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Abstract—The eye-blink pattern is crucial for drowsy driving
diagnostics, which has become an increasingly serious social issue.
However, traditional methods (e.g., with EOG, camera, wearable
and acoustic sensors) are less applicable to real-life scenarios
due to the disharmony between user-friendliness, monitoring
accuracy, and privacy-preserving. In this work, we design and
implement BlinkRadar as a low-cost and contact-free system to
conduct fine-grained eye-blink monitoring in a driving situation
using a customized impulse-radio ultra-wideband (IR-UWB)
radar which has superior spatial resolution with the ultra-wide
bandwidth. BlinkRadar leverages an IR-UWB radar to achieve
contact-free sensing, and it fully exploits the complex radar signal
for data augmentation. BlinkRadar aims to single out the eye-
blink induced waveforms modulated by body movements and
vehicle status. It solves the serious interference caused by the
unique characteristics of blinking (i.e., subtle, sparse and non-
periodic) and from the human target itself and surrounding
objects. We evaluate BlinkRadar in a laboratory environment
and during actual road testing. Experimental results show that
BlinkRadar can achieve robust performance of drowsy driving
with a median detection accuracy of 92.2% and eye blink
detection of 95.5%.

Index Terms—Eye Blink detection, RFID Signal, Drowsy driv-
ing detection

I. INTRODUCTION

Drowsy driving is a main reason for traffic accidents,
resulting in heavy casualties and economic loss, and it has
become an increasingly serious problem around the world.
Under the state of drowsiness, a driver cold significantly
reduce vigilance and slow reaction time. According to the U.S.
National Highway Traffic Safety Administration, from just
2015 to 2020, over 4121 traffic accidents are related to drowsy
driving in the United States [1]. In Europe, statistics [2] show
that around 20% of all traffic accidents are due to a diminished
vigilance level of drivers caused by drowsiness. Researches on
traffic safety [3] show that eye-blink pattern is distinctive when
drivers become drowsy, which causes observable physiological
phenomenon, i.e., drawn-out eyelid closure. It is therefore
crucial to develop a driving state diagnosis system, that can
accurately monitor eye-blink motion in driving situation to
prevent traffic accidents and save peoples lives.

Traditionally, to monitor such physiological phenomenon
for driving state diagnosis, existing eye-blink detection meth-
ods mainly rely on different types of sensors, which can
be divided into four categories: EOG sensor [4], proximity
sensor [5]- [6], camera [7] and acoustic sensor. However, these

systems are less applicable to real-life scenarios due to the
disharmony between user-friendliness, detection accuracy, and
privacy preserving. Specifically, EOG and proximity sensors
are usually embedded in wearable devices such as virtual
reality headsets and eye-wears [6]. Although these systems
can achieve high detection accuracy, the inconvenience caused
by the contact (even intrusive) nature of these sensors has
prevented them from being widely adopted under daily driv-
ing situations. Unlike EOG and proximity sensors, cameras
are usually deployed to capture images or record videos to
detect eye-blink motion in a non-intrusive way [8]. Though
promising, the performance of camera-based systems degrades
in low lighting conditions and may raise privacy concerns,
hindering their wide application. With inherent non-intrusive
and good privacy-preserved attributes, acoustic sensing, gained
a tremendous amount of attention in recent years, shows
fantastic potential for eye-blink detection owing to its low
propagation speed and wide availability, however, limited
by the acoustic wavelength and bandwidth, acoustic-based
systems can be susceptible to real-life acoustic interference
and with coarse-grained spatial resolution [9]. Because it’s a
matter of life and death, eye-blink detection should be with
high accuracy.

Ideally, in-vehicle eye-blink detection system should be
performed continuously with a low-cost (boosting wide ap-
plication) and potential vehicle-mounted (i.e., in non-intrusive
manner) device, providing high detection accuracy and assur-
ing privacy preserving, so that eye-blink patterns can be easily
used as markers for intervention or evidence for drowsiness
diagnoses [10]. To achieve this goal, inspired by the superior
performance of impulse-radio ultra-wideband (IR-UWB) radar
in recognizing the motion of an object at a distance, in this
work, for the first time, we propose BlinkRadar to employ IR-
UWB for RF-based eye-blink motion sennsing by harmonizing
these crucial concerns on user-friendliness, accuracy detection,
and privacy preserving. The principle behind BlinkRadar is
that the movements of target object can affect the propa-
gation of IR-UWB signal by reflecting and mingling with
raw motion-induced changing patterns embedded with fine-
grained spatial information. By actively emitting well-designed
IR-UWB signals through a commercial-grade IR-UWB radar
platform and analyze how eye-blink motion is modulated in
the complex reflection signals.
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Although promising progress has been achieved in using
IR-UWB for wireless sensing, eye-blink detection still faces
the following challenges. First, eye-blink motion is extremely
subtle. Compared with respiratory sensing that monitors the
chest displacement of about 5 mm, the eyelid has a thickness
of as low as 0.5 mm [11]. The subtle displacement and limited
reflection area-caused signal variation is so small that can be
easily buried in background noise. Hence, identifying eye-
blink waveform with RF-sensing is far from trivial even for
static subjects, not to mention the highly dynamic driving
situations. Moreover, the reflected signals bounced off the
eyes and other in-car activities (e.g., body and respiratory
movements, driving and road vibrations, etc) are mixed to-
gether, making it extremely hard to detect eye-blink from
these interferences. Third, eye-blink is a sparse motion in
time domain with aperiodicity and markedly variable blink
interval (ranging from hundreds of ms to tens of seconds).
These properties make frequency domain analysis and model-
based methods infeasible for eye-blink detection.

Fig. 1: COTS impulse radio used in BlinkRadar and radio
setup inside the vehicle.

To tackle these challenges, we design BlinkRadar the first
RF-based non-intrusive, fine-grained and motion-robust eye-
blink detection system. We implement BlinkRadar based on
a commercial-grade IR-UWB radar platform [12], leveraging
its large bandwidth (e.g., as high as 1.5GHZ) to achieve high-
resolution (i.e., 1.5cm) motion sensing. Given the raw eye-
blink-induced IR-UWB signal embedded with fine-grained
spatial information, we distill the subtle motion of eye-blink
by analyzing different transformations induced by actions
at different positions in the in-phase and quadrature (I/Q)
vector space. Based on the characteristics of I/Q-domain signal
representation, we further analyze the impact of fine-grained
motion change of eye-blinking on the signal change of both
amplitude and phase, i.e., the movement of eyelids (open and
close eye) can affect the RF transmission path modally and
contributing to characterized phase change; due to the different
reflection factor of eyelid and the eyeball, the presence and
absence of eyelids can lead to different amplitude of reflected
signals. Given these signal features caused by eye-blink, we

design an algorithm to detect eye bink.
To summarize, our contributions are as follows.
• To the best of our knowledge, BlinkRadar is the first RF-

based non-intrusive, fine-grained and motion-robust eye-
blink detection system operating in a commercial-grade
IR-UWB radar platform.

• We analyze the necessity to process radar signal in
its complex I/Q domain, on this basis leveraging the
phase or amplitude of the signal. We propose using the
unique variation of the signal in the I/Q vector space
for recovering and refining eye-blink waveform, which
fully utilizes the I/Q components together and achieves
fine-grained eye-blink waveform recovery leveraging the
generalizability brought.

• We conduct extensive evaluations and field studies to
evaluate the performance of BlinkRadar. The results
strongly confirm its excellent performance in eye-blink
detection under driving situation. It can achieve median
detection accuracy of 95.5% of eye blink detection and
92.2% of drowsy driving detection. BlinkRadar is robust
to various unfavourable factors, including bumpy road
and sunglasses-wearing of the driver.

The rest of this paper is organized as follows. Section II
presents the feasibility analysis of applying RF signals for
eye-blink sensing. Section III introduces the system overview.
Section IV present the whole system. Section V presents the
implementation of BlinkRadar. Section VI presents the system
evaluation. Section VIII discussed the limitation of our work.
By discussing the related works in Section VII, we conclude
this work.

II. FEASIBILITY ANALYSIS

In this section, we first verify whether blinking can generate
a response through a valid RF signal. We then explore the
unique motion of signal changes due to the blink signal, and
in this section, we conduct extensive empirical studies that
inspire us to advance this work. Before the feasibility analysis,
We need to understand the pattern of blinking when drowsy.

A. Eye-Blink Pattern during Drowsy Driving
Eyes blink a physical need. When blinking, the tears can

evenly wet the cornea and conjunctiva so that the eyeball
will not be dry, keep the cornea lustre, and remove the
conjunctival sac dust and bacteria. If you don’t blink, the
tear film on the eyeball will quickly evaporate, and we will
feel dry, uncomfortable, stinging, and teary eyes. Considering
the caffier’s study [11], the typical eye-blink duration is less
than 400ms on average and 75ms for the minimum. When a
person enters an exhausted state, the blinking time will exceed
400ms or even longer. We monitor the driver by monitoring
the driver’s long-term blinking time to know the driver’s
blinking time length change during driving to monitor the
driver Driving state.

B. The Motion of Eye-Blink
Eye-blink has the characteristics of non-periodic and sparse-

ness, human blink has a unique movement pattern. We first
introduce the movement pattern of the human eye and then
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introduce the relationship between blink movement and signal
changes. To explore the unique signal changes produced by
eye-blinks, we placed the UWB radar 30 cm in front of the
participants’ eyes. As shown in Fig. 2(a), UWB radar receives
the signal reflected from the eye and transfers the signal into I-
Q space to analyze the phase and amplitude variation pattern of
the signal. To distinguish the signal changes during blinking,
we divide the blinking process into two stages, Eye Closing
Stage and Eye Opening Stage.

Eye closing stage. When closed eyes, the human eyelid
will reflect the RF signal, and the path of the reflected signal
will change from the eyeball to the receiving antenna to the
eyelid to the receiving antenna. This will produce subtle path
changes, which will lead to changes in the signal phase.
Meanwhile, the surface of the eyeball and the eyelid are
different reflectors, and reflectors of different materials have
different signal reflectivity, so the signal reflected from the
surface of the eyeball and the eyelid will have different
manifestations in amplitude. The specific process as shown
in Fig. 2(b)

Eye opening stage. When the eyes are opened, the process
is opposite to closing the eyes. As shown in Fig. 2(b), we
see that in the IQ space, the amplitude of the signal becomes
smaller when the eye is opened, and the phase of the signal is
The opposite change. We can separate the blink-related signal
from the multipath-filled signal through this extraordinary
signal feature change.

(a) The UWB radar and reflected sig-
nal

(b) The Schematic diagram of I-
Q space

Fig. 2: The Schematic diagram of UWB radar and I-Q space.

C. Blink Frequency When Drowsy

To demonstrate the relationship between drowsiness and
blink frequency, we recruited 8 participants to qualitatively
test changes in blink time when they were tired and not tired.
We tested it at 10:00 in the morning and night when everyone
was in their best spirits. At 10:00, participants determined they
were in a state of fatigue and then performed an eye-blink
test. We used blink frequency to indicate whether participants
were drowsy [13]. To ensure the reliability of the survey and
empirical testing, light conditions were kept constant (i.e., 220
260 lux light intensity), and the distance between participants
and the device was always kept constant (30 cm).

For simplicity and without loss of generality, we plotted
their 1-minute blinks in a table when they were energized and
lethargic. I. We found that participants blinked more often
when tired than when they were energized.

TABLE I: Blink frequency at different times
1 2 4 5 6 7 8

10:00am 20 21 19 20 18 22 21
10:00pm 25 26 30 25 26 24 26

III. SYSTEM OVERVIEW

This section introduces the overview of BlinkRadar. The
whole system consists of three components: signal preprocess-
ing, Eye-blink detection, and Drowsy driving detection.

Signal preprocessing. In this model, We introduced the sig-
nal preprocessing process of BlinkRadar. This module includes
noise reduction and background subtraction. The UWB radar
transmits a signal, and the signal is reflected and received by
the radar receiving end again. At the same time, the data is
transmitted to the computer for processing. We want to use
a smoothing filter to reduce the noise in the signal, and then
we use a loopback filter to remove static reflections from the
clutter for background subtraction.

Eye-blink detection. This model introduces how to extract
the blink signal from the mixed signal. We first convert
the received signal to the IQ space. We analyze the unique
signal pattern changes caused by blinking, including changes
in signal amplitude and phase. Then we introduced how to
find the best blink observation position and remove the noise
caused by vehicle vibration. Since the human body cannot
maintain a posture, the human body will move slightly, and
the surrounding environment will also change. Therefore,
BlinkRadar needs to update the viewing position adaptively in
real-time to maintain good blink detection performance. We
have designed an algorithm that can continuously update the
best observation position.

Drowsy driving detection. This part of the model in-
troduces how to continuously perform blink detection in a
moving car. Drowsy driving is mainly reflected in the driver’s
blink rate and blink time. We designed a drowsy detection
algorithm and recruited participants to conduct experiments.
In order to verify BlinkRadar, we collected the blink rate and
blinked time of the participants when they were sleepy and
awake. We verified the feasibility of BlinkRadar in the onboard
drowsiness detection system through cross-validation.

Fig. 3: Overview of BlinkRadar design.
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IV. SYSTEM DESIGN

A. RF Signal Design

Fig. 4: Signal preprocessing process.

In this section, we introduce the design of RF signal
design of the UWB radar. BlinkRadar utilizes a system-on-chip
impulse radio for transmitting and receiving wireless pulses.
The schematic diagram of transmitting signal and receiving
signal is shown in Fig. 4. The transmitted signal is sk(t), the
modulated signal is xk(t), the signal after passing the channel
is yk(t), and the demodulated signal is ybk(t). The receiving
end receives in-phase and Quadrature (IQ) sampling at the
receiver side for downconversion.

The COST UWB radar we use combines the transmitting
antenna with the receiving antenna. The transmitting antenna
continuously sends out chirp signals and the receiving antenna
will receive echoes. The transmitted chirp can be represented
as

s(t) = Vtxexp(−
(t− Tp

2 )2

2σp
2

) (1)

where the Vtx is the amplitude of the pulse, the duration of the
signal is Tp and σp

2 is the variance corresponding to the -10 dB
bandwidth. We employs an in-phase single-carrier frequency
cos(2πfct) for upconversion. Then, the transmitted signal in
time domain is given by:

xk(t) = s(t− kTs) · cos(2πfc(t− kTs)) (2)

where fc is carrier frequency, Ts is duration of frame, k
denotes the k-th frame. Because the impulse radio transmits
a sequence of identical pulses, we have s(t− kTs)− s(t). So
the equation can be written as:

xk(t) = s(t) · cos(2πfc(t− kTs)) (3)

The carrier frequency of the signal is 7.3GHz and the
bandwidth is 1.4GHZ. The transmitted signal xk(t) is shown
in the Fig. 5(a) and the Spectrogram of the xk(t) is illustrated
in Fig. 5(b).
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(b) Transmitted xk(t) in frequency
domain

Fig. 5: The time and frequency domain of transmitted signal

The impulse response hk(t) is given by:

hk(t) =
∑p

p=1 αpδ(t− τp − τDp (kTs)) (4)

where αp is the channel gain of the pth reflection path signal
in the vehicle, τp is the time delay of the p-th path, τDp (kTs)
is the time delay caused by Doppler frequency shift of the
p-th path. The τp =

2Rp

c and τDp (kTs) =
2vpkTs

c , Where Rp

is the distance between the target to the UWB radio. c is the
speed of electromagnetic wave, vp is the speed of the moving
target. The range resolution of Blink Radar is ∆r = c

2B . The
received signal of the system is:

yk(t) = hk(t) ∗ xk(t) (5)

Received baseband signal ybk(t) are obtained after applying
IQ space, we have:

ybk(t) =

P∑
p=1

αpe
2πfc(τp+τD

p (kTs))·s(t−kTS−τp−τDp (kTs))+n(t)

(6)
For common pulse radar, we can use two-dimensional

fast Fourier transform for ranging and speed measurement
processing, we will receive the signal for (FFT), we can
get different objects at different distances relative to UWB
radar, As shown in Fig. 6(b). We have seen three Peaks
corresponding to different signal paths. The first path is the
path directly received by the antenna itself, the second is
the path reflected from the eye, and the third is the path
reflected from the environment. We further divide the signal
path into a static path and a dynamic path. All static path
signals, including direct path signals and reflections from static
surrounding objects. We denote the superimposed composite
signal as Hc where Hc is a vector summation of Hs and
Hd For most small-scale movements, the amplitude of the
dynamic vector can be assumed as a constant and only the
phase changes. Therefore, the dynamic vector rotates with
respect to the static vector, inducing the signal variations in
the I-Q vector space.

(a) Signals travel through multiple
paths.

0 1000 2000 3000 4000

Samples

0

0.5

1

1.5

2

2.5

3

3.5

P
o

w
er

Direct path

Eyes

Surrounding

(b) The FFT result of the sensing
signal.

Fig. 6: The illustration of eye-blink detection in a multipath
environment, and the corresponding ToFs (frequency shifts) of
the multiple paths, respectively.

B. Rf Signal Preprocessing

=Before extracting information from RF signals, the effects
from hardware or environment should be removed to guarantee
signal quality. The RF signals preprocessing has two main
steps: i) noise reduction and ii) background subtraction.
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1) Noise reduction: The received baseband signals are
polluted with noise, as shown in Fig. 8(a). Noise will prevent
the following vital signs extraction modules to work properly.
Especially, vital signs will be immersed in noise. Therefore,
a cascading filter comprised of a low-pass Finite Impulse
Response (FIR) filter and a smoothing filter are utilized to
enhance the SNR of the signals. The order of the designed FIR
filter is 26 and Hamming window is used. The smooth filter
with a window size of 50 points is used to further smooth the
output signal of the FIR filter. Fig. 8(b). illustrates the output
of the cascading filter. It can be seen that noise is suppressed.
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Fig. 7: The signal without SNR enhancement and with SNR
enhancement

2) Background subtraction: BlinkRadar needs to remove
reflections from other objects. Each reflector in the vehicle
produces a reflected component in the overall signal, and this
component has a frequency shift that is linearly related to the
reflected time-of-flight. For example, reflections from the seats
and steering wheel are much stronger than reflections from the
eyes. These reflections can interfere with blink detection.

To remove reflections from all these static objects (seats,
steering wheel), we take advantage of the fact that since these
reflectors are static, their distance from the UWB radar are
not time-dependent, so the frequency shift they cause remains
constant over time. We take an FFT of the received signal for
each scan window and calculate the power at each frequency
as a function of time. Note that there is a linear relationship
between the two The frequency shift and distance traveled are
as follows:

distance = C × TOF = C × △f

slope
(7)

We can use the equation above to plot the power reflected from
each distance as a function of time, As show in Fig. 8(a), We
can see from the picture that there are many static components
similar to straight lines, and their energy does not change with
time. Therefore, we remove the power of these static reflectors
from the FFT scan of the signal in the previous scan by simply
subtracting the output of the given FFT. This process is called
background subtraction because it removes all static reflectors
in the background. The result after elimination is shown in
Fig. 8(b).

C. Eye-Blink Motion Capture

Though human blinks are aperiodic and sparse, human
blinks have unique movement patterns. We first introduce the
movement patterns of the human eye, and then introduce the

(a) Signal before background sub-
traction.

(b) Signal after background subtrac-
tion.

Fig. 8: The signal without background subtraction and with
background subtraction

relationship between blink movement and signal changes. We
introduce this relationship in Sec.3, and we now present actual
experimental results.

The change of the signal in the IQ space in the closed eye
phase is shown in Fig. 9(a). We observed that the signal’s
amplitude becomes small, this change is since the surface of
the eyeball and the eyelid’s surface are different reflectors.
The reflectors of different materials have Different signal
reflectivity, so the signal reflected from the eyeball’s surface
and the eyelid’s surface will have different performance in
amplitude. At the same time, the reflection path of the signal
changes, and the reflection signal changes from eyelid reflex
to eyeball reflex. Results in a change in the phase of the
signal. The process of opening the eyes is the opposite of
closing the eyes. As shown in Fig. 9(b), we observe that the
signal amplitude becomes large, and the phase also changes
accordingly. We can distinguish this unique pattern from the
blink-related signal from the multipath fill signal.
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(b) The signal variation of Eyes open

Fig. 9: The signal variation of Eyes closed and open
Through the previous results, we can summarize the effect

of the blinking process on the signal as to when blinking
occurs. The signal transmission path will slightly change, and
the signal amplitude will change due to the difference in the
reflection of the signal by the eyelid and eyeball. In the I-Q
space, the amplitude of the signal can be expressed as

φ = −2π(f0τ − B

2T
τ2) (8)

In the blink of an eye, The value of B
2T τ

2 can be ignored,
the τ = 2d

c , we denote The change of phase △φ as

△φ = −4πf0 △ d

c
(9)

The signal phase change can be represented by △φ. The
Changes in signal amplitude can be used △α. We record blinks
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by capturing the changes in the phase and amplitude of the
unique signal during blinking in the I-Q space.

D. Eyes Blink signal extraction
This section will introduce how BlinkRadar filters out blink-

related signals from the multiple noises. Before we introduce
how to remove these noises, we first need to understand them
and how they affect BlinkRadar.

Multiple noise. The sensing signals will travel through
multiple paths from the transmitter to the receiver. Signals
reflected from surrounding objects are called ambient inter-
ference. Environmental disturbances can come from static
objects, such as seats and steering wheels, or from moving
objects, such as fidgeting passengers. In addition to the signals
reflected from the eyes, there are also signals reflected from
other parts of the body. Interference caused by signals reflected
from other parts of the body is called self-interference. Such as
the head when yawning, the hands when operating the steering
wheel.

Biosignal noise. Faces and the human body produce biosig-
nals that interfere with our blink detection. These biological
signals include heartbeat and breathing. The movement of the
heartbeat is small but will maintain a stable cycle. At the same
time, the heartbeat information will be hidden in the breathing
information. Many studies have shown that the chest cavity
will be displaced by 3-5cm when breathing. At the same time,
the head moves involuntarily when breathing, and there is an
approximate 1mm head movement that is synchronized with
the heartbeat due to the pumping of blood, which is called
Ballistic Cardiography (BCG). This involuntary movement
is aliased with blinking information. Different from ambient
noise, this type of noise embedded in the blinking information
is more difficult to remove.

To solve Multiple noise and Biosignal noise. We mainly use
two methods to solve and help us extract the information from
blinking.

The signal separation. To coarsely separate the blink signal
from the noise which is easier to separate, we first use the chirp
signal. UWB radar will continuously transmit pulse signals
with carrier frequency of 7.3GHz and bandwidth of 1.4GHz.
The speed of the electromagnetic wave c is 3.0x108, the
resolution of RF signal with a bandwidth of 1.4GHz is able to
distinguish two signals with a distance difference larger than
1.07 cm. The resolution of 1.07cm helps us easily separate the
signal from the blink of the eye from the motion of the driver’s
limbs and chest, and we design filters to filter out unwanted
noise in the environment. But the movements of the driver’s
face, including the movement of the lips, and the involuntary
small-amplitude movements of the head can be mixed into the
blink signal. A finer-grained signal separation is required to
obtain a clean blink signal.

Fine-grained blink features. Since both breathing and
heartbeat are periodic motions, the induced involuntary head
movements are also periodic. The motion of the head is
clearly different from blinking in the I-Q space. As shown
in Fig. 10(a). We use blue for head movement and yellow for
blink movement. Signal amplitude changes caused by small
head displacements (approximately 1mm) are negligible, while

the corresponding phase changes are significant. So if we don’t
consider the static vector, the phase change causes the dynamic
vector to rotate relative to the origin, and since the amplitude
change is negligible, the radius of the arc is approximately
constant.
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(b) The noise and eye-blink.

Fig. 10: The signal motion of headmovement and the noise
and eye-blink.

When we apply the chirp signal design to eye-blink de-
tection in a multipath environment, reflectors at different
distances cause different amounts of frequency shift, and the
signals fall into different frequency bins. After performing
FFT on the sensed signal (mixed signal). We can get multiple
reflectors located at different frequencies corresponding to
different frequency ranges. Without prior knowledge of the
distance between the eye and the sensing device, when there
are multiple peaks, we do not know which peak corresponds to
the eye reflection signal. The naive approach is to differentiate
the ocular reflection signal by distinguishing the amplitude
of the peaks. However, due to the small reflection area, the
magnitude of eye reflections may be weaker than reflections
from other surrounding objects such as steering wheels and
seats, even if the eye is closer to the sensing device.

To quickly identify the frequency bins corresponding to the
eyes, we exploited the disturbances caused by respiration and
heartbeat, rather than relying directly on the signal changes
caused by blinking. The reason is that blinking is a sparse
activity, with blink intervals ranging from a few seconds to
tens of seconds, which may If we identify the frequency bins
of eye reflexes by blinking, a large delay is introduced. In
contrast, embedded interference persists even without blinking,
which can be used to quickly identify frequency bins of eye
reflections. Illustrates the signal changes in the frequency of
the eye’s reflections when the eye is not blinking. We have
an interesting observation: while the 1D amplitude variation
of the eye-reflected signal is small, the signal in the 2D I-
Q vector space varies greatly, forming arc-shaped trajectories
due to embedded disturbances. As shown in Fig. 10(b), the
eye reflection frequency can be easily distinguished from the
noise in 2D space. Therefore, to identify the frequency bins
corresponding to the eyes, we first calculate the variance of the
2D signal variation for each frequency bin, and then pick out
the frequency bins with the largest variance. Note that this is
the first time we’ve exploited ”harmful” embedded interference
to aid our blink-sensing signal processing.

E. Real-time Eye-Blink Detection
Although the above viewing position scheme can achieve

good blink detection performance, the optimal Observe po-
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sition changes during long-term detection due to slight body
movement of the target and changes in the surrounding envi-
ronment. Therefore, we need to adaptively update the viewing
position in real time to maintain good sensing performance.
Since we obtained the optimal viewing position by the arc
fitting method, the more signal samples we have, the more
accurate the optimal viewing position. However, more data
samples means greater system latency and can impact real-
time performance. Below, we present the design details of
our real-time algorithm to maintain a good balance between
detection accuracy and system.

Signal transmission and reception. In the beginning, our
system collects several signal samples for the initialization.
Specifically, we accumulate 50 chirps with the default chirp
period of 40mm, which takes 2s in total. Note that this
2s is for the cold-start and is a one-time effort. Once the
system is initiated, we can output the detection results every
40mm. Therefore, our proposed system can provide real-time
detection. We apply the well-known Pratt method for the arc
fitting, which is lightweight and robust.

Extreme value separation After obtaining the best viewing
position, BlinkRadar continuously tracks the relative distance
from the viewing position to the newly collected signal sam-
ples. Since the blink cycle takes 100 400mm. We apply
a local extreme value detection (LEVD) method to detect
the bumps caused by blinks in a sliding window. The basic
idea of the LEVD method is to find alternative local maxima
and minima and compare the difference between two nearby
local maxima and minima with a predefined threshold. Set
to five times the standard deviation of the signal amplitude
without blinking. A blink is detected if the local maximum
and minimum difference is more significant than a threshold.

Adaptive update. During the driving process of the vehicle,
the vibration of the vehicle body and the adjustment of the
driver’s posture will change the distance between the eyes and
the UWB radar, so BlinkRadar needs to update the observation
position constantly. Since the optimal view position calculation
is very lightweight, we continuously. The viewing position is
updated as soon as enough samples are accumulated. Note
that if too few samples are used For arc fitting, the accuracy
can be pretty low. BlinkRadar restarts the whole eye-blink
detection process when a significant body movement happens.
BlinkRadar constantly finds the best viewing position, through
which it can continuously capture the blinking action.
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Fig. 11: An illustrative example of our real-time eye-blink
detection algorithm.

F. Drowsy Driving Detection

In this section, We’ll introduce how BlinkRadar performs
drowsy driving detection.

BlinkRadar aims to detect whether a user has entered a
drowsy state by detecting their blink rate, and we now discuss
the rationale behind our approach. When the user is very
awake and driving with full attention, the user’s eyes will
look ahead to observe the road conditions, and the blinking
frequency will remain normal. When the user enters a sleepy
state, the blink rate becomes higher. Previous research has
shown that when users feel drowsy in the initial stages, the
blink time is longer, and the blink rate is higher. Although
not a contribution of our work, for the integrity of drowsy
driving detection. We built a model to verify that we can
do this reliably. We build a simple model for drowsy driving
detection based on the above description.

We use blinkTime to denote blink duration, decided by
the 1st and the last sample of consecutive closed eyes. Then,
The blink rate denote the frequency of blink. To unify units,
BlinkRate is the frequency of blinks per minute. Finally, we
define

Mild drowsy=(BlinkTime>8000ms)||(BlinkRate>0.3)
Severe drowsy=(BlinkTime>1600ms)||(BlinkRate>0.4)
Next, we built a separate machine learning model for each.

The model includes two scenarios: awake, drowsy. We use
a one-minute window to calculate the user’s blink rate, and
we collect each user’s blink rate while awake and drowsy and
leave one Cross-validation method to validate our algorithm.

V. IMPLEMENTATION

Hardware implementations. BlinkRadar performs eye-
blink detection identification using UWB signals. The core
component is a compact, low-cost Novelda X4M05 [55] IR-
UWB transceiver. They are used to transmit and receive
RF signals for eye-blink sensing. The sampling frequency is
23.328GHz, and we set the frame per second as 400. The
radio is connected to a Raspberry Pi via Serial Peripheral
Interface (SPI). The hardware PCB is relatively small with
a size of 6.5 3cm2. The hardware includes a power supply,
5V fan, Raspberry Pi, and impulse radio. We place the whole
uwb radar on the windshield of a vehicle. Since the impulse
radio is facing the driver The eye-blink detection modules are
implemented using Python 3.7 and PyTorch 1.7.1. All code
will be executed on an MSI laptop (GTX 1060 graphics card
and I7-7700).

Signal parameters. It transmits a baseband signal with a
bandwidth of 1.5GHz, and the signal is further modulated onto
a 7.29GHz carrier.

Ground truth. We employ a separate smartphone as the
recording device to record the ground truth using the camera.
The recording device is held by an adjustable tripod and placed
at the same height as the sensing device. We first collected two
sets of data for each participant, blinking data while awake at
10:00 am in a stationary vehicle and then drowsy at 10:00
pm. The blink data at the time, these two data sets are used
as the training set. In order to maintain the safety of the
experiment, we choose to conduct the experiment when the
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driver is awake, and the experiment is carried out in an open
area with sparse traffic. The driver does not enter the drowsy
state. We will have the experimenter give instructions to the
participants. When the typical driving instruction is given, the
driver blinks according to the regular pattern, and when the
drowsy instruction is given, the driver drives. Participants will
be asked to blink to simulate their drowsiness blinking pattern.

(a) The UWB radar. (b) The driving environment.
Fig. 12: The UWB radar and driving environment.

VI. EVALUTAION

In this section, we comprehensively evaluate the perfor-
mance of BlinkRadar using the UWB Radar by varying the pa-
rameters under different conditions. Our extensive experiments
on actual vehicles and the road demonstrate the potential of
BlinkRadar for practical use of drowsy driving detection using
wireless signals.

A. Experiment Setup

To verify the performance of BlinkRadar, we recruited 12
participants (8 male and 4 female). Their ages ranged from (19
to 27). We used a Volkswagen Sagitar as an experimental ve-
hicle. We study the influence of different factors by arranging
UWB radar on the front window and changing the parameters
and conditions. We collected data for each driver in the vehicle
when they were awake and asleep. Then to simulate actual
driving, we will ask the participants to drive on the road at a
uniform speed (road at night, with low traffic volume). We will
not ask the participants to reach a state of drowsiness while
driving but will give instructions to ask them. The data were
collected while driving by simulating their blinking patterns
when fee drowsy.

B. Overrall Performance
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(a) CDF of the eye-blink detection
accuracy.
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(b) CDF of the drowsy driving detec-
tion accuracy.

Fig. 13: CDF of the detection accuracy.
BlinkRadar mainly performs two functions, one is blink

detection, and the other is drowsy driving detection based on
blink detection. We first explore the overall blink detection
performance and drowsy driving detection performance.

Accuracy of eye-blink detection. The accuracy of blink
detection is defined as the number of correctly detected
eye-blinks over the total number of eye-blinks. As show in
Fig. 13(a), The overall median accuracy of eye-blink detection
can reach 95.5%.

Fig. 14: Illustration of different relative positions of the sensing
device with respect to the human target.

Accuracy of drowsy driving detection. The accuracy of
drowsy driving detection is defined as the number of correctly
detected drowsy driving over the total number of drowsy
driving. As show in Fig. 13(b), The overall median accuracy of
drowsy driving detection can reach 92.2%. Next, we transform
the parameters to study the factors that affect the detection
accuracy of BlinkRadar.

C. Continuous Blink Missed Detection Rate

To verify the stability of BlinkRadar, we examine the
continuous missed detection rate of BlinkRadar during the
continuous blink detection process. The experimental results
are shown in the figure. The first missed detection rate in
continuous blink detection is 4.9%, the probability of two
consecutive missed detections is 2.1%, and three consecutive
missed detections are 0.2% as shown in Fig. 15(a). The results
prove that BlinkRadar can be stably used for blink detection.

D. Distance from UWB Radar to Participant

UWB radars are placed at different distances of 20, 40, and
80cm, respectively. Its direction Eyes are facing the human
target. We can achieve a detection accuracy that exceeds 95%
in 40 cm as shon in Fig. 15(b). When the distance increases
to 80 cm, the accuracy drops to 91%. Therefore, We advise
keeping the device within 0.4 m for high accuracy.

E. Elevation and height from UWB radar to participant

The sensing device is placed at different heights from 0
degrees to 60 degrees in steps of 15 spend. The sensing device
is placed facing the eye of the human target. we define the
user’s line of sight is 0 degrees, We can see that performance
decreases with height increase as shown in Fig. 15(c). Within
30 degrees, BlinkRadar can achieve a high detection accuracy
of 95%.
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Fig. 15: Illustration of continuous blink missed detection rate and different relative positions of the sensing device with respect
to the human target.
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Fig. 16: Other factors.

F. Angle from UWB Radar to Participant

We positioned the UWB radar to face the participant’s
eyes at 0 degrees. We tested the detection performance of
BlinkRadar in the range of 0 degrees to 60 degrees with a step
size of 15 degrees, and the result is as shown in Fig. 15(d).
It can be seen that in the range of 0 degrees to 15 degrees,
BlinkRadar can maintain more than 90% detection accuracy.
When the angle is more significant than 30 degrees, the
detection accuracy drops significantly, which may be related
to the angle of the antenna being too far away from the
participant.

G. Impact of Glasses

Considering the ubiquity of glasses wearers, BlinkRadar
needs to complete blink detection under the premise that users
wear glasses. We mainly evaluate two types of glasses (myopia
glasses and sunglasses). We fixed the UWB radar to the front
of the windshield. Fig. 16(a) shows that the detection accuracy
of BlinkRadar is 94% and 93%, respectively. Although the
accuracy rate is slightly lower than when the glasses are not
worn, the system can still complete the routine work. Blink
detection in the case of wearing glasses and wearable devices
is also our next work direction.

H. Impact of Road Types and Traffic Conditions

The signal quality of BlinkRadar can be affected by different
road types and traffic conditions, thus affecting the perfor-
mance of BlinkRadar. Make sure that BlinkRadar works on
different road types and different traffic conditions. We collect
data on different road types (e.g. smooth highway, bumpy road,
uphill road, downhill road, intersection, left turn, right turn,
roundabout, U-turn) and analyze the results separately. The
result is shown in Fig. 16(b). It can be seen that if the road
surface is smooth and the number of manoeuvres is small, the
estimation error of blink detection is low, during the bumpy

road surface and Driving manoeuvres can increase estimation
error.

I. Impact of Eye Size

Different users have different eye sizes. We want to know
whether the size of the user’s eyes will affect the performance
of BlinkRadar, and we give the detection accuracy of each of
them according to the size of the user’s eyeballs. We found
that the user’s eye size does affect the detection as shown
in Fig. 16(c), but even with the smallest eye size in the
experiment (3.5 x 0.8cm), BlinkRadar still maintains more
than 90% accuracy.

J. Impact of Detection Time

Fig. 16(d) shows the accuracy of drowsy driving detection
under different detection windows. It can be seen that when the
time length is between 1min and 2min, BlinkRadar can achieve
the highest detection accuracy. Too short a detection window
detects too few samples. Too long a detection window is easy
to delay the detection of drowsy driving. We set BlinkRadar’s
drowsy detection window to 1min.

VII. RELATED WORK

This section briefly introduces the literature background
related to blinking detection and some wireless sensing-based
driving behaviour detection. Blink detection currently mainly
includes detection schemes based on wearable devices and
detection schemes based on cameras. The detection scheme
based on wearable devices mainly acquires the information
of blinking action through sensors deployed around the eyes.
Camera-based detection schemes detect blinks by recording
the user’s face and using image processing techniques. The
driving actions detection based on wireless sensing includes
drowsy driving actions, distracted driving actions, and the
detection of the driver’s breathing and heartbeat. Below we
will introduce some practical cases.
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A. Eye-Blink Detection Methods

1) EOG-based blink detection: Electrooculography (EOG)
sensors are the most widely used method for eye tracking
and blink detection. Andreas et al. [14] describe the design,
implementation and evaluation of a novel eye tracker for
context-awareness and mobile HCI applications. Hiroyuki et
al. [15]input interfaces for the severely handicapped and
object-of-interest selection in the camera finder. They will
bring great benefits when they can be used easily in everyday
life. D et al. [16] developed a lab view-based EOG logger to
acquire EOG data and subsequently analyze it in MATLAB.
Activity status data collection was performed in the early
morning with the subjects’ consent. Subjects were asked to
perform an activity while acquiring the data. Video recordings
were also performed simultaneously to verify the performance
of the EOG system. Raj et al. [17] using electrodes placed
at specific positions around the eyes, are conditioned for
detection and analysis of these movements. However, the
characteristics of EOG signals obtained substantially depend
on the electrode placement.

2) Wearable device detection methods: Wearable devices
use smart glasses and VR glasses-based methods to combine
head movements and eye movements for human activity
recognition. Shoya et al. [18]demonstrate how information
about eye-blink frequency and head motion patterns derived
from Google Glass sensors can be used to distinguish different
types of high level activities. Oribits et al. [19]Using an off-
the-shelf Jins MEME pair of eyeglasses, present a pilot study
that suggests that the eye movement required for Orbits can
be sensed using three electrodes. 3D-Spatial [6]investigated
the effect of three-dimensional (3D) spatial learning on eye-
blink in computer graphics-generated visual environments.
Devender et al. [20]describes an Electrooculogram (EOG) and
gaze based hands-free natural interaction system design for
virtual reality (VR) games which enhances the immersive VR
experience.

3) Camera-based detection methods: Recently, there have
been many methods using Cameras to detect eye-blinks. The
camera’s low cost, non-contact and easy portability make it
the most widely used method for detecting drowsy driving.
Taber [21] presents an automatic drowsy driver monitoring
and accident prevention system that is based on monitoring
the changes in the eye-blink duration. CafeSafe [22] app for
Android phones that incorporates information from the front
and rear cameras and other embedded sensors on the phone
to detect and alert drivers to dangerous driving situations
inside and outside the car. However, the method based on
the Camera needs to consume a lot of computing power,
and using a Camera in the car will cause potential privacy
leakage problems. Our proposed method based on UWB radar
consumes less computing power and does not cause privacy
leakage problems.

B. Driving Action Detection Methods

Existing works exploit biological features including
EEG (electroencephalogram) and PPG (photoplethysmogram)
to detect fatigue driving. Li et al. proposed a PPG sensor

based driver fatigue detection method [23], and Dkhil et al.
introduced a EEG based fatigue index based on alpha spin-
dles [24]. Balasubramanian et al. employed the signal power in
the 15-30 Hz frequency band for muscle fatigue detection [25].
Biological features form the basis for directly reflecting the
fatigue state of the driver. However, these methods rely on
complex and expensive equipment and therefore are difficult
to be widely adopted.

Drowsy and distracted driving detection systems based on
wireless sensing have seen significant development recently.
ER [26] realized an early warning system which detects
inattentive events. D3-Guard [27] utilized the Doppler shift of
acoustic signals to capture the driver’s action patterns to detect
drowsy driving. DriverSonar [28] Detects dangerous driving
actions using unique acoustic echo information. CARIN [29]
used CSI-based technology to recognize activity of passenger
in the presence of interference. Recently, Zhang et al. designed
a diffraction-based sensing model to recognize exercises and
daily activities using WiFi signals [30]. Moreover, Wi-Fi
Radar [31] and V2ifi [32] were proposed to use RF signal
to detect human activity.

VIII. DISCUSSION

In this section, we discuss the limitations of our system and
potential future work.

A. Limitation
We expect BlinkRadar to be as perfect as possible, but in

fact, BlinkRadar is flawed. Compared with traditional camera-
based solutions, BlinkRadar is more strict about placement.
Traditional camera-based schemes can start performing blink
detection as long as the human eye can be captured in the
footage. After our research, there are two main reasons for
this limitation.

The limited angular range of the antenna. The angle
range of the camera is mainly 45 degrees. However, for
BlinkRadar, when the angle of the antenna exceeds 30 degrees,
the detection performance will drop significantly. At the same
time, the range of the human eye is petite, and the reflected
energy is fragile, so the angle of reflection of the antenna is
more stringent.

Complex road conditions and body vibration.In a moving
car, the performance of the system degrades as we continue
to drive over rough roads. The reason is that vibration and
displacement can change the distance measurement between
the UWB radar and the human body, thus affecting the sensing
performance. Equipment vibration/displacement. This is a real
challenge for wireless sensing because the detected motion
information comes from both the target and the device. It is
not easy to separate them to get target information.

In conclusion, we propose incorporating BlinkRadar into
the perception method of drowsy driving as a camera-based
alternative in scenarios where users have high privacy require-
ments.

IX. CONCLUSION

In this paper, we implement a subtle blink detection
platform using RF signals on IR-UWB Through theoretical
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and experimental analysis, We quantitatively modeled the
relationship between signal changes and subtle eye-induced
movements blinks. In this work, we design and implement
a low-cost and contactless drowsy driving detection system
that strikes a balance between user-friendliness, monitoring
accuracy, and privacy protection.. Comprehensive experimen-
tal results Demonstrate the effectiveness of our system. We
evaluate BlinkRadar during laboratory environments and real-
world road tests. Experimental results show that BlinkRadar
can achieve robust performance with a median detection
accuracy of 95%.
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