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Abstract—The convergence between AI planning techniques
and Internet of Things (IoT) can solve various operational and
business challenges. However, IoT systems’ stringent require-
ments such as latency and scalability have introduced several
challenges to execute and scale planners in cloud environments.
Edge computers placed close to the IoT domain (e.g., sensors),
can be leveraged for implementing planners and overcome scal-
ability issues. We propose a conceptual framework highlighting
executing Expressive Numeric Heuristic Search Planner (ENHSP)
on distributed devices in edge networks. As proof of concept,
we develop a simulator to show the applicability and feasibility
of running planners on the edge. As a case study, we simulate
the waste management problem and find the optimal route for
disposing waste bins in a city. Throughout the experiments, the
user can discover insightful information regarding the planner’s
applicability on the edge.

Index Terms—Edge-Cloud Continuum, AI Planning, Resource
Management

I. INTRODUCTION

The Internet of Things (IoT) has widely disseminated into
society, and many services in various industries are built on top
of IoT technologies. Managing and controlling a high number
of heterogeneous devices (i.e., mobile devices, sensors, etc.)
is becoming increasingly complex. On the other hand, the
ever-growing number of devices challenges the cloud-centric
environments to process incoming sensory data streams within
the critical time-frame [1], [2]. In this context, processing IoT
data streams over distributed computation entities and gaining
authority over a smaller segment of the large network, is
critical to achieving various system goals. These distributed
computation entities are usually referred to as edge devices.
Essentially, edge devices allow for pre-processing incoming
sensory data streams as well as provides a seamless oppor-
tunity to deploy multiple edge applications (i.e., IoT applica-
tions) aiming at providing low-latency services for end-users.
For instance, a neighborhood may be composed of hundreds
of networked devices providing various sensory information
about the environment. An edge device in proximity can act
as an intermediary computation device to process and store
the incoming data. Besides that, an edge device may decide
whether the pumped IoT data must be processed at the edge
network or forwarded to a cloud infrastructure.

Over the recent years, urban growth became an endemic
problem for large cities in the world. In cities with rapid
population growth and with high number of visitors, daily
public services or public safety services should operate ef-
ficiently. In this sense, IoT resources (i.e., sensors, actuators,

etc.) distributed over the city, have been seen as critical to
improve the quality of life. For example, within a city district,
several smart devices provide real-time information about the
environment to the closest edge device benefiting from high
connectivity to it and its awareness of other resources in
its surroundings. An edge device may act as an authority
to coordinate available resources in its district and becomes
responsible for processing data generated by the smart devices
in the field. At the same time, various edge applications
(e.g., waste management service) can be deployed on edge,
process sensory data, and provide useful information to the
end-users. However, not all services can be trivially obtained
from IoT resources — for instance, optimizing the energy
efficiency of street lighting systems in a neighborhood when
no citizen is walking. In that case, several combinations of
other IoT devices’ resources must be considered to achieve the
desired goal [3]. Such a goal can be achieved through utilizing
AI planning techniques which are well-known approaches
developed to solve planning autonomously and without human
intervention. Essentially the planning is defined as the task of
coming up with a sequence of actions that will achieve a user
goal.

AI planning techniques aim to address NP-hard problems.
The bigger the problem instance is, the more time and
resources are required to find an optimal solution. In this
sense, utilizing the planners in the context of IoT and smart
cities becomes an increasingly complex as well as resource-
intensive process [4]. Executing AI planning techniques on
the cloud is naturally possible. However, in the context of
IoT such techniques do not scale very well. In addition,
the bandwidth of the networks that carry IoT sensory data
streams to and from the cloud hasn’t increased appreciably.
Essentially, the network bottleneck causes higher latencies
than expected response time for IoT systems. Considering the
above-mentioned challenges, we argue that Edge Computing
can help to (i) tackle the scalability problem by splitting the
problem and (ii) overcome networks bottleneck by processing
sensory data on the edge. Therefore, this calls for novel
resource management approaches, resource coordination, and
the need to investigate the feasibility and the applicability of
AI planning techniques executed in a distributed manner on
the edge. We refer to the applicability aspect by considering
real-life scenarios and their concrete requirements to achieve
user goals. On the other hand, we refer to the feasibility aspect
to show the performance requirements to execute AI planning



models on edge infrastructure.
In this article, we propose a conceptual framework that high-

lights executing Expressive Numeric Heuristic Search Planner
(ENHSP)1 on distributed edge devices in edge networks. As
a proof of concept, we develop a simulator to simulate the
waste management problem to find the optimal route for the
disposal of waste bins in a city. Subsequently, we discuss
the motivation and reasons for choosing to model the waste
management problem as well as explain the syntax required
to model both the domain and the actual problem for the
ENHSP planner. Furthermore, the simulator is configurable
and provides functionalities that enable the user to interact at
runtime. Throughout the experiments, the user can discover
insightful information regarding the planner’s applicability on
the edge, such as i) performance requirements when executing
the planner in different city areas with different parameter
settings, and ii) optimizing the overall waste disposal process.

II. BACKGROUND AND RELATED WORK

In the past few years, researchers from academia and indus-
try have been focused on utilizing the power of AI planning
techniques in different contexts in edge-based systems (i.e.,
IoT systems). Several approaches discussed in the literature
are based on AI planning techniques such as enabling engi-
neering resource coordination at runtime [3], energy-efficient
task offloading [5], deploying self-adaptive IoT systems [6],
and adaptation of goal-driven IoT systems [7]. AI-Planning
consists of several developed techniques to solve planning
and scheduling problems autonomously and without human
intervention. Essentially the planning is defined as the task of
coming up with a sequence of actions that will lead from an
initial state to a specified goal state. A goal can be represented
as a single goal state (i.e., predicate) or a complex goals states
(i.e., multiple goal states) that can either be true or false. To
reach a goal state, the planner is provided with actions that can
alter these states. These actions may define preconditions that
need to be met to change the states of the problem according
to the action’s effect. For each task, the planner requires the
domain and problem models as inputs (discussed in Section
IV-A).

Engineering edge-based systems is challenging, partly due
to the heterogeneity, dynamicity, and uncertainty of the de-
vices. Tsigkanos et al. [3] proposed a goal-driven approach for
engineering resource coordination at runtime. The approach
adopts goal modeling to capture objectives opportunistically
at runtime and without any operational status knowledge.
Bounded model checking is used as the foundational technique
to compute coordination plans that satisfy device goals. Essen-
tially, it considers dependencies among IoT things to achieve
a particular goal. Alkhabbas et al. [7] proposed an approach
for enabling the automated formation and adaptation of goal-
driven IoT systems by exploiting context-awareness and AI-
planning techniques. On the contrary to the mentioned works,
while focusing primarily on AI planning techniques, we delve

1The ENHSP Planning System, https://sites.google.com/view/enhsp/

more into showing the feasibility and emphasize the appli-
cability of AI planning techniques executed in a distributed
manner on the edge. As the case study, we consider an age-
old matter and well-known waste management problem. We
developed a configurable simulator which is interactable at
runtime. The simulator provides functionalities to the user to
create diverse use-cases for the ENHSP planner to solve.

III. MOTIVATION

Providing an efficient waste disposal service in crowded
and highly frequented areas (i.e., squares, parks, etc.) by
visitors remains a prime concern for metropolitan cities. This
is because the cleaner cities are, the more tourists they attract.
Parks for instance, may become visitor spots because of their
cleanliness, view, and fresh air. On the other side, waste
disposal operators traditionally collect waste from bins on a
fixed schedule (e.g., hourly or daily). However, the number of
visitors and citizens roaming in the various city areas changes
frequently. Such public spaces can get crowded very fast,
meaning that the waste bin filling rate may increase drastically.
In such situations, the fixed schedules become ineffective
while driving to an almost empty garbage can causes wasting
of resources and money.

To provide real-time scheduling, we assume that several
smart vehicles (i.e., smart trucks) may operate continuously
around the city areas. Through the integrated IoT sensors,
each waste bin provides sensory information to the closest
edge device responsible for a particular area in the city (i.e.,
neighborhood, square, park, or district). On the other side,
edge devices are pre-configured regarding the maximum waste
level allowed in bins as well as the truck capacity. For
instance, when the waste level in bins is above the predefined
threshold, a responsible edge device places a lease on the
closest available truck to empty all bins in the responsible
authority radius. However, we will face an NP-hard problem
when considering several factors (i.e., streets, bins, trucks, etc.)
to provide most optimal routes for the trucks operating in the
city. Therefore, when utilizing AI planning techniques and
processing sensory data on the edge, a crucial aspect is to
measure performance issues in different scenarios.

IV. UTILIZING AI PLANNING ON THE EDGE

A. Conceptual framework

In the Smart City context, we may have multiple complex
problems which can be solved by using planners. More
precisely, this means that for each task, we have different
planning domains and planning requirements. Thus, this calls
for a new framework that allows developers or system admin-
istrators to deploy models on available devices at the edge. To
overcome the mentioned challenges, we introduce a conceptual
framework that enables easy deployment and operation of
planners on the edge infrastructure. The conceptual framework
is presented in Figure 1.

The proposed framework comprises two main parts: a) a
cloud-based IoT platform and b) edge device core functions.
The platform consists of three main modules i) Runtime
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Fig. 1. An overview of the conceptual framework.

Orchestration, ii) Smart City Layouts, and iii) AI Planning
Models. The runtime orchestration is responsible for providing
an environment where it allows planners’ execution in hetero-
geneous environments. The platform can interact with the edge
system components (i.e., resource manager) to access, govern,
and orchestrate planners at the edge. For instance, Docker2

containers are a way to wrap up a planner into its own isolated
package. Additionally, the runtime orchestration manages edge
devices, automates container provisioning, networking, load-
balancing, security, and scaling across the distributed edge
devices.

The cloud layer assumes to contain various planning models
that a system administrator can upload on distributed edge de-
vices. An edge device may run multiple planners (i.e., ENHSP
instances) depending on the device resources. Furthermore,
models are written using the Planning Domain Definition
Language (PDDL), which is comprised of planning domain
model and problem description. Planning domain model and
problem description are essential files required to instantiate
a planner (see Section IV-C). In addition to the models, the
cloud platform may contain simple city layouts (i.e., maps) or
accurate digital architectural models [8].

The second part of the framework represents edge device
core functionalities. The Resource Manager is responsible for
monitoring the infrastructure-specific metrics such as edge
devices’ resource capabilities (i.e., hardware). In addition, the
module implements an IoT resource discovery mechanism [9]
and various communication protocols (i.e., Bluetooth, ZigBee,
LoRa, WiFi, etc.) to connect with various surrounding IoT
devices. On the other hand, the AI Planning module executes
ENHSP instances. The module listens continuously for new
requests from the system administrator to start new solver
instances. Essentially, after the required files (i.e., domain and
problem model) are uploaded, a new container-based service
is started at the edge device.

B. Smart City Layout

As outlined in the motivation section, we consider the waste
management problem by deploying multiple edge devices and
coordinating available resources (i.e., trucks) in the entire city.
Before starting with the problem modeling in PDDL, first it

2Docker, https://docker.com

is required to relay and document the process of finding the
right underlying data-structure for the city itself. Generally
speaking, the waste management problem is consolidated to
Nodes (waste bins), Streets connecting them with a given
distance (representing the cost of the route), and one
or multiple trucks. However, to visualize the process and
enable user interaction with the simulator, we require a static
city representation with widespread usage implementation. To
overcome such a challenge, we utilize an open-source java
library called GeoTools3 to read, parse, and display the data
sets. Thus, the simulator requires the geospatial information
in a format called shapefile.

C. Use Case: Waste Management Domain Modeling

As outlined in Section IV-A, PDDL is comprised of plan-
ning domain model and problem description files. The domain
describes the planning world in a general sense which contains
the actions and predicates. Essentially, it defines which objects
are existent, the actions that can alter these objects’ state,
including the pre-conditions that need to be fulfilled, and the
effects of these actions on the objects. The domain file doesn’t
define the set amount of objects (i.e., bins or trucks), neither
does it define the planning problem’s goal.

Listing 1: Domain-Predicates

1 (:predicates
2 (truck ?t - vehicle)
3 (bin ?b - wastebin)
4 (node ?n - location)
5 (street ?s - street)
6 (plant ?p - facility)
7 (is-at ?p ?n - location)
8 (connected ?s - street ?n - location)
9 (truck-at ?t - vehicle ?n - location)

10 (plant-at ?p - facility ?n- location)
11 (emptied ?b - wastebin)
12 (empty ?t - vehicle))

In Listing 1, we show the exact syntax for defining the
domain problem. Most of the predicates are self-explanatory,
such that objects are vehicles, bins, streets, etc. In order to
derive the city structure from the shapefile retrieved from the
OpenGov data, we introduce the notion of whether a node
is connected to a street or not. The rest of the predicates
express positioning on the map alongside the ones telling the
planner whether a waste bin has been emptied or a vehicle
is empty after visiting a waste disposal facility and regaining
full capacity.

With the :fluents requirement we are able to create nu-
meric predicates to keep track of the capacity of the vehicle
or the current status of the waste bins or assign a numeric
cost called distance for travelling along a street (see Listing
2). The most important function is the (total-cost) one

3GeoTools The Open Source Java GIS Toolkit, https://geotools.org/



Listing 2: Domain-Functions

1 (:functions
2 (total-cost)
3 (distance ?s - street)
4 (capacity ?t - vehicle)
5 (wastebin-status ?b - wastebin)
6 (wastebin-capacity)
7 (max-capacity ?t - vehicle))

that is getting modified after every movement of the truck
and essentially keeps track of the plan’s current cost. This is
the metric that will ultimately need to be optimized by the
planner. Furthermore, vehicle move actions and preconditions
considered in the problem are rather straightforward (i.e., pick
up bin, move truck, etc.). Further modeling details can be
found in [10]).

D. Problem Skeleton

The problem description file defines the initial and the goal
states. Thus, once the format of the domain is set, the problem
file is initialized with the actual part of the city that needs to be
planned including nodes, streets, facilities, waste bins and the
trucks. To initiate the planner, we require the planning domain
and problem as two static files. However, edge devices receive
real-time status values from smart devices, and these data need
to be translated and inputted into the planner continuously.
Thus, to build our simulator and enable the user to interact
with it, we generate the static file on the fly. This calls
for creating a skeleton of the actual problem file, populated
by real-time values and edge configuration parameters (see
Listing 3).

Listing 3: Problem skeleton

1 (define(problem smart-waste)
2 (:domain smart-waste)
3 (:objects %1$s )
4 (:init %2$s )
5 (:goal %3$s )
6 (:metric minimize (total-cost))

As can be noted in Listing 3, the %1$s part is where the
actual initialization occurs. Essentially, it gets built as a string
in the application itself and uses string replacement to populate
the placeholders. Ultimately this file gets written to the file
system and the planner. Afterwards, the planner receives its
input for the problem definition. Furthermore, to cut down
generation times, the static part of the problem is generated as
soon as an edge device is placed on the map. Given the edge
device’s authority radius, it is possible to pre-generate the city
structure that needs to be planned to speed up the generation
process. This means that only the values that are changing
over time (i.e., the bin status and the truck’s position) need to
be processed before the planning can start.

Another issue that may arise is when the smart truck is
out of the edge device’s authority radius. An edge device can
call the closest available smart truck in the city. Solving such
a challenge within the problem skeleton becomes unfeasible
in performance terms when the truck is too far away (i.e.,
the entire city needs to be considered). To overcome such a
challenge, we create another problem skeleton intending to
move the smart truck within the caller radius (i.e., edge radius)
in the most optimal way possible.

V. SIMULATOR IMPLEMENTATION

A. Workflow

To show the applicability and feasibility of executing plan-
ners on edge networks, we develop a simulator to simulate the
waste management problem [10]. The current version of the
prototype is written in Java and provides basic functionalities
to enable resource coordination (i.e., between edge devices
and trucks) and executing multiple planners on the simulated
edge devices. The end-user can interact with the simulator
at runtime, configure it, and simulate various scenarios. An
overview of the three-step configuration process of the simu-
lator is presented in Figure 2.

Smart City 
Layouts

Load the shapefile 
of the city

Configure 
Edge Device

Set the parameters and
place on the map

Simulate

Automatic or manual

Configure at runtime

EndStart

Place
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Fig. 2. An overview of the three-step configuration process.

1) Smart City Layouts: We first choose a city that provides
data that can be used in conjunction with the ENHSP planner.
For instance, the City of Vienna, which is part of the Co-
operation Open Government Data Austria4 provides a wast
amount of static and real-time data spanning from general
street structure to real-time construction works. The above-
mentioned site provides an API for developers to use such data
free of charge for their purposes. Nevertheless, since the aim is
to develop a stand-alone version of our prototype, downloading
the geospatial information in a format called shapefile fulfilled
the need for offline usage.

2) Configure Edge Device: The end-user can place edge
devices anywhere on the map. Prior to its placing on the map,
an edge device is essentially configured with the parameters
such as authority radius, number of bins, bin capacity, etc.
The waste bins are distributed randomly inside the edge
devices authority zone. For each edge device placed on the
map, a new server instance is started on a specific port to
generate sensory data for the simulator (i.e., explained in the
following subsection). The waste bins positions on the map are
generated randomly. Moreover, trucks operate in one of two
possible modes: i) available and ii) not-available.

4Cooperation Open Government Data Austria, https://www.data.gv.at/



Fig. 3. An overview of the simulator.

The available mode represents the state when edge devices can
place a lease on the truck. The not-available mode represents
the state when the truck is leased by another edge device.
Besides that, the end-user configures trucks with the following
parameters such as truck capacity, speed, etc. Each edge device
can query at anytime the state of trucks placed on the map.

3) Simulate: The end-user can place trucks at any given
place on the map. After the main components are set, the user
can either set a fixed interval for plan generation or do it on
demand. The plan generation occurs in two steps. First, the
edge device places a lease on the truck, and it calculates the
fastest route to the closest point in its authority radius. The
truck then moves there, and in the second step, the planner
generates the most optimal route to empty all the bins in the
edge device’s authority. Once these bins are emptied, the truck
is released, and other edge devices can apply for a lease on the
said vehicle. The entire process (i.e., planning and executing
the plans) can thus be automated and evaluated over a longer
period of time. An overview of the simulator is presented in
Figure 3.

B. Simulating sensory data

The time until a waste bin is full usually varies depending
on population density and some other variables. For instance,
according to the City of Vienna5, the bins are emptied from
once a day to six times a week. To generate waste bins sensory
data, we developed a Python-based web server that allows the
planner to query actual sensor status and create new instances
when the user adds new edge devices on the map.

With generating pseudo-random numbers between 0 and 1
for each bin we get the fill rate function f(x) = 0.6 + x3 ∗
(4.167 − 0.6). Every random number generated gives us an

5Vienna Waste Disposal Frequency, https://bit.ly/39qpEIN
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Fig. 4. Fill-rate graph of waste bins

average of f(0.5) ≈ 1.045% per day. Moreover, waste bins
are full until an average of 3.98 days and make it somewhat
closer to the situation we encounter in real life (see Figure 4).

VI. EXPERIMENTS

Throughout the experiments, the user can discover insightful
information regarding the planner’s applicability on the edge,
such as i) performance requirements when executing the
planner in different city areas with different parameter settings
and ii) optimizing the waste disposal process. First, we show
the planner performance aspects when scaling by the number
of trucks considered to generate a single plan. The planner
will thus try to find the optimal emptying plan by using one
or multiple trucks available. Besides that, we compare the
performance scaling by the number of bins considered for
generating a single plan. Second, we explain other experiments
that the user can realize within the current simulator version.

To monitor resource utilization during the runtime process,



we use a tool called VisualVM6 which displays the perfor-
mance statistics of a specific Java Virtual Machine instance
in real-time. Figure 5 presents the planner performance when
scaling with increasing the number of trucks assigned to a
single edge device. We consider a city area that consists of 129
streets, 8 bins placed within the 71 nodes on the map. As can
be noted, with increasing the number of trucks, the average
planning time increases as well. The average planning time
and memory consumption remain in the acceptable range with
three trucks; however, the planner will not scale well when
the number of trucks increases. Nevertheless, edge devices are
considered resource-constrained devices, and creating multiple
edge devices with a single truck responsible for emptying bins
at a time overcomes the scalability challenges introduced by
the planner.
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Fig. 5. Scaling by vehicle count.

Figure 6 presents the planner performance when scaling
with increasing the number of bins assigned to a single edge
device. We consider a similar city area as in the previous ex-
periment. On the contrary to the first experiment, we consider
a single truck and the various number of bins. As can be
noted, increasing the number of bins in the problem instance
results in an average planning time increase. Similarly, as in
the first experiment, the planner will not scale well when
the number of bins considered in the problem instance is
high. Therefore, the user may concretely discover the planner’s
resource requirements to run it in a particular region of a city.
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Fig. 6. Scaling by number of bins.

Since we are subdividing the city into small self-governing
areas, determining optimal truck count and capacity may deter-
mine the overall operating cost. For instance, regularly operat-
ing multiple smaller capacity trucks with lower operating costs

6VisualVM, https://visualvm.github.io/

can be more cost-efficient than having fewer high-capacity
trucks covering a larger area. With the parameters revolving
around the truck count, we can immediately notice the drop
in bins emptied per km driven. Therefore, we can empirically
put the cost of dispatching a garbage truck in shorter intervals
vs. the cost of doing longer routes but emptying more waste
bins along the way.

VII. CONCLUSION

The developed simulator is the initial attempt at designing
a system for executing AI planning techniques in a distributed
manner on the edge. The current version is in the early
stage of development and provides essential functionalities to
simulate the waste management problem. Besides that, edge
devices are simulated, and the planner instances for each edge
device placed on the map are executed on the same machine.
However, when placing multiple edge devices on the map, the
simulator may face performance issues. In our future work,
we plan to extend the prototype with a module through which
developers and users can easily configure edge devices and
connect them to their physical entities. Furthermore, we plan to
extend the simulator with other AI models supporting various
Smart City problems. Finally, we plan to perform a more
extensive evaluation of the approach.
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