
EDITOR: Schahram Dustdar, dustdar@dsg.tuwien.ac.at

DEPARTMENT: INTERNET OF THINGS, PEOPLE, AND PROCESSES

A Fault-TolerantWorkflow Composition and
Deployment Automation IoT Framework in a
Multicloud Edge Environment
Osama Almurshed , Omer Rana , and Yinhao Li , Cardiff University, Cardiff, CF10 3AT, U.K.

Rajiv Ranjan , Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.

Devki Nandan Jha, University of Oxford, Oxford, OX1 2JD, U.K.

Pankesh Patel , University of South Carolina, Columbia, SC, 29208, USA

Prem Prakash Jayaraman , Swinburne University of Technology, Hawthorn, VIC, 3122, Australia

Schahram Dustdar , TU Wien, 1040, Vienna, Austria

With the increasing popularity of IoT application, e.g., smart home, smart
manufacturing, the importance of underlying system availability, safety, reliability, and
maintainability become crucial in the development processes. IoT applications are
expected to continuously provide reliable services and features, which put the fault-
tolerance mechanism as a priority. Current IoT fault-tolerant systems are designed to
overcome any faults caused by human activities and physical errors to preserve the
correct IoT workflow execution. However, addressing fault-tolerant interaction in
multicloud edge environment and failed service deployment automation remains
challenging. This article proposes a novel fault-tolerant model that offers the self-
detection and automatic recovery of faults to increase IoT applications’ reliability and
to address the infrastructure level failure in the heterogeneous IoT environments.
Based on the proposed model, we implement a fault-tolerant workflow composition
and deployment automation system, which is empowered by a layered architecture
and a time-dependent failure model. The efficiency and effectiveness of the proposed
system are validated and evaluated with a real-world IoT application.

Internet of Things (IoT) is mainly driven by data that
is transferred between resources including cloud,
edge, and IoT devices. It raises the importance of

IoT systems in terms of availability, safety, reliability,
and maintainability. Reliability is a primary aim to
implement for IoT applications concerned with Quality
of Service (QoS). Reliability is threatened by the occur-
rence of failures, where an IoT system can hardly offer

potential services. There are three main methods to
mitigate failures including fault correction, fault avoid-
ance, and fault tolerance, where fault tolerance refers
to detect and recover faults in runtime. In IoT environ-
ment, applications are expected to continuously pro-
vide reliable services and features, which put fault-
tolerance mechanism as a priority.

Consider that the Newcastle City Council bids for a
new IoT project for flood forecasting. Their engineers
plan to develop and deploy a flood forecasting applica-
tion, which provides a real-time rainfall map and main
road risk level to avoid flood damage in the city. In this
application, the raw streaming rainfall data captured by
CCTV and sensors around the city is supposed to be

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3078863
Date of publication 14 May 2021; date of current version
19 July 2022.

July/August 2022 Published by the IEEE Computer Society IEEE Internet Computing 45
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

mailto:A Fault-Tolerant Workflow Composition and Deployment Automation IoT Framework in a Multicloud Edge Environment
https://orcid.org/0000-0002-7004-635X
https://orcid.org/0000-0002-7004-635X
https://orcid.org/0000-0002-7004-635X
https://orcid.org/0000-0002-7004-635X
https://orcid.org/0000-0002-7004-635X
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0001-6846-9161
https://orcid.org/0000-0001-6846-9161
https://orcid.org/0000-0001-6846-9161
https://orcid.org/0000-0001-6846-9161
https://orcid.org/0000-0001-6846-9161
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0001-5973-4197
https://orcid.org/0000-0001-5973-4197
https://orcid.org/0000-0001-5973-4197
https://orcid.org/0000-0001-5973-4197
https://orcid.org/0000-0001-5973-4197
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821

delivered and analyzed by a given rainfall model and flood
forecasting model. The heterogeneous infrastructure
deployed in this flood applicationmay includeCCTV, rain-
fall sensors as IoT devices, Raspberry Pis as edge devices,
and various virtual machines provided by cloud providers
as cloud resources. It raises a challenge to select appro-
priate infrastructure combinations to meet QoS require-
ments (end-to-end latency and reliability) and the city
council budget limits. Meanwhile, battery-driven IoT devi-
ces and Raspberry Pis have a chance to fail with artificial
or natural impacts. To avoid infrastructure failure, a
robust multilevel reconfiguration mechanism is neces-
sary to apply, which increase the system availability and
reliability. Moreover, when renewing a failed resource, a
centralized deployment agent is requiredwhich canman-
age and deploy every task across different IoT application
resources tomaintain the IoT applications’ availability.

This article presents a framework that enables a user
to compose any IoT application with defined QoS
parameters, then automatically set up the infrastructure
according to the recommended configuration. As shown
in Figure 1, the system is divided into three components:
Self-configuration, self-optimization and self-healing.
Self-configuration takes user QoS requirements and a
workflowmodel of an IoT application, and then it returns
ready to use infrastructure. Moreover, the self-configura-
tion automatically sets up the infrastructure and sends
the access tokens to self-optimization and self-healing.
Then, self-optimization loads configuration to operate
and monitor infrastructure according to QoS. During fail-
ure events, self-optimization reports self-healing with
system failures. Self-healing component restores opera-
tion to normal by backing up the infrastructure with
resources and recover the faulty ones.

Our system uses IoTWC1 for configuring, and
greedy nominator heuristic (GNH)2 for deploying IoT

application. IoTWC returns suitable infrastructure for
IoT application with defined QoS parameters while
GNH uses redundant deployment to avoid the addi-
tional application delay caused by the infrastructure’s
unreliability, e.g., lack of response or temporal
resource freezing (i.e., application-level failure). The
Flood-PREPARED3 application is utilized to test the
functionality of the proposed framework that solves
challenging issues associated with developing and
operating IoT applications, such as avoiding depen-
dence issues using container technology. Flood-PRE-
PARED3 is a real-time surface water flooding data
monitoring and management application. It is a sys-
tem-based approach to predict flooding from intense
rainfall events. The experiment contains a platform
that operates on raw streaming data and analyses
using a given ML model near the edge. Moreover, mul-
ticloud infrastructure supports computing power, e.g.,
additional storage and processor type (FPGA or GPU).
The application has chained service functions in the
form of a directed acyclic graph (DAG). The functions
apply logical data operation, machine learning (ML)
model training or ML prediction. Each service function
has its execution requirements, which will determine
the place of execution, i.e., cloud or edge.

In summary, we propose a novel fault-tolerant
model that offers self-detection and automatic recov-
ery of faults to increase IoT applications’ reliability to
address the infrastructure level failure in the heteroge-
neous multicloud edge environment. Meanwhile,
based on the fault-tolerance model, we propose a
workflow composition and deployment automation
system, which utilizes a layered architecture and a
time-dependent failure model to offer deployment
automation and infrastructure recovery. Additionally,
we evaluate the efficiency and effectiveness of the
proposed system with a real-world IoT application.

IOT FAULT-TOLERANCE MODEL
This section presents a novel IoT fault-tolerance
model and discusses details of the fault detection and
recovery mechanism.

A self-adaptive software adjusts itself when it does
not accomplish the purpose, e.g., not meeting the IoT
application requirements. The adjustment can vary
from parameters and methods to components and
system resources. System issues are detected during
consistent monitoring after which an action to restore
the system to its regular functionality is decided. The
adaption is in the form of properties, i.e., self-configu-
ration, self-healing, self-optimization that can be in a
single system component or distributed within the

FIGURE 1. System Overview of Proposed Approach.

46 IEEE Internet Computing July/August 2022

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

architecture layers. For example, self-healing in
Figure 1 is in the deployment layer and the recovery
layer (layers in Figure 2). The deployment layer uses
redundant deployment as a proactive fault-tolerance
mechanism, whereas the recovery layer restores failed
resources as a reactive fault-tolerance mechanism.

In our proposed IoT reactive fault-tolerance model,
an IoT application consists of two main components:
controller and resource pool. The controller is a fog/
edge node that controls the resource pool. It deploys
the application, monitors resources, and switches to/
from recovery mode. The controller manages all the
available resources and can be categorized into two
resources: primary and backup. Primary resources
refer to the resources utilized in a particular applica-
tion as a priority (usually considered edge resource
and part of cloud resources). Backup resources are for
backup purpose (usually cloud resources). Since the
available edge devices may have different architecture
and configuration, it may not always be possible to
have a backup device with the same configuration.
Consequently, we choose on-demand cloud resources
as the backup to meet the end-to-end latency
constraints.

The system has two operational modes: regular
mode and recovery mode. Regular mode is when the
controller deploys IoT applications in the primary
resources. The recovery mode controller deploys in
the temporal infrastructure (i.e., primary resources
with chosen cloud backup resources) and recovers
failed resources. In the case of intolerable failure, the
controller switches to recovery mode. After recovering
failed nodes, it switches to the regular mode and
resumes the deployment in the primary resources.

The centralized controller contains a self-optimiza-
tion component and a self-healing component. Self-
optimization manages continuous IoT applications
deployments and detects an intolerable error in the
primary resources group. Moreover, it operates in
both primary resource (i.e., regular mode) and tempo-
ral infrastructure (i.e., recovery mode). Self-healing
role can be summarized in three main actions: switch
OFF failed resources, switch ON backup resources and
recover failed resources. It prepares the temporal
infrastructure for the self-optimization component by
adding cloud resources to unfailing resources from
primary resources. During recovery mode, the self-
healing component starts a set of recovery proce-
dures including failed resources reboot, environment
setup, and availability check. After recovering failed
nodes, the self-optimization component resumes the
deployment in the regular mode. Self-healing reduces
the cost of on-demand cloud VMs by switching OFF

backup cloud resources during the regular mode.

SYSTEM DESIGN
This section presents the IoT workflow composition
and fault-tolerant system architecture and discusses
the system execution workflow.

System Architecture
This system is implemented as a web application that
provides a user interface for users to explore and com-
pose their IoT components and execute the fault-tol-
erant IoT workflow applications. Execution is initiated
by merely inputting an abstract workflow graph, QoS
requirements, and desired budget information. An

FIGURE 2. IoT fault-tolerant workflow composition and deployment automation system architecture.

July/August 2022 IEEE Internet Computing 47

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

abstract workflow graph represents a DAG including
abstract level workflow activities specified by Li et al.1.
All the complex composition, deployment, and recov-
ery procedures are hidden to ease the interaction. The
layered schematic architecture of our proposed sys-
tem is shown in Figure 2. There are four main layers of
our proposed system, as explained in the following
sections.

Workflow Layer
The workflow layer is employed in managing IoT work-
flows. It consists of four main components, as dis-
cussed below:

I. Pipeline Module: This component is involved in
acquiring user input from the User Interface and
creating a DAG-based IoT workflow. It has two
modules workflow abstraction and QoS parame-
ter comparison.

II. Offline Optimizer: Since there are many possible
solutions for the deployment of each data analy-
sis task,4 it is necessary to find an optimal solu-
tion that satisfies all the nonfunctional QoS
requirements in the defined budget. However,
finding an optimal solution for only one data
analysis task can be proven to be NP-hard.5 To
solve this problem, we propose a heuristic model
divided into two segments AHP-based ranking
and budget-based ranking.

III. Database: This is the most important compo-
nent as it stores not only the basic workflow pat-
terns and QoS configurations, but it also
contains a knowledge base, which acts as a
knowledge source for offline optimizer and com-
poser. Knowledge base contains the predefined
ranking and configuration knowledge represen-
tation (CKR) for different infrastructure resour-
ces. CKR is also computed for all the available
resources using a knowledge management sys-
tem IoT-CANE.6

IV. Composer: For each data analysis task, the com-
poser takes the optimized infrastructure compo-
nent from offline optimizer and queries the
database for the desired CKR. Finally, it com-
bines all the configurations and returns to the
user a unified format file, which can be easily
used for the deployment purpose. The details of
this workflow layer are discussed in IoTWC.1

Infrastructure Layer
The infrastructure layer is designed to manage the
setup of infrastructures used in IoT applications. It
consists of an auto setup module, which acquires

composed workflow DAG with configuration informa-
tion from the Workflow Layer. It manages infrastruc-
ture setup procedures using four components.

I. Workflow Interpreter: When a unified format IoT
workflow file is composed and generated from
composer, the interpreter can read and under-
stand the infrastructures required to deploy the
particular IoT application. After interpreting, a
list data structure containing each edge/cloud
CKR is constructed for further deployment.

II. Workflow Allocator: It is mainly functioning to
allocate and orchestrate the workflow activities
and ensure the workflow sequence’s success.

III. Cloud Infrastructure Launcher: As cloud pro-
viders, such as AWS, Azure, and Google Cloud
Provider offer different SDKs and APIs for devel-
opers to program and operate. A unified, central-
ized cloud infrastructure launcher becomes
necessary for the cloud environment setup. This
component provides solutions for virtual
machine launching, Docker installation, commu-
nication establishment, etc. Previous CKR infor-
mation is adopted to specify the cloud provider,
VM type, deployment location, network proper-
ties, and other relevant requirements.

IV. Infrastructure Manager: After cloud infrastruc-
tures and fog/edge infrastructures are prepared,
the Infrastructure Manager component offers
CRUD (Create, Read, Update, Delete) operations
for such infrastructures and attached contain-
ers. Because Docker is installed with REST API
enabled on all launched infrastructures, the con-
tainer management becomes comfortable with
simple constructed RESTful requests. Mean-
while, releasing the failed and unoccupied infra-
structures is possible with simple commands
from the Infrastructure Manager.

Deployment Layer
The deployment layer is based on master–worker
architecture. The master orchestrates the workflow
and is in the fog, whereas workers are geodistributed
over edge cloud infrastructure. Greed nominator heu-
ristic (GNH)2 decides where to deploy the functions
and utilizes Parsl to control the dataflow over the
infrastructure. The deployment layer includes the fol-
lowing parts:

I. Parsl: It controls the computation of geodistrib-
uted resources including managing connection
and provisioning virtual resources to deploy
DAG applications. Data flow kernel (DFK) of

48 IEEE Internet Computing July/August 2022

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

Parsl handles error and steers dataflow between
computing nodes.

II. Master–Worker Control Pattern: The master
node handles the task allocation, monitors
resources (worker nodes), tracks failure, and
report intolerable failure. The worker nodes pro-
vide their resources to compute and pass the
result to the master node or message broker
depending on the user specification. The Master
node also has a DFK and an online optimizer to
orchestrate the deployment.

III. Online Optimizer: A Greedy Nominator Heuristic
(GNH) optimizer aims to i) lower the end-to-end
latency, ii) leverage redundancy to operate dur-
ing failure events, iii) increase the number of rep-
licas to the critical function, and iv) balance
redundancy and deployment cost. The greedy
algorithm calculates the maximum possible rep-
licas for each function using MaxReplicas [see
(1)] function, where i is the virtual function
sequence in the application. The application size
is represented by n, and m is a constant set by
the user to adjust the redundancy number

MaxReplicas ¼ 1þ 1� i
nþ 1

� �
m: (1)

The GNH is scalable with the increasing number of
nodes in the infrastructure. It searches in two phases
i) Nomination phase and ii) Announcement phase. At
the Nomination phase workers are divided between
nominators, then each nominator provides partial
decision. The announcement phase decides the final
redundant deployment out of the nominators’ output.
Redundant deployment is funnel shaped, where earlier
functions will have higher replicas.

Recovery Layer
The recovery layer is the layer that manages the
backup infrastructure and faulty nodes through the
Failure handle module. It receives a failure report from
the Deployment layer then supports the central infra-
structure with a preconfigured cloud instance to form
a temporal infrastructure.

I. Backup infrastructure: It represents virtual
machines in the cloud with all the package
dependency and the required configuration to
run the IoT application workflow. Each node in
the primary infrastructure has a backup from
Backup infrastructure with proper configura-
tions to replace specific requirements.

II. Failure handle module: This is the component
that controls the backup infrastructure and
faulty nodes to pause and resume. Node failure
means that the virtual instance is down, or its
performance is deteriorating. Recovering a node
is restoring the instance to its original configura-
tion. This is achieved by decoupling the software
from the hardware. However, in case of a hard-
ware failure, e.g., a malfunction within the elec-
tronic circuits, the services are moved from the
faulty node to another backup node until the
physical node is repaired/replaced and is ready
for task execution.

System ExecutionWorkflow
The following section illustrates the main steps to exe-
cute IoT workflow composition and fault-tolerant
system.

1) Define the IoT Workflow: At the beginning, the
Workflow Layer is designed to compose a differ-
ent type of IoT application. The application is
defined in terms of data analysis and connection
patterns using the User Interface. Users can
drag and drop the abstract patterns and rename
them based on their adequacy. The pipeline
module converts the user input into the work-
flow sequence, which is then stored in the
database.

2) Define the QoS requirement comparison: The
Workflow Layer provides a two-way comparison
scheme for all the QoS parameters. Users can
enter a priority value in the box provided by User
Interface, which is converted into a comparison
matrix by the Pipeline Module. Finally, the com-
parison matrix is stored in the database for fur-
ther infrastructure ranking.

3) Optimized infrastructure generation: The Offline
Optimizer retrieves the application workflow,
QoS, and infrastructure information from the
database and finds the optimized infrastructure
for each workflow component.

4) Compose the workflow: The composer retrieves
the optimized infrastructure resource informa-
tion from the offline optimizer and queries the
knowledge base to get the CKR information for
the respective infrastructure resource. Finally, it
will compose the workflow.

5) Infrastructure Setup: The composed workflow
information in JSON format can be transferred
to workflow interpreter to interpret as a set
of CKR information along with infrastructure

July/August 2022 IEEE Internet Computing 49

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

locations. It is then passed to workflow allocator
for infrastructure orchestration. Cloud infra-
structure launcher retrieves information from
the workflow allocator and invokes API from
cloud providers to launch necessary cloud
resources with virtual programming environment
installed. Next, an infrastructure pool containing
primary and backup resources is prepared for
further deployment.

6) Workflow deployment: When the online opti-
mizer receives a success message from infra-
structure layer, a decision of virtual functions
deployment allocation is generated by Greedy
Nominator Heuristic module. Next, Parsl is
enabled as a distributed parallel deployment
tool to manage network connections and
resource provisioning. The DataFlow Kernel of
Parsl handles errors and controls dataflow
between computational resources.

7) Failure Handling: During workflow application
execution, resource monitor monitors and
detects infrastructure level failure, then passes
such failure information to failure handler mod-
ule. The centralized controller can pause the fail-
ure resources first, then migrate tasks from
failed nodes to backup resources to enable avail-
ability. Next, a recovery mechanism is employed
to recover failed resources, which then put them
back to the work. Finally, successful deployment
information is displayed on the user interface to
indicate workflow deployment success.

EVALUATION
We use real-time surface water flooding data monitor-
ing and management application (Flood-PREPARED3)
to evaluate our proposed system. The following sec-
tions present the experiment setup, failure model
along with experiment results analysis.

Experiment Setup
The application is executed over a cross-cloud edge
environment. We utilize two cloud service provides:
Amazon Web Service (AWS) and Google Cloud Plat-
form (GCP). The infrastructure has three GPU nodes,
one in the fog and two in the GCP cloud. In total, the
environment has ten computing nodes, half of it is pri-
mary, and the other half is backup nodes.

The HIPIMS requires GPU to execute the CUDA
program. Therefore, it can run only on GPU instance
with NVIDIA Tesla P100. All other functions can exe-
cute on every computing nodes. The Controller and
Kafka server are in the fog infrastructure. Meanwhile,

the fog is in Cardiff, U.K. The fog infrastructure con-
tains a commodity machine and Raspberry Pi 4B. The
commodity machine has 6 cores CPU and 32 GB mem-
ory, and Raspberry Pi 4B has 4 cores and 4 GB mem-
ory. Raspberry Pi 4B is the controller and runs some
virtual instance tasks inside it. The CPU instance in
GCP is e2-medium with 2 vCPUs, and 4 GB memory,
whereas the GPU nodes are n1-standard-64 with 64
vCPUs and 240 GB memory. The GCP’s nodes are in
Brussels, Belgium (europe-west1-b). The round-trip
time (RTT) of 14B size Python’s object from the fog to
GCP is 99 ms (�24.8). On the other hand, AWS instan-
ces are of t2.micro type, which has 1 vCPUs, and 1 GB
memory. The AWS zone is eu-west-2, which is located
in London, U.K. The RTT between AWS and fog is 93
ms (�4.73).

Failure Model
This section describes a time-dependent failure proba-
bility model from which we simulate node failure.

There are two types of failure 1) application-level
failure and 2) host-level failure. Application-level
failure is the failure of IoT application caused by
service function delay or not completed. Host-level
failure occurs when the node is down or repeatedly
freezes, causing service delay or even outage
(which takes from 30 s up to 2 min to recover). In
the failure model, it simulates host-level failure.
Based on the Weibull distribution, we determined
the probability of not completing a submitted task,
i.e., deployed virtual function. The model parame-
ters are as follows:

A. Start time is the timestamp when the node is
started to deploy virtual functions, whether it is
at the beginning or after a recovery session.

B. Current time is the count that started after the
Start time represented by x, i.e., x ¼ current time-
stamp—start time.

C. Time-to-failure (�) is the time where the services
in a node go down.

D. Reliability variable (k) is the Weibull shape
parameter, which determines how reliable the
node is. In case when the failure rate is constant
then k ¼ 1, whereas k < 1 or k > 1 means failure
rate changes over time

f x; �; kð Þ; ¼ 1� e� x=�ð Þk :

A random choice based on the probability of fail-
ure, i.e., fðx; �; kÞ, decides whether it met the deadline
or not.

50 IEEE Internet Computing July/August 2022

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

Experiment Result
This section describes the experimental results based
on the proposed failure model and the Flood-PRE-
PARED workflow.

For the experiment parameters, we set a fixed �

(86 400 s) and vary k from 0.5 to 0.8 for different
resources. The final results of total workflow execu-
tion time and failure rate comparison in terms of
recovery algorithm utilizing are shown in Figure 3.

We can clearly see from Figure 3(a) that the total
workflow execution time has a rare difference if the
recovery algorithm is enabled. Our recovery algorithm
is designed to minimize the backup resources’ cost
while maintaining the total workflow execution time.
Meanwhile, the failure rate increase over time without
the proposed recovery algorithm enabled. However,
when the recovery algorithm is employed, the failure
rate will drop after a time interval because the particu-
lar resource is in recovery processes.

Figure 3(b) shows that replicas of GNH guarantee
task completed with no failure. Nevertheless, our
recovery strategies reduce the cost of on-demand
backup nodes by 95.87% (i.e., $141.18 per month) in
total. Cost is reduced due to backups are shutdown
unless they are needed.

CONCLUSION
This article has described a novel framework that is
utilized to compose IoT workflow from a given DAG
and QoS requirements. It automatically launches the
cloud infrastructures with recommended configura-
tions, finally allocate and deploy the desired virtual
functions across edge and cloud environments. Mean-
while, the proposed system detects and recovers
infrastructure level failures to enable continuous serv-
ices with tolerable end-to-end latency. The proposed
approach is designed for general composition and
deployment purpose in the IoT environment. The
recovery mechanism can be applied in various IoT
application without parameter or argument changes.
This system has been validated and evaluated with
real-world surface water flooding data monitoring and
management application. The results of experiments
prove the efficiency and effectiveness of our system.
In future, an execution feedback-based intelligent
infrastructure recommendation approach can be
employed to increase the configuration recommenda-
tion accuracy and decrease useless budget waste.

REFERENCES
1. Y. Li, D. N. Jha, G. S. Aujla, G. Morgan, A. Y. Zomaya, and

R. Ranjan, “IOTWC: Analytic hierarchy process based

Internet of Things workflow composition system,” in

Proc. IEEE Int. Conf. Cloud Eng., 2020, pp. 1–10.

2. O. Almurshed, “Greedy nominator heuristic (GNH):

Virtual function placement using mapreduce,” in The

Annual Research Student Poster exhibition, Cardiff

School of Computer Science and Informatics. Cardiff,

U.K. : Cardiff Univ., 2020.

3. S. Barr et al., “Flood-prepared: A nowcasting system for

real-time impact adaption to surface water flooding in

cities,” ISPRS Ann. Photogrammetry, Remote Sens.

Spatial Inf. Sci., vol. 6, pp. 9–15, 2020.

4. D. N. Jha et al., “Challenges in deployment and

configuration management in cyber physical system,” in

Handbook of Integration of Cloud Computing, Cyber

Physical Systems and Internet of Things. Berlin,

Germany: Springer, 2020, pp. 215–235.

5. D. N. Jha, P. Michal�ak, Z. Wen, R. Ranjan, and P. Watson,

“Multiobjective deployment of data analysis operations

in heterogeneous IoT infrastructure,” IEEE Trans. Ind.

Informat., vol. 16, no. 11, pp. 7014–7024, Nov. 2020.

6. Y. Li et al., “IoT-cane: A unified knowledge management

system for data-centric Internet of Things application

systems,” J. Parallel Distrib. Comput., vol. 131, pp. 161–172,

2019.

FIGURE 3. (a) Total execution time comparison. (b) Failure

rate comparison.

July/August 2022 IEEE Internet Computing 51

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

Berlin, Germany
Berlin, Germany

OSAMA ALMURSHED is currently working toward the Ph.D.

degree with the Cardiff School of Computer Science & Infor-

matics, Cardiff University, Cardiff, U.K. Contact him at almur-

shedo@cardiff.ac.uk.

OMER RANA is currently a professor of performance engi-

neering with Cardiff University, Cardiff, U.K. Contact him at

ranaof@cardiff.ac.uk

YINHAO LI is currently working toward the Ph.D. degree with

the School of Computing, Newcastle University, Newcastle

upon Tyne, U.K. Contact him at y.li119@ncl.ac.uk.

RAJIV RANJAN is a full professor of Computer Science with

Newcastle University, Newcastle upon Tyne, U.K. Contact

him at raj.ranjan@ncl.ac.uk.

DEVKI NANDAN JHA is a postdoctoral research associate

with the University of Oxford, Oxford, U.K. Contact him at

devki.jha@eng.ox.ac.uk.

PANKESH PATEL is a senior researcher with AI Institute, Uni-

versity of South Carolina, Columbia, South Carolina, USA.

Contact him at ppankesh@mailbox.sc.edu.

PREM PRAKASH JAYARAMAN is an associate professor

with the Department of Computer Science and Software

Engineering, Swinburne University of Technology, Melbourne,

Australia. Contact him at pjayaraman@swin.edu.au.

SCHAHRAM DUSTDAR is a full professor of Computer

Science heading the Research Division of Distributed

Systems at TU Wien, Vienna, Austria. Contact him at

dustdar@dsg.tuwien.ac.at.

52 IEEE Internet Computing July/August 2022

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 11,2022 at 07:40:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

