
A Lightweight Collaborative Deep Neural
Network for the Mobile Web in Edge Cloud

Yakun Huang , Xiuquan Qiao , Pei Ren , Ling Liu , Fellow, IEEE, Calton Pu , Fellow, IEEE,

Schahram Dustdar , Fellow, IEEE, and Junliang Chen

Abstract—Enabling deep learning technology on the mobile web can improve the user’s experience for achieving web artificial

intelligence in various fields. However, heavy DNN models and limited computing resources of the mobile web are now unable to

support executing computationally intensive DNNs when deploying in a cloud computing platform. With the help of promising edge

computing, we propose a lightweight collaborative deep neural network for the mobile web, named LcDNN, which contributes to three

aspects: (1) We design a composite collaborative DNN that reduces the model size, accelerates inference, and reduces mobile energy

cost by executing a lightweight binary neural network (BNN) branch on the mobile web. (2) We provide a jointly training method for

LcDNN and implement an energy-efficient inference library for executing the BNN branch on the mobile web. (3) To further promote the

resource utilization of the edge cloud, we develop a DRL-based online scheduling scheme to obtain an optimal allocation for LcDNN.

The experimental results show that LcDNN outperforms existing approaches for reducing the model size by about 16x to 29x. It also

reduces the end-to-end latency and mobile energy cost with acceptable accuracy and improves the throughput and resource utilization

of the edge cloud.

Index Terms—Collaborative DNNs, mobile web, binary neural network, dynamic allcoation, edge computing

Ç

1 INTRODUCTION

WITH the help of some major technologies such as Artifi-
cial Intelligence (AI), Virtual Reality (VR) and Aug-

mented Reality (AR), lightweight and cross-platform web
applications are growing at a rapid rate with a focus on
enhancing user experience [2], [3]. Deep learning (e.g., Deep
Neural Networks, DNNs) is currently a representative way
of achieving Web-based Artificial Intelligence (Web AI),
which has set new records in accuracy for many important
problems, such as image recognition [4], speech recognition
[5], recommender systems [6], natural language processing
[7] etc. However, theweb is now unable to support advanced
DNNs in a performant manner due to limited computing
resources of the web and lack of optimized low-level APIs
[8]. Additionally, heavy DNNmodels and intensive compu-
tations also introduce a high inference latency, including
loadingmodels and inefficient inference. Thus, the web com-
munity group of World Wide Web Consortium (W3C) is
actively promoting innovation, and research of deep learn-
ing web technologies to enable the creation of deep learning
web experiences about the intersection of augmented reality,

deep learning, and the web, or more simply the augmented
web [9], [10].

To achieve the full promise of Web AI for the mobile web,
the majority of existing attempts under the cloud computing
platform take one of the following three approaches to
improve user experience (Fig. 1). The first approach is remote
execution, which takes the advantage of resource-rich infra-
structure by offloading the whole DNN computation to the
remote cloud. With this approach, large amounts of data
(e.g., images, audio, and videos) are sent to the cloud via the
wireless network, resulting in high transmission latency and
mobile energy consumption. Moreover, offloading all com-
putations to the remote cloud may greatly increase the
computational pressure and cost of the remote cloud.

The second approach is mobile-only, which performs all
computations on the mobile web via JavaScript and WebAs-
sembly [11]. However, heavy DNN models lead to high
transmission latency and mobile energy consumption (e.g.,
Tensorflow.js’s ResNet50[12] is a deep learning model,
whose size can be up to 97.8 MB) [13]. Besides, executing
DNNs on the mobile web performs worse than that of app-
based applications due to weak computing capability (i.e.,
the mobile device performs poor compatibility to use
WebGPU compared with the personal computer for web
applications currently). Hence, it takes more time and mob-
ile energy to execute computationally intensive DNN infer-
ence on the mobile web. The third approach is partition-
offloading, which dynamically distributes the computation
between the mobile web and the remote cloud, that is to par-
tition and perform the computations that can be done within
the mobile web, reducing the computing pressure of the
remote cloud [14], [15], [16]. Although a small portion of
DNN computations can be offloaded to the mobile web, the
cloud server still has to undertake the most of DNN

� Yakun Huang, Xiuquan Qiao, Pei Ren, and Junliang Chen are with the
State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China
E-mail: {ykhuang, qiaoxq, renpei, chjl}@bupt.edu.cn.

� Ling Liu and Calton Pu are with the School of Computer Science, Georgia
Institute of Technology, Atlanta, GA 30332 USA
E-mail: {ling.liu, calton.pu}@cc.gatech.edu.

� Schahram Dustdar is with the Distributed Systems Group, Technische
Universit€atWien, 1040Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

Manuscript received 1 Feb. 2020; revised 5 Sept. 2020; accepted 2 Dec. 2020.
Date of publication 8 Dec. 2020; date of current version 3 June 2022.
(Corresponding authors: Xiuquan Qiao.)
Digital Object Identifier no. 10.1109/TMC.2020.3043051

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022 2289

1536-1233 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0000-0002-4138-3082
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0002-6616-8987
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:ykhuang@bupt.edu.cn
mailto:qiaoxq@bupt.edu.cn
mailto:renpei@bupt.edu.cn
mailto:chjl@bupt.edu.cn
mailto:ling.liu@cc.gatech.edu
mailto:calton.pu@cc.gatech.edu
mailto:dustdar@dsg.tuwien.ac.at

computations, which means that additional costs are still
needed to improve the throughput of the remote cloud, espe-
cially in high concurrent requests. In other words, this
approach improves the utilization of mobile web computing
resources, but it is still challenging to improve the through-
put of the remote cloud effectively.

As mobile edge computing (MEC) is becoming an impor-
tant computing infrastructure in 5G era, it is promising to
consider the use of the edge cloud that has the benefit of low
communication costs compared to offloading computations
to the remote cloud and relieves the burdens of the core net-
work [17], [18]. However, high DNN execution latency and
low throughput have still existed when leveraging edge
clouds instead of remote clouds for providing Web AI serv-
ices. In addition, employing edge computing infrastructure
for Web AI service introduces some new issues such as lim-
ited computing resources and weak resource utilization of
edge clouds. Since the edge cloud is deployed near the base
stationwith common servers and uses virtualization technol-
ogy to provide web services, computing resources (CPU,
memory, hard disk) of the edge cloud is much limited than
that of the remote cloud facing with cluster servers. Also, the
edge cloud’s service scalability is much worse than that of
the remote cloud, making it difficult to provide resilient ser-
vice with high concurrent requests. Thus, employing this
kind of edge computing infrastructure to support executing
DNNs for Web AI services is still challenging for a number
of reasons. These include the following:

� No lightweight and collaborative DNNs can be executed on
the mobile web efficiently. Since most well-performing
DNNs have deeper layers and large amounts of
parameters, it is impractical to execute such heavy
DNNs on the mobile web with limited computing
resources. Although some lightweight compressed
DNNs have been successfully operated in the mobile
device, they require extensive expert experience to
design ingenious and reasonable DNN structures.
Besides, existing compressed DNNs lack good per-
formance in inference efficiency, especially formobile
web platforms. Additionally, there is currently no
heterogeneous DNN inference framework that can
perform collaborative DNN between the mobile web
and the edge server.

� Existing partition-offloading approaches are failed to per-
form high throughput for the mobile web. One reason is
that the limited computing resource of the edge server
performs worse on dealing with high concurrent
requests, resulting in low throughput even appearing

an unavailable service. Another reason is that the
partition-offloading mechanism requires the mobile
web and the edge server to participate in every task
request, which is not much different from the cloud-
only in the way of providing web service. This indi-
cates that existing partition-offloading approaches
cannot improve the throughput effectively, but only
reduces partial computing pressure of edge clouds.

� No online scheduling scheme for integrating multiple edge
servers and improving computing resources can provide
resilient web services in edge clouds. Instant request
characteristics of mobile web applications introduce
occasional high concurrent requests, which can
cause edge servers deployed in a base station to be
overwhelmed. While deploying a lot of spare edge
server resources may make them idle in most cases,
which is also an expensive cost, and unacceptable
for network operators in practice. Therefore, the iso-
lated edge server provisioning mechanism is diffi-
cult to cope with high concurrency processing, thus
needs to establish a resilient scheduling scheme that
fully utilizes the computing resources of various
bases station in edge clouds.

To address these concerns, we design a composite deep
neural network, named LcDNN by introducing a binary
neural network as the side branch to acquire an indepen-
dent lightweight DNN. First, when compared with existing
DNN compressing methods such as depthwise separable
convolution [19], [20], knowledge distilling [21], [22] and
network prunning [23], [24], LcDNN achieves better perfor-
mance in both compressing and inference efficiency, requir-
ing less computing resources and mobile energy. Second,
to solve the contradiction between the model size and ac-
curacy in compressing DNNs, LcDNN employs the full-
precision network as the backbone to guide the design of
the binary neural network (BNN) branch which quantifies
and compresses the DNN for executing on the mobile web
without rich expert experience and knowledge. More
importantly, the full-precision backbone network is to pro-
vide accuracy compensation when the BNN branch has
accuracy loss facing with complex tasks. In other words,
this collaborative compensation mechanism allows the
BNN branch to focus more on the simple tasks, thereby
implementing a lightweight, efficient, and low-energy infer-
ence on the mobile web. This also illustrates that adding an
efficient lightweight branch is more suitable for the mobile
web than directly compressing DNNs. Last, to further
improve the inference efficiency of LcDNN on the mobile
web, we have implemented an efficient inference library
based on C++ and then converted them to JavaScript and
WASM scripts to execute on the mobile web with optimiza-
tions on latency and mobile energy. The biggest difference
between our inference library and existing web-oriented
inference libraries is that it supports the BNN branch infer-
ence and distributed collaborative inference for LcDNN,
reducing the accuracy loss of complex tasks, optimizing
and accelerating the BNN branch inference on the mobile
web. In addition, to deploy LcDNN in real scenarios, sched-
ule dynamic task requests, and provide maximum resource
utilization of the edge cloud, we develop a DRL-based
scheduling scheme for LcDNN to serve for multiple edge

Fig. 1. Cloud-only, mobile-only and partition-offloading.

2290 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

servers. Specifically, we create a reinforcement learning
framework using DNN as a function appropriator to solve
dynamic task requests in edge clouds, called DRLoS. In this
way, DRLoS can provide global schedulingwith self-learning
capability under dynamic user requests via adding a buffer
queue on each server. For evaluation, we conduct compre-
hensive experiments on different DNNs and datasets, the
results show that LcDNN improves latency performance,
reduces average mobile energy, and improves the through-
put of edge clouds. Especially in a scenario with three edge
servers, DRLoS’s online scheduling can bring LcDNN more
than 2.17x resource utilization improvement. The contribu-
tions of thiswork can be summarized as follows:

� Designing a composite lightweight DNN with a
BNN branch to execute DNN inference on the
mobile web, which can reduce latency and mobile
energy, and improve the throughput of edge clouds.

� Proposing a jointly training method for LcDNN and
implementing an energy-efficient inference library
for the BNN branch on the mobile web, which also
provides collaboration with the edge server for accu-
racy compensation.

� Developing a DRL-based online scheduling scheme
tomaximize the resource utilization of the edge cloud
for LcDNN, which also provides resilient web AI
services for mobile web applications in real scenarios.

2 BACKGROUND AND MOTIVATION

In this section, we briefly introduce the background of edge
computing for the mobile web, describe key properties of
executing DNNs on the mobile web compared with the
mobile device, and discuss the collaborative DNN technol-
ogy that motivates us.

2.1 Edge Computing for the Mobile Web

We present typical scenarios and comparisons when apply-
ing mobile web applications between cloud computing and
edge computing in Fig. 2. Cloud computing is limited by
high transmission delay, which also introduces computa-
tional pressure and cost of cloud servers, and discourages
service providers to invest large computing resource for
developing mobile web applications. With the rapid devel-
opment of 5G networks, edge computing, as the basic infra-
structure, has the benefits of high network bandwidth and
low communication costs.

As shown in Fig. 2, the transmission delay of cloud com-
puting is nearly 10 times higher than that of edge computing,
whether accessing with 2.4G or 5G. Besides, edge servers are
deployed at the base station near mobile users, which can dis-
tribute computations to various regions instead of being cen-
tralized in one region. Hence, with the help of edge
computing, we are promising to introduce AI technology,
which is computationally intensive and time-consuming on
transmission, intomobile web applications with a satisfactory
experience. However, the computational cost is still expensive
for service providers, and computing pressure is still high for
edge computing platforms. Thus, it is natural to take full
advantage of the computing capability of the mobile device,
then reducing the computing pressure and cost of the server.

2.2 Executing DNNs on the Mobile Web

To efficiently execute DNNs on the mobile web for provid-
ing Web AI services, we point out the following key proper-
ties that mobile web required when comparing with
executing DNNs on the mobile device directly.

� Installation-free and deployment-free. Generally, DNN
models can be embedded in app-based applications
and be installed in a mobile device, which performs
DNN inference locally without communication with
edge servers. However, it is unrealistic to use the
same deployment for mobile web applications,
which provides service through instant loading.

� Weak computing capability. Mobile web applications
usually run in various browsers, whose computing
capability is currently performed by JavaScript and
accelerated by WebAssembly. However, it performs
poor compatibility to use the WebGPU currently,
which is now supported for computers or app-based
applications better than that of the mobile web. In
other words, the computing capability of the mobile
web is much weaker than that of running on the
mobile device.

� Frequent communication. Instant loading characteris-
tic of the mobile web introduces frequent commu-
nication in existing approaches, including mobile-
only, cloud-only, and partition-offloading. Specifi-
cally, mobile-only requires loading the whole
DNN models onto the mobile web, cloud-only
requires transmitting tasks from the mobile web to
the remote cloud, and partition-offloading has to
load partial DNN models and transmit intermedi-
ate results between the mobile web and the remote
cloud.

� Cross-platform. To better play out the cross-platform
feature of the mobile web, mainstream browsers (e.g.,
Chrome, Firefox, IE, and Safari) and embedded APP
browsers (e.g., web browser in WeChat) require sup-
porting DNN execution and show effective compati-
bility. This indicates that we can only use technologies
supported bymainstream browsers such as JavaScript
and WebAssembly when executing DNNs on the
mobile web.

Fig. 2. Typical scenarios and comparisons between cloud computing
and edge computing.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2291

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

2.3 DNNs Acceleration and Motivation

Compressing DNNs and adding early exit branches are two
representative methods for accelerating DNN inference
[19], [20], [25]. Although the compressing method makes
DNNs smaller and faster and has been successfully applied
to app-based applications on the mobile device, it requires
rich experience in DNNs design and efficient training to
acquire lightweight DNNs. DNN compression methods
such as the use of deep separable convolution, usually
require expert experience and reasonable structural design
to obtain a lightweight DNN model with a low loss in accu-
racy. For executing DNNs on the mobile web, it requires a
smaller and faster DNN model than that of the mobile
device, which causes a large loss in accuracy. Thus, a simple
compressing method is sometimes difficult to meet the
needs of mobile web applications. BranchyNet [25], as a typ-
ical DNNs with early exit branches, accelerates DNN infer-
ence via adding branches into the original DNN. The extra
branches allow the majority of tasks to exit early, thus
reducing the needless inference. However, since Branchy-
Net adds multi branches into the main branch, which causes
the inference to be more time-consuming facing complex
tasks.

Inspired by the advantages of the mentioned methods, in
this paper, we design a lightweight collaborative DNN for
the mobile web, which uses the feature of an early exit and
the structure of lightweight and fast DNN. Besides, it can be
efficiently executed on the mobile web, easily collaborated
with the edge server, and enhance the user’s experience.

3 LCDNN FOR THE MOBILE WEB IN EDGE CLOUDS

3.1 Design of LcDNN

In this section, we design a composite DNN with a BNN
branch, which can handle DNN tasks independently on the
mobile web. We also provide a jointly training method con-
sisting of training the main branch, binarizing inputs and
weight filters, and training the BNN branch. Since there is
no existing inference library for the BNN branch on the
mobile web, we are first to implement an inference library
by transforming and optimizing the original BNN into the
JavaScript library for the mobile web. This inference library
provides the capability to run the BNN branch on the
mobile web, which also has a collaborative mechanism with
the edge server.

To better understand the difference and novelty of
LcDNN against existing methods, we introduce the design
and an efficient inference library of LcDNN in detail.
Although binary neural networks (BNNs) have been widely
investigated with the advantage of efficient inference, they
perform worse in accuracy compared with other compress-
ing methods. Instead of directly applying BNNs to the
mobile web, LcDNN puts the BNN as an independent
branch and proposes a composite network structure with
the following advantages and novelties: (1) From the per-
spective of the network structure, LcDNN differs from tra-
ditional BNNs in that it integrates the quantized and
compressed network as a collaborative branch into the full-
precision network for joint training, rather than performing
quantizing and compressing on the full-precision network
directly. (2) For the inference accuracy, LcDNN uses a

full-precision backbone network as accuracy compensation
facing with complex tasks, and thus performing better than
traditional compressed DNNs including BNNs. This also
shows that although it has excellent inference efficiency by
directly employing the BNN on the mobile web, it is hard to
be accepted due to excessive loss in accuracy. (3) Besides,
LcDNN’s collaborative inference library is optimized and
compiled for the mobile web platform, while the traditional
inference library for the BNN is mainly for embedded plat-
forms. Therefore, inference efficiency and mobile energy
consumption of LcDNN are better than that of directly
using the BNN on the mobile web. In summary, LcDNN
effectively combines the advantages of the BNN, while pro-
viding a compound collaborative mechanism to compensate
for the performance of the independent BNN branch when
the accuracy is insufficient.

3.1.1 The Architecture of LcDNN

LcDNNadds one BNNbranch into the original full-precision
network, which is the benefit of collaboration between the
mobile web and the edge server. This architecture can also
promote DNN inference efficiency, reduce mobile energy
cost, and improve the system throughput.

We take AlexNet [4] and ResNet50 as examples that both
the full-precision branch and the BNN branch share the first
convolutional layer in Fig. 3. For one thing, if we binarize all
layers in the BNN branch, which may introduce a dramatic
loss of classification accuracy with few reductions of model
size. For another, when the classification accuracy of the
BNN branch cannot satisfy the tasks, we only need to trans-
mit intermediate outputs of the shared layer to the edge
server rather initial tasks, which also protects the privacy of
mobile users. Taking the advantage of such a shared struc-
ture, the edge server can provide accuracy compensation
for the BNN branch. Note that we have to store intermediate
outputs of the first convolutional layer for the collaboration.
We can free the memory of intermediate outputs when the
BNN branch has the confidence for tasks. Otherwise, the
mobile web frees them after sending them to the edge
server.

Fig. 3. The architecture of LcDNN.

2292 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

3.1.2 Jointly Training Method for LcDNN

We use AlexNet as an example of image classification and
the softmax cross-entropy loss function is used as the optimi-
zation objective. To train LcDNN, we aim to minimize the
loss function of all branches that forms a joint optimization
problem as a sum of the loss functions of the full-precision
branch and the BNNbranch.

Lðŷ; y; uÞ ¼ Lfullðŷfull; y; uÞ þ LBNNðŷBNN; y; uÞ: (1)

Where y is a one-hot ground-truth label vector, ŷ is the
predicted label vector. For loss function of full-precision
branch, Lfullðŷfull; y; uÞ can be represented as

Lfullðŷfull; y; uÞ ¼ � 1

jCj
X
c2C

yc log ŷ
c
full: (2)

ŷfull ¼ softmaxðzÞ ¼ ezP
c2C e

z
: (3)

Where z ¼ ffullðx; uÞ denotes the outputs of full-precision
branch with input sample x. C represents the set of all possi-
ble labels. Hence, we are easy to execute feedforward pass
and backward propagation with gradient descent.

For the BNN branch, we first binarize weights of the neu-
ral network and estimate binary weights. During the updat-
ing of parameters, we use high precision weights to prevent
gradient disappears of binarization. The forward propaga-
tion of the training phase is similar to that of standard for-
ward propagation except for convolutional layers, which is
computed by

I �W � ðsignðIÞ � signðWÞÞ �K � a: (4)

The following equation exhibits the core convolutional
operation, which approximates the convolution between
input I and weight filterW using binary operations. Here, a
is the scaling factor for the weight and K denotes all sub-
tensors.

During the backward propagation, we follow the same
approach as [25] to compute the gradient for signðxÞ.

@sign

@x
¼ x1jxj	1

: (5)

Thus, we calculate the gradient in backward propagation
after the scaled sign function is

@L
@Wi

¼ @L
@fWi

1

n
þ @sign

@Wi
a

!
; (6)

where gradients are computed with respect to the estimated
weight filters fWi.

To train LcDNN, we calculate training datasets through
the whole network including the full-precision branch and
the BNN branch. LcDNN binarizes both inputs and weights
across the BNN branch, which introduces the factor a to
approximate with traditional feedforward of the typical con-
volutional layer. Besides, we record the outputs from exit
points of all branches for calculating the error of the joint net-
work. As for the backward propagation, we update the
weights by the error passed back through the full-precision

branch. Due to tiny changes of parameters in gradient
descent, we only binarize the weights during the forward
pass and backward propagation, which uses high precision
weights to update parameters that are also employed in [26],
[27] and [28]. We present the whole training process of a
N-Layers LcDNN in Algorithm 1, which consists of training
the full-precision branch, binarizing weight filters, and train-
ing the BNN branch. Note that we only perform forward
propagation with binarized weights during the BNN branch
inference without keeping the full precisionweights.

Algorithm 1. Training a N-Layers LcDNN

Input: Inputs and labels X, Y , loss function LðŶ ; Y Þ, layer
weights of full-precision branch Wl

full, learning rate of
full-precision branch hl

full, layer weights of the BNN
branchWl

BNN , learning rate of the BNN branch hl
BNN .

Output: Updated weightsWlþ1
full ;W

lþ1
BNN and learning rate

hlþ1
full; h

lþ1
BNN .

/* Training full-precision branch */
1: Ŷfull (StandardForwardðX;WfullÞ;
2: @L

Wl
full

(StandardBackwardð @L
Ŷfull

;Wl
fullÞ;

3: Wlþ1
full (UpdateðWl

full;
@L

Wl
full

; hl
fullÞ;

4: hlþ1
full (Updateðhl

full; lÞ;
/* Training the BNN branch */

5: //Binarizing weights from the 2th convolutionl layer;
6: for n from 2 to N do

7: eWl
n (1

n Wl
n

�� ��
‘1
�signðWl

nÞ;
8: ŶBNN (BinaryForwardðX; signðWlÞ; 1n Wl

n

�� ��
‘1
Þ;

9: @LeWl
(BinaryBackwardð @L

ŶBNN
; eWlÞ;

10: Wlþ1
binary (UpdateðWl

BNN;
@LeWl

; hl
BNNÞ;

11: hlþ1
BNN (Updateðhl

BNN ; lÞ;
12: returnWlþ1

full ; h
lþ1
full;W

lþ1
BNN; h

lþ1
BNN ;

3.1.3 Collaborative DNN Inference Between the Mobile

Web and the Edge Server

Once the joint network is trained, LcDNN can load and exe-
cute inference efficiently because of tiny BNN branch. For a
given sample x, if the BNN branch is confident to predict
the task and satisfy users, the sample can exit from the tiny
BNN branch directly. Otherwise, we have to transfer the
output of the first convolutional layer to the edge server for
a precise result. Thus, to measure the classification accuracy
of the BNN branch, we introduce normalized entropy,
SðxÞ2½0; 1
 for the exit point of the binary branch which is
also employed in [28], where C is the set of labels.

SðxÞ ¼ �
XjCj
i¼1

xi logxi

log jCj : (7)

Then, we compared SðxÞ against a collaborative thresh-
old to determine whether or not to exit from the BNN
branch. In practice, the optimal value of the exit threshold
for the BNN branch depends on networks and datasets. To
obtain optimal t for the highest overall accuracy, a simple
way is to search the ranges of t and pick the value that can
acquire a maximum accuracy in LcDNN. Generally, we
choose multiple validation sets randomly, set training

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2293

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

iteration as 600, and define 0.5 as the initial t. Then we start
to search in the range of ½0;1
 at different searching rates of
0.1, 0.01, 0.001, 0.0001, and 0.00001 until optimal t value is
obtained and the searching tends to be convergent. We
describe the whole process of searching t in Algorithm 2.

Algorithm 2. Seaching for Optimal t Value

Input: Validation sets V , initial t ¼ 0:5, searching rate
DS ¼ f0:1; 0:01; 0:001; 0:0001; 0:00001g.

Output: Optimal result of t.
1: t (0:5;
2: for each sr in DS do
/* Search rate from big to small */
3: for each iteration do
4: for each v in V do
5: ns (SðxÞ; // By Eq. (7)
6: ba (BinaryFowrwadðvÞ;
7: if (ns < t && ba¼1Þkðns > t&&ba¼0) then
8: d (�1;
9: t (t þ ð�1Þ�d�Dsr;
10: return t;

During the deployment and execution of LcDNN, mobile
web users first request the edge server for the BNN branch
model to execute the inference on the mobile web. Then, we
determine whether to exit from the BNN branch or send the
intermediate results to the edge server against the threshold
t. We also present collaborative inference between the
mobile web and the edge server in Algorithm 3 when the
BNN branch can not satisfy the user.

Algorithm 3. Collaborative Inference of LcDNN

Input: Input sample x, threshold t for determining wether to
exit.

Output: Predicted result ŷ.
/* Output of the first Conv layer */

1: t (fConv1
full ðxÞ;

2: zBNN (fBNNðtÞ;
3: ŷBNN (softmaxðzBNNÞ;
4: e (SðŷBNNÞ;
5: if e < t then
6: return argmaxŷBNN ;
7: zrestfull (frest

full ðtÞ;
8: ŷrestfull (softmaxðzrestfullÞ;
9: return argmaxŷrestfull ;

3.2 Efficient Inference of the BNN Branch
on the Mobile Web

Note that existing deep learning frameworks are generally
implemented in Python or C++, which does not support the
mobile web browser. JavaScript and WebAssembly are
dominant methods for executing DNNs on the mobile web.
Thus, we implement the LcDNN inference library in C++
and convert them to JavaScript and WASM files to allow
executing the BNNs on the mobile web browser directly.
We present the whole process for executing the BNN branch
of LcDNN on the mobile web in Fig. 4.

To provide an energy-efficient DNN inference with low
latency on the mobile web, we optimize the inference of the
BNN branch, including convolutional layers and fully

connection layers, which effectively improves the inference
efficiency and reduces the energy consumption. Once
LcDNN is trained in Python (e.g., Pytorch), inference scripts
that implemented in C++ convert the first convolutional
layer and binary convolutional layers into JavaScript and
WASM by Emscripten [29]. We also validate the correctness
of our implementation by comparing the outputs with the
inference of other frameworks such as Pytorch and
TensorFlow.

3.3 Resilient Scheduling Scheme for LcDNN

In this section, we formulate web requests scheduling across
multiple edge servers and represent it as a Reinforcement
Learning (RL) task. We then introduce our DRL-based
online scheduling algorithm (DRLoS) facing with high con-
current service of LcDNN in real scenarios.

3.3.1 Online Web Requests Scheduling for LcDNN

With DRL

We first outline a typical reinforcement learning framework
in Fig. 5, which uses the DNN as a function approximator
that has a manageable number of parameters and has been
used successfully for large-scale RL tasks [30], [31]. For a
given environment in Fig. 5, we assume that there is an
agent interacting with it. During each time stamp t, the
agent chooses an action at through observing the state st. By
executing the selected action, the state is changed from st to
stþ1. Also, transitions and rewards of each state are assumed
to obey the Markov property [32]. The agent decides actions
according to the policy, which is a probability distribution
pðs; aÞ and is performed by a deep neural network. Since
the optimized objective is to maximize the expected reward,
we show the gradient of objective as the follows [32], [33]:

DEu½
X

gtrt
 ¼ Epu ½Du logpuðs; aÞQpuðs; aÞ
: (8)

Where, Eu½
P

gtrt
 is the expected cumulative reward and
g 2 ½0; 1
 is to discount reward. Qpuðs; aÞ denotes the
expected reward when picks action a in state s. To updates
the parameters of deep neural networks for policy distribu-
tion, gradient-descent is a popular way [32], [34], which can
be described as

u (u þ a
X
t

Du logpuðst; atÞvt; (9)

where a is the adjustment size. We then present the design
and details for online web requests scheduling for LcDNN
with DRL.

(A) DRLoS Model. Assuming that there evenly distributes
m edge servers in a service area for mobile web users, which

Fig. 4. Fast inference library for the mobile web.

2294 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

is represented as a vector e¼fe1; e2; . . . ; emg. We define the
task processing capability (i.e., how many web requests can
be processed) as c¼fc1; c2; . . . ; cmg. The current processing
state of edge servers (i.e., how many tasks are currently
processed) at time t can be described as gt ¼ fg1t ; g2t ; . . . ; gmt g.
Thus, available computing capability of edge servers at time
t can be expressed as act¼fc1�g1t ; c2�g2t ; . . . ; cm�gmt g. Gen-
erally, users’ requests arrive at nearby edge servers in dis-
crete time steps. Traditional proximity service may result in
uneven distribution of computing pressure across edge
servers due to the mobility of users. With the help of edge
computing infrastructure in 5G, it is promising to offload
tasks to idle edge servers via Remote Procedure Call (RPC)
with the benefits of improving resource utilization, and
increasing the throughput of edge cloud. To this end,
DRLoS requires distributing requests to edge servers in bal-
ance according to the real-time status of all edge servers
and the request status of users. We use the resource usage
variance of edge servers as the system objective. Commonly,
the resource usage variance of gt¼fg1t ; g2t ; . . . ; gmt g at time t
can be calculated as

S2
t ¼

Pm
i¼1ðgit � �gtÞ
m� 1

; (10)

where �gt denotes mean value of the resource usage of edge
servers at time t. A high variance indicates that computing
tasks are allocated unevenly, which means that some edge
servers are facing high computing pressure while others
may be idle.

(B) DRLoS Formulation. To formulate online web requests
scheduling as a DRL-based question, we emphasize the
state space in Fig. 6.

State Space. We present the state space by describing cur-
rent resource usage of edge servers and tasks waiting to be
scheduled, which is represented by distinct colors.

Practically, each edge server may face a different number
of tasks waiting for service at time t. However, a DRL-based
system requires a fixed state representation to apply it as the
input into a neural network for function approximation. Oth-
erwise, we have to re-train DRLoS for different numbers of
task requests. To this end, we add a buffer queue at the edge
server before providing service, which selects M tasks as
scheduling input of DRLoS according to the timestamp order
of requests. Generally, adding a request buffer queue not
only makes DRLoS possible to be used in practice but also
improves the robustness, especially facing high concurrent
requests or malicious requests. Note that when the number
of request tasks Mp is less than M, we set M�Mp tasks as ;,
indicating that these tasks do not need to be processed.

Action Space. Since DRLoS requires scheduling M tasks
on N edge servers at each point in time, thus this would
introduce a large amount of action space of NM , which is
hard to train the neural network of DRLoS. We provide a
small action space using a trick by simplifying the actions of
edge servers that decide whether to handle a large number
of tasks or to handle a small number of tasks based on the
current state. For a DRLoS system with three edge servers,
the action space can be described as a¼f< esh1 ; es

h
2 ; es

h
3 > ; <

esl1; es
h
2 ; es

h
3 > ; < esh1 ; esl2; es

h
3 > ; < esh1 ; es

h
2 ; es

l
3 > ; < esl1; es

l
2;

esh3 > ; < esl1; esh2 ; es
l
3 > ; < esl1; es

h
2 ; es

l
3 > ; < esl1; es

l
2; es

l
3 > g.

Where eshi ¼ð1�hÞ�ðci�giÞ and esli¼h � ðci�giÞ denotes edge
servers provide a large or a small portion of available com-
puting resource, respectively. h2ð0; 0:1Þ is a regulatory fac-
tor to prevent edge servers from getting into maximum
computing pressure. Supposed that the number of edge
servers deployed for an area is less than five, thus the action
space of DRLoS is kept within 25.

Rewards. To guide the agent of DRLoS towards a good
direction for minimizing resource usage variance, we define

the reward as rt¼
Pm

i¼1
ðgit� �gtÞ

1�m at each time step. Note that the
agent has no rewards of intermediate actions in a time step.
Thus, we can maximize the cumulative reward to mimic
that minimizing the resource usage variance when setting
the discount factor as g ¼ 1.

3.3.2 Training Algorithm for DRLoS

We use the neural network representing the policy to obtain
the probability distribution of actions corresponding to the
task input in Fig. 5. The policy network is trained in various
episodes, which inputting M tasks for each episode for
scheduling according to the policy network until all tasks
are scheduled. In each training epoch for each task set that
simulates N episodes, we compute the probabilistic space
of actions with the policy and improve the policy for all
tasks by the inference results. Note that the state, the action,
and the reward of each episode are used to compute the
cumulative reward of vt. Since our policy gradient of Eq. (8)
has a high variance on gradient estimation, we use the aver-
age value of the return results of the same time step across
all episodes with the same task set, which is also employed
in [32], [35].

3.4 Analysis of LcDNN

In this section, we discuss the detailed design of the added
BNN branch from the number, location, and architecture of
the BNN branch. Specially, we analyze the reasons for such
design by some examples and experiments.

3.4.1 The Number of Binary Neural Network Branches

In the design of LcDNN, one of the most important prob-
lems is that whether it is also necessary to add multiple

Fig. 5. A typical reinforcement learning framework with policy repre-
sented via DNN.

Fig. 6. An example of system state, with two edge servers and four
tasks.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2295

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

BNN branches to the full-precision network, which is similar
to the BranchyNet [25] that loading and executing more
BNN branches on the mobile web when the accuracy of the
first branch does not meet the demand. To this end, we ana-
lyze whether it is reasonable to add more BNN branches to
the mobile web from the perspective of the latency. First, we
give the following definitions. Assuming that we adding n
BNN branches into full-precision branch, representing by
N ¼ fb1; b2; . . . ; bng. Where ith branch is represented by bm,
whose structure is corresponding to the rest layers after the
adding layer of the full-precision branch. Let M ¼ fm1;m2;
. . .;mng be the memory usage of each BNN branch. Next, we
define the possibility of exiting from a BNN branch as

P ¼
(

p1
pm

;
p2 � p1
pm

; . . . ;
pn � pn�1

pm

)
; (11)

where pi, i2½0; n
 and pm denote the accuracies of bi and the
full-precision branch, respectively. For an input sample x,
whose size is wx, we can use W¼fw1; w2; . . . ; wng to denote
the input of each BNNbranch. Considering the full-precision
branch of LcDNNwith l-layers, we use T M ¼ft1m; t2m; . . . ; tlmg
and T W ¼ft1w; t2w; . . . ; tlwg denote inference latencies of each
layer for the full-precision branch executing on the edge
server and the mobile web, respectively. Thus, if we add one
BNN branch into the full-precision branch, we can formulate
inference latency of the BNN branch as

T 1
b ¼ m1

Bd
þ t1w þ

Xl
i¼2

tib; (12)

where T B¼ft1b ; t2b ; . . . ; tlbg denotes inference latency of each
layer in the BNN branch, and Bu and Bd are the current
wireless network uplink and downlink bandwidths, respec-
tively. Then, we can obtain expectation inference latency of
LcDNN as

E1 ¼
p1
pm

T 1
b þ

1� p1

pm

! Xl
i¼2

tim þ w1

Bu
þ T 1

b

!
: (13)

Besides, if we add n2½2; l�1
 BNN branches to the full-
precision branch, and use ep¼fe1; e2; . . . ; eng to denote entry
points of branches where 0 < e1 < e2 < . . . < en < l�1.
Then, the expectation inference latency can be described as

En ¼ p1
pm

T 1
b þ

1� p1

pm

!
p2 � p1
pm

T 2
b þ . . .þ Yn�1

i¼1

1� pi � pi�1

pm

!!
pn � pn�1

pm
Tn
b þ Yn

i¼1

1� pi � pi�1

pm

!! Xl
i¼n

tim þ wn

Bu
þ
Xn
i¼1

T i
b

!
;

(14)

where p0 ¼ 0,

T 2
b ¼ T 1

b þ
Xe2
j¼e1

tjw þ
Xl
k¼e2

tkb þ
m2

Bd
; (15)

and

Tn
b ¼

Xn
i¼1

T i
b þ

Xen
j¼en�1

tjw þ
Xl
k¼en

tkb þ
mn

Bd
: (16)

We expect to find the minimum expectation inference
latency from E1 to En. When n equals 2, which means add-
ing two BNN branches into the full-precision branch, thus
we have

E2 � E1 ¼

1� p1

pm

!�
p2 � p1
pm

T 2
b þ

1� p2 � p1

pm

!
 Xl

i¼2

tim þ w2

Bu
þ T 1

b þ T 2
b

!

�
 Xl

i¼2

tim þ w1

Bu
þ T 1

b

!�
:

(17)

Next, we reveal the above expectation inference latency
has a little lifting because the layer distance is close between
two BNNbranches (e.g., adding the BNNbranch after the first
convolutional layer obtains the largest profit inAlexNet). This
indicates adjacent location of e2 and e1 has little promotions
between p2 and p1, resulting in a large expectation latency
due tomore communication costs for the secondBNNbranch.
Ifwe increase the layer distance between the first BNNbranch
and the second BNN branch, although we can obtain the
increase of accuracy, the memory usage of the second BNN
branch introduces high communication costs which losts the
advantage of adding the binary convolutional networks.
Especially, in practice, the network bandwidth is unstable,
resulting in high communication costs during the interactions
between the mobile web and the edge server. Hence, consid-
ering the communication costs, memory usage, and accuracy
lifting of the BNN branch, we suggest adding one BNN
branch into the full-precision branch for LcDNN.

3.4.2 Location of the BNN Branch

The optimal location of the BNN branch is discussed in the
aforementioned definitions. Let e1¼1 be adding the BNN
branch after the first convolutional layer. Thus, eh, (2< eh < l)
is the BNN branch of the ethh layer. En represents the expecta-
tion inference latency. We can obtain Eeh�Ee1 > 0 due to
communication costs and a small amount of accuracy lifting.
The is because that if eh is close to l, thewhole network degen-
erates into a traditional deep neural network with high
weights and computations. When eh is close to e1, the accu-
racy lifting is slight, while increasing the communication
costs. Thus, if we consider adding only one BNN branch, it is
preferable to add it after the first convolutional layer.

3.4.3 Structure of the BNN Branch

In this paper, the BNN branch mainly consists of the binar-
ized convolutional layer and binarized fully connected
layers. Based on the above discussions, we suggest adding
one BNN branch after the first convolutional layer of the
full-precision network. Using the AlexNet network as an
example, Fig. 7 shows the performance of accuracy and

2296 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

model size of various structures of BNN branches. Con-
cretely, we explore the role and influence of binarized con-
volutional layer in Fig. 7a with n, (n < l) binarized
convolutional layers and a binaried fully connected layer. In
Fig. 7b, we use only one binarized convolutional layer and
n, (n < l) binarized fully connected layers to reveal the effec-
tiveness of the BNN branch. The last layer of all structures is
a common fully connected layer.

Experimental results show that it is not a better choice to
add more binary convolutional layers into the full-precision
branch due to the accuracy loss. Similarly, one or two binary
fully connected layers may introduce higher accuracy. Hence,
we suggest consulting the structure of the full-precision
branch when designing the BNN branch for a satisfactory
experience.

4 EVALUATION

In this section, we evaluate LcDNN’s performance from the
latency, mobile energy cost, and system throughput. We
introduce experimental settings in Section 4.1 and the train-
ing performance of LcDNN in Section 4.2. We describe
improvements of LcDNN in Section 4.3. Then, we aim to
explore the impact of the entropy threshold of LcDNN in
Section 4.4. We also discuss the performance of our resilient
scheduling mechanism, DRLoS of LcDNN in Section 4.5.

4.1 Experiments Setup

4.1.1 Benchmarks and Datasets

We demonstrate that LcDNN achieves improvements in
terms of average latency, average mobile energy cost, and
system throughput against the state-of-the-art partition-off-
loading approaches, Neurosurgeon [14] and Edgent [15].
We also compare LcDNN against mobile-only and edge-
only to illustrate the advantages. We evaluate LcDNN using
typical deep neural networks such as LeNet, AlexNet,
ResNet18[12], VGG16 and compressed DNNs such as Mobi-
leNet [19], to show the practicality. For datasets, we use a
series of benchmark datasets such as MNIST [36], Fashion-
MNIST [37], CIFAR-10/CIFAR-100[38], and ImageNet-
150K [39] to present the effectiveness of LcDNN. ImageNet-
150K is the subset of ILSVRC ImageNet, which contains
183K training images and 7.5K testing images belonging to
the top 150 most popular categories based on the popularity
ranking provided by the official ImageNet website.

4.1.2 Mobile Device and Edge Server Setup

We use Pytorch as the deep learning framework to train
LcDNN for various networks and datasets on a GPU server,

which is a fourteen-core Intel Xeon processor running at
2.0 GHz with 128 GB of RAM and dual GTX TITAN Xp
GPU cards with 12 GB of RAM of each card. For the edge
server, which is deployed near the base station, we use a
common server with a six-core Inter processor of 2.9 GHz
and 16 GB RAM running Ubuntu 18.04 LTS. We present
the core network topology with a max uplink bandwidth of
150 Mbps and a max downlink bandwidth of 600 Mbps,
which is a real-world 5G network at Beijing University of
Posts and Telecommunications in Fig. 8. We use a HUAWEI
Mate 9 smartphone running Andriod 8.0 with 4 GB RAM.
To simulate stable communication conditions such as 3G,
4G, and WiFi, we use a HUAWEI 5G CPE to connect to the
base station, and use Wonder Shaper [40], which is a script
that allows the user to limit the bandwidth of network
adapters, to control the network on the edge server.

4.1.3 Measurements

To acquire precise numerical performance of LcDNN, we
introduce tools and methodologies to measure the latency,
mobile energy and system throughput as follows.

� Latency measurement. Since latency components of a
request in LcDNNmainly include downloading data
and DNN inference, it is necessary to measure the
whole latency from requesting a task until getting the
final result to evaluate the real performance. We first
record the timestamp through a JavaScript function
when the web page triggers the request of DNN com-
putation. Then, once the web page receives the final
results from the edge server or the mobile web, we
record the current timestamp again. Thus, the entire
latency can be calculated based on two timestamps
before and after a complete DNN computation
request. Moreover, we can also acquire the latency of
downloading data from the edge server in this way if
necessary. To reduce random errors, we repeat the
same DNN task request multiple times and use the
average latency as the final latency performance.
Note that we clear the data cache of the mobile web
browser to keep each request independent.

� Mobile energy measurement. To precisely measure the
mobile energy consumption of mobile devices when
performing LcDNN via the mobile web browser, we
use a hardware power monitor with a model number
of AAA10F in Fig. 9. We also use it to provide a stable
voltage of 3.7 V for mobile devices and obtain the sys-
tem energy cost such as the screen brightness cost in
the standby state. And the high value of the curve in
Fig. 9b denotes the average energy consumption of
running LcDNN. Then we can easily acquire real
mobile energy consumption based on these two
curves.

� System throughput measurement. We define the edge
server throughput as how many units of requests

Fig. 7. The structure of the BNN branch.

Fig. 8. The network topology in a real scenario.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2297

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

from mobile web users can be processed at a given
time. Formultiple edge servers inDRLoS,we consider
the average processed requests as the system through-
put. Especially, to better describe the throughput
improvements of LcDNN against state quo appro-
aches, we normalize the throughput of state quo
approaches to that of LcDNN.

4.2 Training Results of LcDNN

We present the main performance of LcDNN on top-1 accu-
racy, exit threshold, exit possibility, and model size respec-
tively in Table 1. F_Acc and B_Acc represent top-1 accuracies
of the full-precision branch and the BNN branch, respec-
tively. Exit threshold is to determine whether exiting from
the BNN branch or transferring to the full-precision branch
for precise inference. Exit possibility denotes the ratio of exit-
ing from the BNN branch in 100 random samples. We also
compare the model size of branches to highlight the advan-
tage of adding the BNN branch for themobile web.

We observe that the BNN branch can reduce the model
size about 16x to 30x when compared with the full-precision
branch. Top-1 accuracy of DNN networks with shallow
binary layers has fewer reductions compared with the full-
precision branch. However, a deep neural network such as
VGG16 performs a sharp decrease due to more binary
layers. We also evaluate the exit probability from the BNN
branch with a baseline of 100 random samples. The results
show that the simpler the network is, the more likely it is to
exit from the BNN branch. For example, LeNet’s BNN
branch contributes to about 90 percentages of samples exit-
ing without the collaboration of the full-precision branch.
Meanwhile, the t value of shallow networks is stricter than
that of deep networks, which means the BNN branch has
similar accuracy to the full-precision branch. However, the
t value of deep networks such as AlexNet and VGG16 is
larger than LeNet, which indicates more BNN branches
may result in a large loss. In summary, although the accu-
racy of the BNN branch has gaps with the full-precision
branch, LcDNN leverages the collaboration of the full-
precision branch located at the edge server to supply the
shortage of the BNN branch. Simultaneously, a lightweight
BNN branch provides a crucial foundation for executing
deep neural networks on the mobile web in real-time.

4.3 Improvements

4.3.1 Latency Performance

We present the average latency of LcDNN over different
DNN networks, datasets, and network conditions in Fig. 10.
We follow the same communication settings described in

Section 4.1, and threshold settings are described in Table 1.
To reduce random error, we choose the average latency of
executing any sample 10 times as the final latency perfor-
mance. We observe that (1) With the increase of testing sam-
ples, DNN networks with high exit probability perform
stable in latency, and show a small downward trend, which
indicates that most of the samples can be processed by the
BNNbranch directly.We note that there is a large fluctuation
when samples increase to 90 in a 4G network of LeNet.
Through the analysis of test samples, it is found that there
are more complex tasks in this set of sampling data that
require the assistance of the edge server. However, for
VGG16 on ImageNet-150K, average latency has larger fluctu-
ations than shallow networks, which is mainly because a
large number of examples rely on edge-assisted inference.
(2) Communication condition has also caused fluctuations in
average latency performance, which has impacts on loading
models, transmitting intermediate results, and other data.
Hence, as the number of samples requiring the assistance of
the edge server increases, communication conditions have a
large impact on average latency, which shows obvious fluc-
tuations under different states. In summary, although
LcDNN’s BNN branch can not process all samples, the col-
laborative mechanism of LcDNN effectively provides accu-
rate compensation for the BNN branch. Especially in a long
run, the benefits of the BNNbranch are considerable.

We discuss the latency performance of LcDNN against
Neurosurgeon, Edgent, mobile-only, and edge-only using
an average latency of 100 random samples under 4G net-
work in Table 2. We observe that the BNN branch acceler-
ates the execution and decreases the whole inference
latency. Especially, for deeper neural networks (e.g.,
ResNet18 and VGG16), because the computing capability of
the mobile web is limited, the full-precision branch is
unable to be executed directly on the mobile web. Although
Neurosurgeon and Edgent load and execute partial DNN
layers pursuing fast inference, they also become unavailable
facing with deeper networks. This indicates that the model
size is still too large to load and execute efficiently. We note
that edge-only has the lowest latency, but this method has
heavy computing pressure without using the computing
resource of the mobile device, which is essentially different
from distributed and collaborative DNNs proposed in this
paper.

Fig. 9. The power monitor used for energy measurements.

TABLE 1
Training Results on Various Networks and Datasets

Network/Dataset F_Acc.
(%)

B_Acc.
(%)

Threshold
(t)

Exit
(%)

F_size
(MB)

B_size
(MB)

LeNet-MNIST 99.50 98.81 0.0001 94 1.7 0.103
LeNet-FashionMNIST 99.41 98.67 0.0001 93 1.695 0.102
AlexNet-CIFAR-10 76.85 73.99 0.0251 79 90.911 3.3
AlexNet-CIFAR-100 57.31 54.73 0.0251 76 92.351 3.5
AlexNet-ImageNet-
150K

59.60 46.2 0.3031 61 242.3 8

ResNet18-CIFAR-10 93.02 88.89 0.0453 73 43.705 1.6
ResNet18-CIFAR-100 78.32 73.96 0.0453 60 43.885 1.7
ResNet18-ImageNet-
150K

69.37 51.2 0.2521 65 44.1 1.9

VGG16-CIFAR-10 92.29 87.76 0.0523 78 59.0 2.0
VGG16-CIFAR-100 70.48 65.32 0.0523 76 59.759 2.1
VGG16-ImageNet-
150K

73.44 55.7 0.2036 55 523.8 14.9

2298 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

4.3.2 Mobile Energy Performance

We use the same measurement in Section 4.1.3 to accurately
measure mobile energy consumption of executing LcDNN in
different networks, datasets (e.g., LeNet-MNIST, AlexNet-
ImageNet, ResNet18-ImageNet, VGG16-ImageNet) and com-
munication conditions in Fig. 11.

We randomly sample 10 groups of testing samples, and
each group consists of 10 samples to reduce the random
error. The results show that LcDNN performs better than
existing partition-offloading approaches in mobile energy
consumption, which is a benefit from the lightweight BNN
branch that reduces a large amount of communication cost
on loading the DNN model. The phenomenon is more pro-
nounced for deep neural networks such as AlexNet and
VGG16, which also shows that loading heavy models onto
the mobile web is not applicable, and lightweight BNN
branches perform the advantage. Besides, it is noted that
the mobile energy cost of the edge-only is lower than the
others, which have a similar performance on latency. This is
because the edge-only approach only consumes mobile
energy on task transmission without loading DNN models.
Although it performs well, it is not the optimal solution,
especially from the perspective of system throughput, com-
puting pressure, and economy.

4.3.3 System Throughput Performance

In Fig. 12, we describe comparisons and analysis of system
throughput in different networks, datasets, and communi-
cation conditions.

The results show that LcDNN has the best system
throughput in all approaches, it improves the throughput
about 2.9x to 13.1x against the mobile-only approach. This is
because the BNN branch can independently handle the
majority of tasks without the assistance of the edge server for
powerful computing resources, especially in the LeNet net-
work. However, Neurosurgeon and Edgent require the col-
laboration of the edge server to complete a whole task.
Although the computing distribution varies in different net-
work conditions, the edge server always has to participate in
inference for each task. Thus, such a partition-offloading
approach has large gaps with LcDNN in terms of system
throughput. Besides, for the edge-only, since all computa-
tions are arranged on the edge server, thereby it performs
the lowest system throughput, whether on LeNet or VGG16.
It also shows that centralized service provision has heavy
computing pressure, and resource consumption is more seri-
ous. Hence, it is not economical when considering the edge
serves as the foundation to process such heavy computa-
tions. Finally, we do not compare LcDNN with the mobile-
only approach, because it only consumes the edge server’s

Fig. 10. Average latency performance. The X-axis represents the number of testing samples, and the Y -axis is the corresponding average latency.
The input sample can be processed, and exit from the BNN branch directly or collaborate with the edge server for more precise inference.

TABLE 2
Comparisons on Latency Performance

Networks LcDNN Neurosurgeon Edgent Mobile-only Edge-only

LeNet 37 110 204 109 15
AlexNet 153 5,256 4,617 9,313 21
ResNet18 261 2,820 2,613 5,882 19
VGG16 264 3,421 3,231 8,205 25

a The unit of measurement is ms.
b The parameters of LcDNN are same with those mentioned above. Fig. 11. Mobile energy improvements.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2299

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

request link resources without extra consumption on the
computing resource of the edge server. Moreover, it is not a
practical approach from the perspective of latency and
mobile energy consumption.

4.3.4 Comparisons of LcDNN With Compressed DNNs

We compare the performance among LcDNN and typical
compressing DNN methods such as MobileNet, knowledge
distillation, and network quantization in terms of the latency,
mobile energy, and inference accuracy in Fig. 13. MobileNet
is a well-designed networkwith high accuracy, a lightweight
model, and fast inference, representing a new convolution
method. The knowledge distillation (KD) method uses the
full-precision network to train a smaller student network.

Besides, we also compare LcDNN with binarized neural
network which is similar to the BNN branch of LcDNN. We
use ResNet18 and VGG16 on CIFAR10 and ImageNet-150K
as examples to reveal comparisons among LcDNN and
other methods. Experimental settings and measurements
are same to the above subsections.

We see that (1) LcDNN acquires higher accuracy than
other compressed methods on CIFAR10 of ResNet18 in
Fig. 13a, which also performs better in the latency andmobile
energy cost. Although MobileNet and KD methods can
reduce the model size and parameters, their inference effi-
ciency still has some gaps with LcDNN and BNN of using
quantitative technology, especially running on the mobile
web. This is because the 2-bit quantization technology used
in LcDNN and BNN has the advantage in accelerating infer-
ence and reducing the mobile energy. Note that BNN gains
faster inference by sacrificing accuracy, while LcDNN not
only uses the BNN branch to accelerate inference but also
improves accuracy through a collaborative mechanism.
Besides, the inference library used by LcDNN is optimized
according to the characteristics of the quantitative network,
whose inference performs faster than existing libraries such
as ONNX.js and TensorFlow.js used by MobileNet and
KD. (2) As for VGG16 on ImageNet-150K, although the full-
precision network of VGG16 has superior accuracy,

parameters of the full-precision branch are too large to be
directly applied to the mobile web. By adding a BNN branch
into the full-precision branch, the model size of the BNN
branch can be greatly reduced, and inference can be acceler-
ated, which performs advantages on the latency and mobile
energy when compared with MobileNet and KD methods.
More importantly, the accuracy of the BNN branch is lower
than MobileNet and KD, we can still obtain high accuracy
with the help of collaboration of the full-precision branch in
LcDNN. We can conclude that MobileNet and KD methods
are more focused on reducing the model size and parame-
ters, and lack consideration and optimization in inference
efficiency, especially for the mobile web platform. And the
BNN network of quantization method lacks an effective bal-
ance between inference efficiency and accuracy loss. Thus,
this indicates LcDNN can achieve a good balance in accu-
racy, latency, andmobile energy consumption through a col-
laboration mechanism. (3) We can also see that the structure
of LcDNN is easy to popularize and can be directly applied
to existing neural networks without the need for expert
knowledge, or a large number of calculations for automatic
neural network structure search. Hence, if we use ResNet152
as a full-precision branch and apply it to LcDNN, it will get
better performance than the majority of compressed DNNs,
no matter in latency, mobile energy, and accuracy. In sum-
mary, LcDNN is easier to operate than well-designed DNNs
in practical applications and can be flexibly applied to differ-
ent datasets and networks.

4.4 Entropy Threshold of LcDNN

In LcDNN, the exit judgment of the BNN branch directly
affects overall accuracy due to the wrong decision of the
BNN branch. We have given the method of selecting thresh-
olds based on the validation dataset in Algorithm 2 of
Section 3.1. Meanwhile, we further analyze the impact of
different thresholds on accuracy of various networks and
datasets in Fig. 14.

We observe that the optimal threshold is various and
directly related to the structure of DNN networks and data-
sets. The threshold of a high-precision small network such

Fig. 12. System throughput improvements. We normalize LcDNN and
other status quo approaches to the mobile-only approach, which has the
lowest throughput than others.

Fig. 13. Performance of LcDNN compared with other compressed
methods.

2300 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

as LeNet is much stricter than others. This is because the
BNN branch has similar accuracy to the full-precision
branch, which requires a strict threshold to ensure the over-
all accuracy. However, the threshold is relatively large such
as AlexNet, ResNet, and VGG16, whose accuracy of the
full-precision branch in these networks is low. Thus, exces-
sively strict thresholds may cause a large number of exam-
ples to be unable to exit from the BNN branch, which
requires the collaboration of the edge server, increases the
overall latency, and cannot reduce the computing pressure
of the edge server. In addition, we compare the threshold
between the optimal value found by our Algorithm 2 and
the actual optimal threshold. The thresholds obtained using
the validation dataset are close to the actual optimal thresh-
olds. Therefore, we can use Algorithm 2 to quickly obtain
an accurate and reasonable threshold in the actual applica-
tion. Then, we can update the threshold value to meet the
actual sample data through feedback from the samples of
the actual application.

4.5 Performance of DRLoS

We first introduce experimental settings for evaluating
DRLoS, which leverages the same communication and hard-
ware described in Section 4.1.We build a DRLoS testbed con-
sisting of three edge servers with the same computing
capability and simulate a task requestor that obeys the Ber-
noulli distribution with a request frequency range from 10 to
130 percent. For the policy network, we design a deep neural
network consisting of a fully connection layer with 20 neu-
rons, whose learning rate for training is set as lr¼0:001. We
set the output size of the policy network asM¼500, the num-
ber of tasks scheduled at the same time, which also means
the total number of concurrent processing tasks. In each iter-
ative training, each request dataset is processed in parallel
with N¼20, and the number of training iterations is 1500.
Then, we analyze the effectiveness and novelty of DRLoS
from convergence behavior, scheduling efficiency, and sta-
bility based on the above experimental scenario. Specifically,
we compare DRLoS with some commonly used scheduling
methods such as Q-learning [41], Average, Closest, and Ran-
dom on indicators of the latency, mobile energy, and
resource usage to illustrate the effectiveness and novelty.

The Q-learning method refers to the value-based RL solution
which uses the same definition to [41]. The Average method
refers to the average distribution of task requests to all edge
servers for processing. And the Closest method is to distrib-
ute task requests to the available edge servers according to
the geographical location. The Random method assigns task
requests to any edge server for processing randomly.

4.5.1 Convergence Behavior

To explore the convergence performance of DRLoS’s policy
network with the increase of training iterations, we show the
convergence behaviors on normalized resource utilization
variance over various methods and compare the conver-
gence of DRLoS and Q-learning method on the total reward.
We set the task request load to 80 percent and delve into the
system’s resource utilization and total reward. Besides, non-
RLmethods have no changes with iterations due to unneces-
sary training, thus using an average result of 20 times sched-
uling to evaluate the performance. We can see that (1)
DRLoS improves with the increase of iterations, and at the
beginning, DRLoS even performs worse than other methods
in resource usage variance in Fig. 15a.When the training iter-
ation reaches 500, DRLoS has considerable performance.
Especially, DRLoS’s online scheduling can bring LcDNN
more than 2.17x resource utilization improvement against
the Closest approach. DRLoS’s performance is closer to the
Randommethod at the beginning. With the increase of train-
ing iterations, DRLoS gradually converges and obtains better
performance than all non-RL methods. Moreover, DRLoS
has better convergence speed and convergence performance
than the Q-learning method, also illustrating the effective-
ness and advancement. (2) Based on the convergence perfor-
mance of DRLoS and the Q-learning method on total reward
in Fig. 15b, we observe the convergence speed of DRLoS is
better than the Q-learning method, and total reward gradu-
ally converges at 700 and 900, respectively.

This is because the Q-learning method usually obtains a
deterministic policy while DRLoS’s policy is a probability
distribution over possible actions, thus the action-value of
Q-learning method eventually converges to the correspond-
ing true values and DRLoS tends to generate optimal ran-
dom strategies.

4.5.2 Comparing the Efficiency of DRLoS Scheduling

In Fig. 16a, we compare the performance of different
approaches on the normalized resource usage variance with
the increase of request tasks. As we expect, we see that (1)

Fig. 14. Discussion of different entropy thresholds.

Fig. 15. Convergence behavior of DRLoS.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2301

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

the system resource usage variance continues to increase as
the amount of requests increases until it reaches maximum
processing capacity. (2) DRLoS shows the best resource uti-
lization because it combines the status of all edge servers
and task request status to maximize and optimize schedul-
ing. However, while the method based on the Closest allo-
cation may only be processed on nearby edge servers,
which will introduce to backlog a large number of tasks
while other servers may be idle, causing the waste of resour-
ces. (3) The Average method also does not take into account
the global status of edge servers and request tasks, resulting
in imbalanced resource utilization, which cannot maximize
the use of computing resources of edge servers and improve
the processing capacity of the system. In Fig. 16b, we exhi-
bit the average processing latency of DRLoS and other
methods as the task requests increase. Assuming that all
request tasks require edge assistance in LcDNN, and set the
maximum concurrency of three edge servers to 500. We
know that the RL-based methods perform better in terms of
stability and average latency, while non-RL methods, espe-
cially the Random method, have high fluctuation. This is
due to the fact that random allocation may cause excessive
load on the part of edge servers, introducing the waiting of
tasks and increasing the average processing latency. In
addition, the Closest method performs a certain increase
when the number of task requests reaches 500 and 1,000.
This is because the adjacent edge server is fully loaded, and
all tasks need to be forwarded to other edge servers, result-
ing in an increase of average latency. Thus, DRLoS defeats
other methods, which can be summarized that the auto-
learning policy network can dynamically perform global
allocation based on the system’s real-time status and context
information (available resource status, request status).

Besides, DRLoS can automatically learn and adjust
scheduling policy to dynamically adapt to different envi-
ronments according to historical experience.

We also analyze the runtime performance of DRLoS with
changes in task requests and available computing resources

in Figs. 16c and 16d, respectively. To measure the runtime of
DRLoS on common edge servers as accurately as possible,
we use themethod in the Section 4.1.3 to record logs and con-
trol the available computing resource of edge servers via
CPUUsage Limiter [42]. Besides, we follow the same settings
to the above experiments. The results show that DRLoS can
execute real-time task scheduling within milliseconds with
the increase of the number of tasks and the reduction of
available computing resources. On the one hand, the DRL-
based method generally spends time on training policy net-
work offline. Once the convergent policy model is obtained,
it only needs to be deployed on the edge server to execute
the inference of the policy network in real-time. On the other
hand, the policy network designed and used by DRLoS is
much smaller in terms of neurons, parameters, and model
size. Therefore, running DRLoS in real-time does not require
high hardware configuration and computing resources, and
it can still provide real-time scheduling even on resource-
constrained embedded devices.

4.5.3 Availability Analysis

Since the size of action space of DRLoS is affected by the
scale of action states and the number of available edge serv-
ers, we simplify the action state of the edge server to process
each task as process a small batch of tasks or a large number
of tasks (i.e., small capacity and high capacity). It is impor-
tant to explain that for a batch of task requests at any time
slot, high capacity actually includes a general number of
task requests between small capacity and high capacity.
Hence, to explore the availability of the simplification
method used by DRLoS, we simulate different scales edge
servers N and various task M and analyze the influence on
the resource usage and average processing latency in
Fig. 17. We define the maximum concurrent processing of
any edge server as 1,000, and the task request also follows
the same Bernoulli distribution and settings as described at
the beginning of this section.

We observe that (1) Normalized resource usage variance
of DRLoS does not change significantly as the task request
scale increases, which illustrates the effectiveness of our
simplified strategy of action space to execute scheduling
under various task scales in Fig. 17a. Besides, when there is
deployed with five edge servers and the task scale is greater

Fig. 16. Scheduling efficiency of DRLoS.

Fig. 17. Availability performance of DRLoS.

2302 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

than 5,000, it has exceeded the limited processing capacity of
the whole system, that is, all edge servers are in a saturated
state. Thus, if we continue to increase the task scale, the
resource usage variance will not change. (2) We also analyze
the effect of the simplified strategy on the average processing
latency in Fig. 17b. The results show that there is a slight
climbing in the average latencywith the increase of task scale,
which is caused by the increase of forwarding task requests
among edge servers. From the perspective of the increase in
latency, DRLoS still performswell in terms of average latency
facing various task scales, which demonstrates that the sim-
plified strategy of DRLoS is effective. Also, we observe that
the average processing latency still has an increase when
expanding the scale of edge servers, which can indicate that
adding more edge servers for collaborations in actual deploy-
ments does not always improve performance. Besides, since
edge servers in experiments are supported by China Unicom
and usually cover several tens of kilometers, there is no need
for a large number of edge servers to cooperate, and only a
small number of edge servers within a certain range can meet
the demand. For further considerations, if the scale of the task
request is extremely large under special circumstances, that
is, it cannot be processed at the edge server, the more conven-
tional approach is to forward the task to a remote cluster
cloud for collaboration, which is more economical than using
more edge servers for collaboration.

5 RELATED WORK

5.1 Distributed Inference of Deep Neural Networks

Partition-offloading is the most fundamental methodology to
execute distributed inference working on traditional deep
neural networks [43]. Recently, Neurosurgeon [14] automati-
cally chooses the partition points pursuing the optimal
latency and energy consumption to offload DNN computa-
tions. Edgent [15] searches the adaptive partitions of DNN
computation and acceleratesDNN inference through an early
exit at a proper intermediate DNN layer. Similarly, there are
prior explorations focusing on intelligent collaboration
between the mobile device and the cloud without combining
the granularity of neural network layers. McDNN [44] inves-
tigates the intelligent collaboration to execute either in the
cloud or on the mobile device by generating alternative DNN
models for performance and energy costs. MoDNN [45] pro-
poses two partition schemes to minimize non-parallel data
delivery latency and accelerate DNN inference by alleviating
device-level computing cost and memory usage. Moreover,
JointDNN [16] further proposes efficient DNN inference giv-
ing the training process simultaneously, which also provides
various optimizations in DNNs tackling with resource con-
straints. However, these anterior researches only benefit the
lightweight DNN models, and they do not support deeper
neural networks due to massive weights and computations.
Thus, it is worthy of considering lightweight neural networks
like binary convolutional neural network for reducing the
communication and computation costs.

5.2 Binary Deep Neural Network

As one of the effective compression methods, binary convo-
lutional neural network attempts to address efficient train-
ing and inference by binarizing weights and activations

compared to typical deep neural networks. The directions are
of two kinds: Expectation BackPropagation (EBP) and Binary-
Connect. EBP in [46] achieves a neural network with binary
weights and binary activations by variational Bayesian
approach. Esser [47] treats spikes and discrete synapses as
continuous probabilities, which allows to train the network
using the standard backpropagation and shows the advan-
tages in energy efficiency. BinaryConnect [26] trains a DNN
with binaryweights during the forward and backward propa-
gationwhile retaining precision of the storedweight. It shows
high performance on small datasets while large-scale datasets
are not suitable. XNOR-Network [27] is more extreme to
binarize filters and inputs in convolutional layers which
results in faster and more memory-saving inference.
Undoubtedly, network binarization makes the trade-off
between model size and precision. Nevertheless, it is hard to
acquire satisfactory precisionwith an efficient compression of
networks in terms of complex datasets (e.g., ImageNet).

5.3 Web-Based DNN Inference Framework

To allow the web to execute DNNs, JavaScript and Webas-
sembly are the representative technologies currently. CaffeJS
[48] loads pre-trained deep neural networks entirely in Java-
Script, which aims to execute forward and backward propa-
gation. All of this runs on mobile devices without installing
any software. Similarly, Keras.js [49] supports GPU and CPU
mode of Keras models in the browser on personal computers,
which can be trained in any backend, including TensorFlow,
CNTK, etc. TensorFlow.js [13] is a JavaScript library for train-
ing and deploying deep learning models in the browser and
on Node.js. WebDNN [50] also provides an installation-free
DNN execution environment by optimizing the trained DNN
model to compressmodel data and accelerating the execution.
Although the aforementioned technologies provide the
chance to execute the entire DNN inference on the mobile
web browser, they get into trouble with higher latency, com-
putation constraints, and loss of accuracy. Our approach in
this paper provides lightweight collaborative DNNs to allevi-
ate the conflict between themodel size and accuracy.

6 CONCLUSION

In this work, we proposed LcDNN, a lightweight collabora-
tive deep neural network for the mobile web in the edge
cloud. Towards low-latency, energy-saving, high through-
put, and efficient resource utilization of edge cloud, LcDNN
is the first to introduce binary convolutional neural network
into a typical deep neural network for reducing the model
size and accelerating inference. We also provide a joint
training method and implement an inference library for
running LcDNN on the mobile web. Moreover, we leverage
the collaboration of the full-precision branch located at the
edge server to supply the compensation for the BNN
branch. Last, we develop a DRL-based online scheduling
scheme to obtain an optimal allocation for LcDNN to pro-
mote the resource utilization of the edge cloud. Experimen-
tal results on several well-known networks and datasets
give us insightful motivation to expend LcDNN on more
complex networks and applications. In future research, we
may do more simulations in different system environments
for more insightful knowledge.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2303

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2018YFE0205503, in part by
the National Natural Science Foundation of China (NSFC)
under Grant 61671081, in part by the Funds for International
Cooperation and Exchange of NSFC under Grant
61720106007, in part by the 111 Project under Grant B18008,
in part by the Fundamental Research Funds for the Central
Universities under Grant 2018XKJC01, and in part by the
BUPT Excellent Ph.D. Students Foundation under Grant
CX2019135. A preliminary version of this paper appears as
the proceedings of the 39th IEEE International Conference
on Distributed Computing Systems (ICDCS 2019) [1].

REFERENCES

[1] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A light-
weight collaborative recognition system with binary convolu-
tional neural network for mobile web augmented reality,” in Proc.
IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 1497–1506.

[2] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR: A
promising future for mobile augmented reality—State of the Art,
challenges, and insights,” Proc. IEEE, vol. 107, no. 4, pp. 651–666,
Apr. 2019.

[3] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for web AR
with mobile edge computing,” IEEE Internet Comput., vol. 22,
no. 4, pp. 46–55, Jul./Aug. 2018.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[5] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, 2016,
pp. 4945–4949.

[6] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Comput.
Surv., vol. 52, no. 1, 2019, Art. no. 5.

[7] A. Kumar et al., “Ask me anything: Dynamic memory networks
for natural language processing,” in Proc. 33rd Int. Conf. Mach.
Learn., 2016, pp. 1378–1387.

[8] Machine learning for the web community group charter. 2018.
[Online]. Available: https://webmachinelearning.github.io/charter/

[9] Immersive web working group. 2018. [Online]. Available: https://
www.w3.org/ immersive-web/

[10] W3C strategic highlights October 2018. 2018. [Online]. Available:
https://www.w3. org/2018/10/w3c-highlights/

[11] A. Haas et al., “Bringing the web up to speed with webassembly,”
ACM SIGPLAN Notices, vol. 52, no. 6, pp. 185–200, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[13] D. Smilkov et al., “TensorFlow.js: Machine learning for the web
and beyond,” 2019, arXiv: 1901.05350.

[14] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” ACM SIGARCH Comput. Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[15] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proc.
Workshop Mobile Edge Commun., 2018, pp. 31–36.

[16] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Trans. Mobile Comput., early access,
Oct. 16, 2019, doi: 10.1109/TMC.2019.2947893.

[17] N. Fernando, S. W. Loke, andW. Rahayu, “Computing with nearby
mobile devices: A work sharing algorithm for mobile edge-clouds,”
IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 329–343, Secondquarter
2019.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,Oct. 2016.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[22] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and
G. E. Hinton, “Large scale distributed neural network training
through online distillation,” 2018, arXiv:1804.03235.

[23] T.-J. Yang et al., “NetAdapt: Platform-aware neural network adap-
tation for mobile applications,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 285–300.

[24] Y. Huang et al., “DeepAdapter: A collaborative deep learning
framework for the mobile web using context-aware network
pruning,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 834–843.

[25] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “BranchyNet:
Fast inference via early exiting from deep neural networks,” in
Proc. 23rd Int. Conf. Pattern Recognit., 2016, pp. 2464–2469.

[26] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in
Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet classification using binary convolutional neural
networks,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[28] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 328–339.

[29] A. Zakai, “Emscripten: An LLVM-to-JavaScript compiler,” in Proc.
ACM Int. Conf. Companion Object Oriented Program. Syst. Lang.
Appl. Companion, 2011, pp. 301–312.

[30] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015, Art. no. 529.

[31] D. Silver et al., “Mastering the game of gowith deepneural networks
and tree search,”Nature, vol. 529, no. 7587, 2016, Art. no. 484.

[32] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

[34] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with func-
tion approximation,” in Proc. 12th Int. Conf. Neural Inf. Process.
Syst., 2000, pp. 1057–1063.

[35] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. 31st Int. Conf. Mach. Learn.,
2015, pp. 1889–1897.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[37] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,”
2017, arXiv: 1708.07747.

[38] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,”Master’s thesis, Dept. Comput. Sci., Univ. Toronto,
Citeseer, 2009.

[39] H. Liu, R. Wang, S. Shan, and X. Chen, “Learning multifunctional
binary codes for both category and attribute oriented retrieval
tasks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 3901–3910.

[40] Wonder shaper. 2017. [Online]. Available: https://github.com/
magnific0/wondershaper

[41] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11 168,
Nov. 2019.

[42] A.Marletta, “CPUusage limiter,” 2014. [Online]. Available: https://
github.com/opsengine/cpulimit

[43] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed DNN collaborative computing approach for
mobile web augmented reality in 5G networks,” IEEE Netw., vol. 34,
no. 2, pp. 254–261,Mar./Apr. 2020.

[44] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “MCDNN: An approximation-based execution
framework for deep streamprocessing under resource constraints,” in
Proc. 14thAnnu. Int. Conf.Mobile Syst. Appl. Services, 2016, pp. 123–136.

[45] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributedmobile computing system for deep neural network,”
inProc. Des. Autom. Test Europe Conf. Exhib., 2017, pp. 1396–1401.

2304 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

https://webmachinelearning.github.io/charter/
https://www.w3.org/ immersive-web/
https://www.w3.org/ immersive-web/
https://www.w3. org/2018/10/w3c-highlights/
http://dx.doi.org/10.1109/TMC.2019.2947893
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://github.com/opsengine/cpulimit
https://github.com/opsengine/cpulimit

[46] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with con-
tinuous or discrete weights,” in Proc. 27th Int. Conf. Neural Inf. Pro-
cess. Syst., 2014, pp. 963–971.

[47] S. K. Esser, R. Appuswamy, P.Merolla, J. V. Arthur, and D. S.Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 1117–1125.

[48] Caffe.js framework. 2017. [Online]. Available: https://chaosmail.
github.io/caffejs

[49] Keras.js. 2016. [Online]. Available: https://github.com/transcranial/
keras-js

[50] M.Hidaka, Y. Kikura, Y. Ushiku, andT.Harada, “WebDNN: Fastest
DNN execution framework onweb browser,” in Proc. 25th ACM Int.
Conf. Multimedia, 2017, pp. 1213–1216.

Yakun Huang is currently working toward the PhD
degree from the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China.
His current research interests include mobile com-
puting, distributed systems,machine learning, aug-
mented reality, edge computing, and 5Gnetworks.

Xiuquan Qiao is currently a full professor at the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, where he is also the deputy
director of the Key Laboratory of Networking and
Switching Technology, Network Service Founda-
tion Research Center of State. He has authored or
coauthored more than 60 technical papers in inter-
national journals and at conferences, including the
IEEE Communications Magazine, Proceedings of
IEEE, Computer Networks, IEEE Internet Comput-
ing, IEEE Transactions on Automation Science

andEngineering, andACMSIGCOMMComputerCommunicationReview.
His current research interests include the future Internet, services comput-
ing, computer vision, distributed deep learning, augmented reality, virtual
reality, and 5G networks. He was a recipient of the Beijing Nova Program,
in 2008 and the First Prize of the 13th Beijing Youth Outstanding Science
and Technology Paper Award, in 2016. He served as the associate editor
for the theComputing (Springer) and the editor board of theChinaCommu-
nicationsMagazine.

Pei Ren is currently working toward the PhD
degree from the State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications,
Beijing, China. His current research interests
include the future Internet architecture, services
computing, computer vision, distributed deep
learning, machine learning, augmented reality,
edge computing, and 5G networks.

Ling Liu (Fellow, IEEE) is currently a professor at
the School of Computer Science, Georgia Institute
of Technology, Atlanta, Georgia. She directs the
research programs at the Distributed Data Inten-
sive Systems Lab, examining various aspects of
large-scale big data systems and analytics, includ-
ing performance, availability, security, privacy, and
trust. Her current research is sponsored primarily
by the National Science Foundation and IBM. She
has published more than 300 international journal
and conference articles. She was a recipient of the

IEEE Computer Society Technical Achievement Award, in 2012 and the
Best Paper Award from numerous top venues, including ICDCS, WWW,
IEEE Cloud, IEEE ICWS, and ACM/IEEE CCGrid. She served as the gen-
eral chair and thePC chair for numerous IEEE andACM conferences in big
data, distributed computing, cloud computing, data engineering, very large
databases, and the World Wide Web fields. She served as the editor-in-
chief for the IEEE Transactions on Service Computing from 2013 to 2016.
She is the editor-in-chief of theACMTransactions on Internet Technology.

Calton Pu (Fellow, IEEE) is received the
PhD degree from the University of Washington,
Seattle, Washington, in 1986 and served on the
faculty of Columbia University, New York and
Oregon Graduate Institute, Beaverton, Oregon.
Currently, he is holding the position of professor
and John P. Imlay, Jr. chair in software at the Col-
lege of Computing, Georgia Institute of Technol-
ogy, Atlanta, Georgia. He has worked on several
projects in systems and database research. He
has published more than 70 journal papers and

book chapters, 200 conference and refereed workshop papers. He
served on more than 120 program committees. His recent research
interest include Big Data in Internet of Things, automated Ntier applica-
tion deployment, and denial of information. He is also a member of the
ACM.

SchahramDustdar (Fellow, IEEE) was an honor-
ary professor of information systems at the
Department of Computing Science, University of
Groningen, Groningen, The Netherlands, from
2004 to 2010. From 2016 to 2017, he was a visit-
ing professor at the University of Sevilla, Sevilla,
Spain. In 2017, he was a visiting professor with
the University of California at Berkeley, Berkeley,
California. He is currently a professor of computer
science at the Distributed Systems Group, Tech-
nische Universit€at Wien, Vienna, Austria. He was

an elected member of the Academy of Europe, where he is the chairman
of the Informatics Section. He was a recipient of the ACM Distinguished
Scientist Award, in 2009, the IBM Faculty Award, in 2012, and the IEEE
TCSVC Outstanding Leadership Award for outstanding leadership in
services computing, in 2018. He is the co-editor-in-chief of the ACM
Transactions on Internet of Things and the editor-in-chief of the Comput-
ing (Springer). He is also an associate editor of the IEEE Transactions on
Services Computing, IEEE Transactions on Cloud Computing, ACM
Transactions on the Web, and ACM Transactions on Internet Technol-
ogy. He serves on the editorial board of the IEEE Internet Computing and
IEEEComputer Magazine.

Junliang Chen received the BS degree in electri-
cal engineering from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 1955, and the PhD
degree in electrical engineering from the Moscow
Institute of Radio Engineering, Moscow, Russia, in
1961. He has been with the Beijing University of
Posts and Telecommunications (BUPT), Beijing,
China, since 1955, where he is currently the chair-
man and a professor at the Research Institute of
Networking and Switching Technology. His current
research interests include communication net-

works and next-generation service creation technology. He was elected as
amember of the Chinese Academy of Sciences, in 1991, and a member of
the Chinese Academy of Engineering, in 1994 for his contributions to fault
diagnosis in stored program control exchange. He received the First, Sec-
ond, and Third Prizes of theNational Scientific and Technological Progress
Award, in 1988, 2004, and 1999, respectively.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HUANG ET AL.: LIGHTWEIGHT COLLABORATIVE DEEP NEURAL NETWORK FOR THE MOBILE WEB IN EDGE CLOUD 2305

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 08,2022 at 07:55:18 UTC from IEEE Xplore. Restrictions apply.

https://chaosmail.github.io/caffejs
https://chaosmail.github.io/caffejs
https://github.com/transcranial/keras-js
https://github.com/transcranial/keras-js

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

