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DECENT: A Decentralized Configurator for Controlling

Elasticity in Dynamic Edge Networks

ILIR MURTURI and SCHAHRAM DUSTDAR, Distributed Systems Group, TU WIEN, Austria

Recent advancements in distributed systems have enabled deploying low-latency and highly resilient edge

applications close to the IoT domain at the edge of the network. The broad range of edge application require-

ments combined with heterogeneous, resource-constrained, and dynamic edge networks make it particularly

challenging to configure and deploy them. Besides that, missing elastic capabilities on the edge makes it dif-

ficult to operate such applications under dynamic workloads. To this end, this article proposes a lightweight,

self-adaptive, and decentralized mechanism (DECENT) for (1) deploying edge applications on edge resources

and on premises of Edge-Cloud infrastructure and (2) controlling elasticity requirements. DECENT enables

developers to characterize their edge applications by specifying elasticity requirements, which are automati-

cally captured, interpreted, and enforced by our decentralized elasticity interpreters. In response to dynamic

workloads, edge applications automatically adapt in compliance with their elasticity requirements. We dis-

cuss the architecture, processes of the approach, and the experiment conducted on a real-world testbed to

validate its feasibility on low-powered edge devices. Furthermore, we show performance and adaptation as-

pects through an edge safety application and its evolution in elasticity space (i.e., cost, resource, and quality).
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1 INTRODUCTION

The Internet of Things (IoT) has prominently diffused into society in recent years. A wide range
of services are designed on top of IoT technologies in various industries such as Industrial Man-
ufacturing, Healthcare, and Smart Buildings. Simultaneously, cloud-based solutions are no longer
sufficient to satisfy the stringent requirements (i.e., low latency and high availability) of the safety-
critical and real-time IoT services. To overcome such a gap between cloud and IoT entities, new
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computational resources named edge devices are being introduced at the edges of networks pro-
viding low-latency services and enhancing privacy within IoT infrastructures [25]. Edge devices
are essentially low-powered computers located at edge networks—closer to the data source, re-
spectively, to IoT domains (i.e., sensors, actuators, etc.). In this context, edge devices can process
data streams streamed into an IoT system. Notably, to achieve such an aim, we require deploying
and running various analytic or decision functions at edge networks [8]. For instance, a sched-
uler decides whether the pumped data must be processed at an edge network or forwarded to a
cloud infrastructure. Thus, many operational and business challenges can be solved by running
decision-making functions on edge resources.

As a newly introduced paradigm, Edge Computing [25] is a key enabler for IoT proliferation.
In contrast to cloud infrastructures, edge networks are resource-constrained environments. Edge
networks essentially are environments where a set of heterogeneous edge devices are connected
in a peer-to-peer manner. Such devices usually have limited resources, referring to their compu-
tational and storage capabilities. A wide range of available resources at the edge have introduced
new opportunities such as deploying low-latency, privacy-aware, and resilient edge applications
(e.g., IoT applications). Besides many benefits introduced by edge devices, analyzing high-volume
IoT data streams on a single device through monolithic applications poses many limitations and
a set of challenges in terms of processing capabilities, storage, energy, and communication band-
width. To that end, modern applications are no longer monolithic [2]; such edge applications (i.e.,
services) are divided into a set of independently deployable software components (i.e., microser-
vices) and distributed over edge resources or on premises of Edge-Cloud infrastructure.1 Similarly,
resource management techniques need to be designed as decentralized systems to run in resource-
constrained environments. Thus, this brings completely new challenges where novel lightweight
resource management techniques are needed to fully utilize available resources at edge networks.
Nonetheless, the broad range of requirements concerning latency, Quality of Service (QoS), or
fault tolerance, combined with edge networks’ heterogeneous and dynamic nature, make it partic-
ularly challenging to manage, configure, deploy, and operate such applications.

Over the past few years, researchers have been widely focused on proposing multiple resource
allocation techniques at the edge [24]. However, less attention is given to providing elastic features
at the edge [14, 17]. In most cases, elasticity refers to a system’s capability to adapt to workload
changes by (de)provisioning resources in an automatic manner [13]. Resource demands for a partic-
ular running application or component may change over time. Consequently, this may cause poor
overall performance and higher latency than the expected response time. For instance, consider
a scenario where a health application running in an edge network (e.g., smart home) monitors
residents’ health through processing data streams created by the users’ smartwatches. At the time
t0, a single edge device has sufficient resources to monitor only one resident’s health. At the time
t1, there is more than one resident, and the edge device may not have enough resources to process
produced data for all residents. To avoid such situations, edge applications should scale over edge
resources or on premises of Edge-Cloud infrastructure. Therefore, introducing elasticity features
at the edge is crucial.

The elasticity concept is heavily related and used in cloud computing, and often is considered
one of the main features of the cloud paradigm [7]. In Edge Computing, very few works propose
methods for controlling application elasticity [10, 12, 23, 27]. Current approaches exhibit several
limitations, such as that they are built as centralized systems, are application specific, and
enable application scaling only by considering hardware resources and their capacity to scale.

1We consider the Edge-Cloud infrastructure as three-tier architecture composed of edge, fog, and cloud entities [9].
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Furthermore, centralized approaches are sensitive to edge system characteristics (i.e., resource
constrained, dynamic, and uncertain). Thus, edge networks’ dynamic nature requires continuously
re-evaluating placement decisions for edge functions. Nevertheless, in our conception, besides
resource requirements, elasticity in three-tiered infrastructures should also target their relations
with the different types of costs and quality.

To address the aforementioned challenges, we propose a lightweight framework called Decen-

tralized Configurator for Controlling Elasticity in Dynamic Edge Networks (DECENT)

and its runtime mechanism for controlling elasticity requirements in edge applications. DECENT
enables deploying and scaling edge applications in dynamic edge networks and on premises of
Edge-Cloud infrastructures. Essentially, the developer defines application requirements, elasticity
requirements, and a scaling model for each edge application and its components. DECENT inter-
prets these requirements, deploys components in the three-tier architecture, and enforces vari-
ous scaling operations at runtime to fulfill edge application demands. The system we propose en-
ables easy configuration, deployment, and operation of edge applications on top of heterogeneous
edge infrastructure (i.e., edge network). Furthermore, DECENT is a self-adaptive and decentralized
mechanism that can be easily deployed and run on low-powered edge devices.

Our concrete contributions are as follows:

• We enable application developers or domain experts to specify high-level elasticity require-
ments for their edge applications in a declarative way. Besides that, the user specifies the
deployment and scaling model inherent to a specific infrastructure configuration. To spec-
ify edge application elastic requirements, we consider the declarative language called Sim-

ple Yet Beautiful Language (SYBL) [6]. We extend the language and focus on developing
novel constraints and enforcement strategies to support edge application characteristics. In
our conception, besides resource requirements, elasticity in three-tiered architectures should
also target their relations with the different types of costs and quality.
• We extend the prototype of [21] with a lightweight mechanism that enables deploying and

controlling the elasticity of edge applications in a decentralized manner at an edge network.
Edge devices that run application components capture and interpret their elastic requirement
through Elasticity Interpreters and report to the configurator device whether the require-
ments are violated. The configurator device takes action and re-configures the application
to meet the specified elastic demands.
• To validate the approach’s feasibility, we perform an experimental evaluation that shows

that an edge application and its components can easily scale and be controlled by the mech-
anisms deployed at the edge of a network. Our prototype is evaluated on a real-world testbed
composed of several low-powered edge devices.

The rest of the article is structured as follows. Section 2 gives an overview of the platform
along with a running example of the article. Related work is considered in Section 3. Section 4
describes edge applications and system modeling, along with describing application requirements.
In Section 5, we describe in detail the DECENT framework, the processes, and details regarding
prototype implementation. Evaluation and results are presented in Section 6. Finally, Section 7
concludes the article and outlines future work directions.

2 BACKGROUND AND RUNNING EXAMPLE

This section outlines the domain for which we have developed our system. We give a short
overview of our previous work on top of which the proposed approach is built. Afterward, we
present our motivational scenario through a running example.
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2.1 Background

This article substantially extends our previous works [21] with a new elasticity controlling mod-
ule and its lightweight runtime mechanism. The former introduces the platform and system ar-
chitecture enabling automatic discovery of heterogeneous resources (i.e., computational, sensing,
context data) in edge networks [20].

One prominent approach that has recently emerged is to combine edge, fog, and cloud infras-
tructures to enable providing low-latency services [8]. Edge and fog paradigms provide almost
similar features. Both paradigms foresee enabling more computation resources near end-users
and IoT domains. However, the most significant difference between the two tiers is administrative
differences and responsibilities. We acknowledge that Edge Computing means different things to
different people; we envision Edge Computing as a bridge between IoT devices and the nearest
edge device to a user. Furthermore, fog devices may provide much more powerful resources and
services for larger geographical areas. For instance, smart transportation systems may benefit from
connecting and processing vehicle data in fog infrastructure. Nonetheless, both paradigms aim to
provide low-latency services since end devices are closer to the source where the data is produced
and consumed.

Furthermore, the three-tier infrastructure architecture shows a seamless opportunity for de-
ploying various applications (e.g., industrial, health, etc.) where low latency, QoS, reliability, and
scalability are critical requirements. This enables the distribution of application components over
edge, fog, and cloud resources. However, in the past few years, researchers in the field of edge and
fog computing have been mostly focused on proposing multiple centralized techniques for sched-
uling, controlling, and monitoring IoT applications deployed at the edge. In fact, such functions are
deployed on powerful devices such as local servers or cloud devices [28]. Nonetheless, as we ex-
plore new IoT systems and the heterogeneous and dynamic nature of edge networks, distributing
system components among various computation entities becomes an increasingly inevitable re-
quirement. As a result, shifting various system functions closer to edge networks and dynamically
placing them in the most suitable devices is crucial (see Section 5). Thus, deploying decision mech-
anisms at the edge in a decentralized manner makes edge networks autonomous environments and
less dependent on centralized devices. To that end, in our previous work, we proposed an efficient
approach that solves the placement problem of the configurator on the most suited (e.g., powerful)
edge device in a given dynamic edge network [21].

The latter introduces the technical framework and a solution to build and organize devices in
edge networks such that the resource discovery complexity can be handled [21]. The proposed
framework implements the configurator placement approach and enables system designers to de-
fine and configure their edge networks. More specifically, edge devices in edge networks are or-
ganized into clusters. Each formed cluster has a cluster coordinator and one global coordinator
(i.e., configurator) of an edge network. Both coordinators aim to provide various functionalities to
support resource discovery, and they act similarly as superpeers [15] at the edge. All coordinators
are placed dynamically on the most suited edge devices in an edge network. Nevertheless, the dy-
namic nature of edge networks necessitates continuously re-evaluating placement decisions for
coordinators. Thus, using a self-adaptive and decentralized configurator aims to solve such chal-
lenges at dynamic edge networks. In this article, our proposed approach enables and supports the
execution of edge applications on various edge networks and maintains their correct function-
ality throughout the execution time. The proposed elasticity control mechanism maintains the
correct functionality of edge applications by considering multiple elastic perspectives (i.e., quality,
cost, and resources). The proposed elastic mechanism is an extension of the introduced framework
in [21].
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Fig. 1. The lost-person service.

2.2 Running Example

To motivate our subsequent discussion, we consider emergencies such as natural disasters (e.g.,
earthquakes, fires, floods) in the city. Emergencies like earthquakes may affect various city zones,
which can damage infrastructure, cause injury or loss of life, and trap people under buildings. In
such situations, time is valuable, and drones may be used to analyze the entire situation and help
rescue teams find and communicate with victims under a collapsed building. In this scenario, we
consider multiple connected drones (i.e., form an edge neighborhood) flying over the city’s affected
areas aiming to provide services for the rescue team in finding victims under a collapsed building.
Each drone (i.e., edge device) is equipped with various computation capabilities and integrated
sensors (e.g., radar sensors, infrared cameras, electronic nose, etc.). We consider that drones are
multi-purpose devices where the rescue teams may request to deploy various services depending
on the emergency. Meanwhile, base stations may provide computational and storage capabilities
(i.e., fog devices) and provide docker charge stations for charging drones. At the same time, cloud
capabilities may be used to store data for long terms.

Referring to the situation illustrated in Figure 1, we assume that a rescue team deploys (1) the
lost-person service (i.e., edge safety application) in the affected area. Such a service aims at helping
rescue teams solve missing person cases faster by finding their location in the affected zones (2).
The service is dependent on camera resources, which are integrated into various drones. Specifi-
cally, the lost-person service consists of components responsible for specific tasks (i.e., front-end,
image processing, generating results, storing results, etc.). The service takes as input images pro-
vided by the flying drones in the affected area. Each drone every second generates various images
to be processed by the service. However, with the increasing number of drones, the number of
generated images is increased (5). To that end, application components may require more comput-
ing resources to process images to fulfill application requirements. For instance, consider that the
front-end component that accepts drones’ images has a response time requirement that should be
less than 100 ms. When the response time requirement is violated (e.g., 100 ms), the service com-
ponent must scale to multiple instances on edge or on premises (3–4) to meet the desired service
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quality. Thus, it is evident that to meet service demands at runtime and to avoid resource over-
provisioning/under-provisioning, we require a lightweight mechanism that dynamically controls
application elasticity at the edge. Furthermore, we assume that the service running on an edge
neighborhood is accessible by users within the range covered by devices.

3 RELATED WORK

Research efforts associated with the elasticity at the edge are still at a relatively early development
stage. Elasticity features in edge infrastructures mostly have been focused on scaling up/down
resources to meet application demands. In some approaches, tasks/services are reallocated when
devices are overloaded [26]. However, such practices, in turn, incur an overhead of resource usage,
increased cost, and increased energy consumption. Even though resource over-provisioning can
be considered feasible in resource-rich environments such as the cloud, such an assumption is
highly impractical in resource-constrained edge networks. More specifically, reserving resources
more than needed to support the intended task workload wastes available resources.

Very few approaches address these challenges at the edge. Furst et al. [12] introduce a new frame-
work that enables services to self-adapt and meet the current service demands of their Service-

Level Objectives (SLOs). A novel programming model called Diversifiable Programming

(DivProg) uses function annotations as an interface between the service logic, its SLOs, and the
execution framework to achieve such an adaption dynamically. Essentially, a third-party execution
framework captures service configuration given by the developer through DivProg, interprets, and
scales services that conform to changing SLOs. Tseng et al. [27] provide a lightweight autoscaling
mechanism for fog computing in industrial applications. Lujic and Truong [16] propose a novel,
holistic approach for architecting elastic edge storage services, featuring three aspects such as
data/system characterization (e.g., metrics, key properties), system operations (e.g., filtering, sam-
pling), and data processing utilities (e.g., recovery, prediction). The authors [23] discuss how appli-
cations for a fog infrastructure can be packaged into containers and act elastically. Their approach
is built on top of the container orchestration tool Kubernetes and extends it to the fog. In [29], the
authors investigate the benefits of virtualization to move and redeploy mobile components to fog
devices near the targeted end devices. By using geometric monitoring, the approach dynamically
scales and provisions the resources for the fog layer. Furthermore, several edge platforms such as
EdgeX Foundry,2 AWS IoT Greengrass,3 or Google IoT Edge4 promise to bridge the gap between
IoT and the cloud by providing a flexible runtime for applications running at the edge.

Any Edge-Cloud system’s goal is to hide the complexity of edge applications’ deployment and
operations in heterogeneous edge networks and enable developers to specify application require-
ments in a declarative way. A domain-specific language (DSL) specifies the high-level con-
straints of edge applications, such as QoS, application criticality, and elasticity requirements. The
DSL essentially makes it easy for users to develop these specifications. Understanding the current
and future requirements of edge applications from various domains remains a prominent chal-
lenge. A platform for the described IoT scenarios (e.g., as in our running example) needs to hide
this operational complexity from application developers. In particular, programmers should not
have to worry about the distribution of data and edge or cloud resources’ heterogeneous capabili-
ties. Developers should be able to express the context in which applications are allowed to run and
the elasticity requirements in a high-level way [7]. The platform should then take care of resource

2EdgeX Foundry, https://www.edgexfoundry.org/.
3AWS IoT Greengrass, https://aws.amazon.com/greengrass/.
4Google IoT Edge, https://cloud.google.com/solutions/iot.
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Fig. 2. Edge application model.

provisioning and data movement. However, this requires that the programming model and API
are intuitive for developers but expressive enough to help the execution platform make runtime
decisions on scheduling edge application components. In this article, we consider the SYBL [6]
to specify elastic requirements in terms of resource, cost, and quality. The SYBL enables devel-
opers to specify elasticity requirements (i.e., constraints, monitoring, strategies, and priorities) at
design time and enables scaling edge applications in an elasticity space. Nevertheless, Service-

Level Objectives for Next-Generation Cloud Computing (SLOC) is another novel elasticity
framework, which promotes a novel performance-driven, SLO-native approach to cloud comput-
ing, respectively, Edge-Cloud environments [22]. The new SLO elasticity policy language considers
similar elastic dimensions (i.e., resource, cost, and quality) as the SYBL language.

Finally, our work is an effort to advance Edge Computing platforms’ current state and enable
more straightforward configuration, deployment, and operation of edge applications on top of
heterogeneous edge infrastructure. The above-mentioned systems are extremely limited in their
operational capabilities and lack of self-adaptive mechanisms required in dynamic edge and IoT set-
tings. In essence, such systems assume static configurations that do not change over time, provide
no way to specify elasticity or QoS requirements, and do not have a mechanism to enact them.
Our proposed approach aims to bridge this gap and ensure multi-dimensional elasticity control
(i.e., cost, resources, and quality) for fulfilling edge application demands deployed on Edge-Cloud
infrastructure. It enables edge applications and their components to adapt in response to dynamic
changes in their workload. Finally, we allow developers to easily define elasticity requirements
captured and executed by our lightweight mechanism in a decentralized manner.

4 EDGE MODELING AND ELASTIC REQUIREMENTS

This section formally defines the concepts of edge applications, the edge system, the deployment
and scale policy, and elasticity requirements. First, we model edge applications and the system.
Then, we describe application deployment and scaling models in Edge-Cloud architectures. Finally,
we extensively explain application elasticity requirements, which enable developers to character-
ize their edge applications.

4.1 Edge Application and System Model

A service-based edge application ai can be described as a set of components H={h1, h2,..., hm}
divided by the developer prior to deployment. In fact, to enable executing such components on
low-powered devices and for better utilization of distributed resources dividing the edge appli-
cation into components is crucial. To this end, edge application components may be distributed
and executed on various available devices such that their resource requirements are fulfilled upon
deployment. Each component hi can be modeled as a Directed Acyclic Graph (DAG) where
vertices represent components and edges represent their dependencies as given in Figure 2.
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Each component hi is a black box, representing a set of instructions aiming to provide specific
functionalities. Various hardware-related requirements characterize each component (e.g., process-
ing, memory, storage) and latency requirements between components [4]. Moreover, components
are characterized by varying workloads, and their deployment should also be properly adapted
at runtime. To that end, for each component, we have the following: (1) edge application resource
requirements, (2) elasticity requirements, and (3) deployment and scaling policy. In the following
subsections, we have discussed both application requirements in detail.

The Edge-Cloud architecture consists of edge infrastructures (i.e., multiple edge devices con-
nected in a peer-to-peer manner forms an edge infrastructure), fog infrastructure, and cloud in-
frastructure. As mentioned in Section 2, our approach is built on top of an edge network, which is
built as a Distributed Hash Table (DHT) network [19]. We assume that every edge device trusts
all devices to establish a direct communication link; they all belong to the same local administra-
tive domain. Furthermore, in this work, our primary focus resides at edge infrastructures, while
we assume that the fog and cloud infrastructures are considered as Infrastructure as a Service

(IaaS) [18]. We assume that the system designer configures the edge network to connect to the
IaaS services.

Executing components on heterogeneous environments (i.e., edge tier, fog tier, or cloud tier) is
crucial. For instance, an application with multiple components can scale on multiple instances run-
ning on different locations in either edge or cloud, depending on current demands and the applica-
tion’s constraints. To overcome the challenges introduced with heterogeneous environments, we
consider Docker5 as our homogeneous application runtime platform that follows the “run once, run
anywhere” model. The Docker platform represents a lightweight, stand-alone, executable package
that contains everything needed to run the specifically added component. The application runtime
is essentially responsible for executing edge applications (i.e., container based) on edge devices or
on premises. Thus, to deploy edge applications in Edge-Cloud infrastructure, components are pack-
aged in individual Docker containers.

4.2 Deployment and Scaling Models

In our conception, edge applications can be thought of as a set of deployable software components
running on premises of the Edge-Cloud infrastructure. Thus, edge application components can be
deployed and scaled according to the following models [3]:

• Everything in the Cloud: The application components are deployed in the cloud. Essen-
tially, this model is suitable when applications require significant computation and storage
capabilities.
• Everything in the Edge: In this model, application components are distributed across

available devices at the edge of the network. In essence, edge networks may exist in different
settings starting from private edge networks (e.g., smart home) to enterprise edge networks
(e.g., industries, health, etc.), as well as the public edge networks (e.g., smart city). Further-
more, researchers exchangeably use two terms for the available devices at this layer, such as
edge and fog devices [8]. This study refers to an edge device as low powered and resource
constrained (i.e., lower computation and storage capabilities). In contrast, a fog device is
much more powerful than edge devices and less than the cloud.
• Hybrid Edge-Cloud: In this model, application components are distributed across available

resources at the edge, fog, and cloud. Essentially, the hybrid model enables deploying and
executing applications with low-latency requirements and resource-demanding processes.

5Docker, https://www.docker.com/.
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Each mentioned model has different characteristics in terms of cost, latency, privacy, and other
quality properties [3].

4.3 Elasticity Requirements

Elasticity properties at the edge are crucial for executing edge applications and fulfilling their dy-
namic resource demands. In Edge-Cloud architectures, elasticity targets not only resources and
their capacity to scale but also their relationships with various forms of costs and quality [7].
In this context, multiple stakeholders may be involved in specifying elastic requirements. For in-
stance, the developer could specify that the latency between application components must not
reach 20ms without carrying out how many resources should be used to achieve the desired state.
An edge network provider could specify its resource utilization schema; for example, when over-
all utilization at the edge is higher than 90%, it enables scaling applications toward fog or cloud
infrastructure. To enable such a feature, we consider a declarative language called SYBL to allow
users to specify an edge application’s elasticity requirements at the design time [6]. We extend
the language and focus on developing novel constraints and enforcement strategies to support
edge application characteristics running on Edge-Cloud infrastructures. In addition, we extend
and optimize the language runtime engine to support controlling Docker-based edge applications
and enable execution on low-powered edge devices. We provide a time-based mechanism that
analyzes workloads generated by incoming requests to optimize and avoid unnecessary scaling
operations. More specifically, the time-based mechanism controls for a few seconds (i.e., a config-
urable value, e.g., 20 seconds) if the increased load on a particular component is handled without
executing any scaling operation. The feature mentioned above is useful in situations when the
increased or decreased load in a component is occasional and not persistent.

SYBL enables users (i.e., developer or system user) to specify application elasticity requirements
in a declarative way represented in the form of (1) monitoring (i.e., specifying which metrics to
monitor), (2) constraints (i.e., specifying the limits in which the monitored metrics can oscillate),
(3) strategies (i.e., specifying actions to be followed in case the constraint is violated or becomes
true), and (4) priorities (i.e., specifying constraints with higher priority than the other ones). The
user can specify elastic requirements at different levels of edge application. Thus, elasticity con-
trols can be achieved at the (1) edge application level (i.e., specifying high-level application elastic
requirements) and (2) edge component level (i.e., specifying low-level application elastic require-
ments). Listing 1 shows an example of elasticity requirements specified by the user. At the edge
application level, the user may specify the maximum cost allowed for the entire edge application
executed in an Edge-Cloud infrastructure. The user could specify that the application needs to
scale down when the cost is high and CPU usage is below 20%. Or, when the cost is below the
predefined value (e.g., 5 euros) and the CPU usage is higher than 80%, the application needs to
scale up. At the edge component level, for instance, elasticity requirements from the developer
side can be applied regarding the quality, such that, e.g., if the edge device battery is less than 10%,
the component must scale up to avoid application failure.

The SYBL elastic requirements can be easily injected/integrated into various description lan-
guages. For instance, the elastic requirements can be easily integrated into the cloud application
description language TOSCA standard,6 docker-compose files (i.e., YAML), or JavaScript Object
Notation (JSON), or specified separately through XML descriptions. In the current version of our
prototype, we specify edge application elastic requirements in a JSON file. Nevertheless, future

6OASIS, Topology and Orchestration Specification for Cloud Applications (TOSCA), http://docs.oasis-open.org/tosca/

TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.
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Listing 1. An example of elastic requirements.

work remains to provide a mechanism that will inject elastic requirements easily in the YAML file
(i.e., since our application runtime platform considered is Docker).

5 DECENT - DESIGN AND PROCESSES

This section provides an overview of our approach to deploy service-based edge applications
and control their elasticity on an edge network. We extensively outline the main components of
DECENT and the interaction of its components during runtime.

5.1 System Overview

An overview of our approach at design time and runtime of the system is illustrated in Figure 3.
The developer defines the edge application model and its requirements at design time, as described
in the previous section. In essence, the developer defines the application structure and resource
requirements for each component. The elasticity requirements and deployment policy can be de-
termined by the developer as well as by the system user (i.e., owner) before deployment. Along
these lines, the deployment process starts when the user requests the system’s configurator device
to deploy an edge application. Exploring the module that enables users to interact with the system
is out of this article’s scope.

Each edge device consists of similar system components, as illustrated in Figure 3. However, the
edge device that becomes the system’s configurator provides the main features to control edge
applications and runtime aspects. The architecture of the approach comprises five main modules,
as described in the following.
Deployment Planner(DP): The goal of this module is to generate QoS-aware deployment plans

for deploying edge applications on premises of Edge-Cloud infrastructure. The DP module provides
two main sub-modules: (1) Planner and (2) Resource Manager. The Planner generates deployment
plans for a given edge application by considering both its app requirements and deployment policy.
The Planner is essentially responsible for finding all possible eligible deployment plans by consid-
ering application hardware requirements (i.e., CPU, RAM, and storage), bandwidth, and latency
between components. Moreover, the deployment and scaling policies tell the Planner which in-
frastructures are allowed to be considered when deploying application components. The Planner
gets the current state of the infrastructure(s) through the Resource Manager. The Resource Man-
ager is responsible for monitoring and storing the infrastructure-specific metrics such as resource
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Fig. 3. Overview of DECENT’s components and their interaction during runtime.

capabilities of edge devices (i.e., hardware), their current resource utilization, and link latencies be-
tween devices. Such information is provided by Monitoring Agents deployed at each edge device.
Monitoring Agent(MA): This module measures a set of infrastructure-specific metrics and

application performance metrics continuously. In essence, the infrastructure-specific metrics are
CPU, RAM, storage, battery levels (when applicable), and their current utilization. Nevertheless,
the MA module continuously measures application metrics such as hardware-related resource con-
sumption, response time, application status, and so forth. However, note that our approach moni-
tors only metrics specified in the elasticity requirements. The MA module periodically sends infor-
mation to the Resource Manager. Such data is temporally stored locally on the configurator device,
and it is regularly updated when an application is deployed. In this article, we do not investigate
how the monitoring agents are implemented in cloud and fog environments. Several studies [5, 11]
address relevant aspects for monitoring agents, and several monitoring tools exist for providing
the necessary information.7,8

Elasticity Enactment Engine (3E): This is an event-driven module with the goal to han-
dle the actual coordination between the application’s desired state and the current application
elasticity state. In the DECENT runtime, elasticity requirements are interpreted by the Elasticity
Interpreter deployed on each edge device. When a component’s elasticity constraint is violated, the
Elasticity Interpreter communicates such information to the 3E module. Afterward, the 3E module
enforces required actions such that the component requirements are fulfilled. Thus, the 3E module
is the central part of the runtime system, which manages edge applications. In contrast, Elasticity
Interpreters are local runtime engines that capture application component elastic requirements, in-
terpret, and communicate necessary actions to the enactment engine. The following section briefly
outlines the overall process of managing edge applications at runtime.
Orchestrator: This module provides several functionalities to support executing edge appli-

cations in dynamic edge networks. The Orchestrator functionalities are mostly addressed in our
previous works (as discussed in Section 2) and are not evaluated in this article. In addition to

7Nagios, https://www.nagios.com/.
8Ganglia, http://ganglia.sourceforge.net.
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that, the Orchestrator is responsible for creating, controlling, and managing the cluster of Docker
Engines called swarm. Essentially, the system’s configurator device simultaneously is the swarm
manager, and the other edge devices are worker devices. The swarm manager maintains the swarm
state through the Raft Consensus Algorithm.9 On the contrary, the Orchestrator is responsible for
keeping the quorum of managers in the system consistent.

At system design time, the Orchestrator is configured regarding the number of swarm manager
devices that should be consistent at runtime and the expected size of the edge network. The system
designer should consider a tradeoff between performance and fault tolerance when it defines the
number of swarm managers. Having more swarm manager devices makes the system more fault
tolerant, while writing performance is reduced (i.e., due to the network round-trip traffic). We
configure an odd number of swarm manager devices to take advantage of the swarm mode’s fault-
tolerance features. The Orchestrator promotes new swarm manager devices whenever the edge
network doubles the expected network size. Notice that we may have a maximum of five managers
in an edge network.

Nevertheless, the Orchestrator periodically monitors the desired swarm manager number (i.e.,
system designer perspective) and the current number of swarm managers. Thus, if the desired state
is violated, it takes the required actions to keep swarm managers’ quorum in the system. Notice
that the Orchestrator configuration data (i.e., swarm managers, swarm cluster joining key, etc.) is
stored as DHT, meaning that it is shared and kept consistent between all devices within the whole
network.

5.2 The Process

Edge applications are multi-container Docker-based applications. This means that the developer
defines components that make up an edge application, including their hardware requirements
specified in the docker-compose file. Essentially, an edge application and each component have
their own unique name when they are deployed. Furthermore, at design time, the user specifies the
deployment and scaling model and the elastic requirements (as presented in Listing 1). Both these
requirements are formatted and stored as a single JSON file. Thus, we assume that the mentioned
requirements are given at the design time.

The process starts when the user requests (1) the configurator device to deploy an edge applica-
tion at an edge network (as illustrated in Figure 4). At this phase, the deployment planner interacts
with the Orchestrator to get the current hardware infrastructure status, available edge devices, re-
source information, resource utilization rates, and latency of the communication links between
devices ((2)–(3)). Afterward, it gets the edge application docker-compose file and specified hard-
ware requirements and generates all eligible deployment plans (3). To generate such plans, it runs
the algorithm presented in [4]. In essence, for each application component, the DP module finds all
possible devices that fulfill the component’s hardware requirements. Furthermore, the DP module
notifies the user whether the edge application can be deployed at the specified deployment and
scaling model. For instance, if the deployment and scaling model is set to the only edge, it means
that all application components must be deployed at the edge (if possible).

Suppose the DP module generates at least one or more deployment plans. For each component,
we have a list of compatible devices that can run them. Afterward, the DP module gets the list
and updates the docker-compose file by adding the placement constraints. This means that for
each component, it specifies devices where the component can be deployed. After this process is
finished, the configurator executes Docker-based commands to deploy the edge application. De-
ploying and starting components (i.e., containers) can take several seconds and depend on edge

9Raft Consensus Algorithm, https://raft.github.io/.
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Fig. 4. The process at runtime.

device hardware capabilities. However, in this article, we do not investigate performance aspects
when deploying and starting containers. A study that acknowledges the problem and addresses
relevant aspects is presented in [1].

Through the Orchestrator module, the configurator shares elastic requirements with edge de-
vices (5). Elastic requirements are shared by using DHT. Essentially, each edge device automatically
identifies when the configurator assigns a container (e.g., named φ1) to them. Thus, when φ1 is in
the running state, elasticity interpreters on each device query DHT to receive elastic requirements
for the running applications. The user can change elastic requirements at runtime. The changes
made on elastic requirements (i.e., in the configurator device) are automatically updated by other
edge devices and captured by corresponding Elasticity Interpreters. Afterward, before starting elas-
ticity monitoring (7), the elasticity interpreter first checks whether it is the only device running
φ1. The configurator device provides information (6), and such information is required to avoid
situations where multiple elasticity interpreters start monitoring φ1 (i.e., when φ1 runs on several
devices). Moving on, consider a situation when an elasticity interpreter monitors a constraint that
says the edge application component requires to scale up when it uses 80% of the edge device
CPU (e.g., see Listing 1). Thus, when the specified constraint is violated, the interpreter commu-
nicates it to the 3E module (8), which is responsible for enforcing the scaling operation. Note that
monitoring agents provide hardware-related metrics and container-based metrics.

The 3E module is triggered when it receives information to enforce a specific strategy in the par-
ticular application component. In essence, the enforcement operation for the violated constraint is
specified in elastic requirements. Before executing the action, the 3E module checks whether the
application component should scale up or down. If the application component requires scale-up,
it requests the DP module to check whether the component can scale in the current infrastructure
state. We apply this strategy to avoid enforcing scaling operations in infrastructure with insuf-
ficient resources. Otherwise, the Docker runtime environment will continuously try to scale the
application component without the mentioned strategy, causing network congestion and compu-
tation overload. Moreover, the configurator device for each edge application periodically monitors
elastic requirements at the edge application level. The overall resource usage (i.e., for all running
components) is considered and whether constraints are violated at the application-level require-
ments is analyzed.
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In case the configurator device fails, edge devices hold an election to find a new configurator
device as presented in [21]. Elasticity interpreters contact other swarm managers to enforce scal-
ing operations until a new configurator device is elected. Since all edge devices keep consistent
data through DHTs, the newly elected configurator is initialized quickly by considering the locally
stored data. Nevertheless, each device in the network knows the system’s current configurator de-
vice at any time. Note that the aspects mentioned above are primarily addressed in our previous
works (as discussed in Section 2) and are not evaluated in this article. Furthermore, edge applica-
tions running at the edge network are not affected by possible configurator failure.

6 EVALUATION

This section first presents details about the prototype implementation, setup environment, and
limitations. Furthermore, we experimentally evaluate the approach’s effectiveness and present the
evolution of an edge application in elasticity space. We conclude with a discussion in Section 6.3.

6.1 Prototype Implementation, Setup, and Limitations

To assess the proposed approach, we extend the prototype of [21] with a lightweight mechanism
that enables deploying and controlling the elasticity of edge applications in a decentralized man-
ner at an edge network. The prototype is partially developed and written in Java. The prototype
is tested in a real environment on edge devices (i.e., Raspberry Pi 3 Model B V1.2) with 4 × ARM
Cortex-A53 CPU at 1.2 GHz, 1 GB of RAM, and 16 GB disk storage. The prototype is deployed
on each edge device, and each edge device runs the Docker Engine as the edge application run-
time platform. To implement the deployment generator, we refined and extended parts of the
FogTorchΠ [4] simulator to generate all eligible deployment plans for an edge application. In addi-
tion, the simulator does not consider dynamic environments or runtime aspects, does not provide
elasticity features, does not implement monitoring tools, and does not implement any communi-
cation protocol between computation entities at the edge. Thus, the extensions we refer to are
further functionalities developed to support the runtime aspects of edge applications (e.g., elastic-
ity, etc.) in a realistic testbed. Along these lines, the planner is fully integrated into the prototype.
It gets the infrastructure state (i.e., available devices, network structure) and generates plans by
considering real-time infrastructure-specific metrics.

The 3E module is implemented as a thread that runs continuously and listens for requests gener-
ated by elasticity interpreters. This module enforces various operations by Docker Java API10 that
allows building, controlling, updating, and running containers. Docker Engine REST APIs allow
us to configure and update containers (i.e., running services) whenever it is needed. Additionally,
some features that the mentioned APIs do not support were implemented by executing Docker
commands using the command-line interface. Elasticity Interpreters are deployed on each edge
device, and for each running container with its elastic requirements, a single thread is executed
to interpret those requirements. To implement the monitoring agent, we used Hyperic Sigar11 to
collect hardware information on edge devices. The network latency between devices is collected
by using the ping command. Furthermore, Docker Java API is used to collect hardware utilization
data about running containers (i.e., state, CPU, memory, storage, etc.). For each running container
with elastic requirements, a single thread is executed to monitor specified elastic metrics. Thus,
the thread number is dependent on the number of running containers on an edge device.

To evaluate our prototype, we exploited the testbed (i.e., edge network) composed of 10 edge
devices placed close to each other. Edge devices in the testbed are connected through a wireless

10Docker Java API, https://github.com/docker-java/docker-java.
11Hyperic Sigar, https://github.com/hyperic/sigar.
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Fig. 5. Edge safety application.

connection with a nominal speed of 10 Mbps and 5 Mbps in download and upload. Furthermore, the
prototype’s main limitation is being executed in the Java Virtual Machine (JVM) environment.
We acknowledge that the JVM is resource expensive; however, we aim to show the approach’s
feasibility within this article.

6.2 Use Case, Experiments, and Results

Consider an edge application (i.e., edge safety application) providing a service as described in our
motivation scenario (Section 2.2). The edge safety application is partially developed, and it is made
out of five components, with three of them written in Python (as illustrated in Figure 5). The front-
end component φ1 enables edge devices (i.e., drones) to interact with service and continuously
upload their real-time images, including location coordinates. The Redis component φ2 collects
new images and stores them in binary format. The processing component φ3 consumes data and
processes (i.e., image analysis) and stores them in the database component φ4 (i.e., Postgres). Fi-
nally, the results component visualizes the safe path for the rescue team member residing in the
affected zone.

Software components are containerized (docker images). Each container is configured with spe-
cific resource requirements (i.e., 1 CPU (1.2 GHz) and 60 MB memory) and resources that containers
can use on the hosting edge device. Notice that to reserve and use a various number of CPU re-
sources per container, the RPi3 must be upgraded to the latest firmware.12 Furthermore, we assume
that the component images are already available on each edge device. Such an assumption is made
due to the latency issues introduced when images are downloaded from centralized devices. In [1],
the authors acknowledge the problem and address relevant aspects to improve deployment time.

Figure 6 illustrates the average time required to generate all possible valid deployment plans for
each edge safety application component when needed to be deployed and scaled. We simulate the
generation of deployment plans 10 times and illustrate their maximum average time requirements.
For the edge safety application with five components and the given testbed, we may have up
to 84,960 generated valid deployment plans (i.e., maximum average time is 6.73s). Nevertheless,
once a single valid plan is founded, the process is interrupted, and the application components
are deployed or scaled. Notice that when the infrastructure changes, the DP module must generate
all valid deployment plans. Table 1 presents the maximum deployment plans generated for each
software component (i.e., container). Notice that the maximum time requirement and the number
of generated valid plans change based on the available resources at edge networks as well as edge
application requirements specified at design time.

12Raspberry Pi, https://github.com/raspberrypi/firmware.
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Fig. 6. Edge safety application deployment at an edge network with 10 low-powered edge devices.

Fig. 7. Workload used in the experiment.

Table 1. Number of Eligible Deployments Plans (i.e., in a Testbed

with 10 Edge Devices)

Edge Safety Application Generated Plans Time (seconds)

One Component 10 0.15 s
Two Components 100 0.17 s
Three Components 1,000 0.36 s
Four Components 9,720 1.40 s
Five Components 84,960 6.73 s

The edge safety application is configured to run and scale only at the available devices at the
target edge network. To simplify the scenario, we evaluate the front-end component and show
the adaption process in response to its changing workload during its runtime. The front-end is the
first component in which drones (i.e., edge devices) interact with the edge application by uploading
their images continuously (i.e., every 1 s).

Figure 7 illustrates the workload generated for the safety edge application and used in the
experiment. First, the workload increases linearly every 3 seconds. Afterward, we stress test our
approach by creating concurrent requests (i.e., up to 30 requests/s) and examine the front-end
component behavior during its runtime. Such a workload is generated by new edge devices that
use the service. For instance, referring to Figure 7, when the component receives up to 50 requests
per second, the component may be required to scale out to operate correctly since it may utilize
the CPU more than 80%. Or, when the component receives fewer than 50 requests per second, it
means that it may need to scale in to not overuse resources. Generally speaking, edge applications
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or their software components may experience various workloads over time (i.e., periodically,
continuously, or unpredictably). The given workload is just an example used for testing purposes
to show our approach’s goal to automatically control edge application behavior in elasticity space.
To enable elastic behavior for the front-end component, we define elastic requirements in Listing 2.

Listing 2. An example of elastic requirements: Front-end component.

Elastic requirements given in Listing 2 define the elastic behavior of the front-end component.
Strategy St3 states that if the average response latency is higher than 100 ms, the component should
scale out to ensure the service’s quality. When Co1 or Co2 is violated, strategies St1 or St2 enforce
specified actions to keep resource utilization in acceptable ranges. As can be noted, the specified
metrics are monitored continuously for the front-end component. Furthermore, each constraint
may have various priorities. For instance, no matter how much the CPU is utilized, the front-end
component must scale if the provided service has higher latency than a specified threshold. To that
end, if both constraints are violated, the Co3 is enforced since it is prioritized over Co2. Similarly,
Co3 is enforced first since it is prioritized over Co1.

The first graph of Figure 8 shows the CPU utilization by the front-end component under the
given workload (see Figure 7). The second graph of Figure 8 shows the front-end component adap-
tion process in response to the workload. As can be noted, whenever elastic constraints (i.e., Co1
and Co2) are violated, the front-end component scales up or scales down. The adaption process
occurs automatically in response to the current workload. The front-end component scales on mul-
tiple instances (i.e., containers) to provide the desired service quality. As can be noted, even with
continually changing the workload of the front-end component, the CPU utilization remains be-
tween elastic boundaries. This ensures that the desired service quality is always guaranteed. The
other important aspect is to overcome resource over-provisioning. As can be noted, when the front-
end component’s workload decreases, the container number is decreased as well (see the second
graph of Figure 8). Besides, the front-end component’s memory utilization remained within elastic
boundaries and didn’t violate elastic constraints. The CPU of an edge device may fluctuate up and
down very quickly due to various workloads. This may cause undesired scaling operations for the
same workload. Thus, specified metrics are monitored for 5 seconds to overcome the mentioned
problem. The scaling operation is enforced if the mean value violates elastic constraints. Further-
more, Figure 9 shows the front-end component latency over time and the elastic constraint Co3
violation. However, in this situation, both Co1 and Co3 constraints are violated. As can be noted
from the elastic requirement, the Co3 constraint is prioritized over the Co1. In this case, strategy
St3 will be enforced to keep the latency within the elastic boundary.
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Fig. 8. The CPU utilization and adaptation process.

Fig. 9. Front-end component latency and adaptation process.

A significant challenge remains in the time required to start containerized components’ low-
powered edge devices. In our case, starting safety edge application components takes between 20
and 30 seconds. After the scaling operation is enforced, our approach checks and waits for whether
a container is started or shut down. Thus, we avoid undesired situations such as enforcing mul-
tiple scaling operations for the same workload. Contrary to the starting operation, the shutdown
process occurs in a few seconds for all containers. Nevertheless, edge application components can
scale vertically and horizontally depending on the available resources at the edge. The application
runtime platform (i.e., Docker Engine) manages this process and scales components within the list
of eligible edge devices generated by the DP planner.

In Figure 10, we show the evolution of the front-end component in the three-dimensional space
(cost, quality, and resources). The quality refers to the latency, the resources refer to the allocated
CPU (i.e., edge devices), and the cost is estimated based on the resource allocated. In this case,
the cost value is an assumption made to simulate the price paid for resource usage. As can be
noted from Figure 10, when the service quality decreases (i.e., starting point with green dots), the
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Fig. 10. Evolution of front-end component in the elasticity space.

front-end component scales by increasing the number of resources used and the cost is increased.
Furthermore, the edge application scales down when the service is not used (i.e., red dot). To that
end, such an approach is guaranteed to meet edge application resource demands at runtime. Other
edge application components evolve in the elasticity space based on their load during runtime.
Similarly, the configurator device monitors elastic requirements specified at the edge application
level. Thus, the configurator device considers the overall resource consumption of edge application
components. For instance, the user may specify that a particular edge application cannot use more
than 50% of available resources at the edge.

6.3 Discussion

We have demonstrated through a running example that automatic scaling of edge applications is
easily achieved in an edge infrastructure with low-powered devices by using DECENT. Further-
more, we showed that our approach helps avoid highly undesirable situations, such as resource
over-provisioning. This ensures that the available resources are used whenever edge applications
need them. Nevertheless, elasticity features are crucial in avoiding edge device failures due to re-
source over-utilization. For instance, a low-powered edge device can quickly fail when an edge
application or a software component fully utilizes device resources. Thus, specifying elastic re-
quirements and the DECENT mechanism helps to avoid the overloading of edge devices.

Several assumptions inherent in our approach must be further investigated. In the current pro-
totype, elastic constraints do not conflict with each other. We focus on developing novel con-
straints and enforcement strategies related to these applications. Simplifying the development
process of elastic specifications is among the future works we plan to do. Thus, we plan to in-
tegrate the language into an IDE such as c-Eclipse and extend it with further functionalities. The
c-Eclipse framework provides a user-centric interface through which developers can describe their
applications for deployment over edge and cloud. The language integrated into a development
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environment will make it easy for users to develop elastic specifications and specify correct values
to avoid the wrong configuration. Nevertheless, the following tool will also help to detect conflict-
ing constraints that the user may select. Nevertheless, we acknowledge that the user may specify
conflicting elastic constraints, and thus, we plan to investigate various techniques that would help
identify and avoid such situations.

Within this article, our primary focus resided in enabling elasticity features at edge infrastruc-
tures; thus, we consider only edge applications where all components are deployed on the edge
(i.e., everything on the edge model). Accordingly, adding cloud or fog devices will expand overall
available resources and allow executing application components (i.e., containers) in these environ-
ments when insufficient resources are at the edge. In future work, we will investigate performance
aspects when moving edge application components in large-scale Edge-Cloud infrastructures and
controlling their elasticity from the edge.

7 CONCLUSION

Satisfying dynamic and stringent requirements of edge applications has become challenging for
resource-constrained edge networks. Even though edge applications can be modeled as multi-
components, dynamic workloads may cause unexpected latencies that are higher than the expected
response time between application components, IoT devices, and end-users. We proposed an ef-
ficient solution that simplifies the deployment process and enables elasticity controlling in edge
applications deployed in the Edge-Cloud infrastructure to overcome such challenges. The devel-
oper and user can characterize edge applications by specifying elasticity requirements that are
captured and interpreted by DECENT. The DECENT runtime mechanism then performs complex
elasticity controls at the edge of a network.

Edge networks can be different in size and setting; thus, the proposed system is configurable by
the system designer. In this article, we consider edge networks as resource-constrained environ-
ments composed of low-powered edge devices. The experiments conducted in a realistic testbed
showed the feasibility of executing elastic features on low-powered edge devices and adapting
edge application components at runtime at the edge. Furthermore, edge applications are executed
in a runtime that considers the heterogeneity of edge resources. The proposed framework au-
tomatically reconfigures edge applications to meet their specified elastic requirements. In future
work, we plan to perform an extensive evaluation of the approach by considering distributed cloud
entities in the system. Furthermore, we plan to develop a user-centric interface through which de-
velopers and users can easily describe their edge applications for deployment over edge and cloud
environments.
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