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Abstract—Recent advancements in distributed systems have enabled deploying low-latency edge applications (i.e., IoTapplications)

in proximity to the end-users, respectively, in edge networks. The stringent requirements combined with heterogeneous, resource-

constrained and dynamic edge networks make the deployment process a challenging task. Besides that, the lack of resource discovery

features make it particularly difficult to fully exploit available resources (i.e., computational, storage, and IoT resources) provided by low-

powered edge devices. To that end, this article proposes a decentralized resource discovery mechanism that enables discovering

resources in an automatic manner in edge networks. Through replicating resource descriptions (i.e., metadata), edge devices

exchange information about available resources within their scope in a peer-to-peer manner. To handle the resource discovery

complexity, we propose a solution to built edge networks as a flat model and enable edge devices to be organized in clusters. Our

approach supports the system in coping with the dynamicity and uncertainty of edge networks. We discuss the architecture, processes

of the approach, and the experiments we conducted on a testbed to validate its feasibility on resource-constrained edge networks.

Index Terms—Edge computing, Internet of Things, decentralized, resource discovery

Ç

1 INTRODUCTION

RESEARCHERS from academia and industry stakeholders
suggest adding more computational resources (i.e., per-

ceived as edge devices) in proximity to the end-users to over-
come high-latency issues between the cloud and the Internet
of Things (IoT) domain [1]. Edge devices are low-powered
computer entities featuring different capabilities; resources
available may differ in terms of computational capabilities
and IoT resources attached to them. Awide range of available
resources at the edge has introduced new opportunities such
as deploying low-latency, privacy-awareness, and resilient
edge applications (e.g., IoT applications). In this regard, many
studies have been carried to exploit edge networks for various
purposes (i.e., from processing sensory data streams to
EdgeAI applications) [2]. Notably, we consider edge networks
as resource-constrained, heterogeneous, and dynamic envi-
ronments where multiple low-powered edge devices in prox-
imity are connected. In this sense, we may have various edge
networks (e.g., smart building, smart home, drone network,
etc.) where end-usersmay deploy different edge applications.

In the past few years, computer scientists have been
mostly focused on proposing multiple techniques for
resource allocation problems to minimize latency and maxi-
mize resource utilization at the edge. Notably, today’s
applications are not monolithic; they are divided into multi-
ple independent deployable tasks. Each task may have

various resource requirements that need to be fulfilled by
available edge devices upon deployment. Tasks are charac-
terized by requirements such as computational (i.e., proc-
essing, memory, storage), energy, or bandwidth. However,
resource allocation approaches often overlook the depen-
dence between tasks and IoT resources (e.g., sensors and
actuators)[3]. Additionally, despite the numerous advan-
tages introduced by edge networks, communication
between edge devices and the network organization has
been neglected by many research papers [4], [5]. According
to the paper [6], the communication and network organiza-
tion type of a platform affects the functionality of the final
applications deployed at the edge infrastructure.

Very few research works consider IoT resources as an
application requirement that needs to be fulfilled when
deploying them at the edge [7], [8]. For example, computing
a local weather forecast in a smart agriculture setting may
require various IoT resources such as temperature and
humidity readings from available sensors across a crop field
[5]. In such a scenario, application tasks dependent on par-
ticular IoT resources must be deployed on edge devices pro-
viding those resources. Notably, edge devices are not
equipped with the same capabilities, and such a stringent
constraint reduces the number of eligible deployments at
the edge. For example, the allocation technique [7] tries to
overcome the problem by enabling sharing IoT resource
information within neighbor nodes. Similarly, the proposed
solution [8] acknowledges the problem; however, it faces
latency issues, and it considers a limited number of edge
devices in the network topology. Nevertheless, both
approaches do not address issues related to the communica-
tion between edge devices, network organization, and
resource discovery.
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To overcome these shortcomings, we discuss two major
issues. First, edge networks should be designated to handle
the complexity of discovering resources in a decentralized
and automatic manner. Thus, we design edge networks in a
flat model where edge devices in certain proximity are con-
nected in a peer-to-peer (P2P) way. A set of edge devices
form a cluster; while multiple connected clusters form an
edge network, respectively an edge neighborhood. Besides
that, we introduce system coordinators with their corre-
sponding functionalities to organize edge devices and sup-
port the resource discovery process in an edge
neighborhood. Second, resource managements’ fundamen-
tal objective is to discover resources available at the edge
[9]. Edge devices provide heterogeneous resources and are
equipped with a rich set of IoT resources. We refer to het-
erogeneous resources as computational, sensing, context
data, or other domain-specific resources. Naturally, per-
forming a resource discovery algorithm for each resource
on the entire network is possible. However, such a process
is computationally intensive, and resources are discovered
by querying the entire network based on a keyword [10].
Thus, we advocate that exchanging information about avail-
able resources between edge devices in an automatic man-
ner enables: i) sharing resources across the whole system
and ii) performing complex queries by edge devices locally.

In this paper, we extend the framework of [11] with a
methodology to built edge networks as a flat model and
enable edge devices to be organized in clusters. Our pro-
posed framework enables discovering heterogeneous
resources and make them available at the runtime. A
resource is described by providing certain core information
about the functionality and its properties. This type of
description, known as the resource’s metadata, is replicated
among edge devices and stored in a decentralized manner.
Furthermore, we treat privacy aspects based on each edge
device’s resource preferences, ensuring that not all resour-
ces are advertised across the whole system. Specifically, our
concrete contributions are as follows:

� We develop a prototype enabling edge devices to be
connected in a P2P manner and form an edge net-
work. Our approach is built on top of the Kademlia
Protocol [12] used as the communication protocol
between edges devices. To enable scaling of our
approach, we propose a solution to break down
edge networks into clusters as well as introduce new
coordinators to handle the complexity to discover
resources automatically.

� We advocate decentralization as the system can
operate without a static entity for discovering avail-
able resources. Essentially, coordinators are placed
dynamically and run on the most suitable edge devi-
ces providing various services. Our approach sup-
ports the system in coping with the environment’s
dynamicity and uncertainty and continuously re-
evaluates coordinators’ placements.

� To validate the approach’s feasibility, we show that
the prototype’s footprint is limited to hardware
resources and network bandwidth. We evaluate our
prototype on a testbed composed of low-powered
ARM-based edge devices.

The rest of the paper is structured as follows. After a
motivating example used throughout this paper in Section 2,
related work is presented in Section 3. Section 4 presents our
approach to organize edge devices in edge neighborhoods
and resource modeling. Section 5 describes in detail the pro-
posed algorithm in charge of determining system coordina-
tors and the framework for automatic resource discovery in
edge neighborhoods. Section 6 provides the experiment
results to evaluate the proposed solution. Finally, Section 7
concludes the paper and outlines future work directions.

2 MOTIVATION SCENARIO

To motivate our discussion, we consider emergencies such
as natural disasters (e.g., earthquakes, fires, floods) in a city
[13]. Various city areas can be affected by natural disasters
such as earthquakes, which can destroy infrastructure,
cause injury or death, and trap people under buildings. In
such situations, time is valuable, and drones could be used
to analyze the situation and assist rescue teams in locating
and communicating with victims trapped under a collapsed
building. In such a scenario, multiple connected drones are
essentially edge devices forming an edge neighborhood.
Drones flying over the city’s affected areas (i.e., neighbor-
hoods) assist rescue teams in locating people trapped under
a collapsed structure. Each drone is equipped with various
computation capabilities and integrated sensors (e.g., radar
sensors, infrared cameras, electronic noses, etc.). We con-
sider drones as multipurpose devices where the rescue
teams may deploy various services depending on the emer-
gency. Furthermore, we consider three-tier Edge-Cloud
infrastructure (i.e., cloud, fog, and edge) [14]. Fog devices
(i.e., server-graded hosts) placed in base stations provide
computational and storage capabilities to edge neighbor-
hoods. In addition to that, base stations may provide docker
charge stations for charging drones. Cloud hosts can be
used to store data for long terms.

We assume that drones are connected via a wireless con-
nection provided by the ground users (i.e., rescue team) or
by drones [15] covering a particular city area (e.g., neighbor-
hood). Based on the situation seen in Fig. 1, we assume that
the rescue team deploys (1) a public safety IoT service that
detects a dangerous zone in the affected area (i.e., discover-
ing cracks, smoke, hazardous gases, etc.). Such a service

Fig. 1. IoTsafety application [13].
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aims at helping rescue teams (2) find a safe path, and avoid
danger zones. The service is dependent on various resour-
ces such as multiple infrared cameras, radar sensors, and an
electronic nose that are integrated into various drones. Since
each drone is a potential candidate to run the service, it is
then evident that each edge devices should be able to auto-
matically discover resources in a decentralized manner and
make them available at runtime. In such use case scenarios,
we cannot depend on the service availability [16] offered
from physically static entities (3-4). Additionally, edge-
based systems with centralized architecture cannot run
properly due to the network dynamicity (i.e., drones may
join (5) and leave often).

3 RELATED WORK

We divide related work into two categories. First, we review
P2P approaches and communication types used at the edge.
Afterwards, we review related techniques on resource man-
agement as they apply to IoT.

3.1 Communication in Edge Networks

Many studies propose various allocation techniques to facil-
itate the deployment of IoT applications in edge networks.
In this context, many platforms use different communica-
tion types aiming to achieve particular system goals. The
current literature recognizes and briefly discusses commu-
nication types at the edge [17], [18]. According to the paper
[6], three main types of communications in Edge Comput-
ing are identified: hierarchical, P2P, and hybrid.

Notably, P2P approaches have shown great potential to
handle edge infrastructures in a scalable manner [19].
Therefore, a lot of research has been conducted in this con-
text, resulting in many approaches that aim at organizing
edge devices using different communication types [20].
Due to their fully distributed nature, P2P architectures are
both scalable, reliable [21], and fault-tolerant [22]. Many
edge-based platforms use P2P to organize edge devices
within the edge network [23]. Similarly, Cabrera et al. [24]
propose a P2P-based fog platform that enables storing data
generated from IoT devices. In the proposed approach,
data is stored among fog devices in a distributed manner.
A fog device can restore corrupted data by asking other
fog device in the network. In the mentioned works, devices
are organized in a P2P manner and are assumed to have
partial view [25] or full view of the network (i.e., Oð1Þ pro-
tocols). In contrast to the mentioned works, our approach
provides a decentralized mechanism to organize edge
devices in clusters. Our solution determines the most suit-
able edge devices to place coordinators in edge networks
and adapts to the network changes that may occur. Never-
theless, the proposed solution makes edge neighborhoods
autonomous environments and less dependent on central-
ized nodes.

3.2 Resource Management

Performing a resource discovery algorithm for each
resource on the entire edge neighborhood is computation-
ally demanding. For instance, queries like discovering all
cameras in a certain area are becoming highly desirable for
IoT applications. In the general sense, such system behavior

in decentralized common DHT protocols is hardly achiev-
able. Even though some DHT-based approaches support
discovering data through multi-attribute queries [26]; how-
ever, such methods remain unsuitable in IoT systems and
edge networks due to the high content lookup latency. In
addition to that, resource discovery is a critical challenge for
IoT application performance.

Service-based discovery has been widely studied [27],
[28]. Paganelli et al. [10] introduce a DHT-based IoT service
discovery that supports multi-attribute and range queries.
Furthermore, the proposed solution enables real-time moni-
toring of resource positions since it updates resource loca-
tion periodically. Santos et al. [22] propose a resource
discovery service for resource provisioning in fog environ-
ments. The proposed solution is based on DHTs and enables
exchanging provisioning information about the available
resources (i.e., performance metrics, workloads, etc.). How-
ever, in contrast to our approach, the proposed solution
does not address privacy aspects, does not consider discov-
ering IoT resources, and no actual provisioning mechanisms
are discussed.

Resource allocation and management have been widely
studied both in cloud and fog computing [17]. A taxonomy
of resource management at the edge is presented in [9]. Up
to now, many factors have been considered including time
(e.g., computation [29]), data size [30], cost (e.g., networking
and deployment[31], execution [32]), deploying self-adap-
tive IoT systems [33], user-application context [32], etc.,
which have been found to play important roles in resource
and service provisioning. Jain et al. [34] propose a solution
where the IoT application is divided into multiple tasks
annotated with location information. The application is
decomposed into fragments and deployed to the corre-
sponding individual compute nodes based on the annota-
tion. In contrast to the mentioned research papers, the
resource discovery aspect has been mostly ignored. Further-
more, none of the papers have addressed privacy aspects
when considering resource discovery.

Our approach’s second novelty lies in a decentralized
mechanism for automatic resource discovery in edge net-
works. Discovering resources at once represents a feasible
and optimal solution for edge neighborhoods. Through rep-
licating metadata between edge devices, we enable end-
users or edge applications to perform locally various com-
plex queries. Moreover, our resource discovery mechanism
considers resource privacy preferences ensuring that not all
resources are advertised across the whole system.

4 EDGE NETWORKS AND RESOURCE MODELING

This section introduces our approach to organize edge devi-
ces in an edge neighborhood. We describe basic definitions
and then discuss communication protocol between edge
devices. Subsequently, we discuss architecture modeling
and resource modeling in Section 4.4.

4.1 Definitions

We refer to an edge neighborhood as a resource-constrained
edge network, which is comprised of edge devices placed
close to each other (see Fig. 2). Edge neighborhoods are
formed in various geographical areas and within different
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contexts (i.e., smart homes, drones network, etc.). Notably,
they may vary in their sizes and settings; thus, our proposed
system is configurable by the system designer. In our con-
ception, edge devices are low-powered, heterogeneous, and
resource-constrained computational entities in the system.
Within the system context, edge devices may provide multi-
ple functionalities (e.g., act as a client device, server device,
and bootstrap device). Furthermore, edge devices are
grouped in clusters to promote scaling, reduce bandwidth
consumption, and manage the difficulty of discovering
resources in an automatic manner in edge neighborhoods.
Subsequently, edge devices within the same cluster are con-
sidered neighbor devices, as well as clusters close to each
other are considered as neighbor clusters. Each cluster con-
sists of a finite number of edge devices, and each device
belongs to one and only one cluster at a time.

In the system context, each edge device may serve spe-
cific roles such as i) cluster coordinator and ii) global coordina-
tor. Such roles are dynamically assigned to the edge devices
based on their resource capabilities (discussed in Sec-
tion 5.2). In Fig. 2, each cluster has a coordinator device (i.e.,
with a green circle) and a single global coordinator device
(i.e., with red and green circles). We assume that cluster
coordinators act as superpeers [35]. Each cluster coordinator
keeps track of the other coordinators and devices within the
same cluster (i.e., IP addresses, port). Similarly, edge devi-
ces in the same cluster store information for one another
and are always aware of their cluster coordinator and global
coordinator. A cluster coordinator may have various
responsibilities for a subset of devices (i.e., monitoring, dis-
covering resources, etc.). The global coordinator is responsi-
ble for monitoring coordinators, exchange resource
descriptions between clusters, and orchestrate edge applica-
tions in Edge-Cloud infrastructure (i.e., controlling elastic-
ity, migrating tasks, etc.). However, it remains the future
work to provide a complete solution for the coordinators
introduced in this paper. In this paper, we focus on three
main aspects: i) organizing edge devices in the edge neigh-
borhood, ii) determining the most suitable devices to place
the global and cluster coordinators, and iii) enabling auto-
matic resource discovery on heterogeneous and dynamic
edge neighborhoods.

Each edge device may serve as the entrance door into the
edge neighborhood. Essentially, edge devices provide core
functionalities to assign newly added edge devices in the

available clusters or create new clusters in the edge neigh-
borhood. We introduce three functionalities to identify the
maximum number of edge devices in a cluster. First, the
system designer may define a system-wide parameter to
bound the maximum size of clusters. Second, the system
designer may configure cluster coordinators to generate
random cluster size (i.e., not higher than the system-wide
parameter). And third, the system designer may define a
system-wide threshold value specifying the maximum CPU
utilization for cluster coordinators. As a result, depending
on the functionality enabled, we may have edge neighbor-
hoods with different cluster sizes. The number of clusters in
an edge neighborhood is not bounded.

4.2 Communication Protocol

In our proposed architecture, communications between
edge devices is realized through implementing the Kadem-
lia Protocol [12]. We have outlined [11] our main reasons to
use Kademlia as the communication protocol between edge
devices. Kademlia is a distributed hash table (DHT) for
decentralized P2P computer networks. Essentially, DHT is a
data storage that is kept consistent between all edge devices
within the whole edge network. Essentially, when an edge
device updates its local DHT, the changes are propagated to
all other devices, allowing them to be queried and manipu-
lated again. Likewise, information about current cluster
coordinators and the global coordinator is stored in DHT.

Each edge device implements a distributed routing table
and stores data in Kademlia buckets ordered by the local
device’s distance. The routing table size is bounded by
Oðlog2ðl=kÞÞ where l is the number of edge devices in the
edge neighborhood, and k is the bucket size. Once a bucket
is full, it starts replacing unresponsive devices in favor of
incoming devices. The routing table size in our proposed
approach is configurable, and it depends on the expected
edge neighborhood size. We consider edge devices as
resource-constrained computers (i.e., in terms of computa-
tional and storage capabilities); thus, edge neighborhoods’
size is not expected to be massive.

4.3 Forming an Edge Neighborhood

Fig. 2 shows an illustration of how our solution organizes
edge devices in an edge neighborhood. Initially, the edge
neighborhood is formed with an edge device E1. Since it is

Fig. 2. An example of an edge neighborhood consisting of sixteen devices organized in four clusters.
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the only device in the edge neighborhood, it is automatically
assigned to cluster C1 and determined as the cluster coordi-
nator C1coord and the global coordinator Gcoord. At the same
time, E1 serves as an entrance door into the edge neighbor-
hood. We assume edge devices progressively join the edge
neighborhood and each edge device also becomes another
bootstrap device Enb (i.e., n is a unique random ID). It is a
common approach to keep a list of always-running edge
devices to allow new edge devices to join an edge neighbor-
hood. In our case, E1 is the first device contacted by E2 to
join the edge neighborhood. The edge device E2 is assigned
to cluster C1 by E1 in coordination with C1coord. Further-
more, E2 is supplied with DHTs and the complete routing
table from E1. The process of adding new edge devices in an
edge neighborhood is presented in Algorithm 1.

Algorithm 1. Process of Adding a New Edge Device

Input: Enew
Output: Adding Enew to the edge neighborhood

1: CM ¼ this:MaxClusterSizeðÞ
2: CS ¼ this:CurrentClusterSizeðÞ
3: CN ¼ this:OtherClustersðÞ
4: booleanflag ¼ false

5: if CM < CS then
6: Enb:addDeviceðEnew; this:clusterðÞÞ
7: else
8: if CN! ¼ null then
9: Cclo ¼ this:findMostClosestðCNÞ
10: foreach c 2 Cclo do
11: if c:sizeðÞ < CN:clusterðcÞ:maxSizeðÞ then
12: Enb:addDeviceðEnew; c:clusterðÞÞ
13: flag = true

14: break

15: end
16: end
17: end
18: end
19: if flag = false then
20: Enb:addDeviceðEnew; newClusterðÞÞ
21: end
22: this.updateRoutingTable()
23: this.updateDHT()

The process continues with adding a new edge device
Enew by contacting Enb. Once Enew request to join the neigh-
borhood, bootstrap device Enb initially provides a unique
random ID (i.e., 160-bit). Afterward, Enb retrieves informa-
tion from its cluster coordinator Cncoord where to assign
Enew. A cluster coordinator Cncoord (i.e., referred as this)
maintain information regarding: i) own cluster maximum
size CM (line 1), the current cluster size CS (line 2), and other
available clusters CN (line 3). CN provides clusters with
available places where Enew can be assigned.

The MaxClusterSize() function is configurable and
enables the system designer to define the maximum number
of edge devices per cluster. Such value can be determined
by i) the system-wide parameter (e.g., five edge devices per
cluster or random value), implying that when the cluster
exceeds the maximum allowed devices, more clusters with
their corresponding coordinators should be designated to
handle the resource discovering complexity, and ii) the

CPU utilization threshold (e.g., CPU utilization set to 35
percent). When the system-wide parameter is set and ran-
dom cluster size is disabled, edge devices are grouped into
clusters of the same size (as illustrated in Fig. 2). Edge devi-
ces are grouped into clusters of different sizes when the
CPU utilization threshold is set. More specifically, when CM

and CS are equal, Enew is assigned to one of the existing clus-
ters, or a new cluster is created. Nevertheless, both options
can be used at the same time. However, the option that is
violated decides whether or not the cluster can scale further.
Furthermore, if the condition in (line 5) is not violated, Enew

is assigned to the current cluster of the Enb (line 6).
Neighbor clusters are found through using a system call

(i.e., traceroute command), which estimates proximity with
other cluster coordinators (i.e., using hop count and
latency). The function findMostClosest(CN) uses tracer-
oute command and returns the most suitable clusters that
Enew can be assigned (line 9). This is especially useful in
edge neighborhoods running on different networks. Finally,
Cncoord provides information to Enb to assign the Enew to
the particular cluster if and only if condition in (line 11) is
not violated (lines 11-15). Otherwise, when there are no
clusters with free places, then Enew is assigned to a newly
created cluster by Cncoord (line 20). Note that each cluster in
the edge neighborhood has a unique ID generated by Enb

when the cluster is created. Notably, the bootstrap device’s
task is to cooperate with the cluster coordinator to assign a
cluster ID to the newly joined devices. Finally, once Enew

joins the edge neighborhood, Cncoord updates the routing
table and other DHTs (lines 22-23).

4.4 Resource Modelling

We assume that an edge device may contain multiple
resources (i.e., computational, sensing, or context data) rep-
resented as microservices [36]. When invoked remotely,
such microservices yield resources; however, resource infor-
mation needs to be shared among edge devices in the edge
neighborhood beforehand. An essential step towards dis-
covering these resources in the edge network is resource
modeling at design time. To ensure automatic resource dis-
covery in an edge setting, two types of resources must be
modeled: i) IoT resources (i.e., sensors, actuators, etc.) and ii)
edge devices.

To accomplish our goal in a pervasive environment, we
have outlined resource representation structure in [11]. The
resource structure provides seven main properties such as:
i) resource identification, ii) resource connectivity, iii)
resource capability, iv) resource accessibility, v) resource
output, vi) resource location, and vii) resource administra-
tive domain. Our resource structure is similar to the ontol-
ogy-based structure proposed by Barnaghi et al. [37]. Unlike
the ontology-based approach, we format resource descrip-
tions in a JavaScript Object Notation (JSON). We advocate
that exchanging metadata over JSON is a lightweight pro-
cess, machine-readable, and provides rich information
about resources. Besides that, size of metadata in JSON is
very small. Thus, the replication process across many edge
devices organized in clusters is feasible and does not
degrade the overall network performance.
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5 A DECENTRALIZED EDGE-TO-EDGE RESOURCE

DISCOVERY

In this section, we first discuss the overall design goals for
the proposed approach in edge networks. Then, we discuss
the process of determining the global coordinator and clus-
ter coordinators. Next we explain in detail the framework
for sharing edge device resources based on their privacy
preferences. Finally, we discuss edge device failures,
dynamicity and uncertainty of edge neighborhoods.

5.1 Design Goals

Edge Computing introduces effective ways to overcome
many of the limitations faced by the cloud [3]. Nevertheless,
the paradigm alone also presents some limitations (i.e.,
computation capability and latency). To address such chal-
lenges, we identify three design goals that need to be estab-
lished by any edge-based system:

� Latency-aware. The Edge Computing paradigm aims
at providing low-latency services for the endpoint
devices and the end-users. As a result, determining
system coordinators at the edge neighborhood
quickly is essential to fulfilling such a stringent
requirement.

� Dynamic Network. An edge neighborhood changes
with time (i.e., new edge devices can be added or
excluded). Hence, the edge-based systems should be
able to utilize newly added resources at the edge
flexibly.

� Adaptability. Edge-based systems should be able to
adapt to unexpected changes that might occur in the
edge neighborhood. Thus, the coordinators should
be dynamically placed among available edge devices
and continuously re-evaluate placement decisions.

5.2 The Process of Determining Coordinators

The process to determine coordinators in a distributed sys-
tem should be carried out in system background, encapsu-
lated from the end user’s perspective, but indispensable for
the correct and efficient execution of distributed tasks. Sys-
tem coordinators’ role is versatile and can range between
orchestrating applications, monitoring resources, or distrib-
uting data between devices. We define two leading roles,
such as i) cluster coordinator and ii) global coordinator. Such
roles are dynamically assigned to edge devices based on
their resource capabilities. The process to determine new
coordinators is triggered by an event when the global or a
cluster coordinator experiences high utilization in specific
hardware resources (i.e., CPU, memory, or storage) and
requests to transfer leadership to other devices. The process
to determine a new cluster coordinator occurs only between
edge devices within the same cluster. The process to deter-
mine a new global coordinator occurs between cluster coor-
dinators. The latter essentially consists of two phases: first,
cluster coordinators are determined; second, new cluster
coordinators determine the global coordinator. In Algo-
rithm 2, we present the process to determine system
coordinators.

The proposed algorithm runs on each edge device sepa-
rately. The algorithm takes three inputs: i) an edge device

hardware metrics denoted with fi, ii) the deadline to find a
solution denoted with u, and iii) the process type denoted
with si. The process to determine coordinators is designed
by considering hardware metrics and bandwidth of edge
devices. We consider hardware metrics both statically (e.g.,
CPU cores, storage capacity, etc.) and dynamically (e.g., cur-
rent CPU load, current storage, etc.). Such hardware infor-
mation can be monitored using Hyperic Sigar [38] while
Assolo [39] enables collecting bandwidth probes. Notably,
the algorithm gets only the current device metrics nthis spec-
ified at design time (line 2). In our case, we consider metrics
ui related to the CPU utilization degree. However, such a
parameter is configurable based on system requirements.
The deadline u is given at design time (e.g., u ¼ 50 ms). The
third input si specify the process type: i) determining the
global coordinator (s = global) and ii) determining a clus-
ter coordinator (s = cluster).

Algorithm 2. Process of Determining Coordinators

Input: fi , u, si

Output: Ccoord , Gcoord
1: t = 0

2: nthis = GetDeviceMetrics(fi)

3: round = Random()

4: Initial Messageðround, si)
5: Parameter Messageðnthis, round,si; g)
6: I Receive_Parameter_Messages()

7: Solution_Found False

8: while t < u or ! Solution_Found do
9: n = I.getBest()

10: if n < nthis and n.round = round then
11: Solution_Found True

12: SetðEthis; EdgeModeÞ
13: Set(En, Coordinator, si)

14: end
15: if !Solution_Found then
16: SetðEthis; Coordinator; siÞ
17: end
18: Ethis:updateDHTðÞ

A unique random signature (i.e., SHA-1) called round is
used to make each process unique (line 3). In lines (4-5), we
define two types of messages exchanged between devices: i)
initial message and ii) parameter message. First, the initiating
coordinator (i.e., process initiator device) probes which
edge devices are up and running in the edge neighborhood.
Then, it sends an initial message only to the edge devices
that responded on time. The initial message essentially con-
tains a list of all participating devices (i.e., only those edge
devices that replied) and a unique round value assigned to
a process round. Second, once receiving an initial message
and the list of participants, the process initiator device sends
a parameter message containing its local metrics to all par-
ticipating devices. The parameter message contains local
hardware metrics, utilization values in percentage, a pro-
cess round value, and timestamp when the process to deter-
mine the new coordinator is started g. The timestamp g is
used to ensure that the metrics are not older than the pro-
cess initiation time. Each edge device responds to the initial
message and sends its parameter message to other edge
devices, including the initiating coordinator (line 6). Notice
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that the same proposed algorithm is used to determine the
global and cluster coordinators.

After exchanging performance metrics, edge devices
develop the same result independently. Each device com-
pares received parameter metrics and determines which
device is most suitable to serve as a cluster/global coordina-
tor (lines 8-14). To find the most suitable edge device, we
compare the number of CPU cores, clock speed, and current
utilization (line 9). Ethis changes the status to the Edge-

Mode (i.e., edge device only shares resources) only when an
edge device En with better performance metrics is found.
Line 16 is executed only when a solution is not found within
the time u, and the coordinator role remains in the current
edge device Ethis since no better edge device is found. Fur-
thermore, each edge device maintains a complete overview
of all processes and saves the information in a DHT. The
result is propagated to all edge devices within the edge
neighborhood by using the DHT. The latter step is executed
by all edge devices, which on the one side creates some
redundancy but also improves the stability of propagating
results (line 18).

5.3 System Architecture and Resource Discovery

We propose a framework for enabling automatic discovery
of heterogeneous resources in edge networks [11]. Fig. 3
illustrates three main components of the framework: Edge-
to-Edge Communication, the Metadata Container, and the
Local Search Engine facility. The Edge-to-Edge Communi-
cation component implements communication between
edge devices (i.e., Kademlia Protocol), organizes edge devi-
ces in clusters, determines coordinators, and exchanges
resource descriptions in an edge neighborhood (1). The
Metadata Container is responsible for analyzing resource
descriptions based on their privacy preference defined by
the system designer at design time. Besides that, the compo-
nent is responsible for sharing resource descriptions sys-
tem-wide (2), processing received resource descriptions
from other edge devices (3), and store resource descriptions
locally (4). The Local Search Engine component (4) is based
on CouchDB document-oriented NoSQL database [40]. This
component subsequently stores data locally and, through
APIs, enables users to query stored content (6).

Referring to Fig. 3, our resource discovery mechanism
allows edge devices within the same cluster to exchange
metadata through their cluster coordinator. Once coordina-
tors are determined, edge devices are ordered to share their

public metadata document with their cluster coordinator (1).
Other edge devices contact their cluster coordinator to
retrieve all public metadata documents contained within
their cluster. This may happen once a new edge device is
connected to the edge neighborhood or when an edge device
wants to refresh its current storage. The frequency to refresh
metadata documents is also configurable at design time.
Besides that, the global coordinator regularly exchanges
metadata documentswith the cluster coordinators (5).

In Fig. 4, we present the process to analyze resource
descriptions and the process to share them in edge neigh-
borhood. As mentioned before, we consider edge devices as
resource-constrained devices with a set of built-in sensors
and actuators. Each resource is described by providing cer-
tain core information about the functionality and properties
(see Section 4.4). We assume that resource descriptions (i.e.,
metadata) are provided by edge device manufacturers in
JSON format. The Metadata Container is responsible for
analyzing metadata in the edge device. The component
stores resource descriptions based on privacy preference i)
public resources (i.e., shared resources (4)) and ii) private
resources (i.e., local resources (2)). Public resource descrip-
tions are merged into a single metadata document and
named with the edge device ID. The public metadata docu-
ment is shared with the corresponding cluster coordinator
system-wide (3). The local search engine component sepa-
rates resource descriptions into private ones and those that
are shared system-wide.

5.4 Edge Device Failures

Consider a situation when a cluster coordinator triggers a
new process to determine the new coordinator in the clus-
ter. An edge device under a high workload may fail to par-
ticipate in determining cluster coordinators or the global
coordinator. Even though not participating in a determina-
tion process, edge devices continuously update their local
DHTs with the closest devices. Besides that, those who have
failed and re-joined the edge neighborhood may also con-
tain some obsolete information (i.e., DHT is not up-to-date,
coordinator information is outdated). However, edge devi-
ces must update their local DHTs with the closest devices
after joining the edge neighborhood.

Another situation may arise when a specific cluster coor-
dinator fails. The global coordinator is responsible for
detecting such failure and trigger a new process to deter-
mine the coordinator. As discussed previously, edge

Fig. 3. Resource discovery through metadata replication: High-level
architecture.

Fig. 4. Processing metadata on the edge.
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devices within the cluster are responsible for determining
their new coordinator. When the global coordinator fails,
one of the cluster coordinators triggers a new global coordi-
nator determination process. Notably, each cluster coordi-
nator verifies whether the global coordinator has failed and
responds to the determination process. Furthermore, the
resource discovery process is not repeated when edge devi-
ces frequently leave and join the edge neighborhood (i.e.,
due to the connectivity issues). Moreover, when an edge
device went offline, the metadata documents remain stored
in the other devices for some time. This is especially useful
in unstable edge neighborhoods (e.g., wireless), prone to
momentary loss of connection.

6 EVALUATION

In this section, we first discuss our evaluation setup envi-
ronment, prototype details, and limitations. Next, we exper-
imentally evaluate the approach’s effectiveness by running
multiple experiments and checking the proposed solution’s
behavior in different situations. We assess our proposed
solution in terms of hardware and bandwidth consumption
during runtime. Then, through a use case, we show how the
proposed discovery mechanism increases the number of eli-
gible deployments when deploying edge applications in an
edge neighborhood. Finally, we conclude with a discussion
in Section 6.4.

6.1 Setup, Prototype Details, and Limitations

To assess the proposed approach’s feasibility, we developed
a prototype that implements the Kademlia Protocol and
core functionalities to enable the automatic discovery of het-
erogeneous resources in edge networks. The prototype is
written in Java, and it is tested on a testbed composed of (a)
edge devices (i.e., Raspberry Pi 3 Model B V1.2) with 4ARM
Cortex-A53 CPU at 1.2 GHz, 1 GB of RAM, and 16 GB disk
storage, and (b) virtual edge device instances. To evaluate
our prototype, we exploited the testbed (i.e., edge neighbor-
hood) composed of 60 edge devices placed close to each
other. Edge devices contain multiple resource descriptions
generated randomly at design time. Furthermore, edge
devices in the testbed are connected through a wireless con-
nection with a nominal speed of 10 Mbps and 5 Mbps in
download and upload. We assume that every edge device
trusts all other devices, and they all belong to the same local
administrative domain.

In distributed systems, discovering devices is a signifi-
cant challenge. In our current implementation, edge devices
have an open designation port that listens for possible
future connections. To join the edge neighborhood, edge
devices require to know at least one device (i.e., IP, port)
currently up and running. We acknowledge that the current
implementation represents a limitation, and further investi-
gations are required to develop an advanced approach to
discover running edge devices. We acknowledge that IoT
resources (e.g., sensors) can also be connected on edge devi-
ces using various end-to-end communication protocols
(e.g., Zigbee, etc.). However, in this paper, we treat commu-
nication and operational aspects of IoT resources as orthog-
onal to our approach; we assume edge devices are
equipped with a set of IoT resources. Furthermore, we

acknowledge that using the Java Virtual Machine (JVM)
environment is resource-expensive. However, within this
paper, we aim to show the approach’s feasibility in
resource-constrained edge neighborhoods.

6.2 Experiments and Results

We evaluate our prototype on a testbed, whose size progres-
sively increases to 60 edge devices as presented in Table 1.
The cluster coordinators can determine their cluster sizes
based on i) the CPU utilization threshold (i.e., configured to
35 percent), ii) the system-wide parameter (i.e., configured
to 30 devices per cluster), and iii) the random value (i.e., not
bigger than the system-wide parameter). Furthermore, the
routing table size is set to k ¼ 20. We monitor edge devices
through the nmon tool [41] and retrieve information regard-
ing the hardware utilization and the data received and sent
between edge devices.

The goal of the first experiment is to assess the proto-
type’s footprint on hardware resources and bandwidth
usage. Notably, we focus on resource consumption to deter-
mine the system coordinators and discover resources in the
edge neighborhood. For each cluster created, we monitor
the global coordinator for up to 60 seconds in the edge
neighborhood (i.e., running on RPi3). We also monitor boot-
strap devices (i.e., RPi3s) when a new request arrives to join
the edge neighborhood. Notably, we observe that the time
required to join the edge neighborhood and assign it to the
existing cluster is between 0:07�0:2 seconds in all test cases.
However, when a new cluster is required to be created, the
average latency is slightly higher between 0:5�1:02 sec-
onds, but reasonable for the resource-constrained edge
neighborhood. Specifically, the overall CPU and memory
utilization remains almost similar. Concretely, the average
CPU consumption is around 2.5 percent, while the overall
memory consumption is around 5 MB. In all test cases, edge
devices have been successfully assigned to the correspond-
ing clusters, or new clusters are created when required.
Table 2 presents a detailed overview of the resource con-
sumption and latency for edge devices to join the
neighborhood.

Fig. 5 plots the overall CPU utilization during the process
to determine the global coordinator (i.e., the global and clus-
ter coordinators are determined) and synchronization pro-
cesses running in the background. Essentially, we simulate
the situation when the global coordinator is overloaded,
and the function to determine the new global coordinator is
automatically triggered. We repeat the process more than
10 times for each test case (i.e., clusters). As shown in Fig. 5,
the overall CPU utilization is slightly increased when add-
ing more edge devices/clusters in the edge neighborhood.
Specifically, the average CPU consumption during the

TABLE 1
Edge Neighborhood

Neighborhood Edge Devices (per cluster) Total

C1 15 15
C2 20 35
C3 15 50
C4 10 60
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process to determine the system coordinators is around 10
percent, while the overall memory consumption is around 5
MB. The most important aspect is the accuracy of assigning
edge devices to a particular cluster or forming new clusters
when needed (i.e., when the cluster size is exceeded). In all
test cases, creating new clusters was successful, including
newly joined edge devices added to their adequate clusters.
Since the overhead imposed by our approach is small, the
experiments show that the proposed approach is feasible to
operate on low-powered and battery-powered edge devices.
Notably, the proposed approach has shown a very con-
tained impact on hardware resources and bandwidth usage.
To obtain consistent results, for each experiment, we calcu-
lated an 83 percent confidence interval of means.

Figs. 6 and 7 plot the overall maximum and minimum
data transfer/received by the global coordinator during the
process to determine new system coordinators and the syn-
chronization process. We consider analyzing the bandwidth

due to the relationship between network traffic and the load
on the memory system of an edge device [15]. Furthermore,
in resource-constrained edge neighborhoods, the energy
supply and bandwidth are among the main resource con-
straints of edge devices [42]. Therefore, it is necessary to
know the total data size transferred/received (i.e., metadata
sharing, processes to determine coordinators, synchronizing
processes, etc.) between edge devices during the runtime.
Notably, the maximum and minimum values vary depend-
ing on the number of edge devices in the neighborhood. As
shown in Fig. 7, the data transfer is slightly increased by
adding more devices in the edge neighborhood. The slight
increase occurs due to the increased number of edge devices
that impose the formation of new coordinators. Thus, newly
formed coordinators synchronize their routing tables and
their DHTs with the global coordinator.

The goal of the second experiment is to assess the time
complexity to determine coordinators and place them on the
edge neighborhood’s most suited edge devices. Concretely,
we show how the proposed mechanism discussed in Section
IV and Section V performs to determine coordinators. The
experiment results illustrated in Fig. 8 show that the pro-
posed approach in all test cases finds an edge device with the
most suitable computation resources to assign the global
coordinator. Besides that, the proposed approach success-
fully determines cluster coordinators for each cluster.

In Fig. 9, we analyze the percentage of responsive edge
devices during the process to determine the cluster

TABLE 2
Average Latency and Resource Consumption to Join the Edge

Neighborhood

Clusters Latency (avg.) CPU (avg.) RAM (avg.)

C1 71.25 ms 2% 2 MB
C2 82 ms 2.5% 3 MB
C3 137.36 ms 2.5% 2 MB
C4 193.6 ms 3% 5 MB

Fig. 5. Analysis of the CPU utilization during the process to determine
the system coordinators.

Fig. 6. Analysis of the data received in kilobytes per second by the global
coordinator.

Fig. 7. Analysis of the data transfer in kilobytes per second by the global
coordinator.

Fig. 8. Time required to determine coordinators.
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coordinator on an edge neighborhood with a single cluster
and different sizes (e.g., CS = 15, etc.). We repeat the process
more than five times for each test case. Notably, we observe
that the time required to join the edge neighborhood and
assign it to the existing cluster remains similar to the previ-
ous results (i.e., between 0:07�0:2 seconds in all test cases).
The number of edge devices that respond to this process is
critical since it enables us to find the most suitable edge
device to place the cluster coordinator. In clusters with
more than 40 edge devices, the percentage of responsive-
ness is decreased to 92 percent. In contrast, clusters up to 30
edge devices show a higher rate of responsiveness. To that
end, we configure the system-wide parameter to bound the
maximum number of edge devices per cluster (i.e., 30 edge
devices).

6.3 Use case: Deploying IoT Safety Application

The third experiment aims at demonstrating the proposed
mechanism’s function in the application deployment pro-
cess. For the demonstration purpose, we adopt and
extended parts of the FogTorchP simulator [43] to generate
deployment plans in the edge infrastructure. FogTorchP
was originally proposed to support IoT designers in making
decisions about where to deploy application components at
the edge. The approach allows to specify IoT resources as
an application requirement that must be met before applica-
tions can be deployed.

We assume edge devices containing a set of built-in IoT
resources (i.e., cameras, radars, gas sensors, etc.) that can be
accessed remotely through APIs. Recalling our motivation
scenario, consider the IoT safety application that provides a
service to rescue teams (as discussed in Section II). As illus-
trated in Fig. 10, the IoT safety application comprises three
components: i) the insights backend component (’0), ii) the
monitoring component (’2), and iii) the processing compo-
nent (’1). The insights backend component (’0) enables
users to interact with the service. The monitoring compo-
nent (’2) is responsible for monitoring resources specified
at design time. The processing component (’1) analyzes col-
lected data into meaningful results and provides it to the
end-users through the insight component. We assume
deploying IoT safety application in the edge neighborhood
as presented in Fig. 2. Notice that only a single application

component can be executed in parallel on edge devices. The
other application requirements depicted in Fig. 10 are
assumed to be met by all edge devices.

In our given edge neighborhood, the edge device E2 pro-
vides the radar resource with privacy preference set to pri-
vate. This means that the ’1 can be deployed only in E2. The
rest of IoT resources (e.g., cameras, gas sensors, etc.) are
remotely accessible, and their privacy preference is set to
public. Through themetadata replication process, edge devi-
ces exchange public resources in the edge neighborhood. To
this end, each edge device is considered a potential candi-
date to execute one of the two other components.Meanwhile,
each edge device shares private resources only with the
global coordinator, responsible for generating deployment
plans for the IoT safety application. Fig. 11 shows the total
number of eligible deployments plans generated through
FogTorchP combined with our resource discovery mecha-
nism. It is evident that ’0 and ’2 components dependent on
particular resources can be executed on all other edge devi-
ces. More precisely, each edge device knows how to access
resources on other edge devices due tometadata replication.

Unlike our approach, FogTorchP does not support
resource privacy preferences, does not provide a mechanism
to discover resources (i.e., supports resource sharing with
neighbor devices), and does not support the dynamic changes
in their environments. Besides that, evaluating the deploy-
ment mechanism is out of this paper’s scope, as we use it to
demonstrate that the discovery mechanism allows us to
completely exploit available resources in edge neighborhoods.

6.4 Discussion

We have demonstrated that by using our resource discovery
mechanism, discovering heterogeneous resources in an

Fig. 9. Percentage of responsive edge devices during the process to
determine coordinator on clusters with different sizes.

Fig. 10. IoTsafety application.

Fig. 11. Generating deployments plans for the IoT safety application in
an edge neighborhood (see Fig. 2).
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edge setting increases the number of eligible deployments
for applications dependent on IoT resources. We showed
that organizing edge devices in clusters and discovering
resources through the edge replication process is perform-
ant and feasible on a testbed with low-powered ARM-based
devices. Our results showed that the overhead introduced
by the proposed decentralized resource discovery mecha-
nism is very low for realistic edge neighborhood sizes.

Our approach within the given testbed can operate with
larger cluster sizes. However, edge devices may not react in
time to participate in processes to determine coordinators in
large cluster sizes. In such cases, the Kademlia Protocol
requires much more processing capabilities to process faster
incoming requests (i.e., updating routing tables, updating
DHTs, resource metadata, etc.). Nonetheless, we plan to
improve and optimize the current mechanism to support
forming larger clusters in edge neighborhoods. We plan to
investigate the maximum edge neighborhood size and the
routing table size acceptable for low-powered edge devices.

Our approach does not provide a mechanism to detect
which edge devices fail to send their parameter metrics and
ask them to resend their messages. In addition to that, since
multiple edge devices in an edge network come to the same
result independently, it is necessary to introduce an addi-
tional mechanism to verify the result. In our approach, we
overcome such an issue by distributing results using the
DHT. This creates some redundancy - but also improves the
stability of propagating results. However, using consensus
algorithms where edge devices pick random participants to
verify their final result is highly desirable. Thus, some
assumptions underlying our methodology must be further
explored.

7 CONCLUSION AND FUTURE WORK

Edge networks provide a seamless opportunity for deploy-
ing various edge applications providing multiple services to
the end-users and the surrounding IoT devices. However, to
deploy edge applications dependent on IoT resources, we
require novel lightweight and decentralized mechanisms to
automatically discover heterogeneous resources at the edge.
To that end, we introduced a decentralized mechanism that
enables edge devices to connect in a P2P manner, organize
edge devices in clusters, and support automatic discovery of
heterogeneous resources in edge networks. The proposed
approach support resource discovery based on resource pri-
vacy preferences. Furthermore, we evaluated our approach
in a testbed composed of a set of low-powered edge devices.
Throughout the experiments, we showed the feasibility of
the proposed approach to run on low-powered edge devices.

We believe that the proposed approach paves the way for
utilizing available resources, leading to accomplish the
promised high-quality and low-latency services deployed
in edge networks (i.e., edge neighborhoods). As future
work, we aim at providing a complete technical solution for
the global and cluster coordinator; this includes both techni-
cal and architectural aspects. In addition to that, we plan to
investigate techniques that will enable edge devices to dis-
cover nearby devices that allow them to join an edge neigh-
borhood in an automatic manner. Finally, we plan to
investigate several assumptions made in this paper.
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