
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 1

Cooperative Transmission Scheduling and
Computation Offloading with Collaboration of Fog

and Cloud for Industrial IoT Applications
Abhishek Hazra, Praveen Kumar Donta, Member, IEEE, Tarachand Amgoth, Member, IEEE and

Schahram Dustdar Fellow, IEEE,

Abstract—Energy consumption for large amounts of delay-
sensitive applications brings serious challenges with the contin-
uous development and diversity of Industrial Internet of Things
(IIoT) applications in fog networks. In addition, conventional
cloud technology cannot adhere to the delay requirement of
sensitive IIoT applications due to long-distance data travel. To
address this bottleneck, we design a novel energy-delay opti-
mization framework called Transmission Scheduling and Com-
putation Offloading (TSCO), while maintaining energy and delay
constraints in the fog environment. To achieve this objective, we
first present a heuristic-based transmission scheduling strategy
to transfer IIoT generated tasks based on their importance.
Moreover, we also introduce a graph-based task offloading strat-
egy using constrained-restricted mixed linear programming to
handle high traffic in rush-hour scenarios. Extensive simulation
results illustrate that the proposed TSCO approach significantly
optimizes energy consumption and delay up to 12-17% during
computation and communication over the traditional baseline
algorithms.

Index Terms—Industrial Internet of Things, fog computing,
task offloading, mixed linear programming, energy efficiency.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT) has contributed
towards the rapid growth in various industrial application

domains such as green infrastructure, smart grid, smart city,
smart transport networks, amongst others [1]. With these di-
verse applications, IIoT devices are also generating a massive
amount of sensitive data requiring immediate processing near
edge devices, resulting in a shortage of lower storage and faster
data processing among the IIoT devices. In such circumstances
transferring a portion of excessive data to a resource-rich
remote computing device, also called computation offloading,
is a suitable solution to handle sensitive IIoT applications [2].

Manuscript received January XX, 2021; revised May XX, 2021; January
XX, 2021; accepted February XX, 2021. Date of publication February XX,
2021; date of current version July XX, 2021. This work is supported by DST
(SERB), Government of India, under Grant EEQ/2018/000888. (Correspond-
ing author: Praveen Kumar Donta.)

A. Hazra and T. Amgoth are with the Indian Institute of Technology (Indian
School of Mines) Dhanbad, Jharkhand, India, 826004. (e-mail: abhishek-
hazra.18DR0018@cse.iitism.ac.in, tarachand@iitism.ac.in).

P. K. Donta and S. Dustdar are with Distributed Systems Group, Vi-
enna University of Technology (TU Wien), Vienna, 1040, Austria. (e-mail:
pdonta@dsg.tuwien.ac.at, dustdar@dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/JTOT.2020.3021XXX
15XX-32XX c© 2020 IEEE. Personal use is permitted, but republica-

tion/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more informa-

tion.

In general, resource-constrained IIoT applications offload data
to a specific cloud server for processing and data analysis [3].
However, several challenges are admitted due to the physical
distance between the IIoT devices and the cloud servers. To
overcome the shortcoming, CISCO (New York, 2012 [4])
introduced the fog computing paradigm as an auxiliary tier
to conventional cloud computing technology to process delay-
sensitive, i.e., emergency IIoT applications in nearby edge
devices [5]. Essentially, fog devices are used to deploy at
the edge of the networks to optimize overall latency and
increase reliability of the industrial network [6]. Thus, to
gratify Quality of Service (QoS) objectives and to process
emergency applications, a hierarchical fog-cloud environment
is more beneficial for IIoT applications, where cloud servers
can handle resource-hungry applications and fog devices can
process other delay-sensitive applications simultaneously [7].

A. Motivation

To demonstrate the motivation for our work, let us examine
an example shown in Fig. 1. Let an industrial fog networks
consists of #1 fog device, #1 cloud server, and A number of
IIoT devices, where each IIoT device generates 5 tasks from
different sensors. Considering the uplink and downlink energy
consumption between fog device and IIoT devices is a constant
unit 1. For this example, complete uploading and downloading
energy consumption are considered the number of hopes
between IIoT devices and computing devices. For quick com-
prehension, we admit equal numbers of computation-intensive
and delay-sensitive tasks, and the processing energy required
to execute these tasks are 1 and 2 units, respectively. Lastly, we
assume Fog devices can assign at most 2 units of computation
resource to each IIoT device to perform the tasks, and the
remaining tasks are uploaded to the cloud server.

In this example, we consider one IIoT device executes 1 task
and offloads the remaining 4 tasks for remote execution. The
energy dissipation for each IIoT device can now be calculated
as (1 + 2 + 2 + 1 + 1) = 7. Given 2 available free units in fog
devices, the task-allocator assigns delay-sensitive tasks to the
fog device and computation-intensive tasks to the cloud server
with energy consumption rate (1 + 1) = 2 and (2 + 2) = 4
units, respectively. Then total energy consumption to execute
a delay-sensitive task to a fog device is (1 + 1 + 1) = 3 and
computation-intensive task is (1 + 1 + 2 + 1 + 1) = 6. Thus,
the total energy consumption to process all 5 tasks for an IIoT

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 2

...

Centralized
Data Server

Device 1

1 0 1 1...

Device 2

1 0 1 1...Tasks Tasks Tasks

0

1

Local Computation
Offloading

Wired
Wireless

Device A

1 0 1 1...

Fog Server

Fig. 1. Hierarchical IIoT-fog-cloud architecture.

device is (1 + 6 + 6 + 3 + 3) = 19. If there are A numbers of
IIoT devices, then the expected total energy consumption by
the network is (A × 19). If we use a random task offloading
strategy and execute 1 computation-intensive task to the fog
device, executing that task requires (1 + 2 + 2) = 4 units of
energy, which is minimum. Still, overall energy consumption
to execute all the tasks will be (1 + 4 + 6 + 5 + 5) = 21.
For large IIoT devices, total energy consumption will become
(A × 21), which is 11% more than the proposed solution. If
the number of tasks in each IIoT device increases, the total
energy consumption rate will increase by up to 30%− 40%.

From this illustration, we can analyze that even a better
strategy of fog association, transmission scheduling, and com-
putation offloading not only minimizes the energy consump-
tion rate but also increases the quality of services for delay-
critical IIoT applications.

B. Related Works

Over the last few years, numerous research efforts have
been made to address issues related to computation offloading
in the multi-tire fog-cloud architecture for handling various
delay-restricted IIoT applications [8]. In this viewpoint, an
apparent answer is to offload resource-hungry tasks to the
cloud server or higher resource-oriented computing devices.
For example, in [9], Hazra et al. have proposed an energy-
optimized computation offloading strategy in stochastic fog
networks. A code-oriented multi-user computation offload-
ing approach have been designed by Ding et al. [10] for
optimizing execution overhead in Mobile Edge Computing
(MEC) networks. Similarly, in [11], Mukherjee et al. have also
introduced a deadline-aware computation offloading system
for industrial fog networks. These works separately consider
the delay and energy consumption rate for fog networks.
However, they do not highlight the actual trade-off between
energy and latency. To address this issue, Sarkar et al. [3]
have proposed a priority-based task scheduling and resource-
based computation offloading strategy for delay-restricted IIoT
applications. Sheng et al. in [12] have also presented an
energy-efficient partial computation offloading method in the
collaboration of fog cloud networks.

Offloading application data from IIoT devices to a remote
computing server can certainly decrease execution time and
overcome energy usage in the industrial environment [13].
However, remote execution is not always a viable option
because remote server processing necessitates additional data
transmission delay, which might lengthen the overall execution
duration and drain the battery of the IIoT devices [14]. To
address device selection challenges and catch advantage of
the offloading mechanism, Yadav et al. [15] have outlined a
latency-driven task placement strategy for IoT applications.
A graph-based computation offloading strategy have been
introduced by Sarkar et al. [3] for optimizing computation
overhead over the federated fog networks. Similarly, in [16]
and [17], the authors have introduced several optimization
techniques and offloading mechanisms to minimize energy-
delay for the execution of IIoT applications. A summary of
the existing contributions is presented in Table I.

Most of the current strategies focus on optimal scheduling
and computation offloading approaches separately for reach-
ing various QoS objectives, including minimizing delay and
energy consumption [1], [18]. Nonetheless, the earlier studies
do not consider the importance of transmission scheduling and
device matching strategy in the industrial fog networks, even
though optimal device matching strategy helps to offload tasks
in suitable computing devices and utilize fog resources more
efficiently [19]. On the other hand, transmission scheduling
helps control priority-driven data transmission over fog net-
works. Therefore all these challenges encourage to design of
cooperative transmission scheduling and computation offload-
ing strategies for industrial applications, where emergency
tasks can be prioritized depending on network conditions.
Hence there are two significant challenges for offloading
computation data through a hierarchical fog network. First,
how to determine an efficient transmission scheduling strategy
for delay-sensitive IIoT applications so that the system can
find an efficient scheduling order pair for all IIoT generated
tasks. Second, how to define an optimal task-device matching
strategy in the fog networks so that IIoT generated tasks are
adequately offloaded to suitable devices.

TABLE I
COMPARATIVE STUDY WITH EXISTING ALGORITHMS

Existing
works

Transmission
scheduling

Trade-off
analysis

Complexity
analysis

Computation
offloading

Device
selection

[3] × × × X X
[9] X × X X ×
[16] X × X X ×
[18] X × × X ×
[19] × × X X X
[20] × × × X X
[21] X X × X ×
[22] × × × X ×
[23] × X X × ×

Our work X X X X X

C. Contributions
Considering these challenges in mind, we propose an ef-

ficient transmission scheduling and computation offloading
scheme for minimizing the overall delay and energy consump-
tion rate of industrial fog networks. Specifically, the notable
contributions of this paper are listed as follows:

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 3

• This paper aims at designing a “green” IIoT system called
TSCO for handling various emergency tasks in the fog
environment. At first, we define a transmission scheduling
policy for all IIoT generated tasks based on their input
data size and transmission rate of industrial devices. This
strategy also considers the current network dynamics to
reduce the transmission overhead through the network.

• To maximize the utilization of fog/cloud resources, we
also introduce a device adaptation strategy called De-
vice Matching Order (DMO). Our proposed graph-based
decision-making system is also handy in making near-
optimal offloading decisions among the computing de-
vices. A theoretical analysis is also performed to deter-
mine the energy-delay trade-off of the proposed model.

• Extensive simulation and performance analysis demon-
strate that our proposed TSCO strategy is suitable to over-
come average waiting time, processing time, and energy
consumption rate over the existing baseline algorithms.

The rest of the paper is structured as follows. Section II
discusses the mathematical modeling of fog networks. The
energy-aware computation offloading strategy is exhibited in
Section III. The numerical analysis of our proposed TSCO
approach is explained in Section IV. Finally, conclusions and
future research objectives are considered in Section V.

II. COMPUTATION OFFLOADING MODEL

Considering an industrial fog-cloud network with a fi-
nite number of M fog devices, denoted as M =
{1, 2, . . . ,M},∀m ∈ M and each m contains multiple
processing instances. In this network, let A denote the set
of IIoT devices, represented as A = {1, 2, . . . , A},∀a ∈
A and N be the set of cloud servers, denoted as N =
{1, 2, . . . , N},∀n ∈ N . Each IIoT device can generate K,
K = {1, 2, . . . ,K},∀k ∈ K number of time-dependent
tasks with input and output data size Kin

k and Kout
k (in

bits), respectively. The tasks can process locally or offload
to the nearby fog device/cloud server for further process-
ing through G numbers of gateway devices, represented as
G = {1, 2, . . . , G},∀g ∈ G. Here, we consider a binary
offloading situation, where IIoT devices deploy entire tasks
to the available computing devices Sl,∀l ∈ (M∪N) based
on multiple QoS parameters. Denote X ∈ RK×(A∪M∪N) is a
task allocation matrix, where (k, l)th entry is defined by.

X (k, l)=

{
1, if kth task is assigned to lth device
0, otherwise.

We consider a task k,∀k ∈ K contains 3−attributes while
generating, i.e., K in

k =
〈
KCPU
k ,K freq

k ,Kexe
k

〉
, where KCPU

k

denotes the CPU requirement, K freq
k represents the variable-

length task generating frequency, whereas Kexe
k represents the

execution deadline of task k, ∀k ∈ K. Further we consider that
gateway devices G request services to multiple fog devices
M, consequently each fog device m, ∀m ∈ M also receives
multiple requests from IIoT devices A at time t, ∀t ∈ T ,
where T = {1, 2, . . . , T}. The important notations are referred
to Table II.

TABLE II
FREQUENTLY USED NOTATIONS

Symbols Definition

K Set of IIoT tasks in the fog networks
N Set of cloud servers in the fog networks
M Set of fog devices in the industrial networks
A Set of IIoT devices in the fog networks
G Set of IIoT gateway devices in the fog networks
λk Task arrival rate in the IIoT device A
Sl Set of processing devices in the network
Rup

am Data transmission rate from ath IIoT to mth fog device
X (k, l) Binary computation offloading decision matrix
Ha Channel power gain of the IIoT device
ΓCPU
m Computation frequency of the fog device

Bup
am Transmission bandwidth between IIoT device and fog device

Eprocess
ka Energy consumption on local IIoT device
Emax
l Maximum energy consumption threshold
T max
l Maximum tolerable delay on computing device l

Etotal
kl Total energy consumption on computing device l

Pprocess
a Predefined energy consumption rate for IIoT devices A

A. Local Execution

At first IIoT devices A check the availability of the CPU
frequency on their own. If the CPU frequency of the ath IIoT
device ΓCPU

a satisfy the tasks CPU requirement KCPU
k i.e.,

ΓCPU
a > KCPU

k , then IIoT devices execute tasks locally. Let
ϕ be the processing density for the kth task. Thus the task
processing time Tprocess

ka on the local IIoT device a ∈ A can
be expressed as follows.

Tprocess
ka =

X (k, a)× ϕ.K in
k

ΓCPU
a

(1)

Similarly, the energy consumption Eprocess
ka to process a task

k ∈ K in the IIoT device a ∈ A is given as follows.

Eprocess
ka = Tprocess

ka ×Pprocess
a (2)

where Pprocess
a defines the predefined energy consumption rate

for IIoT devices A deployed in the industrial networks.

B. Fog Execution

Recent advancements in storage technology allow IIoT
devices to process a small portion of tasks locally. However,
due to limited CPU frequency of IIoT devices, tasks are
forwarded to suitable computing devices that should satisfy
minimum latency and available resource requirements. Denote,
Ha and Pup

a be the channel power gain and transmission
power of ath IIoT device. By considering the Shannon capacity
formula [24], the uploading data transmission rate Rup

am is
defined as Rup

am = Bup
am log2

(
1 +

Pup
a Ha

ξ2m

)
, where Bup

am

signifies the allocated transmission bandwidth between ath
IIoT device and mth fog device. Thus the data transmission
time Tup

am and transmission energy usage Eup
am to a fog device

m ∈M can be represented as follows.

Tup
am =

X (k,m)× ϕ.K in
k

Rup
am

(3)

Eup
am = Tup

am ×Pup
a (4)

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 4

Maximum energy consumption,

Local processing

Transmission to
primary gateway

Tranamission to fog device

Transmission to
primary gateway

Tranamission to cloud server

 II
oT

 le
ve

l
ex

ec
ut

io
n

 F
og

 le
ve

l
ex

ec
ut

io
n

 C
lo

ud
 le

ve
l

ex
ec

ut
io

n

IIo
T

ge
ne

ra
te

d
ta

sk
s

Fig. 2. Illustration of task offloading decision.

Once tasks are received, fog devicesM immediately start their
execution process. Thus, the total processing delay Tprocess

am i.e.,
time taken to process the kth task in the mth fog device is
given as follows.

Tprocess
am =

X (k,m)× ϕ.K in
k

ΓCPU
m

(5)

where ΓCPU
m represents the computational capacity of the

mth fog device. From (5), we can derive the overall energy
consumption rate on the fog device m ∈M is as follows.

Eprocess
am =

X (k,m)× ϕ.K in
k

ΓCPU
m

× ECPU
m (6)

Similarly, let Rdown
ma = Bdown

ma log2

(
1+

Pdown
m Hm

ξ2a

)
be the down

transmission rate to the IIoT device. Where Bdown
ma denotes the

available transmission bandwidth utilization between mth fog
device to ath end device. Then the downloading time Tdown

ma

and energy usage Edown
ma to fetch the results at the IIoT device

m ∈M can be expressed as follows.

Tdown
ma =

X (m, k)×Kout
k

Rdown
ma

(7)

Edown
ma = Tdown

ma ×Pdown
m (8)

where Kout
k = Υ×K in

k and Υ is the scaling coefficient. Thus,
the total delay and energy consumed by the task k ∈ K while
processing in a fog device m ∈ M is defined as Ttotal

am =
Tup
am + Tprocess

am + Tdown
ma and Etotal

am = Eup
am + Eprocess

am + Edown
ma .

C. Cloud Execution

Let, Ha and Pup
a be the channel power gain and trans-

mission power of ath IIoT device. Then the uploading data
transmission rate Rup

an to a cloud server n ∈ N is defined
as Rup

an = Bup
an log2

(
1 +

Pup
a Ha

ξ2n

)
. Where Bup

an defines the
transmission bandwidth between ath IIoT device and nth
cloud server. Thus the transmission delay Tup

an and energy
consumption Eup

an on a cloud server n ∈ N can be defined
as follows.

Tup
an =

X (k, n)× ϕ.K in
k

Rup
an

(9)

Eup
an = Tup

an ×Pup
a (10)

Consequently, the total time and energy are taken to process
the kth task in the nth cloud server is expressed as follows.

Tprocess
an =

X (k, n)× ϕ.K in
k

ΓCPU
n

(11)

Eprocess
an =

X (k, n)× ϕ.K in
k

ΓCPU
n

× ECPU
n (12)

where ECPU
n be the energy consumption rate at the cloud server.

The achievable downloading rate Rdown
na to the IIoT device

a ∈ A can be expressed as Rdown
na = Bout

na log2

(
1+

Pdown
n Hn

ξ2a

)
.

Similarly the downloading time Tdown
na and energy consumption

Edown
na of task k ∈ K can be expressed as follows.

Tdown
na =

X (n, k)×Kout
k

Rdown
na

(13)

Edown
na = Tdown

na ×Pdown
n (14)

Thus, the overall delay and energy usage on a cloud server
n ∈ N is defined as Ttotal

an = Tup
an+Tprocess

an +Tdown
na and Etotal

an =
Eup
an + Eprocess

an + Edown
na . From the above formulations, we can

derive the overall delay and energy consumption to process a
task k ∈ K on IIoT devices A and other computing devices
Sl,∀l ∈ (M∪N) can be expressed as follows.

Ttotal
kl =

{
Tprocess
al , if l ∈ A

Tup
al + Tprocess

al + Tdown
la , if l ∈ Sl

(15)

Etotal
kl =

{
Eprocess
al , if l ∈ A

Eup
al + Eprocess

al + Edown
la , if l ∈ Sl

(16)

D. Problem Formulation

The primary objective following this problem formulation
is to find a near-optimal scheduling order minimizing the
proposed objective function while considering energy as the
primary concern, as illustrated in Fig. 2. The objective function
has two perspectives i.e., minimize energy consumption rate
and reduce overall processing time. The above goals and
correlated constraints are theoretically formulated as follows.

minimize lim
t→∞

∑
t∈T

α · Etotal
kl (t) + β · Ttotal

kl (t) (17a)

subject to 0 ≤ Etotal
kl (t) ≤ Emaxl , (17b)

0 ≤ Tmax
kl (t) ≤ T maxl , (17c)

0 ≤ ΓCPU
k (t) ≤ Γmax

l , (17d)∑
k∈|K|

∑
l∈|Sl|

X (k, l) ≤ |Sl|, (17e)

∑
k∈|K|

X (k, l) = 1, (17f)

X (k, l) ∈ {0, 1}, (17g)

Tup
kl ≥ 0 and Tdown

lk ≥ 0, (17h)

where, α + β = 1. Constraint (17b) states the overall
energy consumption of kth task is less than the maximum

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 5

energy consumption Emaxl of lth computing device. Constraint
(17c) restricts the total processing delay to a maximum toler-
able delay T maxl on lth device. The constraint (17d) clarify
that maximum processing frequency of task k ∈ K is less
than the maximum tolerable frequency Γmax

l on device l,
∀l ∈ (A ∪M ∪ N). Constraint (17e) defined that each task
should be allocated at-most one computing device l ∈ Sl at
time t. Constraint (17f) restricts the task offloading value to
maximum 1 and constraint (17g) imposes the binary offloading
constraint. Finally, constraint (17h) signifies a non zero data
transmission time among the computing devices.

III. ENERGY EFFICIENT OFFLOADING STRATEGY

In this section, we aim to collectively optimize the distribu-
tion of communication and computation resources in virtual
computing devices (both fog devices and cloud servers) to
achieve the least possible delay and energy consumption over
the fog networks. To confirm this, we divide our computation
offloading strategy into two phases. In the first phase, a
network-dependent transmission scheduling scheme is intro-
duced. Then to offload the scheduled tasks, a mixed-integer
programming scheme is adopted to allocate tasks on suitable
computing devices, discussed as follows.

A. Index Based Transmission Scheduling (IBTS)

Recognizing the index of each IIoT device a ∈ A and ac-
cordingly allow them for transmission is the preprocessing step
of our proposed transmission scheduling technique (IBTS).
Without loss of generality, we consider that the system follows
a static index-based ranking policy. Initially, IIoT devices A
stores all the generated tasks K in a local queue. Let λk be the
dynamic task arrival rate at any IIoT device a, ∀a ∈ A. Denote
1/βa = Tup

al be the average upstream transmission time and
λk/βa = (X (k, l)× λk)/βa be the traffic intensity of the ath
IIoT device defined in [25]. Further, let Kink (t) be the amount
of task buffered in the ath IIoT device at a time instance t.
Thus we have a delay-dependent priority indexing C index

a (t)
for each task k, ∀k ∈ K at the initial stages of time t, which
can be expressed as follows.

A = arg max
a∈A

C index
a (t)

= arg max
a∈A

(
Kink (t)

X (k, a)× λk

)
βa

(18)

• Definition : A task k generated through IIoT device a ∈ A
is called delay sensitive task KD

k , if the device priority index
C index
a is less than or equal to D , i.e., C index

a ≤ D . Otherwise
the task is classified as resource intensive task KR

k.
• An illustration example: Considering two IIoT devices

IIoT#1 and IIoT#2 are actively generating data with trans-
mission time 1/β1 = .2 sec and 1/β2 = .4 sec, respectively.
Assuming that task offloading rate of IIoT#1 = 3 tasks/sec
and IIoT#2 = 2 tasks/sec, respectively with equal probabil-
ity. If at time t, the number of tasks stored in a local queue of
IIoT gateway is Kin1 (t) = 5 and Kin2 (t) = 3. Then according
to (18) we have the following priority index of IIoT#1 and
IIoT#2 with indexing threshold D = 0.5 as follows.

C index
1 (t) = (5/3)× .2 = 0.33 (19)

C index
2 (t) = (3/2)× .4 = 0.60 (20)

Since C index
1 (t) ≤ 0.5 and C index

2 (t) > 0.5, IIoT#1
will be considered as delay sensitive and IIoT#2 will be
considered as resource intensive starting from time t. In
the following subsections, we prove that this index based
transmission scheduling strategy asymptotically diminishes the
overall execution delay of IIoT applications.

B. Device Matching Order (DMO)

This section introduces our proposed device matching order
(DMO) policy for distributing all the scheduled tasks among
suitable fog devices or cloud servers. Initially, we construct a
(k× l) task assignment matrix Ek×l, where the rows indicates
the tasks and column indicates the resources. Each entry in the
matrix E is denoted using ekl value, a non-negative heuristic
information for task k (k ≤ K) to assign the resource l (l ≤
Sl, where Sl = M∪ N). Each entry ekl in matrix Ek×l is
computed using Eq. (21).

min
k∈K

α · Etotal
kl (t) + β · Ttotal

kl (t) (21)

Now, we can generate task allocation matrix X ∗ using
assignment matrix E, where each entry of X ∗ is either zero
or one. The goal of the DMO algorithm is shown in Eq. (22).

minimize max
k∈K

Sl∑
l=1

X (k, l) · ekl (22a)

subject to X (k, l) ∈ {0, 1}, ∀l ∈ Sl, (22b)
Sl∑
l=1

X (k, l) = 1,∀k = {1, 2, ...,K} (22c)

It is important to note that the DMO strategy trade-off energy
and delay for obtaining suitable computing devices from the
device pool. The DMO policy performs the following steps in
order to achieve the goal in Eq. (22).

Step 1: Order the ekl values in non-decreasing order i.e.,
ekl(1) ≤ ekl(2) ≤ ekl(3) ≤ · · · ≤ ekl(Sl)

Step 2: Find the minimum ekl rank as an element (r) in the
kth row and lth column E in increasing order until
each column and row contains at least one element.

Step 3: Replace the entries ekl of E according to Eq. (23)

ekl =

{
0, if ekl ≤ r
ekl, Otherwise

(23)

Step 4: Consider a column (l) which had less number of
zeros, and assign all the tasks (k) which associated
values are zero to the particular resource (either
fog/cloud).

Step 5: Repeat Step 4 until all the tasks are offloaded.
We illustrate the proposed DMO strategy through an example

in Fig. 3 for better understanding. This example considers
seven tasks generated by IIoT devices, three fog nodes, and

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 6

F1 F2 F3 C1 C2
T1 25 65 32 65 72
T2 54 77 21 41 56
T3 75 55 58 87 36
T4 62 45 54 65 74
T5 15 44 34 69 85
T6 66 51 59 36 64
T7 28 57 33 57 81

(a)

F1 F2 F3 C1 C2
T1 3 24 5 25 29
T2 14 32 2 10 17
T3 31 16 20 35 9
T4 22 12 15 26 30
T5 1 11 7 28 34
T6 27 13 21 8 23
T7 4 18 6 19 33

(b)

F1 F2 F3 C1 C2
T1 3 – 5 – –
T2 – – 2 10 –
T3 – – – – 9
T4 – 12 – – –
T5 1 11 7 – –
T6 – – – 8 –
T7 4 – 6 – –

(c)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(d)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(e)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(f)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(g)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(h)

F1 F2 F3 C1 C2
T1 0 65 0 65 72
T2 54 77 0 0 56
T3 75 55 58 87 0
T4 62 0 54 65 74
T5 0 0 0 69 85
T6 66 51 59 0 64
T7 0 57 0 57 81

(i)

F1 F2 F3 C1 C2
T1 1 0 0 0 0
T2 0 0 1 0 0
T3 0 0 0 0 1
T4 0 1 0 0 0
T5 0 1 0 0 0
T6 0 0 0 1 0
T7 1 0 0 0 0

(j)

Fig. 3. Illustration of the DMO strategy through an example.

two cloud resources. We assume each fog/cloud had multiple
computing instances to process multiple tasks at a time. The
rounded values get from Eq. (21) are considered as a matrix
E as shown in Fig. 3(a). Now, we identify the ranks of each
entry of the matrix E as shown in Fig. 3(b). Once the rank of
each entry is identified, we fill one by one entry of the rank
in non-decreasing order until each row and column can fill
with at least an entry. It is deprecated in Fig. 3(c) and this
condition satisfied once the rank 12 is filled. From Fig. 3(d),
we can observe that the elements which are less than or equal
to the value associated with rank 12, i.e., 45, are replaced
with zero. Now we start assigning each task to a resource
according to the zeros in the matrix by giving high priority
to the least number of zeros in a column. So, column C2
contains the least number of zero, so the zero associated task
T3 is assigned to C2 and strike off the row (strike-off means
it won’t be considered during further assignments) as shown
in Fig. 3(e). From Fig. 3(f), we notice the column C1 and F2
contains the least number of zeros. Here, we can consider any
one, but giving the high priority to Fog nodes. So, the zero
associated in the column F2 i.e., Task T4 and T5 are assigned

Algorithm 1: TSCO algorithm

1 INPUT: Kink , λk, r, βa, X (k, a), Ekl, D
2 OUTPUT: Task offloading decision

1: Initialize Kink , λk, r, Ekl and D
2: Calculate C index

a (t) using Eq.(18)
3: for a = 1 to A do
4: Identify KD

k and KR
k using threshold D

5: Offload KR
k to cloud server n ∈ N

6: for l = 1 to Sl do
7: Sort(ekl) // ekl(1) ≤ ekl(2) ≤ ekl(3) ≤ · · · ≤ ekl(Sl)
8: Identify arg min{ekl}
9: Apply Eq. (23) to update ekl, k ∈ K and l ∈ Sl

10: while min{count Zeros(l)}&k 6= null do
11: Assign task k ∈ K to resource l ∈ Sl
12: free(k, l) in each step
13: end while
14: A ← A\{a} and Sl ← Sl\{l}
15: Offload tasks to suitable computing devices
16: end for
17: end for

to it. Similarly, tasks T1 and T7 are assigned to F1 as shown
in Fig. 3(g), T2 is assigned to C1 as shown in Fig. 3(h), and
T6 is assigned to C1 as shown in Fig. 3(i). Further, the task
allocation matrix X ∗ is generated from the above offloading
decisions as shown in Fig. 3(j). Detailed steps of the TSCO
strategy are shown in Algorithm 1.
• Handling of task offloading failure scenario : Task

failure is a critical issue in handling sensitive IIoT applications
where each data contains some sensing or actuating infor-
mation and needs to be processed in the stipulated period.
To address such circumstances, our proposed TSCO strategy
first ranks IIoT devices based on the importance level of
their data. Then DMO strategy is introduced to saturate k
number of industrial tasks to Sl number of computing devices.
Specifically, the DMO strategy transforms the task assignment
problem into a graph-based problem, making the network sim-
ple to understand and offloading the task to suitable computing
devices. On the other hand, unsuccessful tasks will wait for
the subsequent iterations, allowing the network to track failure
scenarios to some extent.

Theorem 1. Given a set of tasks K and active computing
devices Sl, ∀l ∈ {M∪N}, the upper bound of task offloaded
using DMO strategy is min{Θ(|K|),Θ(|Sl|)}.

Proof : The performance bound for a set of |K| scheduled
non-preemptive tasks on |Sl|, ∀l = {M∪N}, active comput-
ing devices, where | . | denotes the cardinality of a set, can
be determined by considering the three cases of upper bound.

1) When |K| < |Sl|, the maximum number of tasks are
upper bounded by Θ(|K|), where 1 ≤ |K| ≤ |Sl| and
only |K| tasks can be offloaded by the DMO strategy.

2) When |K| = |Sl|, the DMO strategy holds true and the
number of scheduled tasks are upper bounded by Θ(|K|).

3) When |K| > |Sl|, then the performance of the DMO
strategy is upper bounded by Θ(|Sl|) i.e., atmost |Sl|
tasks can be offloaded by DMO strategy.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 7

Step 1

(a)

(d)

(b)

Step 33

Offload to fog devices

Decision making based on device matching policy

Task 1 Fog Node 1

Fog Node 2Task 2

O
ffload

1 01 01 1

Set of IIoT tasks

IIoT ecexution

(c)

1

1

1 Execute tasks locally Index-based transmission scheduling

Device Matching Order

1

Task offloading

2

3 4

Task buffer

Arrived
tasks

Offload tasks to
cloud server

Step 4

Step 4Step 22

4

4

Fig. 4. Illustration of the proposed computation offloading strategy.

Thus the total performance bound for the proposed DMO
strategy is upper bounded by min{Θ(|K|),Θ(|Sl|)} and the
remaining (|Sl| − |K|) tasks will wait for next timestamp. A
visual representation of our proposed computation offloading
strategy is depicted in Fig. 4.

Theorem 2. The run-time complexity of the proposed TSCO
strategy is Θ(S3

l).
Proof : The complexity of the collaborative computation of-

floading strategy is divided into two stages. At first, the IBTS
mechanism classify the task priority for the set of industrial
tasks K with the ranking of IIoT devices in 1×Θ(K) = Θ(K)
time. In the second stage, the DMO mechanism makes of-
floading decisions. Initially, the time requires to complete the
sorting and ranking will take O(S2

l) and Θ(Sl), respectively.
Then DMO policy takes constant time to identify the r from
the sorted list in step 2. Next, to identify and replace the ≤ r
values to zero on matrix E takes Θ(Sl) time. Once the matrix
is prepared, identifying the offloading task to devices (i.e., Step
4) requires O(S3

l) time. So, the complexity of the proposed
DMO strategy is O(S2

l)+2×Θ(Sl)+Θ(1)+O(S3
l) ≈ O(S3

l).
Thus, the asymptotic complexity of our proposed TSCO strat-
egy becomes Θ(K) + Θ(S3

l) ≈ Θ(S3
l).

Theorem 3. For a given industrial fog network with a
speedup factor U and time critical parameters ∆delay

kl and
∆energy
kl , the computation offloading decisions must follow the

conditions ∆m > max
(
∆delay
kl ,∆energy

kl

)
and ∆delay

kl

∆energy
kl

< 1,

where ∆delay
kl and ∆energy

kl denotes the coefficients of delay
time and energy time utilities.

Proof: Specifically, offloading time is the sum of com-
munication and computation time on remote processing de-
vices, and it should be less than the execution time on IIoT
devices to improve performance as shown in Fig. 5. Thus,
in order to save execution time, it is preferable to offload
computation data to the fog devices or cloud server, when
local execution meets condition Tprocess

ka > Tprocess
al + Tup

al.
Similarly, when a computation data fits the energy criteria
Pprocess
a Tprocess

ka > HiTprocess
al + Pup

l Tup
al, it is worth offloading

to consider remote processing than running tasks locally.
where l ∈ Sl. Therefore, offloading can save energy when
the energy spent on remote communication and processing
is less than the energy consumed by the IIoT device. Let
Tprocess
ka = U Tprocess

al , 1 < U < Umax, where U denotes the

....

....

....

....

....

....

....

Inter-arrival time

Offload Download

Inter-arrival timeInter-arrival time

Remote
Computing

IIoT
devices

Offload Download

Fig. 5. Traffic attributes of fog networks.

speedup factor for remote processing devices. Now we can
rewrite the above two conditions as follows.

Tprocess
ka > Tprocess

ka /U + Tup
al (24)

Pprocess
a Tprocess

ka > HiTprocess
ka /U + Pup

l Tup
al (25)

where l ∈ Sl. The inequalities in (24) and (25) imposes
large U for server, small data size and large transmission
bandwidth. According to [26], we can derive (24) and (25)
with two time critical values ∆delay

kl and ∆energy
kl as follows.

∆delay
kl =

∆delay
kl

U
+ Tup

al ⇒ ∆delay
kl =

Tup
al

1− 1/U
(26)

Pprocess
a ∆energy

kl > Hi∆energy
kl /U + Pup

l Tup
al

⇒ ∆energy
kl = Pup

l Tup
al/P

process
a −Hi/U

(27)

It comes from the fact that Eq. (26) and Eq. (27) strongly
requites 1− 1

U > 0 and U > Hi

Pprocess
a

. Especially when Hi =

Pup
l , inequality in Eq.(25) reduced to.

Tprocess
ka >

Hi
Pprocess
a

(
Tprocess
ka

U
+ Tup

al

)
(28)

Therefore in order to minimize execution delay while ex-
tending battery life, Tprocess

ka must fulfill the following criteria
∆m > max

(
∆delay
kl ,∆energy

kl

)
. Which satisfies the original

requirement. Besides to associate ∆delay
kl and ∆energy

kl , Let
∆delay

kl

∆energy
kl

=
Tup
al

1− 1
U
.
Pprocess

a −Hi
U

Pup
l Tup

al

< 1. Which further qualifies the
second requirement and this completes the proof of Theorem3.

Theorem 4. The proposed TSCO computation offloading
problem is NP-hard.

Proof: The proposed TSCO algorithm decides the as-
signment of IIoT tasks to appropriate computing devices
(edge/fog/cloud). To proceed this, TSCO algorithm needs to
minimize the Eq. (17). So, the proposed computation offload-
ing algorithm is considered a generalized assignment problem
of the optimization problem for minimizing the overall perfor-
mance overhead of the system. It is known that the generalized
assignment and optimization problems are NP-hard. Hence our
proposed TSCO strategy is also NP-hard and is a particular
case of assignment problem.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 8

TABLE III
PARAMETERS USED IN EXPERIMENTAL ANALYSIS

Parameters Values Parameters Values

K 100 N 2
M 10 A 20
X (k, l) {0,1} λk [10,20]
Bup 40 MHz Bdown 40 MHz
Kin

k 2-20 MB Υ [0.2,0.5]
Pprocess

a ×1.2 Emax
l 5 unit

T max
l 6 unit ΓCPU

a 10× 106

ΓCPU
n 10× 108 ΓCPU

m 100× 109

IV. NUMERICAL ANALYSIS

In this section, we investigate and compare the efficiency
of our proposed computation offloading strategy with two
standard baseline algorithms such as Random Computation
Offloading (RCO) and Priority Based Computation Offload-
ing (PBCO) in terms of 1) processing delay, 2) energy
consumption and 3) throughput. Moreover, we consider three
recent works such as DPTO [27], DDPT [3] and EECO [9]
for illustrating the performance improvement of our proposed
strategy. A concise outline of the existing baseline algorithms
is explained below.
• RCO strategy: The RCO strategy randomly schedules the

tasks and offloads them to nearby computing devices
without considering the importance of task scheduling.

• PBCO strategy: In the PBCO strategy, tasks are scheduled
according to device priority. However, offload the tasks
without considering the computational capability of the
remote processing devices.

• DDPT strategy: DDPT strategy prioritizes the tasks based
on queue allocation strategy and offloads the tasks, uti-
lizing a graph matching theorem with the objective of
optimizing computation delay.

• EECO strategy: EECO strategy mainly prioritizes the
tasks and schedules them using a stochastic optimiza-
tion technique. At last, a constraint-restricted offloading
method for optimizing energy-delay over the network.

• DPTO strategy: In the DPTO strategy, tasks are classi-
fied according to a heuristic process. Then a multilevel
feedback queue is used to schedule the tasks. Finally, a
heuristic technique for making task offloading decisions.

Essentially, these algorithms operate as a reference to deter-
mine the performance enhancement of our TSCO strategy in
the IoT-fog-cloud networks.

A. Simulation Setup

The complete simulation is done on Intel Core i7-2600 CPU
@3.40 GHz × 8 with 8 GB RAM using Ubuntu operating
system. We consider 100 IIoT sensors that generate real-time
tasks with Kin

k = [5, 20]MB in the fog networks. We consider
λk = [10, 20]task/sec, K freq

k = [10, 20]s and B = 40MBps.
Further, we set ϕ = 1900[cycles/byte], M = 10, N = 2,
A = 20 and X (k, l) = {0, 1} [28]. To capture the dynamicity
and make the environment more functional, we assign the CPU
threshold Γmaxl , energy threshold Emaxl and delay threshold
T maxl within the maximum limit. We consider ΓCPU

a << ΓCPU
m

20 40 60 80 100

12

24

36

48

60

Number of tasks (K)

E
xe

cu
tio

n
on

II
oT

de
vi

ce
s Industrial tasks

(a)

20 40 60 80 100

13

26

39

52

65

Number of tasks (K)

E
xe

cu
tio

n
on
S l

de
vi

ce
s Offloaded tasks

(b)

Fig. 6. Initial task execution strategy in various computing devices: (a) IoT
devices ΓCPU

a > KCPU
k . (b) Virtual computing devices ΓCPU

a ≤ KCPU
k .

20 40 60 80 100

11

22

33

44

55

Number of tasks (K)
E

xe
cu

tio
n

de
la

y
(i

n
s)

IIoT devices
Fog devices
Cloud server

(a)

20 40 60 80 100

6

12

18

24

30

Number of tasks (K)

E
xe

cu
tio

n
de

la
y

(i
n

s)

RCO PBCO DDPT
EECO DPTO TSCO

(b)

Fig. 7. Analysis of processing delay
(
Ttotal
kl

)
, (a) On various executing devices.

(b) Comparison with existing algorithms.

and ΓCPU
m << ΓCPU

n throughout the experiment. The initial task
distribution following conditions ΓCPU

a > KCPU
k and ΓCPU

a ≤
KCPU
k are presented in Fig. 5. Other simulation parameters are

obtained from [3] and [9] respectively. Table III lists numerous
standard parameters used in the simulation.

B. Processing Delay

This metric represents the total amount of time Ttotal
kl taken

for executing a task k ∈ K on various computing devices
Sl, including IIoT devices A, fog devices M, and cloud
servers N . However, performing a task k in the fog de-
vice m ∈ M or cloud server n ∈ N includes additional
delay for data transmission Tup and result fetching Tdown

to the system. From Tup
am = X (k,m)× ϕ.Kin

k /R
up
am and

Tdown
ma = X (m, k)×Kout

k /Rdown
ma , it can be easily observed

that transmission delay for a task k ∈ K mostly depends
on several network parameters such as available transmission
bandwidth B, channel power gain Ha, transmission power
Pup, etc. However, processing delay Tprocess mostly depends
on input data size Kin

k and computational frequency ΓCPU of
the computing device. From Tprocess

am = X (k,m).ϕ.Kin
k /Γ

CPU
m

we can observe that as the input size Kin
k increases, processing

delay also increases. However, processing delay can be opti-
mized by increasing the CPU frequency ΓCPU of the computing
devices, as the processing delay inversely proportional to the
processing CPU frequency of the computing device m ∈ M
i.e., Tprocess

am ∝ 1/ΓCPU
m . Fig. 7(a) illustrates the analysis of

normalized processing delay on various computing devices,
whereas Fig. 7(b) depicts the comparative study of processing
delay with existing algorithms. It is obvious to say that,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 9

20 40 60 80 100

0

20

40

Number of tasks (K)

E
xe

cu
ti

on
en

er
gy

(i
n

J)
Delay sensitive

Resource intensive

(a)

20 40 60 80 100

7

14

21

28

35

Number of tasks (K)

E
xe

cu
tio

n
en

er
gy

(i
n

J)

RCO PBCO DDPT
EECO DPTO TSCO

(b)

Fig. 8. Analysis of energy consumption
(
Etotal
kl

)
, (a) On various executing

devices. (b) Comparison with existing algorithms.

0
2

4
6

8
10

0
20

40
60

80
100
0

20

40

Time tTasks K

C
om

pl
et

ed

IIoT devices
Fog devices
Cloud server

(a)

20 40 60 80 100

70

80

90

100

Number of tasks (K)

T
hr

ou
gh

pu
t

RCO PBCO DDPT
EECO DPTO TSCO

(b)

Fig. 9. Performance analysis of throughput, (a) On various executing devices.
(b) Comparison with existing algorithms.

proposed TSCO strategy achieves better performance than
RCO, PBCO, DDPT, DDPT and EECO algorithms.

C. Energy Consumption

Energy utilization for a task k ∈ K can be regarded as
the amount of energy used Etotal

kl to process a task, which
includes transmission energy Eup

a , processing energy Eprocess
a ,

and downloading energy Edown
a . For easy implementation, we

omit the energy consumption rate for waiting tasks in the
execution queue on computing devices Sl. Eq. (16) indicates
that energy consumption rate Eprocess on IIoT devices directly
proportional to the processing capability 1/ΓCPU of comput-
ing devices i.e., Eprocess ∝ 1/ΓCPU. Moreover, total energy
consumption rate Etotal

kl also increases with the increase in
input data size Kin

k and decreases with the CPU frequency
ΓCPU. However, we can regulate the energy consumption by
increasing the transmission bandwidth B and CPU frequency
ΓCPU of the computing devices. Fig. 8(a) demonstrates the
review of approximate processing energy consumption on
various computing devices with ECPU

l = 1.2 unit, and Fig. 8(b)
represents the comparative analysis of energy consumption
with existing algorithms, which is better than 22%, 21%, 18%,
and 19% compared with RCO, PBCO, DDPT, DDPT and EECO
algorithms. The reason is that the proposed TSCO strategy
offloads resource-hungry tasks to the cloud server, thus better
utilization of energy consumption for fog devices.

D. Throughput

This parameter represents another level of performance
evaluation for satisfying energy Emaxl and delays T maxl con-

straints i.e., how many numbers of tasks K complete their
execution within the given threshold bound. Our proposed
computation offloading technique offload delay and energy
bound tasks to the nearby fog devices M based on their
priority index and offload rest of the resource-hungry and low
priority index tasks to the centralized cloud data center N
for execution. Fig. 9(a) and Fig. 9(b) represents the number
of various priorities of tasks that completes execution. It is
noteworthy to see from Fig. 9(a) that IIoT executable tasks
complete its execution within the given bound, but in some
cases, other tasks fail to satisfy execution deadline due to
limited capacity in fog devices. The performance analysis
of throughput is also exhibited in Fig 9(b). It is clear to
analyze from Fig. 9(b) that proposed TSCO strategy achieves
a reasonable performance for executing the maximum number
of tasks than other existing RCO, PBCO, DDPT, DDPT and
EECO algorithms while satisfying several constraints.

V. CONCLUSION

In this paper, we introduce a hierarchical computation of-
floading technique called TSCO, by collaborating and utilizing
both fog and cloud resources simultaneously. At first, we
define our objective function as the joint optimization of
weighted energy-latency consumption, while satisfying several
QoS constraints. To solve this optimization problem, we
developed an index-based transmission scheduling strategy to
reduce computation overhead from the IIoT devices. Then,
our proposed mixed linear programming-based computation
offloading method offloads the tasks based on importance
and makes near-optimal decision to select suitable computing
devices. Extensive simulation results exhibit the effectiveness
of the proposed TSCO strategy over standard algorithms in
terms of average waiting time 20%-26% and average energy
consumption rate 12%-17%, respectively. In the future, we
will enhance our proposed computation offloading strategy for
optimizing various user-oriented Quality of Experience using
deep reinforcement learning in the distributed environment.

ACKNOWLEDGEMENT

This work is supported by DST (SERB), Government of
India, under Grant EEQ/2018/000888.

REFERENCES

[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, 2020.

[2] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-Efficient Computation
Offloading and Resource Allocation for Delay-Sensitive Mobile Edge
Computing,” Sustainable Computing: Informatics and Systems, vol. 21,
pp. 154–164, 2019.

[3] I. Sarkar, M. Adhikari, N. Kumar, and S. Kumar, “Dynamic Task Place-
ment for Deadline-Aware IoT Applications in Federated Fog Networks,”
IEEE Internet of Things Journal, pp. 1–1, 2021.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its role in the Internet of Things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[5] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4702–4711, 2018.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, NOVEMBER 2021 10

[6] J. Wang, K. Liu, B. Li, T. Liu, R. Li, and Z. Han, “Delay-sensitive
Multi-period Computation Offloading with Reliability Guarantees in Fog
Networks,” IEEE Transactions on Mobile Computing, 2019.

[7] Z. Zhou, Y. Guo, Y. He, X. Zhao, and W. M. Bazzi, “Access control and
resource allocation for M2M communications in industrial automation,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 3093–
3103, 2019.

[8] B. Sudharsan, P. Patel, J. Breslin, M. I. Ali, K. Mitra, S. Dustdar,
O. Rana, P. P. Jayaraman, and R. Ranjan, “Toward Distributed, Global,
Deep Learning Using IoT Devices,” IEEE Internet Computing, vol. 25,
no. 3, pp. 6–12, 2021.

[9] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Joint Computa-
tion Offloading and Scheduling Optimization of IoT Applications in Fog
Networks,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 4, pp. 3266–3278, 2020.

[10] Y. Ding, C. Liu, X. Zhou, Z. Liu, and Z. Tang, “A Code-Oriented
Partitioning Computation Offloading Strategy for Multiple Users and
Multiple Mobile Edge Computing Servers,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 7, pp. 4800–4810, 2020.

[11] M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-Driven Parallel Task Data
Offloading in Fog Computing Networks for Industrial Applications,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050–
6058, 2020.

[12] M. Sheng, Y. Wang, X. Wang, and J. Li, “Energy-Efficient Multiuser
Partial Computation Offloading With Collaboration of Terminals, Radio
Access Network, and Edge Server,” IEEE Transactions on Communica-
tions, vol. 68, no. 3, pp. 1524–1537, 2020.

[13] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 14 198–14 211, 2020.

[14] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy, and Y.-
C. Tian, “Adaptive Energy-Aware Algorithms for Minimizing Energy
Consumption and SLA Violation in Cloud Computing,” IEEE Access,
vol. 6, pp. 55 923–55 936, 2018.

[15] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafiq, A. A. Laghari,
and S. Prakash, “Smart healthcare: Rl-based task offloading scheme for
edge-enable sensor networks,” IEEE Sensors Journal, pp. 1–1, 2021.

[16] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Stackelberg
Game for Service Deployment of IoT-Enabled Applications in 6G-aware
Fog Networks,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[17] Q. Li, S. Wang, A. Zhou, X. Ma, f. yang, and A. X. Liu, “QoS Driven
Task Offloading with Statistical Guarantee in Mobile Edge Computing,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2020.

[18] V. Karagiannis, P. A. Frangoudis, S. Dustdar, and S. Schulte, “Context-
Aware Routing in Fog Computing Systems,” IEEE Transactions on
Cloud Computing, pp. 1–1, 2021.

[19] C. Avasalcai, B. Zarrin, and S. Dustdar, “EdgeFlow -Developing and
Deploying Latency-Sensitive IoT Edge applications,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[20] I. Sarkar, M. Adhikari, N. Kumar, and S. Kumar, “A Collaborative
Computational Offloading Strategy for Latency-sensitive Applications
in Fog Networks,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[21] M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-driven Parallel Task Data
Offloading in Fog Computing Networks for Industrial Applications,”
IEEE Transactions on Industrial Informatics, 2019.

[22] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Collaborative
AI-enabled Intelligent Partial Service Provisioning in Green Industrial
Fog Networks,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[23] ——, “Intelligent Service Deployment Policy for Next-Generation In-
dustrial Edge Networks,” IEEE Transactions on Network Science and
Engineering, pp. 1–1, 2021.

[24] C. E. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[25] C. Yi, J. Cai, and Z. Su, “A Multi-User Mobile Computation Offloading
and Transmission Scheduling Mechanism for Delay-Sensitive Applica-
tions,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp.
29–43, 2020.

[26] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading systems,”
in 2013 IEEE International Conference on Communications Workshops
(ICC), 2013, pp. 728–732.

[27] M. Adhikari, M. Mukherjee, and S. N. Srirama, “DPTO: A Deadline
and Priority-Aware Task Offloading in Fog Computing Framework

Leveraging Multilevel Feedback Queueing,” IEEE Internet of Things
Journal, 2019.

[28] M. Mukherjee, S. Kumar, M. Shojafar, Q. Zhang, and C. X. Mavro-
moustakis, “Joint Task Offloading and Resource Allocation for Delay-
Sensitive Fog Networks,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1–7.

Abhishek Hazra (S’18) is currently pursuing Ph.D.
in IIT(ISM) Dhanbad, India. He completed his mas-
ter’s degree in Computer Science and Engineering
from NIT Manipur, India in 2018 and Bachelor
degree from NIT Agartala, India in 2014. He has
authored and co-authored various national and inter-
national journal and conference articles. His research
area of interest is in the field of Fog computing, 6G,
Machine Learning and Industrial Internet of Things.

Praveen Kumar Donta (M’17) is a University
Assistant (Postdoc) in the Research Division of
Distributed Systems, TU Wien, Vienna, Austria. He
received his PhD from the Department of Computer
Science and Engineering in IIT (ISM), Dhanbad,
India in June 2021. He was a visiting PhD student
for 6 months during PhD at Mobile & Cloud Lab,
University of Tartu, Estonia. Editor Member for
Physical Communication and Computer Communi-
cations Journals. His current research is in Machine
learning for WSNs, IoT, and Fog/Edge Computing.

Tarachand Amgoth received B.Tech in Computer
Science and Engineering from JNTU, Hyderabad
and M.Tech in Computer Science Engineering from
NIT, Rourkela in 2002 and 2006 respectively and
Ph.D. form IIT(ISM), Dhanbad in 2015. Presently,
he is working as an Associate professor in the
Department of Computer Science and Engineering,
IIT(ISM), Dhanbad. His current research interest in-
cludes Fog/Edge computing, and Internet of Things.

Schahram Dustdar (F’16) is Full Professor of
computer science heading the Research Division of
Distributed Systems at the TU Wien, Austria. He
is founding Co-Editor-in-Chief of the new ACM
Transactions on Internet of Things (ACM TIoT) as
well as Editor-in-Chief of Computing (Springer).
He is an Associate Editor of IEEE Transactions on
Services Computing, IEEE Transactions on Cloud
Computing, ACM Transactions on the Web, and
ACM Transactions on Internet Technology, as well
as on the editorial board of IEEE Internet Computing

and IEEE Computer. Dustdar is Recipient of the ACM Distinguished Scientist
Award (2009), the ACM Distinguished Speaker ward (2021), the IBM Faculty
Award (2012), an Elected Member of the Academia Europaea: The Academy
of Europe, where he is Chairman of the Informatics Section, as well as an
IEEE Fellow. In 2021 Dustdar was elected to the Academy of the United
Nations Sciences and Technology Organization (AUNSTO).

