overheads the performance. In addition
to the 4-th line of Table 3, Figs. 8 and 9 also verify the linear
algorithmic runtime ofDPoS intuitively.

5.3 Sensitivity Analysis

In this subsection, we analyze the sensitivity of DPoS under
different environment parameters settings.

Fig. 10 demonstrates the impact of tenants’ resource
requirements. The x-axis is the mean value m of the Normal
distribution Nðm; s ¼ 1

N2Þ where N is 100. We find that when
the resource requirements increase, the transaction success
rate decreases, which further decreases the social welfare
achieved. It is interesting that the social welfare achieved by
CVX also decreases significantly when tenants’ resource
requirements increase. This phenomenon indicates that the
competition among tenants for resources significantly reduces
the feasible solution space. Even so, the ratio on social welfare
is stable nomatter how the resource requirements change.

Figs. 11 and 12 demonstrate the impact of fqcg8c2C and
flng8n2N . We can find that the ratio on social welfare has a
smooth variation. Considering that their impacts are minor,
no more detailed discussion will be launched.

All the experiment results in this subsection show the
robustness of DPoS.

6 RELATED WORKS

Network slicing is widely accepted as an architectural enabling
technology for 5G by industry and standardization communi-
ties [1], [2], [3], [4]. The idea is to slice the physical resources of
the mobile networks into logical network functions, and
orchestrate them to support diversified over-the-top services.
Previous works on network slicing mainly focus on the archi-
tectural aspects, while efficient resource allocation and sharing,
which has been identified as a key issue by theNextGeneration
MobileNetwork (NGMN) alliance [50], lags behind.

A number of studies have emerged in recent years to fill the
gap, especially for mobile network slicing [10], [11] [17] and
core network slicing [14], [15], [16]. Overall, these works for-
mulate a non-convex combinatorial problem to maximize the
utilities of involved business players. Take [10] as an example,
the authors defined the utility according to the satisfaction
of multiple slice resource demands (SRDs). They formulated
the resource sharing problem as a Mixed Integer Linear Pro-
gramming (MILP) and proposed a two-step approach (provi-
sioning-and-deployment) to solve it efficiently. Similarly,
Caballero et al. proposed a dynamic resource allocation algo-
rithm based on the weighted proportionally fairness, also for
the RAN resources [11]. Based on this algorithm, they devised
a practical approach with limited computational information
and handoff overheads. Further, the authors verified the
approximate optimality of the approach with both theoretical
proof and extensive simulations. In addition to the heuristics
designed by the above mentioned works, AI-based optimiza-
tion has been gaining in popularity. For example, Yan et al.
resorted to deep reinforcement learning (DRL) to formulate an
intelligent resource scheduling strategy, iRSS, for 5GRAN slic-
ing [21]. They take deep neural networks to perform large

TABLE 3
Comparsion of Transferred Data Size and Algorithm’s Running Time Under Default Parameter Settings

CVX Heuristic SCPA DPoS MS RS

inputform offline offline offline online online online
architecture centralized centralized decentralized decentralized decentralized -
transferreddatasize 4.16KB 4.16KB 4.16KB 1.92KB 1.92KB -
runningtime 78.81 2172.35 24.43 1 0.93 0.48
aCVX 1 1.199 1.189 1.578 2.04 2.47

Fig. 8. The runtime of each algorithm under different number of tenants.
Fig. 9. The runtime of each algorithm under different number of resource
types.
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time-scale resource allocation while the reinforce agent per-
forms online resource scheduling to predict network states
and dynamics. Likewise, the authors of [18] also designed a
DRL-based algorithm, to perform corss-slice resource sharing.

In addition to the centralized and fine-tuned algorithms, a
substantial literature designed the network slicing algorithms
based on economic frameworks, especially the auction-related
mechanisms [5], [7] [8], [33], [41], [51]. These algorithms are
usually decentralized, easy-to-use and simply constructed. In
these works, the tenants sequentially compete and bid for the
network resources. The utilization of auction mechanism usu-
ally integrate tightly with dynamic pricing and game model
[35]. For example, Wang et al. solved the joint efficiency and
revenue maximization problem with a varying-pricing policy
[30]. They designed a decentralized algorithm, run by each
player, to maximize the net social welfare. In [41], the authors
designed a non-cooperative game where each tenant reacts to
the user allocations of the other tenants so as to maximize its
own utility selfishly. Existing works mainly resort to Fisher
market [27], where strategic players anticipate the impact of
their bids. Besides, VCG-Kelly mechanisms and their deriva-
tives [29] are also popular for slice resource allocation and
sharing [41], [49]. In Kelly’s mechanism, the bidders bid for
prices, and the resources are allocated to them according to
their bids. In VCGmechanism, in a different way, the bids are
the utility of involved players. We find that existing auction-

basedworks aremainly designed for offlinemarkets, where all
the tenants participate the auction and bid for their interests
sequentially. Even so,we still discover an online auction-based
resource allocation algorithm, proposed in [49]. The authors
model the slicing resource allocation problem as an online
winner determination problem, with aim to maximize the
social welfare of auction participants. However, what the
authors of [49] proposed is a centralized algorithm, where the
bidding and privacy-relevant information has to be collected
by theMVNO.

Our work is based on the posted price mechanism [36],
under the principle of take-it-or-leave-it. Compared with
fined-tuned heuristics and DRL-based works, our algorithm
has fairly low complexity and is well-suited for online net-
work slicing scenarios. Besides, the time-consuming repeat
bidding between tenants and the MVNO is not required
compared with auction-based works. In addition, our algo-
rithm provides each business player an agent, which can be
deployed in a realistic online market directly without any
modification.

7 CONCLUDING REMARKS

We presented a decentralized and low-complexity online
slicing algorithm, DPoS, by virtue of the primal-dual
approach and posted price mechanism. Our goal was to
address the problem of the high complexity, privacy leak-
age, and unrealistic offline setting of current network slicing
algorithms. We first presented the global offline social wel-
fare maximization problem. Then, we relax the original
combinatorial problem to a convex primal problem and
give its dual. Based on the alternative update of primal and
dual variables, DPoS maximizes the social welfare with a
O
	
maxc2Cfln

P
c02Cðpc0 � qc0 Þ � lnðpc � qcÞg



gap in worst

case. By giving back the decision-making power to each
player, DPoS stops the privacy leakage from the source.
This decentralized property also erases the heavy burden to
solve a centralized offline optimization algorithm, which is
often of high complexity. In addition to the efficiency, the
competitive ratio of DPoS is the optimal over all the online
algorithms. The extensive simulation further verify that
DPoS can not only achieve close-to-offline-optimal perfor-
mance, but also have much lower algorithmic overheads
compared with contrast algorithms.

Fig. 10. The social welfare achieved by each algorithm and the ratio of
social welfare achieved by CVX and SCPA to DPoS, under different
sampling of fdcng8c2C.

Fig. 11. The social welfare achieved by each algorithm and the ratio of
social welfare achieved by CVX and SCPA to DPoS, under different
sampling of fqcg8c2C.

Fig. 12. The social welfare achieved by each algorithm and the ratio of
social welfare achieved by CVX and SCPA to DPoS, under different
sampling of pay levels flng8n2N .
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