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a b s t r a c t

Finding appropriate cluster centers and determining the scope of influence explicitly associated with
each center is at the very core of a successful clustering process, which has long been particularly
difficult and important when handling bio-signals such as electroencephalography (EEG). Considering
exploratory EEG analysis as a typical case, this study forms an adaptive density peaks clustering (ADPC)
solution to the open problem based on the Density Peaks Clustering (DPC) algorithm. First, in order
to optimize the cutoff distance (key parameter previously set manually) to adapt to various clustering
tasks, an optimization function was constructed with the target dataset’s uncertainty that can be
solved by the extended Pattern Search Algorithm (PSA). Second, ADPC automatically constructs a set of
cluster centers by jointly ranking the local density and relative distance, and then fine-tuning the set
by balancing the intra-set independence and the tendency as a center against extra-set competitors
from the perspective of each candidate. An exploratory EEG analysis framework was then fostered by
centering on ADPC. Benchmarks on public datasets show the superiority of ADPC over its mainstream
counterparts in terms of effectiveness and adaptability. The case study on epileptic EEG indicates that
(1) the framework achieves averages on Precision, Recall, and F1-score of 100%, 92.46%, and 95.92%,
respectively, in seizure detection involving no a priori information, and (2) the key observations
revealed through clustering match the accepted conclusions well. Overall, ADPC enables automated
clustering, which is well adaptive to exploratory EEG analysis.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Clustering aims to organize data elements of a dataset into
istinct clusters according to their resemblance through unsu-
ervised learning of the intrinsic patterns (if any) of the dataset,
hich then enables exploration of the dynamics of the underlying
real or imagined) system on the basis of the observations [1].
ata elements in the same cluster are characterized by a sim-
larity higher than those in different clusters [2]. Clustering is
robably the most important and fundamental means of ex-
loratory data analysis for finding intrinsic hidden information
nd patterns (if any) without the need for a priori knowledge, for
xample, to detect uncertain abnormal states from brain imaging
ata. Its capability of unsupervised learning has proven extremely
seful in various fields such as signal processing, data mining and
attern recognition in general [3].

∗ Corresponding author.
E-mail address: dan.chen@whu.edu.cn (D. Chen).
ttps://doi.org/10.1016/j.knosys.2022.108123
950-7051/© 2022 Elsevier B.V. All rights reserved.
An exploratory analysis of electroencephalography (EEG) is a
typical case. As the dominant means for examining cerebral elec-
trical activities [4], EEG technologies have a wide range of applica-
tions in cognitive neuroscience, and the diagnosis of diseases such
as epilepsy, schizophrenia, and autism [5]. Nowadays EEG-based
neuroscience & engineering tasks still heavily demand onerous
and highly skilled labeling. Decision making will otherwise be un-
reliable even with contemporary supervised and semi-supervised
learning methods, such as mainstream EEG classification mod-
els [6,7]. Clustering holds the potential to explore brain dynamics
especially malfunctions recorded in EEG without the need for
labels or having to know all the potential problems/pathology
of the subjects beforehand, that is, basically a priori knowledge
about the observations (an EEG dataset) provided by experts [8].

The earliest clustering algorithms such as K-means simply rely
on distance to make decision on clustering, which assign the
cluster members to centers based on their minimum distances
and find the most appropriate cluster centers optimization of an
distance-based objective function [9]. Distance-based algorithms
are the most widely applied benefiting from this simple principle,
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ut they cannot adapt to nonspherical clusters as data elements
re assigned to the nearest center [10].
Distribution-based algorithms such as the Gaussian Mixture

odel (GMM) that utilize predefined probability distribution
unctions to reproduce data elements for adapting to various
ata distributions subsequently emerge [11]. The accuracy of
lustering is subject to the capability of the trial probability in
epresenting the data. The number of distribution functions must
e set in advance similar to the number of cluster centers in
-means according to a priori knowledge [12].
Clusters are more likely to have arbitrary shapes. Density-

ased algorithms identify clusters in a data space with a con-
iguous region of high point density [13]. The DBSCAN algorithm
nd its variants can find appropriate cluster centers, but still
equire manually setting key density parameters (MinPoints and
eighborhood radius) [14] to distinguish different density levels,
hich itself is an active research topic for selecting optimal
arameters [15].
The advent of density peaks clustering (DPC) [16]marks the

eak of these attempts. DPC has the advantages of both distance-
nd density-based methods, with the merits of identifying ar-
itrarily shaped clusters and their number without requiring
xplicit manual settings [17]. Although grand successes have been
chieved with DPC and its variants [18] (see Section 2.1), chal-
enges with adaptability still remain when handling data with no
trong features or with intensive interferences such as bio-signals
n practical applications. They are (1) unnecessary limits incurred
y empirical setting of the key parameter (cutoff distance), and
2) difficulty in selecting the cluster centers.

However, it is not trivial even for a sophisticated cluster-
ng method to detect abnormalities and events from such bio-
ignals which are highly complex and nonstationary [19]. There
s a pressing need for an alternative clustering method with
daptability that is significantly enhanced towards exploratory
EG analysis. This study utilizes advanced optimization theory in
onnection with the uncertainty of the target dataset to adap-
ively adjust the cutoff distance (dc) as the key parameter in DPC
irectly influencing the accuracy of clustering. It may not neces-
arily fix the cluster centers at the beginning, as more evidence
n decision making should be revealed in the course of clustering,
specially in the case of multiple center candidates coexisting in
high-density region.
This study proposes an adaptive density peaks clustering ap-

roach (ADPC) by extending the DPC algorithm (Section 3):

1. Adaptive selection of the cutoff distance. To obtain the
optimal cutoff distance for adapting to various clustering
tasks, an optimization function was constructed using the
Gini index to measure the uncertainty of the target dataset.
Then, the extended pattern search algorithm (PSA) with
global optimization capability was applied to obtain the
optimal cutoff distance value.

2. Automatic determination of cluster centers. To avoid bias
in the manual determination of cluster centers, ADPC au-
tomatically constructs a set of cluster centers by jointly
ranking the local density and relative distance (measure
γ ) and then fine-tuning the set by balancing the intra-set
independence and the tendency as a center against extra-
set competitors from the perspective of each candidate.
Once the extra-set competitor holds the tendency as a
center, the corresponding data point is filled in, and the
corresponding candidate with relatively low independence
is filtered out.

A generic framework for exploratory EEG analysis has been
ostered by centering on the ADPC approach combining discrete

ourier transform (DFT) and Bayesian factorization (Section 4). i

2

The design aims at automatic clustering in the course of exploring
the target. Thus, blind exploration of brain malfunctions may be
possible without the need for excessive a priori information.

Benchmark experiments on public clustering datasets were
performed to evaluate the adaptive capability and the accuracy of
ADPC against relevant counterparts in clustering tasks (Section 5).
A case study on epileptic EEG was carried out to evaluate the
proposed framework in terms of the capability of exploratory
analysis (Section 6).

The main contributions of this study are as follows:

1. This study develops an adaptive clustering approach by
extending the DPC algorithm that can optimize the key
parameters and determine the cluster centers by itself. It
enables adaptive clustering with fully automated operation
based on the target dataset without the need for human
intervention or empirical setting of key parameters. The re-
sulting algorithm significantly outperforms the mainstream
counterparts.

2. A clustering-based framework for exploratory EEG analysis
is provided aiming at pathological EEG, and it is proved to
be effective for seizure detection. It holds the potential to
find abnormal neural activities from EEG without explicit a
priori knowledge of the subjects under examination as the
classification models do.

. Related work

Existing clustering algorithms can be based on metrics such
s distance, distribution, density, or their combinations. Extensive
nd comprehensive literature reviews of research exist along this
irection [20,21]. This section then focuses on the family of DPC
nd the most salient EEG clustering methods, as they are closely
elated to this study.

.1. Density peak clustering family

DPC algorithm excels in detecting arbitrary shaped clusters
nd determines the cluster centers in a heuristic way [16,22]. DPC
ssumes that cluster center is a point with a higher local density
ompared with its surrounding neighbors and it is located at a
elatively large distance from any other points with a higher local
ensity. Recent DPC variants largely aim to tackle the pitfalls em-
irical setting of the cutoff distance dc and manual determination
f cluster centers [23].
Du et al. proposed the DPC-KNN algorithm incorporating k-

earest neighbors in local density computation [24], which might
educe the risk of incorrect clustering by dc . The DPC-KNN still
eeded to know the number of the nearest neighbors before-
and. Jiang et al. have developed the GDPC algorithm based
n the gravitation theory to accurately identify centroids and
nomalies, which attempts to exclude the influence of dc on the
lustering results [25]. Both methods left cluster centers manually
etermined via Decision Graph.
Wang et al. proposed to determine the number of clusters

rior to clustering by finding the ’’knee point’’ as the bound-
ry between a cluster center and a noncluster center [26], and
he knee point could be derived by minimizing the root mean
quared error of two fitting curves. Bie et al. have also developed
method (fuzzy-CFSFDP) to select the cluster centers aided by

uzzy theory raised from statistical analysis against local density
nd relative distance of cluster centers conforming to Gaussian
istribution [27]. Both methods can effectively handle synthetic
ata but leave the situation of multiple cluster centers co-existing

n a high-density region unattended.
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.2. EEG clustering

Existing EEG clustering methods focus on feature engineer-
ng tasks such as feature selection, feature extraction, and/or
rouping of EEG epochs of different states.
Alshebeili et al. have enabled seizure prediction based on

-means with a high performance in terms of prediction ac-
uracy and false alarm rate [28]. Based on the statistical char-
cteristics of amplitude, median, mean, variance and derivative
f EEG, K-means could complete the task of seizure prediction
ith a performance comparable to multilayer perception (MLP)
etworks.
Bizopoulos et al. have also developed a method to detect the

pileptic seizures using K-means and Ensemble Empirical Mode
ecomposition (EEMD) [29]. Marginal Spectrum (MS) obtained
ia EEMD formed the basis for clustering by K-means without the
eed for training data.
Paolo et al. proposed to use a fuzzy clustering method to

ustain workflow for EEG event-related potentials [4]. Fuzzy clus-
ering worked in the very core to grade the weighted feature
ectors in clustering. Experimental results of emotional Go/NoGo
ask show the method’s robustness to artifacts.

As a contrast to the above, this study is intended to bridge
he gap between the most advanced clustering algorithm and the
pen problems complicated in exploratory analysis of bio-signals.
he major concerns include (1) how to automatically optimize
he key parameters and determine the cluster centers adapting
o various datasets and (2) how to enable an effective method of
xploratory EEG analysis.

. Adaptive density peak clustering

This section first covers the background of the DPC method
nd notations referenced throughout the following discussions.
he design of the adaptive DPC is then given. In particular, the
asic theories of the ADPC algorithm are detailed, including: (1)
daptive selection of cutoff distance, (2) automatic determination
f cluster centers and, (3) complexity analysis.

.1. Background and notations

For a given dataset S = {x1, x2, . . . , xN}, let IS = {1, 2, . . . ,N}

represent its corresponding index set. A certain distance between
data points xi and xj in S, such as the Euclidean distance, is de-
noted by dij = dist(xi, xj). In the context of the DPC algorithm, the
local density ρi of data point xi, similar to MinPoints in DBSCAN, is
defined as follows:

With the assumption of discrete data elements, the local den-
sity ρi can be defined as (1).

ρi =

∑
j

χ (dij − dc), (1)

where {i, j|i ̸= j} ∈ IS , and the function χ (x) is defined as (2):

χ (x) =

{
1, x < 0
0, x ⩾ 0.

(2)

When continuous data are assumed, the local density can be
alternatively defined as (3):

ρi =

∑
j

e
−(

dij
dc

)2

, (3)

where dc is the only parameter to be manually set in the DPC
and defines the scope of influence of each data element/point. The
cutoff distance d plays an important role in computing the local
c

3

density ρi. As shown in Fig. 1, ρi indicates the number of data
points in the influence scope confined by dc . The accuracy of
clustering depends heavily on the setting of dc .

The DPC algorithm empirically sets dc to ensure that the
average number of neighbors is approximately 1%–2% of the total
number of data points in the dataset. This setting aims to gain
adaptability, but the appropriate dc for various problem domains
may differ. Note that feature extraction or alike can alleviate the
high complexity and nonstationarity embedded in the data under
examination, and the direct application of DPC can still be risky,
as the range of dc remains unclear. The success of clustering in
this context is subject to the appropriate, that is, adaptive to
the dataset, setting of dc . The capability of adaptively setting an
appropriate dc is desired to adapt to the corresponding problem
domain.

Data field depicts the interactions between objects (i.e., other
data points) associated to each data point in the whole data
space, mimicking the field theory in physics [30]. In this context,
individual data point radiate their strengths (measurements of
influence) and vice versa. The local density ρi is defined the
difference in focusing on each individual data point. The data field
theory is then applied in designing the adaptive DPC.

For data point xi, the relative distance δi is defined as (4):

δi =

⎧⎨⎩ min
j:ρj>ρi

(dij), ρi < max
k

(ρk),

max
j

(dij), ρi = max
k

(ρk).
(4)

Relative distance δi is measured by computing the minimum dis-
tance between data point xi and any other data points with
higher density. However, for the data point with the highest local
density, δi takes the maximum distance to all other points.

As shown in Fig. 1, data point 14 is closest to data point 12
among the first 13 points with higher density, such that δ14 =

d(14,12) and the relative distance of data point 1 is d(1,27), which
is the maximum distance from data point 1 to the rest of the
data points. Cluster centers are recognized as points for which the
value of ρi and δi are anomalously large, and the Decision Graph
is constructed based on ρi and δi to identify cluster centers. The
remaining data points are then allocated to the same clusters as
their nearest neighbors of higher density. As shown in Fig. 1, the
areas within the blue and red dashed lines represent the scope of
influence explicitly associated with centers 1 and 10, respectively,
and the scope of center 10 is equal to its influence area with dc .

Moreover, for each cluster, the set of data points assigned to
it but also located within a distance dc from the data points be-
longing to other clusters form a border region, and the maximum
local density within its border region is denoted as ρmax. The data
points with a density higher than ρmax are considered as cluster
cores; otherwise, they are regarded as cluster halos, that is, noise,
which are more likely.

Pattern Search Algorithm (PSA) aims to solve the optimization
problem of functions that are difficult to derive [31]. This study
extends this to solve the optimization function constructed by
measuring the uncertainty of the target dataset (Section 3.2.1).
This metric reflects the chaotic state of the potential distribution
of the dataset and can be measured using the Gini index:

Gini = 1 −

c∑
i=1

(pi)2, (5)

where pi is the probability that the data points belong to the ith
category, and c is the number of categories.

Let Φi = ϕ(xi) denote the potential value of the data point
xi. The relationship among the uncertainty, potential distribution,
and Gini index is detailed in Section 3.2.1.
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Fig. 1. Data point distribution. Data points are ranked in order of decreasing density and dc is the radius of the influence area of data points. When the cutoff
istance dc is too large, such as dc ⩾ max(dij), all ρi are the same, and all the data points will be identified as one cluster. On the contrary, when the cutoff distance
s too small, such as dc ⩽ min(dij), all the data points will be regarded as the cluster centers and divided into a single cluster. Data points 26, 27, and 28 have a
elatively high δ and a low ρ, each considered as an individual cluster consisting of a single data point, i.e., an outlier.
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To automatically determine cluster centers, the metric γ is
roposed to jointly consider ρ and δ [16] as defined in (6):

i = ρiδi, (6)

i is sorted in descending order to obtain the γ sequence
{seq(γi)}Ni=1). Furthermore, the γ of the cluster center point near-
st to the noncluster center point in the γ sequence is expressed
s: γBD. Meanwhile, the noncluster center point with the γ value
losest to γBD is treated as a competitor. The difference between
andidates in the γ sequence can be viewed as the independence
n the set of center candidates to be adjusted. The tendency of
candidate to be identified as a cluster should be measured to
creen out unqualified candidates (see Section 3.2.2).

.2. Design and theories of adaptive density peak clustering

This study complements the DPC method with the innovations
f adaptively selecting the optimal cutoff distance and automat-
cally determining the appropriate cluster centers. The resulted
lgorithm of ADPC is described in Algorithm 1.
To tackle the pitfall of the empirical setting of the cutoff

istance, ADPC introduces data field theory to adaptively obtain
he optimal cutoff distance d̂c by constructing an optimization
unction with the Gini index and then using the extended PSA
o drive the function to the optimum. To enable automatic de-
ermination of appropriate cluster centers instead of resorting to
xperts’ visual inspection as DPC does, ADPC constructs a set of
luster centers by ranking the γ and fine-tuning the set based on
he independence and tendency of cluster center candidates. The
illar theories proposed in ADPC are described in Sections 3.2.1
nd 3.2.2 respectively.

.2.1. ADPC: Selection of cutoff distance
The data field theory is introduced here to adaptively obtain

he optimal cutoff distance d̂c value based on the interactions
f data points by fully considering the overall distribution espe-
ially the potential value representing the interaction dynamics
4

Algorithm 1 Adaptive Density Peak Clustering
Input:

Distance matrix: D.
Output:

Cluster result: C .
1: Sort dij in a ascending order;
2: Set dc be the value of 2% position in the above order;
3: Selection of cutoff distance module:

• Use the extended PSA to solve (11) to obtain d̂c .

4: Calculate ρi and δi based on (1) or (3), and (4), respectively;
5: Determination of cluster centers module:

• Construct the set of cluster centers by jointly ranking
the local density and relative distance (measure γ ) with
using (6) and (15).

• Fine-tune the set by balancing the intra-set indepen-
dence and the tendency as a center against extra-set
competitors from the perspective of each candidate with
using (16) and (17).

6: Allocate remaining points to the same cluster as its nearest
neighbor of higher density.

7: Identify border regions to distinguish cluster cores and cluster
halos.

of objects (data points). The distribution of the data field can be
described as a potential function, and the potential value of an
arbitrary point xi ∈ �(i = 1, 2, . . . , n) in the data field is defined
s (7):

(xi) =

n∑
j=1

(mj × K (
∥xi − xj∥

σ
)), (7)

where mj (mj ⩾ 0,
∑n

j=1 mj = 1) is the mass of xj and it
epresents the strength of the data field from xi, ∥xi − xj∥ is the
istance between point x and point x , σ is an impact factor
i j
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Fig. 3. Both local density and potential can match the distribution of original dataset.
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hat controls the interaction distance between points, and K (x) is
unit potential function. Clearly, the potential function directly
easures the density of data distribution. The potential is strong

n a data-intensive area and weak in a data-sparse area [32].
K (x) is assumed to be a Gaussian kernel function as it is

biquitous and well matches the data nature of the data field [33].
he Gaussian potential of point xi is defined as (8):

ϕ(xi) =

n∑
j=1

(e
−(

∥xi − xj∥
σ

)2

), (8)

The definition of ρi is similar to the Gaussian potential of point xi.
As shown in Fig. 3, both the local density and potential match the
distribution of original dataset. The distribution of the potential
value is determined by impact factor σ , as the local density is
determined by dc . Hence, the optimal value of dc can be solved
in the same manner as the optimal σ .

The Gini index measures the uncertainty of systems associated
with random variables and is positively related to uncertainty.
For a data field, the Gini index (defined as (9)) measures degree
of uncertainty, that is, how nonstationary the dataset under ex-
amination is. When the potential values of all data points are
the same, the corresponding uncertainty reaches its maximum
with the greatest Gini index obtained; in contrast, the smallest
Gini index denotes that the data field is the most unbalanced and
clustering of the dataset should be the most straightforward.

Gini = 1 −

n∑
i=1

(
Φi∑n
i=1 Φi

)2. (9)

The Gini index then manifests a nonlinear univariate function
with impact factor σ , and the optimal σ can be obtained when
the Gini index is minimized. The potential distribution of the data
field is then said to best match its distribution [34]. Therefore,
5

the objective function with respect to the impact factor σ can be
denoted as (10):

σ = arg min
σ

(Gini(σ ) = 1 −

n∑
i=1

(
Φi(σ )∑n
i=1 Φi(σ )

)2). (10)

he objective function of the cutoff distance dc can be obtained
s (11). Clearly, the optimal value of dc is the same as that of σ .

ĉ = arg min
dc

(Gini(dc) = 1 −

n∑
i=1

(
ρi(dc)∑n
i=1 ρi(dc)

)2). (11)

Obviously, the solution of (11) has a fair initialization that is
o the optimal cutoff distance d̂c when the initialization is set to
the first 1%–2% of the dij sequence [16]. ADPC extends the PSA to
derive a solution to this optimization problem, which iteratively
drives the objective function to the optimum. The conventional
PSA decides (in the current step xk) the direction of the next
search (step xk+1) only in comparison with the value of the ob-
jective function in the current step, that is (f (xk+1), f (xk)), which
may result in premature convergence. The improved algorithm
then refers to m (m > 1) steps to reduce the risk of falling
in the local optimum: (f (xk+1),maxf (xk−m), f (xk−m+1), . . . , f (xk)).
Therefore, the rule of step 2 in Algorithm 2 is changed to:

f (yj ± dej) < max
max(k−m,0)⩽j⩽k

f (yj). (12)

When m = 0, it degenerates into the original comparison method.

The main purpose of introducing an extended PSA is to quickly
search min(Gini) and the corresponding d̂c , which makes the
search more efficient than the traversal method. Although some
extra hyperparameters have been introduced, their effect on the
final clustering results is much lower than that of dc . Among
them, only the acceleration and contraction coefficients can di-
rectly influence the search process speed. For the comparison
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Algorithm 2 Extended Pattern Search Algorithm
Input: Acceleration coefficient κ ⩾ 1, contraction coefficient
∈ (0, 1), convergence coefficient ε > 0, initial step-size d, (d >

).
Output: Optimal solution: xk.

1: Set the initial value x1 ∈ Rn and set y1 = x1, k = 1, j = 1;
2: The axial search:

if f (yj + dej) < max
max(k−m,0)⩽j⩽k

f (yj)

yj+1 = yj + dej, turn to step 3;
else if f (yj − dej) < max

max(k−m,0)⩽j⩽k
f (yj)

yj+1 = yj − dej, turn to step 3;
else set yj+1 = yj;

3: if (j < n)
j := j + 1, turn to step 2.
if (f (yn+1) < f (xk))

turn to step 4;
else turn to step 5;

4: The pattern search:
set xk+1 = yn+1, y1 = xk+1 + κ(xk+1 − xk).

k := k + 1, j = 1 and turn to step 2.
5: if (d ⩽ ε)

End the search and output point xk;
else

Set d = βd, y1 = xk, xk+1 = xk.
Set k := k + 1, j = 1 and turn to step 2.

factor, setting it to be a smaller integer (i.e., 1,2,3) is less diffi-
cult and influential than the direct setting of the original dc . As
shown in Fig. 4, there is only one extremum of Gini, at which
the comparison coefficient m has little influence. Overall, these
hyper-parameters introduced are easier to set and have a lower
direct impact on the results.

3.2.2. ADPC: Determination of cluster centers
The DPC requires visual inspection of the Decision Graph to

manually set the cluster centers. This is particularly risky when
handling complex Decision Graphs grows complex. For example
in Fig. 5, difficult to determine whether the data points in the
circles can be identified as cluster centers. This also compli-
cates scenarios in which human participation does not apply or
becomes difficult. ADPC then aims to automatically determine
accurate cluster centers based on the dataset itself without the
need for manual operations. The DPC selects cluster centers from
data points with large ρ and δ, that is, a large γ . Following
6

Fig. 5. An instance of decision graph.

this loose principle, the key issue is to find the boundary (γBD)
between the cluster center point (γCc) and the noncluster center
point (γi).

Ranking γi of all data points in descending order, as shown
n Fig. 2, most of the γis concentrate on a low value, while
those of few data points are large. For noncluster center points
(approximately indexed 7 onward), the average value γ̂ is close
o γi in the middle, and their γis descend almost linearly and
lowly. When viewing the γ values of data points through the
oundary point (γBD) to a cluster center point (γCc), there exists
jumping point with γ . This observation provides a clue for

dentifying γBD by scanning the γ sequence. The consecutive
(odd positive) γ s are selected from {seq(γi)}Ni=1: {seq(γj)} =

seq(γj), seq(γ(j+1)), . . . , seq(γ(j+Z−1))}, and the mean value of
seq(γj)} can be obtained:

{seq(γj)} =

∑Z
j∈{1,(N−Z)},k=0 seq(γj+k−1)

Z
. (13)

The γ s of noncluster center data points can be expressed as
ormula Eq. (14):

{seq(γj)} ≈ seq(γ(j+(Z−1)/2)). (14)

onsequently, the following formula can be obtained to deter-
ine whether {seq(γj)} satisfies the linear trend:⏐⏐{seq(γj)} − seq(γ(j+(Z−1)/2))

⏐⏐ ⩽ ξ, (15)

here ξ is a small positive value. For the sequence {seq(γj)},
there are two moving methods, forward and backward, to scan
{seq(γ )}N to find γ .
i i=1 BD
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When using the forward moving method, sequence {seq(γj)}
s constructed from γ0 and moves forward one point each time.
n each movement, we observe whether the sequence {seq(γj)}
atisfies in formula (15). Once sequence {seq(γj)} satisfies the
bove inequality relationship, the movement stops and the γj in
seq(γj)} is regard as the γBD.

When using the backward moving method, sequence {seq(γj)}
s constructed from γq, which is in the middle of {seq(γi)}Ni=1 and
oves backward by one point each time. Similarly, we observe
hether the sequence {seq(γj)} satisfies the linear trend in each
ovement. On the contrary, it satisfies the inequality relation
t the early stage of backward movement. Therefore, when the
equence {seq(γj)} does not satisfy the inequality relation for
he first time, the corresponding γj in {seq(γj)} is regard as γBD.
fter finding γBD, the data points satisfying γi ⩾ γBD are consid-
red as candidate cluster centers. Then the set of cluster center
andidates is constructed for fine-tuning.
It is worth noting that the value of γq can be set to the first 50%

point of {seq(γi)}Ni=1. The reason for this setting instead of starting
from the last point is for fewer movements and comparisons.
Under normal circumstances, the number of clusters in the data
set is not very large, so there is a small probability to cause
the omission of cluster centers. Meanwhile, this setting is not
mandatory, and γq can also be located further back in {seq(γi)}Ni=1.

In addition, parameter Z determines the length of {seq(γj)} and
an be set to an odd number above 3 (e.g. 5,7). Different ways of
oving correspond to different ways of setting. When using the

orward moving method, Z can set to slightly larger to reduce
he risk of ending the movement early when {seq(γi)}Ni=1 corre-
ponding to the dataset with many true cluster centers showing
downward linear trend before γBD. When using the backward
oving method, a slightly smaller Z will be more suitable, be-
ause it can reduce the risk of a small jump at the γBD resulting in
small {seq(γj)} value transformation and then continue looking

orward for γBD. Even if Z is not set appropriately, which results
in the inaccuracy of the candidate set, the subsequent fine-tuning
process will corrects this to ensure that an accurate cluster center
is obtained.

Fine-tuning checks extra-set competitors against intra-set can-
didates in terms of independence. Given L candidates in the initial
set, the difference in γ between the jth data point and its right-
ward neighbor is Dj; the average value of D among the candidates
is Dµ.

Starting from the Lth D, ADPC compares Dj (j > L) with Dµ

in order: Once Dj ⩾ Dµ is satisfied, the competitor will be filled
into the candidate set and Dµ updates; the number of compar-
isons to be made, T , can be set to 5. Next, the ADPC filters out
the unqualified candidates based on the tendency. According to
the fundamental assumption of cluster centers regarding relative
distance, their values are much larger than the cutoff distance dc ,
which are said to conform to the restriction:

δCc ⩾ dc . (16)

Moreover, when there are multiple center candidates in a
region with high density, they are usually very close to each
other. Therefore, it is necessary to determine whether these cen-
ter candidates can be identified as the final independent cluster
centers, which determines whether the clusters after subsequent
allocation should be merged or separated. Thus, all cluster centers
complete the screening process by comparing the cutoff distance
and the shortest distance (distmin) of the center candidates. When
distmin is less than dc , the center candidate is filtered out. Thus,
all the candidates satisfy (17).

distmin > dc . (17)

ltimately, the final actual cluster centers are determined accu-

ately from the set of candidates using the fine-tuning process.

7

3.2.3. Complexity analysis
Suppose that the dataset contains n data points and let C

enote the number of clusters. In the process of ADPC, there
re three main parts that require storage spaces: first, the dis-
ance matrix needs space to store and the space complexity
s O(n2). Second, ADPC needs space to store dij, which is c1n2

ntries, where c1 represents a constant. Third, each point has
our attributes: ρ, δ, Gini, and γ , which need 4n spaces. Thus, the
verall space complexity of ADPC is O(n2). As for DPC, the distance
atrix and the two attributes (ρ and δ) of each point need to be
tored, while the value of dc is only an entry. Furthermore, as an
mproved algorithm of DPC, the space required by DPC-KNN [24]
ncludes three parts. The first two parts are consistent with DPC,
nd the latter part, which is used to store dij, is the same as the

second part of the ADPC. Thus, the overall space complexity of
the three algorithms can be written as O(n2).

The time complexity of ADPC is mainly derived from the
following five aspects: (a1) the time complexity for computing ρ,
δ and Gini for each data point i are all O(n2), and (a2) the time
complexity of the extended PSA algorithm is O(log(n)). There-
fore, the time complexity of obtaining d̂c is O(n2log(n)). (a3) The
time complexity of dij and γ depends on the sorting algorithm,
the minimum O(nlog(n)), and the maximum O(n2), so the total
omplexity of this aspect does not exceed O(n2); (a4) the time
omplexity of fine-tuning in the determination of the cluster
enter module is O(n), and (a5) the time complexity in the data
oint allocation process is O(C ∗ n). Therefore, the overall time
omplexity of ADPC is O(n2log(n)).
Compared with ADPC, the time complexity of DPC involves

wo aspects: (b1) the time complexity for computing ρ and δ,
nd (b2) the time complexity in the data point allocation process.
n addition to (b1) and (b2), DPC-KNN still has the same time
omplexity (a3) for finding the k-nearest neighbors by sorting.
s for determining the cluster centers, this does not apply to
he manual operations for DPC and DPC-KNN. The overall time
omplexity for the both is O(n2). The ADPC has an overhead in
olving (11), whereas DPC and DPC-KNN are not involved, but this
s obviously tolerable.

. EEG exploratory analysis framework

A framework for exploratory EEG analysis was then designed
ased on ADPC, to find abnormal neural activities from patho-
ogical EEG without explicit a priori knowledge of the subjects
nder examination as the available to classification models. Fig. 6
rovides an overview of the framework, which consists of three
ajor modules: (1) time–frequency transformation with DFT, (2)
EG feature extraction with the Bayesian factorization approach
BF), and (3) clustering of EEG states.

EEG is first evenly segmented into a sequence of EEG epochs or
amples in the context of machine learning; Spectrum information
f the EEG samples is obtained via DFT; The resulted EEG tensor
three dimensions of sample-channel-frequency) is then factorized
ia BF to extract factor features; The distance matrix of the
eatures forms the inputs for ADPC.

.1. Extraction of EEG factor features

The framework first performs time–frequency transformation
o EEG samples and obtains the frequency information with the
amming window applied to avoid truncation. The EEG tensor is
hen formed with latent features extracted by BF, which excels
ith the merit of no demand for sufficient a priori knowledge of
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Fig. 6. Framework for ADPC-based EEG clustering analysis.
he problem domain and the capability to shift the most informa-
ive factors of EEG. The linear model for tensor decomposition is
xpressed as follows:

Y = X + ϵ,

X =

R∑
r=1

U (1)
r ◦ · · · ◦ U (N)

r ,
(18)

here Y is the N-order tensor of size I1×. . .×IN , composed of the
rue tensor X and the noise tensor ϵ. U (n)(1 ⩽ n ⩽ N) represents
he n-mode factor matrix of size In × R with the rth column U (n)

r
nd the positive integer R is referred to as the tensor’s rank. The
perator ◦ denotes the outer product.
BF assumes non-informative priori of the factor vector U(n)

in·
(1 ⩽

⩽ N, 1 ⩽ in ⩽ In), the inth row of factor matrix U (n) and each ele-
ent in noise tensor ϵ both conform to i.i.d. Gaussian distribution.
he probabilistic model adapts an approximate inference under
he variational Bayesian framework for the posterior distribution.
hen the posterior distribution of the factor matrix is obtained
hen the lower bound of marginal likelihood p(Y ) is maximized
nd the factor matrices for all modes are obtained by the mean
f posterior distributions [35].

.2. Clustering EEG states

ADPC-based state recognition is at the core of the frame-
ork. Taking 3-order tensor (sample-channel-frequency) as an
xample, the most significant features obtained by the BF ap-
roach are depicted in the modes of the sample, frequency and
hannel. The factor matrix of sample mode U (s) includes the
issimilarity among the EEG data samples. Clustering the factor
eatures of the EEG sample mode holds the power to explore
nd identify the pathological states of the brain’s cerebral electro-
hysiological activities. ADPC is applied for grouping EEG states
rom low-dimensional sample factors. The distance matrix of the
ample features is calculated to be the input of the ADPC and the
lustering results obtained can be used for exploratory analysis
f pathological EEG. The detected abnormalities may then be
oncentrated for further examination with more sophisticated
nalytics in neuroscience and engineering tasks.
8

Table 1
Public synthetic datasets.
Dataset Records Clusters Source

Flame 240 2 [36]
Spiral 312 3 [37]
R15 600 15 [38]
Aggregation 788 7 [39]
S1 5000 15 [40]
Unbalance 6500 8 [41]

5. Performance evaluation

This study performed benchmarks of ADPC on public datasets
against the mainstream counterparts. The testbed for the experi-
ments was a PC equipped with CPU (Intel (R) i5-7500@3.4 GHz),
RAM (16 GB), and OS (Windows 10).

Benchmarks were intended to test the capability of ADPC to
recognize clusters of arbitrary shapes on the public datasets avail-
able at http://cs.uef.fi/sipu/datasets/. Table 1 described the details
of these synthetic datasets significantly varying from each other
in size and number of clusters. Four state-of-the-art clustering al-
gorithms were checked against three types: (1) classic clustering:
K-means and DBSCAN, (2) the original DPC algorithm, and (3) the
improved DPC algorithm: DPC-KNN [24]. The Euclidean distance
was used to calculate the distance in the clustering process for all
algorithms.

The performance of these clustering algorithms was evaluated
using two widely applied metrics: the adjusted rand index (ARI)
and adjusted mutual information (AMI).

• ARI could be regard as a modified metrics of Rand index (RI)
with higher discrimination. The value ranges of ARI and AMI
are both [−1,1], and the larger ARI-implied clustering results
were more consistent with the real data distribution:

ARI =
RI − E(RI)

. (19)

max(RI) − E(RI)

http://cs.uef.fi/sipu/datasets/
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Table 2
Parameters setting of algorithms.
Dataset K-means DBSCAN DPC-KNN

Flame k = 2 eps = 1.56, MinPoints = 14 p = 1.0%
Spiral k = 3 eps = 1.20, MinPoints = 2 p = 2.5%
R15 k = 15 eps = 0.40, MinPoints = 10 p = 0.5%
Aggregation k = 7 eps = 1.50, MinPoints = 9 p = 1.0%
S1 k = 15 eps = 0.04, MinPoints = 26 p = 1.0%
Unbalance k = 8 eps = 0.03, MinPoints = 8 p = 1.0%

• AMI measured the degree of the consistency between data
distributions based on the Mutual Information theory:

AMI =
MI − E(MI)

max(H(U),H(V )) − E(MI)
. (20)

Suppose U and V are two distributions of N sample labels,
then H(U) and H(V ) are the entropies of the two distribu-
tions, respectively; MI is the mutual information between
U and V. The value range of AMI is also [−1,1], and a
larger AMI indicated that the clustering results were more
consistent with the real labels.

DPC and DPC-KNN both set dc to 2% of dij in the dataset. ADPC
sets the parameters of extended PSA in the process of clustering:
acceleration coefficient κ = 2, contraction coefficient β = 0.5
and comparison coefficient m = 3. The search initialization and
initial step size were set to 2% and 0.1% of dij, respectively. In
addition, Table 2 presents the details of the K-means, DBSCAN
and DPC-KNN remaining relevant parameter settings.

Table 3 presented the benchmark results of the clustering
algorithms in terms of ARI and AMI. All results were averaged
across 20 iterative trials. The results indicated that:

• All algorithms performed well on datasets R15, S1, and
Unbalance. This was also the case on Flame, Spiral, and
Aggregation data sets (except K-means).

• ADPC, DBSCAN, and DPC-KNN outperformed DPC and K-
means on Spiral dataset; ADPC’s AMI and ARI values on
Flame, Spiral, and Aggregation datasets were all 1.

• ADPC outperformed DPC on all datasets except the Unbal-
ance dataset.

The performance of DPC-KNN was close to that of ADPC, but
its key parameter k should be set manually beforehand, where
k is computed as a percentage (p) of the number of data points
N, so k = p × N . This parameter significantly influenced the
performance of DPC-KNN, and no solution to automating the
setting was available but enumeration verification.

Fig. 7 presented the clustering results of ADPC in 2D scaling.
The main observations from the results were as the follows:

• ADPC efficiently aggregated typical shape datasets (Flame,
Spiral, and Aggregation), even though Spiral dataset brought
challenges to the most clustering algorithms owing to its
nonspherical shape. ADPC holds the potential to adapt to
arbitrary shape clustering tasks.

• ADPC accurately identified the real clusters of all datasets,
although the number of clusters was different. There were
more than two clusters in all datasets except the Flame
dataset, and the number of clusters in the R15 and S1
datasets were both 15. ADPC excelled in finding the correct
number of clusters.

• The above datasets were of various sizes, and the perfor-
mance of ADPC was not sensitive to the sizes at all.
9

6. Case study: Epileptic EEG exploration

The case study examined the potential of the ADPC-based
framework to explore the malfunctional brain dynamics recorded
in pathological EEG, without sufficient background information
about the observations, that is, the exact problems with the
subjects. It explored an epileptic EEG dataset to evaluate the
effectiveness of singling out epileptic seizures, and these unpre-
dictable and rare occurrences of electrical discharges in a focal
area or the entire brain were very meaningful in the monitoring
and diagnosis of epilepsy patients. The case study consisted of
three stages: (1) blind exploration, (2) examination of abnormalities,
and (3) verification.

This case study begins with blind exploration, which should
complete the clustering-related task of blind state division to
cater to the need to differentiate states of brain activities. The
resulting clusters corresponding to different states were then
be discussed in examination of abnormalities, where an in-depth
examination was then performed on the detected abnormalities.
Verification checked the credibility of the conclusions drawn in
the case study against the ground truth. Note that this a priori
knowledge was not involved in the first two stages but only the
final verification.

The CHB-MIT scalp EEG dataset1 was used for this study,
which was recorded simultaneously at 256 Hz with 916 h from
23 pediatric patients with severe epilepsy caused by organic
lesions [42]. This study examined the EEG data of 10 patients2

out of the 23 subjects as these consist of the same number of
channels.

6.1. Blind exploration

EEG data were first divided into portions of 20 min each to
view the evolution in a shorter duration rather than in a full time
scale in hours. There was no overlap between the portions. For
each portion, a sliding window with a length of 8 s (2048 data
points) applied to segment it at a pace of 4 s. A 3-order EEG
tensor (sample−channel− frequency) per portion was constructed
after the DFT of EEG segments with a pass band of 0–50 Hz, and
factor matrices were constructed by means of BF as this method
excelled in extracting the latent structural information. The 1-
mode factor matrix for each portion (the sample factor matrix)
was then clustered for blind exploration. Multiple clusters were
obtained for most portions of each patient. For a small amount of
them, two clusters were obtained. Through visual inspection, no
informative observations were obtained for the former cases.

In sharp contrast, significant differences could be observed in
the latter cases: typical clustering results for each patient are pre-
sented in Fig. 8. In these cases, most samples were concentrated
in the green cluster. The samples in the red cluster were rare that
is, approximately 6.5% in all the samples in a portion, compared
with those in the green cluster. The highest proportion was 9%
of patient chb04 and the lowest was 4.33% of patient chb07. By
tracing the samples back to the time domain, it was found that
the samples in the red cluster were a continuous segment with
short duration. Note that the duration time of the samples in red
cluster was variant, even for one patient. They formed in a similar
salient pattern and showed abnormalities in the rest.

1 Authorized for open access at the PhysioNet website: http://physionet.org/
hysiobank/database/chbmit/.
2 chb01, chb02, chb03, chb04, chb05, chb07, chb08, chb10, chb23, and chb24.

http://physionet.org/physiobank/database/chbmit/
http://physionet.org/physiobank/database/chbmit/
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Table 3
Benchmark results on public datasets: AMI and ARI.
Dataset Flame Spiral R15 Aggregation S1 Unbalance

Algorithms ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI

K-means 0.451 0.396 −0.006 −0.005 0.993 0.994 0.761 0.877 0.987 0.986 1.000 1.000
DBSCAN 0.971 0.935 1.000 1.000 0.922 0.934 0.975 0.967 0.972 0.970 0.999 0.988
DPC 1.000 1.000 1.000 0.703 0.982 0.986 0.998 0.995 0.989 0.989 0.999 0.999
DPC-KNN 1.000 1.000 0.999 1.000 0.992 0.993 0.994 0.993 0.987 0.988 0.999 0.999
ADPC 1.000 1.000 1.000 1.000 0.994 0.995 1.000 1.000 0.996 0.997 1.000 0.999
Fig. 7. Clustering results of ADPC on each dataset.
.2. Examination of abnormalities

The samples in the red clusters were examined to deter-
ine the neurophysiological characteristics associated with the
bnormalities. The key observations are as follows:

• As illustrated in Fig. 9, there is a significant difference be-
tween the samples in the two clusters. The amplitude of
those in the red cluster was much larger with violent os-
cillations, which formed abnormalities in sharp contrast to
the green cluster. In fact, this observation agrees well with
the conclusions of ictal EEG samples vs. inter-ictal ones [43].
The abnormal samples in the red cluster were prone to ictal.

• Fig. 10 presents the characteristics of the samples in the
red cluster in frequency and channel domains. In Fig. 10(a),
there was a peak at a low frequency of approximately 2.5 Hz.
In Fig. 10(b), the corresponding channel pair (F8-T8) in
temporal lobe region exhibited significant neural activity.
These observations provide key evidence that corresponds
to epileptic seizures.

.3. Verification

To verify the preliminary conclusions on the results obtained
y the ADPC-based framework (green cluster: inter-ictal, red
luster: ictal), the labels obtained via clustering were verified
gainst the labels (ground truth) provided by the experts with
he original EEG dataset. Table 4 illustrates the confusion matrix
or the sum of all patients, where Precision, Recall, F1-score, and
10
Table 4
Confusion matrix between the labels provided by the expert and the clustering
labels.

Clustering results Precision Recall F1-score Accuracy

Stage Ictal Inter-ictal (%) (%) (%) (%)

Expert Ictal 197 16

Inter-ictal 0 2787 100 92.49 96.10 99.47

Table 5
The clustering results of epileptic EEG data.
Patient ID Precision (100%) Recall (100%) F1-score (100%) Accuracy (100%)

chb01 100.00 84.00 91.30 98.67
chb02 100.00 100.00 100.00 100.00
chb03 100.00 100.00 100.00 100.00
chb04 100.00 100.00 100.00 100.00
chb05 100.00 83.33 90.91 98.97
chb07 100.00 81.25 89.66 99.00
chb08 100.00 96.15 98.04 99.67
chb10 100.00 94.12 96.97 99.67
chb23 100.00 85.71 92.31 98.67
chb24 100.00 100.00 100.00 100.00
Average 100.00 92.46 95.92 99.47

Accuracy reached 100%, 92.49%, 96.10%, and 99.47%, respectively.

The clustering results for each patient are presented in Table 5.
The Precision of each patient was 100%, indicating that all ab-
normal samples identified were ictal samples. The average Recall
and F1-score of all patients’ clustering results reached 92.46% and
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Fig. 8. Clustering results on factors of the EEG samples with each patient.
Fig. 9. Examination of abnormalities (sample component) in time course.
t
5.92%, respectively. Recall was affected by the uneven propor-
ion of samples, and the number of ictal samples was small. The
verage results were calculated based on the number of patients.
he results of verification indicate that the identification of the
wo clusters obtained in blind exploration is consistent with the
reliminary conclusions in examination of abnormalities.

.4. Comparison

Moreover, DPC-KNN was applied to complete the clustering
ask with the same EEG portions. However, the setting of param-
ter (p) affects the clustering results. As shown in Fig. 11 (a, b,
), when different p values were set, the clustering results were
ifferent and the result of p = 2% (F1-score = 81.82%) was better
11
han those of p = 1% and 3% (F1-score = 76.19%) for chb08
patients.

In addition, the appropriate selection of cluster centers in
DPC-KNN was not easy because of the manual determination via
Decision Graph. As shown in Fig. 11 (d, e, f), the three points in the
upper right corner all had the possibility of becoming the cluster
centers, and different results were obtained by determining dif-
ferent cluster centers from the Decision Graph. The problem of
ambiguous selection of cluster centers also emerged with patient
chb03. As shown in Fig. 12, there were four close points in the
upper right corner of the Decision Graph, which probably led
to the selection of four cluster centers. Even assuming that the
number of known clusters was 2, it remains unclear which two
cluster centers to choose.
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Fig. 10. Examination of abnormalities in frequency and channel domains.

Fig. 11. DPC-KNN Decision Graph and clustering results of patient chb08 and chb24.

12
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Table 6
The accuracy for seizure state detection (seizure and non-seizure).
Authors Approaches included Accuracy (100%)

Chen et al. [44] G-HALS + Multi-layer perception (MLP) 99.35
Tang et al. [35] Bayesian tensor factorization (BTF) + Multi-layer perception (MLP) 99.52
Alickovic et al. [45] Wavelet packet decomposition + Random forest (RF) 100.00
Ke et al. [46] Maximal information coefficient (MIC) + Convolutional neural networks (CNN) 98.13
Yuan et al. [47] Autoencoder + Wavelet-based context learning 94.37
Proposed method EEG exploratory analysis framework 99.47
Fig. 12. DPC-KNN Decision Graph of patient chb03.

Overall, the case study indicated that the ADPC-based frame-
work holds the potential for exploratory EEG analysis (detection
of epileptic seizure) in comparison with experts’ labeling. This
helped in the discovery of abnormal neural activity .

For the CHB-MIT epileptic EEG dataset, the methods proposed
in [35,44–47] were compared as baselines in terms of the accu-
racy of seizure detection. The details of these methods are pre-
sented in Table 6. As shown in Table 6, the proposed framework
achieves the same expected performance as most state-of-the-
art methods. It should also be noted that these methods [45–47]
were designed specifically for epileptic seizure analysis. Further-
more, the MLP model in Ref. [35,44] is a supervised method that
requires training data with labels for training the model, but the
proposed method did not. Note that ADPC is an unsupervised
method without the need for labeling, it was not surprising
that its performance in terms of ‘‘classification’’ did not reach
the precision achieved by excellent supervised methods but was
already close enough [44,45] .

6.5. Discussions

By combining the feature extraction method which can extract
the maximum amount of information without knowledge, the
ADPC-based framework complemented the existing supervised
and semi-supervised methods in EEG analysis. The framework
could explore the internal structure and pattern of pathological
EEG via clustering approach.

Neuro-scientists and practitioners were then able to com-
plete the initial exploration of abnormalities in EEG with con-
straints previously mandatory removed, such as labels and back-
ground information of the subjects, by the ADPC-based frame-
work. Meanwhile, they also could choose specific clusters of the
clustering results for in-depth analysis or support the classifica-
tion with a (semi-)supervised method.

7. Conclusions

Inspired by the urgent need in the field of clustering to au-

tomate the process of finding appropriate cluster centers and

13
determining their scope of influence, this study fostered an adap-
tive solution (ADPC) based on the density peaks clustering theory.
In particular, the solution aimed to tackle the challenges in the
exploratory analysis of bio-signals using EEG as a case study.

ADPC enabled adaptive selection of the cutoff distance with an
optimization function constructed with the Gini index to measure
the uncertainty of the target dataset. An extended PSA was devel-
oped to obtain the optimal cutoff distance value. ADPC supported
the automatic determination of the cluster centers. It automati-
cally constructed a set of cluster centers by jointly ranking the
local density and relative distance and then fine-tuning the set
by balancing the intra-set independence and the tendency as a
center against extra-set competitors.

Benchmarks on public datasets indicated ADPC’s superiority
of adaptability to various datasets and effectiveness against the
mainstream counterparts in terms of ARI and AMI. The case study
of the ADPC-based framework on epileptic EEG indicated that
(1) the framework achieved an average on Precision, Recall, and
F1-score of 100%, 92.46%, and 95.92%, respectively, in seizure
detection involving no priori information, and (2) the key ob-
servations revealed through clustering well match the expert’s
conclusions.

ADPC enabled fully automated adaptive clustering based on
the target dataset without the need for human intervention or an
empirical setting of key parameters. The ADPC empowered the
exploratory analysis of EEG, which was previously a well-known
problem in the community of bio-signal processing. The resulting
framework on its top could find abnormal neural activities from
EEG without explicit a priori knowledge of the subjects under
examination as the classification models do.

Overall, ADPC holds potential in exploratory analysis of bio-
signals in general, as it operated independently in the course of
data exploration.
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