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Abstract— Volumetric video provides a more immersive holographic virtual experience than conventional video services such as
360-degree and virtual reality (VR) videos. However, due to ultra-high bandwidth requirements, existing compression and transmission
technology cannot handle the delivery of real-time volumetric video. Unlike traditional compression methods and the approaches that
extend 360-degree video streaming, we propose AITransfer, an AI-powered compression and semantic-aware transmission method for
point cloud video data (a popular volumetric data format). AITransfer targets the semantic-level communication beyond transmitting raw
point cloud video or compressed video with two outstanding contributions: (1) designing an integrated end-to-end architecture with two
fundamental contents of feature extraction and reconstruction to reduce the bandwidth consumption and alleviate the computational
pressure; and (2) incorporating the dynamic network condition into end-to-end architecture design and employing a deep reinforcement
learning-based adaptive control scheme to provide robust transmission. We conduct extensive experiments on the typical datasets and
develop a case study to demonstrate the efficiency and effectiveness. The results show that AITransfer can provide extremely efficient
point cloud transmission while maintaining considerable user experience with more than 30.72x compression ratio under the existing
network environments.

Index Terms—Point cloud video, reinforcement learning, adaptive transmission, semantic-aware
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1 INTRODUCTION

POINT cloud video, a representative volumetric video,
can provide viewers with 6-DoF (degrees of freedom)

immersive experiences, which has been widely used in
many areas, including holographic communication, educa-
tion, and healthcare [2], [3]. Point cloud video comprises
a set of unstructured 3D points with attribute informa-
tion, which is fundamentally different from 2D pixel-based
video services with 3-DoF experiences, such as 360-degree
panoramic video and virtual reality (VR) video [3], [4].
Naturally, delivering point cloud video is valuable but faces
severe problems. The most typical difficulty is massive volu-
metric frames require ultra-high bandwidth at a Gbps scale,
which surpasses the capability of current 5G networks. For
example, a Microsoft Kinect for Windows v2 [5] camera
captures 2.06 Gb of raw point cloud at 30 FPS [3], whereas
a 16K 360-degree video requires only 100∼500 Mbps band-
width. Furthermore, the amount of raw point cloud data
will increase with more cameras placed at multiple angles,
higher resolutions, and frame rates.

Existing point cloud video transmission techniques can
be grouped into two categories. (i) Designing efficient com-
pression methods to intuitively reduce the transmitted data
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volume [6], [7], [8], including 2D projection-based and 3D
tree-based compression [6]. The former decomposes and
projects the point cloud onto a 2D image with dense packing
to extend existing full-fledged 2D video codecs. Typically,
MPEG V-PCC [9] can optimize video compression with
incremental differences between frames, providing a high
compression ratio and real-time decoding. However, the
encoding speed is very slow [6], commonly requiring 11
(lossy compression) to 42 (lossless compression) minutes to
encode a one-second longdress video [10]. The latter method
uses octree [11] or kd-tree [12] data structures to process
each point cloud frame independently and efficiently exploit
the sparsity of 3D data. However, the most representative
PCL [13] and Draco [14] are tested on a desktop showing
that both could only reduce the overall size by a ratio of
3.35× to 4.22× [6]. To summarize, these methods have either
high coding latency or limited compression ratio, which
are difficult when used to meet the real-time requirement.
(ii) Extending techniques applied in 360-degree and VR
video to volumetric video services to enhance adaptive
transmission quality under different network conditions.
For example, several existing systems modify the viewport
prediction, tiling, and adaptive bitrate streaming (ABR) to
selectively transfer the video content in users’ field of view
(FoV) [2], [4], [15], [16]. However, these approaches usually
suffer from high mobile energy consumption and unac-
ceptable processing latency on the receiving devices. Each
transmitted tile is vulnerable to the fluctuating network and
various packet losses in the reorganizing process.

Although these two types of technology are not contra-
dictory and could be combined to provide a better perfor-
mance [4], [6], it is still far from the bandwidth requirement
for real-time point cloud video delivery. To this end, we
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propose AITransfer, an AI-powered and semantic-aware
transmission technique, which remarkably and adaptively
reduces the transmitted data volume for point cloud video
service. AITransfer extracts deep semantic features from raw
point cloud for efficient transmission and then performs
point cloud reconstruction. The AI-based end-to-end design
eschews cumbersome multiple processing such as com-
pression and codec in conventional transmission schemes.
Besides, AITransfer integrates dynamic network conditions
into the above design and develops a deep reinforcement
learning (DRL)-based adaptive control scheme to guarantee
the transmission quality under different network environ-
ments. Nevertheless, there are two technical challenges to
the design of AITransfer.
(i) How to extract as few but critical semantic features
as possible from massive unordered raw point clouds?
Compared with compressing all raw point clouds, only
transferring a few deep semantic features can achieve a
greater compression ratio. However, it is difficult to ex-
tract only a few features representing all original video
information, due to the unordered and unstructured data
characteristics. In addition, we also have to consider the
impact of extracted features on subsequent reconstruction
quality. The AI-powered approaches, while good at extract-
ing features, will also bring expensive computation cost
due to massive parameters. To address this challenge, we
design an integrated neural network by fusing the feature
extraction and reconstruction to achieve end-to-end train-
ing. In this way, we can directly render and replay the
reconstructed result from the raw video acquisition on the
premise of ensuring quality. At the data sending side, we
extract the point clouds’ deep semantic features inspired
by PointNet++ [17], providing an extreme compression
and energy-saving transmission. At the data receiving side,
we employ a lightweight reconstruction neural network
to recover the semantic features to the original video as
closely as possible, providing a real-time point cloud re-
construction on the resource-constrained devices. We divide
the trained model and deploy them onto the data sender
and receiver respectively for distributed inference. Only a
few extracted semantic features are transmitted, immensely
reducing bandwidth consumption and protecting privacy.
(ii) How does the semantic-aware point cloud transmis-
sion mechanism adapt to dynamic network environments?
Fluctuating network environments are inevitable. Conven-
tional adaptive video streaming techniques are unavailable
in this framework because AITransfer adopts a fundamen-
tally different transmission mechanism from DASH-based
(Dynamic Adaptive Streaming over HTTP) systems [2], [15].
To provide various compression ratios (i.e., bitrate) match-
ing the dynamic network environment, AITransfer can only
change the structure of the integrated neural network. Thus,
we incorporate the network condition into the design of
the end-to-end architecture and train multiple models with
feature extraction and reconstruction. In practical transmis-
sion, AITransfer selects the corresponding model according
to the network condition at that time. However, this strategy
brings the challenge of overhead caused by model selection,
which must be solved in milliseconds to support real-time
transmission. To this end, we design a DRL-based adaptive
control scheme, with the purpose of maximizing trans-

mission performance to select the optimal model from an
offline-trained model set. Boosted by the scheme, AITransfer
can provide a quick-response and adaptive transmission.

We have implemented AITransfer using TensorFlow [18]
and trained the model on a high-performance server
equipped with eight Tesla V100 GPUs. We conduct extensive
experiments on typical datasets and comparisons with base-
lines, showing a more than 30.72x compression ratio while
maintaining considerable visual quality. We also conduct
experiments on real-world point cloud videos to verify the
effect of the adaptive control scheme, showing adaptive
transmission under dynamic network conditions. In sum-
mary, the key contributions are summarized as follows:
• AITransfer provides AI-powered and semantic-aware

transmission for real-time volumetric video, reducing
bandwidth and energy consumption and changing the
conventional transmission mechanism.

• We design and train an integrated end-to-end compres-
sion architecture, which transfers the semantic features
instead of raw data, significantly reducing the transmit-
ted data volume and protecting privacy.

• We design a DRL-based control scheme to underpin
the adaptive transmission, monitoring realistic network
conditions and matching the optimal inference model in
millisecond-level decision time.

• Evaluation on typical datasets demonstrates promising
results, and we develop a prototype deploying AITrans-
fer into practice to verify its effectiveness.

2 BACKGROUND AND MOTIVATION

We compare point cloud video with conventional video
services in Table 1 to better understand the critical char-
acteristics and differences.

TABLE 1: Comparisons with other video services [2]

2D Video 360° Video VR Video Point Cloud Video
Freedom 2-DoF 3-DoF 3-DoF 6-DoF

Data Volume ∼1 Mbps ∼100 Mbps ∼100 Mbps ∼1 Gbps
Codec Status mature developing developing nascent

Key Techniques
adaptive

streaming

tiling,
viewport

prediction

tiling,
viewport

prediction

tiling,
viewport

prediction,
compression

Point cloud video is generated by simultaneous acqui-
sition and fusion of multiple depth cameras from different
angles. As illustrated in Table 1, point cloud video supports
6-DoF experiences, which differs from other video types
in terms of data volume, coding research status, and key
techniques. Delivering point cloud video requires ultra-high
bandwidth consumption and more complex processing. At
present, 2D pixel-based video codec technology has been
quite mature, and some codecs can even compress VR con-
tent by a factor of 100 or 500. However, the development of
point cloud video compression is still in its infancy. Existing
representative 3D tree-based compression methods can only
achieve several times the compression ratio [6].

Current point cloud compression methods are still diffi-
cult to support real-time transmission in the existing net-
work environment, and not all points are needed to be
transmitted intact. Hence, we can achieve a similar visual
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effect to the original point cloud video using AI technology
for reconstruction when rendering and replaying at the
receiving side. Deep learning is a promising method to
extract semantic features, which encourages us to consider
transferring the deep semantic features instead of raw point
cloud video or compressed video, achieving a significant
reduction of the transmitted data volume.

3 DESIGN OF AITRANSFER

In this section, we first introduce the overview of the
point cloud video transmission system in Section 3.1 to
help comprehend each component of AITransfer. Afterward,
we design the integrated end-to-end transmission neural
network architecture in Section 3.2, including feature ex-
traction, feature reconstruction, and training loss function.
Lastly, we design the adaptive control scheme into a DRL-
based model and give its details in Section 3.3.

3.1 System Overview

We introduce the workflow to help understand the charac-
teristics in Fig. 1, which consists of the following four core
components.
(1) Multiple Camera Views. Generally, we employ multiple
depth-cameras placed at different angles to capture raw
point clouds and synchronize the point cloud streamings
from each camera to a high-performance edge server using
USB cables for pre-processing.
(2) Edge Server. Multiple point cloud streams from different
views need to be spliced due to redundant overlapped
information. Besides, the edge server plays the role of ex-
tracting deep semantic features from the spliced point cloud
using feature extraction. Note that the edge server uses an
adaptive control scheme to sense the connected terminals’
network conditions before extracting and transferring fea-
tures. The scheme then decides on the optimal inference
model matching the current network condition.
(3) Base Station. AITransfer provides real-time point cloud
video delivery in the current network environment. Point
cloud semantic features are transferred over wireless con-
nections to various terminals using existing base stations.
(4) Terminals. AITransfer is deployable on various terminals
and usable in a wide range of scenarios. For instance, we
use AITransfer to implement real-time holographic commu-
nication on a smartphone. A more immersive experience
is to use head-mounted displays (HMDs) (e.g., Nreal [19],
HoloLens [20]) to render the point cloud, and the users can
interact with such immersive point cloud video.
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Fig. 1. System workflow and components of AITransfer

AITransfer’s workflow consists of offline end-to-end
neural network training and online resilient transmission.
Offline Phase. For the offline training, we use the spliced
point cloud video as the input and ground truth. AITransfer
infers reconstructed results and defines the loss function to
complete end-to-end training. Note that the network condi-
tion in Fig. 1 is also a hyperparameter during the training,
and plays the role in adjusting the volume of extracted se-
mantic features for online transmission, which matches the
dynamic network condition. After training a number of end-
to-end neural networks with different network condition
hyperparameters, we use dynamic network bandwidth as
the input and train another DRL neural network in adaptive
control scheme to select the optimal inference model from
the candidate set.
Online Phase. During the online phase, AITransfer first
processes various point cloud streamings to obtain a com-
plete spliced result and then extracts semantic features using
the selected inference model. Next, the terminals recon-
struct the point cloud video using feature reconstruction
to recover these transmitted features. To achieve instant
network condition sensing, once the communication chan-
nel is established between the sender and the receiver, the
adaptive control scheme senses the network condition and
takes it into the DRL network to complete the forward infer-
ence. The scheme adaptively switches the optimal inference
model (i.e., with the purpose of maximizing transmission
performance) to execute semantic features’ extraction and
reconstruction. Overall, AITransfer’s AI-powered transmis-
sion architecture with a DRL-based adaptive control scheme
provides excellent capability to remarkably reduce network
bandwidth and energy consumption in dynamic environ-
ments.

3.2 Design of the Transmission Network Architecture

3.2.1 Hierarchical Feature Extraction
As shown in the top half of Fig. 2, we design a hier-
archical extraction architecture based on the backbone of
PointNet++ [17]. We first explain why the PointNet++ ar-
chitecture is leveraged as it only deals with point clouds
and not videos directly. (i) PointNet++ has the capability of
directly handling point cloud inputs for feature extraction.
(ii) At present, existing 3D tree-based point cloud video
streaming systems [2], [4], [6] transfer video as a sequence
of individually compressed frames. This is because directly
compressing the dynamic point cloud while considering
the incremental differences between frames is very difficult.
This may be a research point further studied in future work.

Specifically, we adopt the multiple layers called Set Ab-
straction Levels (SAL) for hierarchical feature learning due
to the invariance of the unordered point set’ permutation,
capturing the local structure of the raw point cloud. Thus,
the input point set is represented more abstractly with a
smaller number of points and features when passing a basic
SAL. After multiple layers of feature extraction, the point
cloud is represented by a point-wise semantic feature matrix
(N,M) for subsequent transmission. A basic SAL consists
of three essential layers: Sampling Layer, Grouping Layer,
and Mini-PointNet Layer [17]. More precisely, the Sampling
Layer selects a point subset from the output of the previous
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layer, representing the centroids of local regions. The Group-
ing Layer constructs local region sets by finding a certain
number of nearest neighbors around the centroids, and the
Mini-PointNet Layer uses three 2D convolution layers and
one max pooling layer to encode local region patterns into
feature vectors. We set three SALs’ number of centroids
as 128, 64, and N for gradual extraction. Empirically, the
numbers of out channels in the Mini-PointNet Layer are set
as [64, 64, 64], [64, 64, 32], and [32, 32,M ]. We keep other
parameters as the default configuration as found in [17].

3.2.2 Feature Expansion Reconstruction

We design a relatively lightweight and efficient feature
expansion module for point cloud reconstruction, consider-
ing that advanced GAN-based method like PU-GAN [21]
is too heavy and cumbersome to be deployed in mobile
or resource-constrained terminals. As mentioned in [22],
employing the generator of PU-GAN can achieve an ap-
proximately smaller model than 10 MB. Hence, we adopt
the Feature Expansion component and Point Set Generation
component in the generator of PU-GAN, as shown in the
bottom half of Fig. 2. The received semantic feature matrix
(N,M) is first delivered to a multilayer perceptron (MLP)
layer for unifying the dimension to (N, 128). Besides, its
features are expanded to (256, 128) by an up-down-up
expansion unit. This unit’s design can produce more diverse
point distributions to enhance the feature variations rather
than a simple duplication strategy in PU-Net [23]. Then, the
expanded feature is reconstructed into the point set with
3D coordinates by two MLP layers. Moreover, more details
about parameter settings and the structure of the up-down-
up expansion unit can be referred to in [21].

3.2.3 End-to-End Training

We first discuss two representative loss definitions in pro-
cessing conventional point clouds, including the repulsion
loss and uniform loss, and explain the non-universality for
AITransfer. The repulsion loss avoids the generated points
located near the original points, which is described in [23]:

Lrep =
∑N̂

i=1

∑
i′∈K(i)

η(∥xi′ − xi∥)w(∥xi′ − xi∥), (1)

where N̂ denotes the number of output points, K(i) is
the index set of the k-nearest neighbors of point xi. η(r)
and w(r) are the repulsion term and fast-decaying weight

function. Also, the uniform loss is to improve the generative
ability to generate point sets in a uniform distribution,
which is described in [21]:

Luni =
∑M

j=1

(|Sj| − n̂)2

n̂
·
∑|Sj |

k=1

(|dj,k − d̂|)2

d̂
. (2)

The former and the latter terms account for the nonlocal
and local distribution uniformity, respectively. Sj denotes
a point subset in a patch, and n̂ is the expected number.
dj,k represents the distance from each point in Sj to its
nearest neighbor. Note that it follows the chi-squared model
to measure the deviation of dj,k from d̂.

However, in this work, AITransfer aims to train an end-
to-end neural network to minimize the distance between the
outputs and inputs as much as possible, which is fundamen-
tally different from the existing advanced methods’ task.
Therefore, we use the earth mover’s distance (EMD) [24]
as the reconstruction loss to encourage the generated points
to lie on the target surface and be similar to original input
data, which can be calculated by:

Lrec = minϕ:P→Q

∑
pi∈P

∥pi − ϕ(pi)∥2, (3)

where ϕ :P →Q represents the mapping from the input to
the output. Furthermore, we provide the whole formulation
of the training loss in AITransfer as follows:

L(θ) = λrecLrec + ∥θ∥2 , (4)

where λrec represents the weight, and ∥θ∥2 represents reg-
ularization. In Section 4.2.2, we conduct experiments on
the influence of the above loss functions to illustrate our
design’s effectiveness. Although the repulsion loss and uni-
form loss make a notable contribution to the point cloud
upsampling task, they are not ideally suited to the point
cloud video transmission scenario.

To train AITransfer with the discussed loss function, we
employ the patch-based training strategy. More precisely,
each 3D training mesh model is decomposed of 200 patches,
and each patch occupies 5% of whole objects, grouping 256
points and normalized in a unit sphere. As for a point set
in the testing phase, we follow the same strategy to use
the farthest sampling and extract a local patch with a fixed
number of points. Then the patches are fed into AITransfer,
compressed, and reconstructed to a point set with the same
size as the original input. Lastly, all patches of this point set
are combined into the final output for replaying.
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Fig. 2. Design of end-to-end network architecture
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3.3 Design of the Adaptive Control Scheme

The adaptive control scheme is committed to matching the
most appropriate inference model to various network condi-
tions for providing the best transmission performance. Until
now, there exists a significant variance in user preferences
for volumetric video quality of experience (QoE) [2]. To the
best of our knowledge, how to measure the QoE of point
cloud video services still lacks research and clear definition.
The current quality assessment tool for point cloud videos
is a variant or extension of counterparts from conventional
approaches, such as Peak Signal to Noise Ratio (PSNR).
Notably, traditional PSNR cannot be directly used because
it only represents color information of 2D video [25], and
cannot represent position information of point cloud, espe-
cially since the number and position of points will change
after our semantic-aware compression.

In this work, we conservatively consider two main objec-
tive metrics: the transmission latency and users’ perceived
video quality. To enable real-time point cloud video de-
livery with high reconstructed video quality, we consider
establishing a relationship between the above two metrics
to achieve an optimal trade-off. However, in previous re-
search [1], the relationship between latency and quality is
difficult to be precisely expressed as a simple formulation.
Inspired by recent advances in DRL, we build an adaptive
control scheme that learns to select inference models directly
from experience. The question arises as to why additional
effort should be expended to explore a new adaptive control
scheme, when there is an existing one that we previously
proposed [1]? The reason is that when the number of candi-
date models becomes wildly large, it will take an increased
amount of time to infer the optimal solution. In Section 4.3.2,
we compare these two schemes to illustrate the necessity
and efficiency of the DRL-based adaptive control scheme.
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A variety of DRL algorithms could be considered as
the framework of the adaptive control scheme. We choose
Asynchronous Advantage Actor-Critic (A3C) [26], because:
(1) A3C is a state-of-the-art DRL algorithm, effectively solv-
ing the non-convergent problem of Actor-Critic; (2) A3C
has been successfully applied to traditional video streaming
applications such as adaptive-bitrate control and resource
management [27]; (3) the asynchronous parallel training
framework supports online training in which many users
concurrently send their experience feedback to the agent;
and (4) the asynchronous parallel training framework can
accelerate the convergence of neural networks, better meet-
ing the real-time requirement in our scenario.

Let Ms = {m1,m2, ...,mN} be the trained transmission
inference model set, and each model mi in Ms has a dif-

ferent size of the transmitted feature matrix F . As shown
in Fig. 3, the adaptive control scheme’s training uses A3C
which involves one central brain (global net) and multiple
parallel workers (local nets), each worker has two types
of neural networks: actor network and critic network. We
describe the detailed functionalities below.
State: Adaptive control scheme’s learning agent takes state
input st = vt to its neural networks, where vt is the network
transmission bitrate at time t.
Action: After receiving st, the agent takes an action at
that corresponds to the transmission inference model for
the next video chunk (i.e., a group of point cloud frames),
represented as at = mt, where mt ∈Ms.
Reward: Supposing in one video chunk t, the edge server
sends nt frames of video to the receiver, then the transmis-
sion latency Tt is calculated as:

Tt =
F(mt) · nt

vt
, (5)

where F(mt) represents the data volume of semantic fea-
ture matrix (N,M) for transmission.

Note that in this work, we only focus on transferring
the coordinate (X, Y, Z) of the point cloud without taking
(R, G, B) information into the design of AITransfer. Tradi-
tional PSNR is not suitable for measuring the quality of
videos without color information under this transmission
framework. Thus, we measure the users’ perceived video
quality by the point-to-point distance between input and
output point cloud in each frame like in [21], meaning the
similarity from the reconstructed video to the original video.

We define At as the reconstruction accuracy representing
the video quality of chunk t. Intuitively, the larger of the
size of the feature matrix F(mi) has, the more accurate the
reconstruction performance becomes. This is because a large
size of F(mi) means more informative semantic features
extracted from the original point cloud can be retained for
subsequent decompression. Also, the accuracy is influenced
by the data volume, and by the specific values in it.

We calculate the accuracy At by adopting two kinds of
commonly used point-to-point distances, Chamfer distance
(CD) [28] and Hausdorff distance (HD) [29], which are
respectively defined as:

dCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22

+
1

|S2|
∑
y∈S2

min
x∈S1

∥y − x∥22 (6)

dHD(S1, S2) = max(h(S1, S2), h(S2, S1)) h(S1, S2) = max
x∈S1

min
y∈S2

∥x− y∥
h(S2, S1) = max

y∈S2

min
x∈S1

∥y − x∥ , (7)

where S1 and S2 are two point sets. The smaller the metric
values are, the better the reconstruction results are. Let J be
the number of point cloud frames in each video chunk, the
average reconstruction accuracy At is represented as:

At =
1

J

J∑
j=1

dCD(S1, S2), (8)
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or

At =
1

J

J∑
j=1

dHD(S1, S2). (9)

In reinforcement learning, the design of reward plays an
important role in helping neural networks achieve conver-
gence fast and obtain a global optimal solution. As a matter
of experience, we define the QoE in Eq. (10) as the reward,
where wT , wA ∈ R+ represent the weights of latency and
accuracy, respectively:

QoEt = −wTTt − wAAt. (10)

Actor network: The agent takes an action at upon receiving
st based on a policy, which is a probability distribution over
actions: π(st, at) = P (at|st)→ [0, 1]. In practical problems,
the transmission rate is a continuous real number and there
will be too many pairs of (st, at). To overcome this, we use a
neural network (actor network) to output the policy, because
it can take input directly from observation without any
hand-crafted features and the number of policy parameters
is easily manageable by the neural network. As is well-
known, the primary purpose of a DRL agent is to maximize
the expected cumulative discounted reward received from
the environment. A3C algorithm trains its policy based
on the policy gradient method [26]. The gradient of the
cumulative discounted reward with respect to (w.r.t) the
policy parameters θ is calculated as:

∇θEπθ
[
∞∑
t=0

γtrt] = Eπθ
[∇θ log πθ(s, a)A

πθ (s, a)], (11)

where γ is the discounted factor. Aπθ (s, a) is the advantage
function, which represents the difference between the ex-
pected total reward deterministically taking action a in state
s and the expected reward for actions drawn from policy πθ .
The common activation function of policy function πθ(s, a)
is a softmax function. Building on actor-critic, A3C also adds
an entropy regularization term H(·) to the actor’s update
rule for helping the agent converge to a better policy [26]. In
summary, the actor’s accumulative gradient update is:

θ ← θ+
∑
t

∇θ log πθ(st, at)A(st, at)+c∇θH(π(st; θ)). (12)

Critic network: A critic network merely helps to train the
actor network. In online testing, only the actor network
is required to output the optimal transmission inference
model. To calculate A(st, at), we need an estimation of the
value function V πθ (s), the expected total reward starting at
state s and following the policy πθ . The critic network will
learn the estimation of V πθ (s) from empirically observed
rewards. The mean-square loss function is used to update
the critic network parameter θv .

θv ← θv−
∑
t

∇θv (rt + γV πθ (st+1; θv)− V πθ (st; θv))
2 (13)

Since A3C is asynchronous and multi-threaded, we de-
scribe one of the threads in Algorithm 1 to clarify the details.

4 EVALUATION

We evaluate AITransfer from the system-level performance
and in-depth analysis to answer the following three ques-

Algorithm 1: Train the adaptive control scheme.

Input : Global net parameters θ, θv ;
local net parameters θ′, θ′v ;
maximum episode Tmax;

Output: Global net parameters θ, θv .
1 T ← 0;
2 while T ≤ Tmax do
3 Trace← []; /* Clear trace list;
4 t← 1;
5 dθ ← 0; dθv ← 0; /* Reset gradients;
6 θ′ ← θ; θ′v ← θv ; /* Synchronize thread;
7 while st ̸= ’terminal’ do
8 at ← π(at|st; θ′); /* Take at by policy;
9 (st+1, rt)← at; /* Receive rt and st+1;

10 t← t+ 1;

11 Trace← [s1, a1, r2, ..., rt, st];
12 θ′ ← AccGrad(θ′);

/* Accumulate gradients w.r.t θ′ by Eq. (12);
13 θ′v ← AccGrad(θ′v);

/* Accumulate gradients w.r.t θ′v by Eq. (13);
14 θ ← θ′; θv ← θ′v ;
15 T ← T + 1;

16 return θ, θv ;

tions: (1) Does AITransfer enable a high compression ratio
while guaranteeing a considerable experience? (2) How
AITransfer performs when compared with conventional
point cloud compression methods? (3) Can AITransfer pro-
vide adaptive sensing and transmission under a dynamic
network environment? We first introduce the datasets, the
baselines, and then the detailed experimental settings.
Datasets. (1) We use 145 3D mesh models from the released
dataset by PU-GAN [21], including a variety of diverse
objects with different point set sizes. We select 40 simple,
40 medium, and 40 complex models for training AITransfer
and the rest of the 25 models are used for testing. (2) To train
the A3C network in the adaptive control scheme and test its
performance, we collect 4 large-scale dynamic point cloud
video datasets [10]. There are four sequences in the dataset,
known as longdress, loot, redandblack, and soldier. In each
sequence, the full body of a human subject is captured by 42
RGB cameras at 30 FPS, over a 10 s period. For simplicity of
evaluating the reconstruction accuracy of each video frame,
we uniformly preprocess all human subjects to 100,000
points by using the farthest point sampling technique.
Baselines. Several existing point cloud video streaming sys-
tems [2], [4], [15], [16] adopt the 3D tree-based compression
method to independently process each point cloud frame,
and the total video is transmitted as a sequence of indi-
vidually compressed frames. More importantly, they target
the viewport prediction and tiling mechanism, which adap-
tively transfers parts of the video content. For fair compa-
rability, we pay more attention to conducting comparisons
on compression method rather than adaptive mechanisms
for system-level evaluation. We compare AITransfer with
two conventional compression methods: the octree-based
method [30], Draco [14], and a representative deep learning-
based approach, Geo-CNN [31]. Conventional compression
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methods generally specialize in data structure and remove
redundancy by compressing the number of data bits. We
unify the original point cloud coordinates into 15 bits before
executing the compression for a fair comparison.

• Octree [30] is a representative compression method for
point sampled models based on an octree decomposition
of space, which is applied in PCL. We use Oct (d=5) and
Oct (d=10) to denote the depth of 5 and 10, meaning 3x
and 1.5x quantization compression ratios.

• Draco [14] is a popular library for compressing and
decompressing 3D geometric meshes and point clouds.
We use Draco (d=5) and Draco (d=10) to represent the
quantization parameter (qp) of 5 and 10, meaning 3x and
1.5x compression ratios. We set the compression level (cl)
and other parameters as default.

• Geo-CNN [31] is a data-driven geometry compression
for static point clouds based on learned convolutional
transforms and uniform quantization. Since the training
and testing datasets need to be converted to a voxel grid
with a fixed size before compression, we retrained the
network using the default 64 resolution. It compresses
a 643 voxel grid into an 83 feature with 32 channels,
meaning a 16x compression ratio.

Experimental Settings. We implement AITransfer using
TensorFlow and train it on a high-performance server with
eight Tesla V100-PCIE-32GB GPUs. (1) For the end-to-end
network training settings, we set the training epoch as 200
and define the parameter β as 0.9 with an optimizer of
Adam. The initial learning rate is set as 0.001 and reduced
by a decay rate of 0.7 per 50k iterations until 10−6. The batch
size is set as 28, λrec is set as 100. (2) For the DRL network
training settings, we set the number of threads as 5, discount
factor γ as 1, and the weight of entropy c as 0.001. The
weights of latency and accuracy in QoE are 0.6 and 0.4. One
video chunk t is 1 s, and nt is 10. The learning rates of the

actor network and critic network are set to 0.0005.

4.1 System-Level Evaluation
4.1.1 Qualitative Comparisons
We compare the reconstruction results of AITransfer (5-5)
and AITransfer (15-15) with baselines. Since each patch of
the object is composed of (256, 3) information, AITransfer (5-
5) and AITransfer (15-15) denote 30.72x and 3.41x compres-
sion ratios, respectively. We give some representative visual
comparison examples including Star (2502 points), Tiger
(58370 points), Gramme-aligned (249366 points), Statue-
rome-aligned (500506 points), and Statue-dragon-aligned
(997892 points) in Fig. 4.

We observe that: (1) Oct (d=10) and Draco (qp=10)
output uniform results that are similar to the inputs in
all cases, while Oct (d=5) and Draco (qp=5) perform a
nonuniform and ”blocky” phenomenon. This is because
when the number of each point’s bits is 10, there is still
enough precision to represent the coordinate information.
When the depth drops to 5, some points close to each
other overlap, and the number of points with diacritical
coordinates reduces exponentially. (2) Geo-CNN’s outputs
look fuzzy and distorted with a resolution of 64. It tends to
produce more noisy points and loses many surface details
at the edge of objects. (3) For AITransfer, when dealing
with sparse point sets, AITransfer (5-5) may produce fewer
irregular points and lightly lose some fine-grained details,
such as Star’s angles and Tiger’s tail. This is because a (256,
3) point set is compressed into just a (5, 5) feature matrix,
and the spatial distribution information of the original input
point set is transferred with high limitation. AITransfer (15-
15) further alleviates this kind of distortion. Mainly, when
dealing with denser point sets, the reconstruction results
show that AITransfer can acquire all uniform and almost
undistorted point clouds. In summary, the qualitative eval-
uation demonstrates that AITransfer can achieve at least a

Raw Input

(Ground Truth)

AITransfer

(5-5)

AITransfer

(15-15)

Octree

(d=5)

Octree

(d=10)
Draco

(qp=10)

Draco

(qp=5)

Geo-CNN

(resolution 64)

Fig. 4. Qualitative comparisons on the reconstruction results with other methods
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30.72x compression ratio while ensuring a visually similar
reconstruction result against the ground truth on sparse
point sets and nearly lossless results on denser ones. This
is promising to transfer intensive point cloud video across
the existing network environment including 5G networks.

4.1.2 Quantitative Comparisons
We employ three commonly used metrics: (1) Chamfer
distance (CD) [28], (2) Hausdorff distance (HD) [29] and (3)
point-to-surface distance (P2F) [32] for quantitative evalua-
tion. The number of points in the input and output of Geo-
CNN is not precisely consistent, resulting in the inability to
calculate these metrics. Thus, we compare AITransfer with
Octree and Draco in this part. We conduct comparisons on
25 testing models, sorted by the number of points from the
smallest (1023) to the largest (997892) in Table 2.

The results show that: (1) Octree achieves the lowest
CD in almost all cases, and the Octree (d=10) is a little
bit lower. Compared with Draco (qp=5), AITransfer (15-15)
achieves more than 3x compression ratio while performing
well on nine of the selected datasets. (2) In view of HD,
AITransfer (15-15) achieves lower values than Octree (d=5)
on eleven of the selected datasets, and AITransfer (15-15)
evaluates lower values than Draco (d=5) on eight of the
selected datasets. (3) As for P2F, Draco gets the highest
value in each case, and Oct (d=10) is the lowest. At an
approximately equal compression ratio, AITransfer (15-15)
gets lower results than Oct (d=5) on the last eight of the
selected datasets, and these datasets contain a relatively
large number of points. AITransfer (5-5) acquires better per-
formance than Oct (d=5) under this circumstance, demon-
strating it can obtain more uniform and better 3D surface
reconstruction quality on the denser point sets even at an
extremely high compression ratio.

To sum up, the quantization results of AITransfer are
sometimes inferior to the other two comparison methods,
especially on sparse point cloud datasets with the same

compression ratio. This is because the compression mech-
anism in AITransfer is based on semantic-level features, and
the output object point cloud is reconstructed by extending
these features. When the input point is sparse, each point
contributes vital distributed information to a complete 3D
model. This compression mechanism will inevitably bring
spatial deviation and some noise points. However, Octree
and Draco are based on traditional signal-processing mech-
anisms. Each point in the decompressed point set is offset
in its original position, and if the point cloud is sparse,
this offset may not result in overlap between points. The
above quantitative metrics CD and HD are defined with
the point-to-point distance, thus Octree and Draco can
sometimes achieve shallow values of CD and HD. Conse-
quently, AITransfer achieves a relatively even and stable
performance, and it prefers to be employed in intensive
point cloud video transmission tasks.

4.1.3 Performance of Encoding and Decoding

AITransfer can significantly reduce the transmitted data
volume and latency. Besides, we verify the efficiency of com-
pression and decompression. Since AITransfer has different
compression mechanism from other methods, we record the
time of feature extraction and reconstruction, respectively,
as the encoding and decoding time. For a fair comparison,
we compare AITransfer (10-10) with Octree (d=10) and
Draco (qp=10) on the longdress dataset. The experiment was
repeated 1000 times on the Tesla V100 GPU-enabled server.
The average time required to encode and decode one raw
longdress point cloud frame is shown in Table 3.

TABLE 3: Comparisons on average encoding/decoding time

Octree(d=10) Draco(qp=10) AITransfer(10-10)

Enc (s) 0.535663 0.500624 0.092860
Dec (s) 3.225866 0.204626 0.038606

TABLE 2: Quantitative comparisons on the reconstruction results with other methods

Metric CD (E-02) HD P2F

Dataset
AIT
(5-5)

AIT
(15-15)

Oct
(d=5)

Oct
(d=10)

Draco
(d=5)

Draco
(d=10)

AIT
(5-5)

AIT
(15-15)

Oct
(d=5)

Oct
(d=10)

Draco
(d=5)

Draco
(d=10)

AIT
(5-5)

AIT
(15-15)

Oct
(d=5)

Oct
(d=10)

Draco
(d=5)

Draco
(d=10)

m333 2.0832 1.8319 0.0867 0.0024 1.5944 1.6959 0.1455 0.1597 0.0063 0.0088 0.0734 0.0778 0.0744 0.0531 0.0176 0.0007 0.1998 0.1996
m32 2.2048 1.0666 0.0835 0.0270 1.5143 1.5489 0.1145 0.0663 0.3141 0.2799 0.0710 0.0734 0.0598 0.0366 0.0116 0.0010 0.2973 0.2973
m60 0.7643 0.6505 0.0428 0.0011 1.0653 1.0698 0.0957 0.1037 0.0083 0.0098 0.1101 0.0945 0.0303 0.0201 0.0099 0.0004 0.2502 0.2506
m88 4.3116 4.2842 0.0510 0.0326 1.7599 1.8343 0.2798 0.2873 0.1041 0.0796 0.0852 0.0852 0.0671 0.0393 0.0114 0.0007 0.3065 0.3058

casting 0.7800 0.4989 0.0881 0.0071 0.5243 0.5165 0.0470 0.0303 0.0800 0.0753 0.0483 0.0596 0.0425 0.0266 0.0128 0.0006 0.1409 0.1422
chair 0.6819 0.2338 0.0908 0.0069 0.1887 0.1219 0.0669 0.0395 0.1157 0.1109 0.0074 0.0046 0.0493 0.0243 0.0182 0.0009 0.3971 0.3975

elephant 0.4918 0.3174 0.0776 0.0113 0.1541 0.0946 0.0476 0.0241 0.0630 0.0701 0.0050 0.0057 0.0410 0.0285 0.0173 0.0008 0.1527 0.1525
genus3 0.6637 0.3740 0.1106 0.0037 0.2549 0.1582 0.0617 0.0434 0.0598 0.0814 0.0099 0.0102 0.0503 0.0310 0.0200 0.0008 0.2300 0.2303
eight 0.5122 0.2848 0.0735 0.0014 0.1833 0.0863 0.0450 0.0205 0.0025 0.0008 0.0067 0.0047 0.0421 0.0253 0.0161 0.0005 0.0586 0.0581
elk 1.5497 0.4790 0.0775 0.0006 0.2288 0.2065 0.1025 0.0342 0.0054 0.0064 0.0193 0.0200 0.0588 0.0376 0.0192 0.0007 0.3854 0.3855

kitten 0.5785 0.2363 0.0771 0.0013 0.2548 0.2176 0.0367 0.0327 0.0340 0.0242 0.0105 0.0092 0.0355 0.0209 0.0167 0.0006 0.1444 0.1444
camel 0.5089 0.4981 0.0707 0.0075 0.2113 0.2073 0.0366 0.0350 0.1279 0.1168 0.0114 0.0172 0.0278 0.0164 0.0134 0.0007 0.1618 0.1613

coverrear 0.8680 0.3515 0.1278 0.0482 1.1847 1.0059 0.0686 0.0219 0.0060 0.0025 0.0612 0.0540 0.0393 0.0231 0.0113 0.0005 0.0929 0.0934
cow 0.5226 0.2692 0.0714 0.0007 0.3069 0.2640 0.0530 0.0188 0.0027 0.0024 0.0120 0.0102 0.0363 0.0206 0.0146 0.0005 0.0956 0.0954
duck 0.8099 0.4639 0.1752 0.0017 0.2153 0.1471 0.0657 0.0622 0.0118 0.0225 0.0088 0.0089 0.0436 0.0267 0.0235 0.0008 0.2620 0.2623
horse 0.4363 0.2818 0.0766 0.0128 0.2046 0.1682 0.0397 0.0309 0.1592 0.1712 0.0116 0.0089 0.0386 0.0265 0.0168 0.0008 0.3000 0.2994
m329 0.8154 0.5713 0.1059 0.0044 0.3535 0.2986 0.0428 0.0289 0.0894 0.0996 0.0176 0.0159 0.0501 0.0335 0.0188 0.0007 0.1479 0.1473
m355 0.6433 0.4282 0.1190 0.0140 0.2808 0.2432 0.0605 0.0245 0.0040 0.0085 0.0095 0.0089 0.0337 0.0194 0.0201 0.0007 0.1771 0.1771
star 0.4048 0.3064 0.2580 0.0007 0.2951 0.1964 0.0290 0.0106 0.0079 0.0012 0.0118 0.0106 0.0332 0.0152 0.0289 0.0009 0.2518 0.2514

Panda 2.1960 1.9519 0.0699 0.0005 1.9038 2.0126 0.1111 0.0948 0.1238 0.1467 0.0955 0.0909 0.0078 0.0049 0.0210 0.0007 0.1645 0.1644
Tiger 0.8715 0.6563 0.0305 0.0001 0.4805 0.5057 0.0976 0.0692 0.0451 0.0484 0.0452 0.0488 0.0048 0.0023 0.0118 0.0004 0.1213 0.1211

Gramme 0.0753 0.1057 0.0559 0.0001 0.2821 0.2371 0.0046 0.0053 0.0022 0.0005 0.0133 0.0110 0.0022 0.0012 0.0162 0.0006 0.2155 0.2156
rome 0.0200 0.0150 0.0397 0.0001 0.1716 0.0935 0.0014 0.0010 0.0213 0.0219 0.0164 0.0130 0.0010 0.0005 0.0114 0.0004 0.0733 0.0724

ramesses 0.9777 0.8256 0.0440 0.0001 0.6962 0.6875 0.1107 0.1016 0.0021 0.0040 0.0754 0.0677 0.0008 0.0005 0.0132 0.0004 0.1520 0.1519
dragon 0.0787 0.0681 0.0563 0.0001 0.5976 0.5632 0.0065 0.0060 0.0312 0.0315 0.0677 0.0592 0.0009 0.0006 0.0159 0.0006 0.1775 0.1774
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The result shows that AITransfer consumes less time on
both encoding and decoding than conventional compression
methods. The reason is that AI-powered compression can
leverage GPUs to accelerate the efficiency of the codec. The
inference time of AITransfer is closely tied to the structure of
neural networks, so it can be further optimized by network
lightweight technologies.

4.2 Understanding AITransfer In-depth
4.2.1 Analysis of the Compression Ratio
We trained a variety of models with different sizes of
transmitted feature matrix (N,M). The row N and column
M of the matrix F(m) can be arbitrarily set according to
actual situations. Hence, we just set the matrix to a square
matrix ranging from (05,05) to (20,20) with 5×5 interval as
a group of examples, representing 30.72x, 7.68x, 3.41x, and
1.92x compression ratios, roughly exploring the relationship
between the reconstruction accuracy and compression ratio.
In practice, the relationship between them can be fitted by
training more combinations. We show the average perfor-
mance on 25 testing datasets in Table 4.

TABLE 4: Quantitative comparisons with different matrixes

(N , M ) CD HD P2F/avg P2F/std

(05,05) 0.009540 0.070830 0.034846 0.028539
(10,10) 0.007111 0.057459 0.023528 0.021022
(15,15) 0.006820 0.054102 0.021391 0.019903
(20,20) 0.006624 0.053033 0.020900 0.019328

We conclude that: (1) As the compression ratio reduces
from 30.72x to 1.92x, the three metrics CD, HD, and P2F on
average, all decrease. This illustrates that the more features
our system transfers, the more similar the decompressed
point set is to the ground truth, and the higher surface
reconstruction performance of AITransfer achieves. (2) We
observe that CD, HD, and P2F reduce by 25.46%, 18.88%,
and 32.48%, respectively, when changing the size of the (5,5)
to (10,10). When compared with that of (10,10), the CD, HD,
and P2F with the size of (15,15) further reduce by 4.09%,
5.84%, and 9.08%, respectively. Compared with (15,15), the
size of (20,20) only reduces by 2.88%, 1.97%, and 2.30% of
the three metrics. (3) The P2F standard deviation shows
a similar characteristic of change, illustrating the model’s
stability with more transmission features. When our system
transfers more information from the original point cloud,
more features can be retained and received to support the
reconstruction on the terminals. (4) The negative correlation
may not be a linear gradient strictly. This is because the
accuracy is influenced by transmitted data volume and the
specific values in it. Note that the training processes among
different models are independent of each other, and there
is no inclusion relationship between the feature matrixes.
Hence, we know that the adaptive control scheme chooses
different compression ratios for future video chunk trans-
mission based on forecasts of available bandwidth. There-
fore, the model selected by the adaptive control scheme is
up to the actual network condition.

4.2.2 Analysis of the Loss Function
We validate the EMD reconstruction loss’ effectiveness for
training AITransfer, comparing it with other representative

loss functions in Table 5. We conduct a comparison study
taking the (15,15) transmitted semantic feature matrix to
evaluate the influence of different loss functions, including
CD loss, repulsion loss, and uniform loss. For experimental
settings, we replace the EMD with CD as reconstruction
loss, add the repulsion loss to the total loss function, and
add the uniform loss to the total loss function. We also
follow [21] and [23] to set the w(r) in Eq. (1), set the expected
percentage in Eq. (2) as {0.4%, 0.6%, 0.8%, 1.0%, 1.2%}, and
λrep and λuni are set as 1 and 10, respectively.

TABLE 5: Quantitative comparisons with different losses

Loss function CD HD P2F/avg P2F/std

EMD 0.006820 0.054102 0.021391 0.019903
CD 0.006815 0.053670 0.023411 0.021209

EMD+rep 0.006768 0.056922 0.021842 0.020001
EMD+uni 0.006887 0.055006 0.023659 0.028517

We can see that EMD loss achieves an increase of 0.07%
and 0.80% on the CD and HD metrics, and a decrease of
8.63% on the P2F, compared with using CD as the loss
function. When compared with using EMD+repulsion as the
loss function, we find using a single EMD loss increases by
0.76% of the CD metric, while it decreases by 4.95% and
2.06% on the HD and P2F, respectively. Besides, EMD loss
improves 0.97% on the CD metric and decreases 1.64% and
9.58% on the HD and P2F compared with EMD+uniform
loss. Also, using EMD loss achieves the smallest standard
deviation of P2F. We conclude that employing a single EMD
as total loss can achieve considerable performance. Replac-
ing EMD with CD and adding repulsion loss and uniform
loss, respectively, into the total loss will not improve the
performance in all cases and might even have a negative
impact. This is because the repulsion loss and uniform loss
are designed for point cloud upsampling to expand the
number of points on a sparse point set while making the
output look uniform. Besides, adding the latter two losses
also increases the training time of the network.

4.3 Demonstrating Adaptive Control Scheme In-depth
In this subsection, we verify whether the adaptive con-
trol scheme can provide compliant transmission under a
dynamic network environment. For comparison purposes
and better convergence when training the DRL network,
we first explore the relationship between the reconstruction
accuracy and compression ratio by training more inference
models. We trained 8 additional inference models, whose
transmitted semantic feature matrix sizes and correspond-
ing compression ratios are shown in Table 6.

TABLE 6: Mapping from feature matrix to compression ratio

(N , M ) (06,06) (08,08) (10,10) (12,12)

Ratio 21.33 12.00 7.68 5.33

(N , M ) (14,14) (16,16) (18,18) (20,20)

Ratio 3.92 3.00 2.37 1.92

Due to CD and HD being point-to-point distances with
the same order of magnitude, we just measure the recon-
struction accuracy of one video frame by taking the average
of CD and HD. Then, we calculate the accuracy of each
frame in the 4 point cloud video datasets (1200 frames in
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total) and fitted the relation between accuracy and compres-
sion ratio by a polynomial. Without loss of generality, we
simulate an environment from a realistic bandwidth trace
(0∼100 Mbps) [33] in Fig. 5, where the network condition is
constantly changing dynamically as time passes.
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Fig. 5. A realistic example of a bandwidth trace

4.3.1 Effectiveness of Adaptive Control Scheme
On the one hand, to test the effectiveness of the adaptive
control scheme, we have trained the A3C network and used
the trained actor network to infer the transmission model
for a new point cloud video. We draw the decision results
in 1∼30 s as an example, shown in Fig. 6 (a). The black solid
line represents the change of bandwidth over time, and the
red points represent the inference models over time selected
by the adaptive control scheme.

0 . 6 7 2 2 0 . 7 1 7 8
0 . 8 4 1 7

0 5 1 0 1 5 2 0 2 5 3 0

( 0 8 , 0 8 )

( 1 0 , 1 0 )

T i m e  ( s )

Inf
ere

nc
e m

od
el 

(N
,M

)

0

1 0

2 0

3 0

4 0

5 0

Ba
nd

wid
th 

(M
bp

s)

A 3 C P G D Q N
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

A l g o r i t h m s

Th
e a

bs
olu

te 
va

lue
 of

 Q
oE

( a ) ( b )
Fig. 6. (a) Selection of inference model as bandwidth
changes; (b) Comparison with different RL algorithms

In Fig. 6 (a), when the bandwidth is sufficient, the
adaptive control scheme will select an inference model with
a large feature matrix to provide a more satisfactory visual
quality. Otherwise, it will select a model with a high com-
pression ratio. This kind of adjustment with the same trend
as the dynamic change of network condition demonstrates
the effectiveness of the adaptive control scheme.

4.3.2 Efficiency of Adaptive Control Scheme
On the other hand, to test the efficiency of the adaptive
control scheme, we compare the adaptive control scheme
based on DRL with the online adapter based on a simple
formulation in our previous work [1]. To develop a case
study, we experiment on a PC equipped with an AMD
Ryzen 5 2600X Six-Core Processor (3.60 GHz), 8 GB RAM,
and an Nvidia GTX 1060 6 GB GPU. We record the running
time of selecting the inference model in Table 7, where model-
num denotes the number of inference models; oa1-sum and
oa2-sum respectively denote the total time (for 30 seconds)
of the online adapter in [1] and DRL-based adaptive con-
trol scheme; oa1-mean and oa2-mean respectively denote the

average time (for once). Note that the results of the DRL-
based adaptive control scheme in Table 7 contain the GPU
startup and warm-up time. To alleviate the effect by this
time and randomness, we conduct each experiment 1000
times to obtain the average.

TABLE 7: Running time of two adaptive control schemes

model-num 8 64 256 1024

oa1-sum 0.004004 0.032029 0.183167 1.548417
oa2-sum 0.023011 0.023195 0.023787 0.023385

oa1-mean 0.000133 0.001068 0.006106 0.051614
oa2-mean 0.000767 0.000773 0.000793 0.000779

As observed in Table 7, when there are only 8 candidate
models, the time of oa1-sum and oa1-mean are respectively
less than oa2-sum and oa2-mean. The reason is that the num-
ber of models is so few that it can be quickly traversed once.
However, when the number of candidate models increases
to 64, 256, 1024, or more, the running time using the online
adapter in [1] will grow non-linearly. This is because the
previous scheme is based on the sort algorithm, having at
least O(nlogn) time complexity. The time using the DRL-
based adaptive control scheme does not increase as the
number of models increases, because the time is only related
to the depth and structure of the neural network.

Compared with our previous work, the DRL-based
adaptive control scheme proposed in this paper has the
advantages of employing a neural network for direct for-
ward inference to make decisions and leveraging GPUs to
accelerate the calculation process, which demonstrates the
efficiency of the DRL-based adaptive control scheme.

4.3.3 Evaluation of A3C Framework
We compare A3C with the other two RL algorithms: Deep
Q Network (DQN) and Policy Gradients (PG) to verify the
superiority of A3C. For fairness, we adjust three models’
parameters including the learning rate, and set the neural
node number of the hidden layer to 96, then we train three
algorithms to ensure neural network convergence. We show
the absolute value of QoE (i.e., Eq. (10)) evaluated on the
testing video in Fig. 6 (b). The smaller the value, the better
the QoE. The results show that A3C can help the adaptive
control scheme provide a more satisfactory QoE than DQN
and PG. Considering the characteristics of A3C mentioned
in Section 3.3, we finally choose it in this bandwidth-aware
point cloud video delivery scenario.

4.4 Case Study of Holographic Communication
We prototype AITransfer into a case study for enabling
holographic communications in Fig. 7. We use four Kinect
V2 [5] depth-cameras, respectively, placed at the front left,
back left, front right, and back right of interest to collect a
surrounding real-time point cloud, and fuse different angles
of the camera by using the PCL [13] tool. We use the nearest
edge cloud server equipped with the NVIDIA Tesla V100
GPUs to match the network condition and extract point
cloud semantic features. We use an Aruba WiFi router to
broadcast compressed features by WiFi to the receivers, a
laptop and a HoloLens 2. The devices feed the received fea-
tures into the reconstruction part to complete the inference,
render and play the inference result. The playback result
shown on the laptop can be seen in Fig. 7.
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Fig. 7. A case study of holographic communication

5 RELATED WORK

Point Cloud Compression. The most intuitive way is to
compress point clouds and reduce the transmitted data vol-
ume, including geometry compression, attribute compres-
sion, and motion-compensated compression [34], [35]. Most
of these focus on static kd-tree and octree-based solutions.
Typical examples include PCL [13] and Draco [14]. Besides,
transforming 3D point clouds to 2D maps and compressing
them with conventional algorithms may lead to a loss of
some key features [36]. Recently, deep learning-based geom-
etry compressions [8], [37] divide raw point clouds into 3D
voxels, which results in large consumption for converting
raw data to voxels due to a sparse Euclidean space. The ex-
isting point cloud compression methods explore compress-
ing from space and pixel characteristics to reduce storage
memory, ignoring the point cloud’s transmission features.
More importantly, the computational overhead of conven-
tional compression techniques is also unacceptable for real-
time transmission. Our AITransfer explores compressing the
point clouds by extracting key features instead of raw point
data and providing real-time transmission services.
Point Cloud Video Streaming. Point cloud video services
have attracted growing interest in academia and indus-
try [4], [38], [39], [40]. Most recent works optimize the
transmission by extending VR streaming techniques, such
as viewport prediction, bitrate adaptation, and tiling mech-
anism [41], [42]. PCC-DASH [15] is a standards-compliant
method for HTTP adaptive streaming of scenes comprising
multiple dynamic point clouds. Hosseini and Timmerer [43]
reduce the number of point clouds using various sam-
pling schemes and provide dynamic adaptive streaming
with octree-based representation. Narwhal [42] maximizes
the viewing experiences based on the optimization of the
computational and communication resources. ViVo [4] is
the first practical three visibility-aware volumetric video
streaming method for mobile devices. Zhang et al. [44]
propose a lightweight edge differential privacy preservation
framework, effectively protecting user privacy and ensuring
service delay, which is of great significance to the security
of point cloud video communications. These schemes have
optimized conventional frameworks of video delivery, but
do not fully exploit the point cloud video features and
degrade the transmission. Our work is fundamentally differ-
ent from these efforts, which uses AI technology to deeply
analyze the point cloud’s semantic features for efficient
transmission.
Reinforcement Learning on Video Streaming. Reinforce-
ment learning (RL) has been a powerful means of resource
management and bitrate adaptation in 2D video streaming.
Pensieve [27] is a system that generates ABR algorithms
using RL, it trains a neural network to select bitrates for fu-

ture video chunks based on observations collected by client
video players. In most recent years, RL has been further
extended to 360-degree video and VR video streaming [45],
[46], [47]. DRL360 [45] is a DRL-based framework for 360-
degree video streaming, which helps improve the system
performance by jointly optimizing multiple QoE objectives
across a broad set of dynamic features. Kan et al. [46]
propose a DRL-based rate adaptation algorithm for adaptive
360-degree video streaming. Du et al. [47] propose a DRL-
based approach to learn the optimal viewport rendering
offloading and transmit power control policies for high-
quality immersive VR video services. Revisiting the above
works, RL has been widely analyzed in conventional video
streaming, but to the best of our knowledge, it is now more
seldom to find research avenues focused on point cloud
video streaming. Deploying an RL-based optimizer in real-
time systems has to confront additional challenges.

6 DISCUSSION

We discuss the superiority and some limitations of AITrans-
fer. First, AITransfer achieves a higher compression ratio
and real-time requirements with flexibility than other point
cloud video streaming systems. On the one hand, AITransfer
extracts and transfers the deep semantic features instead of
geometrical raw data, obtaining a significant improvement
in transmission with a small data volume. On the other
hand, AITransfer fuses the training process of reconstruct-
ing the features back to the original point cloud into the
feature extracting phase for an end-to-end training. Sec-
ond, AITransfer adapts to different network conditions and
matches the optimal model within an impressive response
time. Third, we find that AITransfer cannot provide high
quantitative performance for some sparse point clouds. This
illustrates that sparse point cloud contains more informative
key features, and AITransfer has difficulty recovering the
complete point cloud from the insufficient features in the
reconstruction stage. A potential way is to explore a well-
designed neural network to address the shortcomings of the
reconstructed model, closing the gap between the output
and raw input point cloud. Besides, this paper fundamen-
tally provides a basic AI-powered transmission framework
and can be extended with other techniques such as feature
extraction and expansion that can actually be adjusted by
other advanced deep learning network modules.

7 CONCLUSION

In this paper, we design and implement AITransfer to ex-
plore a semantic-aware transmission mechanism different
from traditional bulky video transmission frameworks. It
allows the critical transmission of point cloud semantic fea-
tures at the sending side, significantly reducing the amount
of transmitted data and making it more suitable in existing
network environments. Also, it provides lightweight point
cloud reconstruction on the receiver side to obtain a vi-
sual result similar to the original point cloud. Furthermore,
AITransfer considers the dynamic and unstable nature of
the network environment, incorporates it into the end-to-
end network design, and provides an adaptive transmission
control scheme to balance the trade-off between latency and
quality. In future work, we will explore more lightweight
and efficient decoding technologies than AITransfer to de-
ploy them on mobile devices in a wide range of fields.
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