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ABSTRACT The design, development, deployment, and operation of a distributed Video Analytics
Pipeline (VAP) at the edge of the network is highly complex. In the domain of adaptive systems, several
solutions are proposed in literature to optimize either one particular performance aspect of a VAP, e.g.,
execution time or latency, or focus on minimal energy consumption, or calculate a trade-off including some
of those aspects. However, nowadays, most systems utilizing a VAP that records personally identifiable
data have to adhere to some form of data protection regulation, such as the GDPR. Still, adaptations to
increase data protection requirements are often second to previously mentioned performance or energy
consumption characteristics of a VAP. While there is state of the art literature dealing with data protection
related adaptations, most of them solely focus on increasing certain security or privacy aspects of a system,
leaving previously mentioned performance or energy consumption characteristics out of scope. To the best of
our knowledge, there is no solution that covers all of these aspects. In this paper, we present a data protection
focused adaptation engine that leverages the application- and infrastructure based adaptation space of a
distributed VAP. The engine employs an extended system model and adaptation rules that are based on
previous research. It features an optimization algorithm to improve data protection, performance and energy
consumption characteristics of a distributed VAP.

INDEX TERMS Adaptive systems, optimization, video analytics pipelines, data protection, edge computing.

I. INTRODUCTION
Edge Computing comprises a variety of different connected
devices with minimal to average computing power. These
devices continue to permeate deeper into our personal envi-
ronment as well as in commercial and industrial areas,
by sensing, processing, and storing all kind of data [1].
The design, development, and deployment of distributed
edge applications, e.g., AI-assisted Video Analytics Pipelines
(VAP), is highly complex [2]. Due to the heterogeneous hard-
ware environment of such systems, concrete specifications
of various infrastructural parts may not be fully known at
design-time of a distributed application. Furthermore, vari-
ous application parts (e.g., microservices) will be executed
on different infrastructures and could be migrated during
run-time. While the cloud is to be expected, mainly due to
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virtualization and containerization techniques, to have vir-
tually unlimited computing power and storage, the capabil-
ities of edge nodes may vary widely. This heterogeneity of
capabilities increases even more in the area of IoT, where
energy consumption becomes an additional important factor.
Hence, not knowing the exact infrastructural details on where
a distributed application will be deployed and executed on
becomes a tremendous challenge [1], [3], [4]. Additionally,
a VAP may use many different software components to fulfill
its concrete task. Those software components may also be
distributed across different nodes that may be maintained
by different parties. Hence, software characteristics, such as
efficiency, reliability or functionality, could also vary greatly.
Another problem a VAP may likely face, is the handling
of sensitive data, such as personally identifiable information
(PII), in order to allow its workflow to comply to privacy
policies [5], [6] or security provisions such as the General
Data Protection Regulation (GDPR) of the EU. For such
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applications, these circumstances call for data protection [7]
to be the topmost priority, while performance and energy
consumption come second. Integrity, confidentiality, avail-
ability, undetectability, and unobserveability are the key ele-
ments of such protection mechanisms. The overall risk that
such a system is confronted with could be assessed by look-
ing on its various attack surfaces that are exposed to an
adversary. For example, in the context of AI-assisted video
analytics, the potential leakage of PII (e.g., recorded faces)
from video data, e.g., due to unencrypted transmission of
images (frames), is a characteristic threat to data protec-
tion of such a system [8]. However, implementing adequate
mechanisms to fulfill data protection requirements is often
second to improvements for performance characteristics of
a system, especially in the area of Edge Computing and
IoT [9], [10]. The concept of adaptation aims to support
tackling this challenge. Based on the classical definition of
control theory an adaptive system monitors its own perfor-
mance and adjusts its parameters in the direction of better
performance [11]. Computing time, data storage or latency
are concrete exemplary manifestations of this classical under-
standing of performance. For defining adaptation rules, it is
crucial to understand (i) what changes in the environment
may happen, (ii) what self-adaptations the system may per-
form, and (iii) how those changes and self-adaptations impact
the relevant system properties. Hence, adaptations in the sys-
tem have to be designed in a way so that this heterogeneous
infrastructural and software environment is also taken into
account. Regarding performance related adaptations, several
solutions are proposed in literature to optimize either one
particular performance aspect of a VAP, e.g., execution time
or latency, or focus on minimal energy consumption, or cal-
culate a trade-off including some of those aspects [12]–[15].
While there is state of the art literature dealing with data
protection related adaptations, most of them solely focus on
increasing certain security or privacy aspects of a system,
leaving previously mentioned performance characteristics
out of scope [16]–[18]. To the best of our knowledge, there
is no solution that covers all of these aspects. In this paper,
we present a data protection focused adaptation engine that
leverages the application- and infrastructure based adaptation
space of a distributed VAP. The engine employs an extended
system model and adaptation rules that are based on previous
research which was conducted within a collaborative H2020
project [19], namely FogProtect.1 The motivating use case
also stems from a real problem scenario by one of the projects
partners. The model was specifically extended and enhanced
to meet the requirements of AI-assisted VAPs at the Edge.
The adaptation rules cover the application layer, as well as
the infrastructure layer of a VAP system. Furthermore, the
engine now features an optimization algorithm to improve
performance, energy consumption and data protection of a
distributed VAP and its functionalities. Based on a real-world
use case, we can show that our approach efficiently and

1https://fogprotect.eu/

effectivelymitigates data protection risks in a running system.
Additionally, it opts to find the most suitable system con-
figuration based on an operators preferences regarding per-
formance, energy consumption, and available functionalities
(QoS). The paper is structured as follows: Research related to
this paper is discussed in Section II. In Section III, we state the
problems and challenges a distributed VAP faces with respect
to data protection, performance and energy consumption.
Furthermore, we describe a real world use case, that is derived
from a use case from FogProtect, motivating our approach
and illustrating the associated challenges to data protection.
Section IV gives the essential background information that is
needed to understand our approach. Details on the implemen-
tation of the engine are described in Section V. In Section VI
we evaluate the feasibility and applicability of our approach.
Section VII discusses our findings and concludes the paper.

II. RELATED WORK
Broadly speaking, the mitigation of threats to data protection
of a system is a two-dimensional problem. First, a mitigation
concept comprises either design-time activities or run-time
activities or a combination of both. Second, it is typically
specific to the system domain and underlying infrastructure.
Research dealing with risk analysis, e.g., [20]–[23], as a
design time activity is related to our work, i.e., it would
be needed to identify and model Problematic Configuration
Patterns (PCPs) and how to resolve them (see section IV for
details on PCPs) as suggested by our approach. Our approach
is agnostic to a specific risk analysis approach, therefore it
could be seen as complimentary research. However, research
that aims to mitigate data protection threats via run-time
adaptations is closer related to our approach.

A generic approach was proposed by Bürger et al., which
handles Essential Security Requirements. This is achieved
by triggering Security Maintenance Rules if changes in the
Security Context Knowledge are detected [16], [17]. Another
generic mechanism by Tsigkanos et al. describes a model
checking approach to analyze threats and plan adaptations to
mitigate those [18]. They use bigraphs to model the topology
and security requirements of the system. Their approach takes
a lot of execution time, while our approach builds upon
previous research [24], which we could show is well perform-
ing even with larger system models. Additionally, both of
the above mentioned proposed adaptation mechanisms focus
solely on the mitigation of data protection threats, but do not
take other parameters into account, such as QoS, performance
or energy consumption. We identified several other papers
related to our work that take such parameters into account.
[25]–[27] take into account various types of costs, response
time and/or performance. However, they mostly focus on
specific mitigation strategies and/or approaches dedicated to
specific attack vectors. For example, Nostro et al. solely deal
with attacks performed by insiders and how to prevent those
[28]. Nguyen et al. proposed a mitigation strategy that only
involves migration of virtual machines [29]. Our proposed
solution is able to process arbitrarily complex adaptations that
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are optimized to also provide the desired QoS, performance
and energy consumption.

In the context of privacy in video-based media spaces,
Boyle et al. [30] proposed a framework – a descriptive theory
– that defines how one can think of privacy while analyzing
media spaces and their expected or actual use. The framework
explains three normative controls: solitude, confidentiality
and autonomy, yielding a vocabulary related to the subtle
meaning of privacy. A more technical introduction to video
surveillance is given by Senior in [31]. The paper briefly
summarizes the elements in an automatic video surveillance
system, including architectures, followed by the steps in
video analysis, from preprocessing to object detection, track-
ing, classification and behaviour analysis. In [32], the authors
introduce a video analytics framework to process real-time
video streams and also do batch video analytics. However,
they focus on the performance aspect of a distributed VAP,
in terms of scalability, effectiveness and fault-tolerance, leav-
ing data protection out of scope. Sada et al. proposed an
edge computing based video analytics architecture [33]. Their
solution leverages federated learning strategies in order to
reduce the computational load of cloud infrastructure. Addi-
tionally, their training data remains on the edge servers,
thereby increasing privacy. In contrast to our proposed solu-
tion, their approach incorporates federated learning, while we
focus on local execution of AI-based tasks and protecting
data agnostic to specific security and privacy mechanisms.
Furthermore, we focus on the heterogeneity aspect in edge
computing based VAPs, and the adaptation aspect of the
system, hence increasing the flexibility and applicability of
our approach.

Our proposed solution is specifically tailored to meet the
requirements of a self-adaptive data protection aware Video
Analytics Pipeline. Hence, we also identified research in
the domain of self-adaptive (distributed) AI-assisted VAPs.
As stated in section III, the inference tasks of an AI-assisted
VAP is computationally expensive. Hence, as well as in
other domains than VAPs, many authors propose offloading
those computationally expensive tasks to the cloud. However,
executing inference in the cloud, especially for real-time
video analysis, often incurs high bandwidth consumption,
high latency, reliability issues, and privacy concerns. There-
fore, many researchers follow the edge computing paradigm,
i.e., processing data closer to the data source. For example
Liu et al. proposed EdgeEye, which enables developers to
transform models trained with popular deep learning frame-
works to deployable components with minimal effort [34].
In [35], they introduced a controller that dynamically picks
the best configurations for existing Neural-Network-based
Video Analytics Pipeline. Their aim is to achieve higher
accuracy with the same amount of resources, or achieve the
same accuracy but utilizing less of the available resources.
Zhang et al. propose a flexible serverless-based approach to
facilitate fine-grained and adaptive partitioning of cloud-edge
workloads for multiple concurrent video query pipelines.
Their goal is to achieve real-time responses given a highly

FIGURE 1. Parts of an exemplary face-anonymization application.

dynamic input workload. In contrast to our approach, those
papers focus solely on improving one specific performance
aspect (either accuracy or latency) of an AI-assisted VAP.

To summarize, to the best of our knowledge there is no
approach in literature that allows for data protection focused
run-time adaptations in the domain of AI-assisted Video Ana-
lytics Pipelines, that also takes performance, QoS and energy
consumption into account.

III. PROBLEM STATEMENT
In this section we first give a broad overview on AI-assisted
VAPs in general. Then, we describe the challenges for data
protection and performance for each major tasks a VAP
comprises. The process of AI-assisted video data analysis
is typically composed of three major tasks. First, the video
data has to be prepared for an AI-application to be able to
work with such data. Second, one or more features have to
be detected in a video frame (basically an image). Third,
post-processing actions take place. A real-world application
for a data protection-centered VAP is face-anonymization,
i.e,. detected faces on each frame of the input video have to
be made unrecognizable in each frame of the output video.
Fig. 1 illustrates these three steps (P1-P3) based on the face-
anonymization example.

Performance in context of a VAP is not only related to com-
putational capabilities of the system. It also covers qualitative
aspects of the analysis part, i.e., the accuracy with which
desired features can be inferred from video data. Accuracy
is typically determined by the used AI-model and respective
framework. The computational performance of each task is
tightly coupled to the hardware capabilities of the device
executing those tasks. Running all of the three major tasks on
a single computing device can have a significant impact on
the overall performance of a VAP. If performance on a single
device becomes an issue, a common approach is to decouple
the three main tasks of the face-blurring pipeline and execute
them separately on different devices. However, this pragmatic
approach may often pose a non-trivial challenge to edge com-
puting usecases, considering distributed applications run-
ning in a heterogeneous hardware and software environment.
Therefore, in [36], we got a better understanding of the main
drivers decreasing performance in each of the three major
tasks of a VAP, in order to develop adaptation strategies to
enhance performance and/or data protection quality. Hence,
the approach presented in this paper builds on top of that,
enabling us to incorporate the important aspects into the
proposed solution.

A. MOTIVATING EXAMPLE
To better illustrate the problems and challenges of a VAP
we describe a real world use case from a FogProtect partner,
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FIGURE 2. Smart lampposts recording video data that potentially
contains PII. Depending on a users access rights, either anonymized or
raw video is transmitted.

motivating our approach. The use case takes place in the
smart cities domain and featuring a modern urban monitoring
system.2 In general, the use case scenario can be consid-
ered as a multi-tenant systems with a highly dynamic device
setup. Smart lampposts, equipped with computing nodes and
various sensors, are installed and distributed across the city.
The heterogeneous capabilities between nodes stem from the
fact that (in our specific real word use case) in an urban
environment smart lamppost can be manufactured, equipped
and mounted by different vendors. These smart lampposts
sense and process data and share this data across the network.
Data may be transferred from one lamppost to another node
or directly to the cloud for further processing and/or storage.
Traffic monitoring is one concrete exemplary scenario in our
use case. A smart lamppost records or streams video data
from a mounted camera to a computing node, where the data
is further processed, streamed or stored. Various parties may
access this data for further analysis. For example, this enables
traffic controllers to identify and analyze potential incidents
and problems regarding traffic, such as a traffic jam or a car
accident, which then inform potential first responders to act
accordingly. Imagine a smart lamppost records a car incident
and the data gets transmitted to a traffic controller. Such
data flow, as well as its content, is prone to many security
and privacy threats, such as wiretapping and personal data
leakage. It may not be beneficial or desired for a traffic
controller to see potentially recorded faces of people nearby
the accident or even licence plates of cars involved in the
accident or also nearby. However, a first responder, like law
enforcement, may be interested to actually identify people (as
potential witnesses) or licence plates of cars (in cases of e.g.,
hit and run scenario). Hence, depending on e.g., access rights,
specific adaptations on nodes have to be triggered. A concrete
example of such an adaptation is to activate an object blurring
algorithmmanipulating a recorded video stream. Fig. 2 shows
an overview of the scenario.

The box with label 1 displays smart lampposts, distributed
across the city, each equipped with a camera and a computing
node that acts as a video gateway. A lamppost records it’s
environment, e.g., people and cars on the street, and transmits

2See:https://urbanplatform.city/

the video to another computing node, where it can be further
processed, or viewed by a user. However, as depicted in the
box with label 2, depending on the user’s access rights, the
video is either anonymized or not upon request. The box with
label 3 displays exemplary roles of users, a traffic operator,
a law enforcement officer and a normal end user, each with
different access rights. While the law enforcement officer
would have access to the raw video, the other two users
would only be allowed to watch the anonymized version of
the video.

B. CHALLENGES TO DATA PROTECTION AND
PERFORMANCE
From a high level perspective, an AI-assisted VAP faces
similar data protection challenges as any other distributed
application that stores, processes and transmits sensitive data.
Sticking to the information security principle of the Parke-
rian Hexad [37], such systems have to be protected against
security breaches affecting one or more of the fundamental
attributes of information, namely: Confidentiality, Possession
or Control, Integrity, Authenticity, Availability and Utility.
Identifying the risks associated with those security breaches
and how to mitigate them is typically a design-time activity
carried out by information security experts following stan-
dards like the ISO27000 [38]. A concrete implementation of
the scenario described in Section III-A makes heavy usage
of AI-based tasks in order to provide additional services like
automatic licence plate detection, but also enable or enhance
data protection mechanisms. A simple, yet not easy task to
ensure and respect the privacy of people recorded by a system
like we described, is the anonymization of personally identifi-
able features like faces of people or licence plates of cars. Fur-
thermore, the actual physical location where (personal) data
is processed plays an important role in regulations like e.g.,
the GDPR in Europe. Additionally, a distributed VAP needs
to take care of secure data transmission as well. A secure data
transmission may not only cover encrypted communication,
but could also leverage cutting edge AI-techniques like model
splitting to further enhance privacy. Basically, each phase
of the VAP faces specific challenges to either performance
and/or data protection. In the first phase (P1), the system
is typically concerned with video pre-processing tasks, such
as encoding or up/downsampling. Such tasks are commonly
done if the camera records with different parameters (e.g.,
framerate or resolution) than the desired output video, i.e., the
video data that will be transmitted to, and analyzed by, a com-
ponent of P2. However, transforming video data to a specific
format is a heavy computational task, hence significantly
affecting the performance of P1. Therefore, manufactures
like Nvidia integrate dedicated chips into their hardware and
offer dedicated SDKs to facilitate this task.3 The performance
of the second task of the pipeline is heavily dependent on
the used AI-framework as well as on the underlying infras-
tructure it operates on. In the context of AI-based inference

3https://developer.nvidia.com/nvidia-video-codec-sdk
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tasks, like stated previously, performance is not only related
to processing speed but also to the accuracy with that e.g.,
an object was detected in an image. A well pre-trained model
embedded in modern sophisticated frameworks like e.g., Ten-
sorFlow or YOLO will generally allow for higher inference
speed with high accuracy. However, such frameworks are not
necessarily available and/or optimized for each system archi-
tecture like e.g., ARM, x86, x64, but developers constantly
aim to port a framework to another architecture or provide
lightweight alternatives such as TensorFlow Lite or YOLOv3-
tiny. Furthermore, differences regarding performance can
also stem from the usage of legacy versions of such machine
learning frameworks. Executing this second major task of
the pipeline on devices featuring hardware like a GPU or
even dedicated AI-hardware like Tensor Processing Units
(TPU, Google) or Neural Processing Units (NPU, Microsoft)
do also heavily contribute to performance gains. This stems
from the fact that inference tasks are parallelizable to a high
degree and TPUs or NPUs are custom ASIC chip-designed
from the ground up for machine learning workloads. The
aforementioned heterogeneity of the underlying hardware
infrastructure makes deployment, migration or offloading
inference based tasks or components increasingly complex.
The third task involves potentially multiple post-processing
activities. Regarding the example of face-anonymization, this
would be the anonymization process of recognized face in a
video frame, i.e., a graphic overlay is drawn over the face
in the image. Although it is well researched that making a
face unrecognizable in visual data does not fully guarantee the
anonymity of a person, it still facilitates such anonymization
task to a high degree, mostly bymaking the de-anonymization
process significantly harder for an attacker. However, other
typical post-processing steps could include again transcod-
ing or encoding tasks, sampling rate conversions, resolution
alterations, etc. to e.g., facilitate and optimize for streaming
the output video.

Another important aspect of a VAP is Quality of Service
(QoS). Due to hardware or software constraints of the node
executing (parts of) a VAP, the processing of data protection
mechanisms of the applicationmay not keep upwith a reason-
able output video quality, i.e., the frames per second (FPS) of
the output video are far too low compared to the input video.
Hence, a person viewing the output video would experience
a significant loss in QoS using the application.

IV. BACKGROUND INFORMATION
In this section we provide background information that is
needed to understand the approach and additionally builds the
foundation of our work. First, we will give a short description
on the term data protection from a legal perspective according
to the GDPR. Our approach is not limited to that kind of
data only (i.e., personal data, as explained later), but is rather
capable of operating with any kind of sensitive data. Second,
we give a brief overview on previous work, i.e., the main
components from RADAR [24], which we extended, updated

and enhanced for our approach. Third, we explain what kind
of adaptations are possible within our approach.

A. DATA PROTECTION
The term data protection is not very well defined from a
global perspective. It is related to information security but not
the same. The ISO 27000:2018 standard describes informa-
tion security as the ‘‘preservation of confidentiality, integrity
and availability of information’’ [38]. Furthermore, it states
that other information security aspects, such as authentic-
ity, accountability, non-repudiation, and reliability, should
also be considered. According to the GDPR, data protec-
tion mechanisms should prevent personal data breaches [39].
Personal data means ‘‘any information relating to an iden-
tified or identifiable natural person,’’ e.g., name, address
or location data. A personal data breach means ‘‘a breach
of security leading to the accidental or unlawful destruc-
tion, loss, alteration, unauthorised disclosure of, or access
to, personal data transmitted, stored or otherwise processed.’’
Hence, data protection includes information security aspects
such as confidentiality or integrity concerning personal data.
However, data protection goes beyond information security,
for example by defining specific roles as well as their rights
and obligations related to personal data. Our approach is able
to handle the following roles according to the GDPR:

• Data Subject: A data subject is ‘‘an identified or iden-
tifiable natural person . . . who can be identified . . . by
reference to an identifier such as a name . . . or to one
or more factors specific to the . . . identity of that natural
person.’’

• Data Controller: A data controller ‘‘determines the pur-
pose and means of the processing of personal data.’’

• Data Processor: A data processor ‘‘processes personal
data on behalf of the data controller.’’

• Third Party: A third party is authorised to process per-
sonal data under the direct authority of the controller or
processor.

From a legal point of view, data protection must be
ensured in an edge computing system processing personal
data. Therefore, several information security aspects need to
be taken into account when operating a system that processes
sensitive data, hence adhere to the GDPR. In order to model
and operate such systems with RADAR, we decided to enrich
the basic approach with information security aspects from
the Parkerian Hexad [37]. The Parkerian Hexad adds three
additional attributes to the traditional security attributes of the
CIA triad (confidentiality, integrity, availability).

This enables our updated approach to cover the following
aspects of information security:

• Confidentiality
• Possession or Control
• Integrity
• Authenticity
• Availability
• Utility
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B. FOUNDATION OF OUR APPROACH
This work is based on the so called RADAR (Run-time
Adaptations for DAta pRotection) approach presented in [24].
RADAR aims at ensuring data protection in dynamically
changing cloud-based systems and other related system con-
cepts such as edge or fog computing. RADAR is deployed as
a central control unit that manages the self-adaptive system.
It is assumed that both monitoring of the system and execu-
tion of adaptations in the system are carried out by the sys-
tem itself or components between the system and RADAR.
The Eclipse Modelling Framework (EMF)4 combined with
Henshin5 is used to enable model-based runtime adaptations,
specifically optimized towards data protection. As shown in
Fig. 3, RADAR consists of multiple components that are
described now.

1) META-MODEL
RADAR includes a meta-model that defines the modelling
constructs that can appear in the run-time model, a lan-
guage to specify problematic configuration patterns (PCPs),
and adaptation rules to mitigate problematic configurations.
Thus, the meta-model ensures compatibility between the
problematic configuration patterns, adaptation rules, and the
run-time model. Previous research has shown that using
established modelling languages from the area of security,
such as UMLsec or SysML-Sec, is not sufficient to model
neither edge computing systems nor data protection aspects
related to edge computing systems [23]. Therefore, an inde-
pendent framework is needed.

The meta-model is created by using the Eclipse Mod-
elling Framework (EMF) and its graphical editor. In general,
the meta-model is similar to UML class diagrams. Nodes
are represented as classes, edges are represented as rela-
tions between classes. Properties of nodes are represented
as attributes and object-oriented concepts like inheritance
are supported. The meta-model extends the well established
TOSCA standard, a modeling language defined by the Orga-
nization for theAdvancement of Structured Information Stan-
dards (OASIS).6 In the RADAR meta-model nodes can be
any kind of entity of a system, like a compute node or a GDPR
role as described in section IV-A. From a high level perspec-
tive, a compute node typically comprises various software
components. These components are also modeled as nodes.
Which hardware and software components belong to a certain
type of compute node is modeled via relations.

2) PROBLEMATIC CONFIGURATION PATTERNS
A Problematic Configuration Pattern (PCP) describes a pat-
tern that exists in the run-timemodel if the system is in a prob-
lematic state. A run-time model represents relevant aspects of
the system and its environment in the style of an UML object
model. It is fully based on the meta-model and gets contin-

4https://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/henshin/
6https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

uously updated by a system monitoring component at run-
time. PCPs are defined at design-time and specifically focus
on configurations that threaten data protection or QoS aspects
of the system or lead to high overall costs. By cost, we mean,
for example, the cost of cloud rental that IaaS providers incur.
At run-time, instances of PCPs can be detected by using
RADARs pattern-based algorithms. The goal is to avoid as
many PCP instances inside of the run-time model as possible.
To design PCPs a graphical modeling language, called PCP
Language, was created. Similar to the run-time model it is
in the style of UML object diagrams. To create PCPs the
PCP Language is mapped to Henshin transformation rules.
Henshin also enables graphical modelling by providing aGUI
tool.

3) ADAPTATIONS
Whenever the run-timemodel changes, an algorithm is check-
ingwhether instances of PCPs can be found in that model (see
problematic configuration identification in Fig. 3). If this is
the case, RADAR uses adaptation rules to identify possible
solutions to mitigate the PCP instance (see Reconfiguration
in Fig. 3). Adaptations rules are created at design time. They
are associated with the PCP that they should mitigate. For
each PCP multiple adaptations can exist. Each adaptation
rule captures a potential type of adaptation in a well-formed
manner. An adaptation involves adding or removing objects
and relations as well as changing attribute values according to
the specific rule. Each adaptation rule is split into three parts,
namely (i) a PCP and its instance that have to exist in the run-
time model, (ii) a precondition that adds further constraints
on the run-time model, and (iii) the adaptation action that
describes changes to the run-time model. A graphical Adap-
tation Language was defined to design adaptation rules and
was mapped to Henshin transformation rules as well.

If RADAR cannot find any PCP instances, it tries to
detect improvement / optimization adaptations that increase
the amount working functions (see Functionality analysis
in Fig. 3) and lower the overall costs (see Cost analysis in
Fig. 3) without creating new threats to data protection. After
RADAR has found the optimal adaptation (in the best case all
PCPs are mitigated, the amount of available functions is at its
highest and the overall costs at their lowest) the adaptation
will be executed on the system. However, a predefined prior-
itization defines whether the amount of available functions or
the overall costs are more important.

It has to be noted that there may be multiple PCP instances
in the run-time model, there may be multiple adaptations to
mitigate a given PCP instance, and an adaptation to mitigate a
PCP instancemay alsomitigate or create other PCP instances.
Hence, a sequence of adaptations may be needed to mitigate
all PCP instances. In this sequence, the order of adaptations
may be important because an adaptation may become appli-
cable only after another adaptation was carried out.

In [36] we investigated the adaptation space of AI-Assisted
data protection for resource constrained VAPs. These find-
ings build the foundation of the modelled adaptions designed,
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FIGURE 3. Overview of the RADAR approach.

implemented and evaluated in this paper and described in the
following sections.

V. ADAPTATION ENGINE EXTENSIONS
In this section, we describe the basic functionality of our
proposed data protection focused adaptation engine. Fur-
thermore, we explain how the underlying concepts of pre-
vious research were improved in order to tackle the chal-
lenges faced by an edge computing based distributed VAP,
as described in section III.

The meta-model, as described in section IV, was neither
able to tackle detailed infrastructural aspects of an edge
computing based system, nor was it capable of modeling
fine-granular security and privacy controls that are vital for
many systems, e.g., Video Analytics Pipelines, that need to
adhere to some sort of data protection regulation such as the
GDPR. Moreover, it was not possible to consider additional
metrics like energy consumption or performance of a system
while finding the optimal adaptation. In addition, it was also
not possible to change the order of the prioritization of such
metrics while solving data protection concerns in the first
place. Therefore, we made several extensions and enhance-
ments to our previous work.

A. CONCEPTUAL EXTENSION
We started by developing conceptual extensions and enhance-
ments of the RADAR meta-model to address the gaps men-
tioned above. The extensions made to the meta-model can be
seen in Fig. 4. It has to be noted that this figure only shows

newly added classes and relations. A full representation of
the meta-model in the style of an UML class diagram can be
found online.7 In the following, the changes and newly added
model constructs are explained in detail.

1) INFRASTRUCTURE AND APPLICATION ASPECTS
To enable the modeling of infrastructural details we enhanced
the RADAR meta-model by adding new nodes, relations and
attributes. Especially the concepts of the so called ‘‘compute’’
and ‘‘software component’’ node were thoroughly revised.
First, we now employ inheritance to distinguish between
different types of compute nodes based on the three layers
of edge computing architecture. The new types are called
‘‘IoTDevice,’’ ‘‘FogCompute’’ and ‘‘CloudCompute.’’ This
enables modelling more precise PCPs and adaptation rules
while also keeping the possibility to model generic compute
nodes.

Second, each compute node can now comprise hardware
components. This concept enables modeling of detailed hard-
ware information that may be relevant when the engine is
trying to identify PCP instances or trying to find the opti-
mal adaptation, especially with regards to performance and
energy consumption variables as described in section V-B.
Again, inheritance is used to represent different types of
hardware components, namely ‘‘CPU,’’ ‘‘GPU,’’ ‘‘Acceeler-
atingComponent,’’ ‘‘HardDrive’’ and ‘‘RAM.’’ They differ
on the basis of certain attributes like e.g., ‘‘clockspeed’’ or
‘‘capacityInGB.’’

7Seehttps://git.uni-due.de/fogprotect/vap-adaptation-engine
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FIGURE 4. The reworked and extended part of the RADAR meta-model.

Third, each hardware component may have a performance
and energy profile assigned. We introduced those profiles
to the meta-model to allow energy consumption and perfor-
mance to be considered when running the adaptation algo-
rithm. We assume that at runtime a monitoring component
provides the required information as average values for a
selected evaluation period.

Lastly, we also rethought the concept of software com-
ponents. Prior to our changes, each compute node was able
to host multiple software components. Now, we added a
node called ‘‘application’’ that is hosted by a compute node,
and a software component describes a dedicated part of
an application, for example an API or a processing algo-
rithm. Therefore, software components take over specific
tasks like communication. To represent the communication
between software components we are using the following
chain of nodes: software component - data flow (consist-
ing of one or multiple data records) - software component.
Thus, an application does not replace a software component,
it rather comprises and clusters multiple software compo-

nents. Additionally, an application can also be linked to an
energy profile, similar to hardware components, to e.g., iden-
tify and handle the main drivers of total energy consumption
of a node.

To store additional details that can be used to evaluate the
overall performance of the managed system when searching
for adaptations, each software component is related to the
nodes called ‘‘QoSMetrics’’ and ‘‘AIModel.’’ Currently, QoS
metrics only consider metrics that are relevant for VAPs
(average frames per second, average AI accuracy in percent-
age). However, further metrics can easily be added when
using the engine in other environments. The AI model that
may be used by a software component is represented by a
new node storing information like the precision, the AI-model
category (e.g. face detection or dedicated object detection)
and whether the model is splittable or not. Furthermore, an AI
task, leveraging a specific AI-model, can be accelerated by
an accelerating hardware component, such as a GPU or TPU.
An example run-time model consisting of all newly added or
reworked concepts can be found online in our git repository.
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FIGURE 5. Extensions to the PCP language and mapping to Henshin.

The run-time model is based on the use case described in
section III-A and will be discussed in detail in section VI.

2) DATA PROTECTION ASPECTS
We also extended the meta-model to enable modeling of
security features. A security feature represents the bridge
between a data record that needs to be stored or transferred in
a secure way, and hardware or software components that are
securing the data record. Our model covers confidentiality,
integrity, availability, possession control, authenticity and
utility as types of a security feature based on the Parkerian
Hexad described in section IV.

In addition, we enhanced the PCP language. Prior to our
extensions, it was only possible to check whether an attribute
value is equal to a reference value that has to be defined at
design time. Now, PCPs can also check whether an attribute
value is lesser or greater than a reference value. This enables
the coverage of specific VAP data protection aspects and QoS
metrics, such as meeting the minimum requirements of FPS
or AImodel accuracy. The changesmade to the PCP language
and the mapping to the Henshin language are shown in Fig. 5
and are highlighted in green. It can be seen that a Henshin
condition has to be used to compare an attribute to a given
value.

Furthermore, reference values can now be changed at run-
time which allows reacting to changing expectations from the

environment. For example, additional software could be used
to calculate a minimum FPS value that needs to be met by
an object blurring software component to ensure that data
protection and QoS requirements are fulfilled.

B. ALGORITHMIC IMPROVEMENTS
The main goal of each adaptation is to ensure adequate data
protection. However, as stated in section IV multiple solu-
tions to mitigate data protection risks and therefore ensuring
data protection may exist. These adaptations may have a
different impact on metrics such as energy consumption, per-
formance, costs, and available functionality. In order to adapt
the system in the best possible way, it is therefore necessary
to include both data protection and above-mentioned met-
rics in the adaptation planning algorithm. However, because
protecting personal data is a priority, it is not possible to
balance data protection and system metrics. By improving
the algorithms of RADAR, we enable the evaluation of fur-
ther metrics, namely energy consumption and performance.
Additionally, we reworked the way available functions and
total costs are calculated for a run-time model or proposed
adaptation model. Lastly, the order of the metrics is no longer
predefined but dynamically changeable at runtime by expos-
ing a dedicated API.

First, functionalities can now be modeled similar to PCPs
by using the same notation as the PCP language and the same
modeling tool provided by Henshin. Therefore, a functional-
ity can, for example, be modelled by a system architect who
defines what a functionality in the given system represents.
Therefore, a functionality is now represented as a sub-graph
and will be identified by using graph-pattern-matching. The
amount of available functions can be understood as a QoS
metric. The overall goal is to opt for a high amount of avail-
able functions. It should be noted that the calculation of the
amount of available functions, costs, energy consumption and
performance follows a global approach. A run-time model
may consist of context nodes that are not part of the managed
system and thus should not be considered when calculating
global values. Hence, we are only considering values to be
part of the calculation if they are part of a functionality
instance that was found by our graph-pattern-matching algo-
rithm.

Second, by using the information from the newly added
nodes ‘‘EnergyProfile,’’ ‘‘PerformanceProfile,’’ ‘‘AIModel’’
and ‘‘QoSMetrics’’ it is now possible to calculate the total
energy consumption and the performance value of a model.
To calculate total energy consumption, all EnergyProfile
nodes that are part of a functionality instance are consid-
ered. The average load consumption in Watt of each energy
profile is used to calculate the overall sum. To calculate a
performance value, we are using an equation that results in
a numeric value. It combines different attribute values that
use different scales like FPS (natural numbers) or AI model
accuracy (percentage). Therefore, those different attribute
values need to be normalized first. However, considering FPS
as an example, a linear transformation to normalize values
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between 0 FPS and 60 FPSwould not be feasible and accurate
in order to compare two nodes. For the human eye every video
with a frame rate around 24 FPS is perceived as fluid. Differ-
ences in frame rates above 24 FPS are significantly harder
to notice, than the differences below that value. In terms of
QoS a human may not see the difference between 50 and
60 FPS. However, the perceived difference between 14 and
24 FPS is significant. Internally our engine expects such
metrics as scalar values between 0 and 1 to combine them
with other performance related metrics to calculate an overall
performance value. Therefore, we used a logistic function
to normalize the FPS value where the slope grows steep for
values between 0 and 24, but flattens out for values above
24. Equation 1 represents the mathematical notation of the
logistic function.

To calculate the global performance value, we first identify
allQoSMetric objects and AIModel objects that are in relation
to a software component that is part of an identified function.
Second, we normalize the FPS value stored in the QoSMet-
rics objects. Afterwards, the normalized FPS value and the
percentage value of the AI model accuracy are summed up in
a distribution of α = 50% as shown in Equation 2. However,
our approach can be extended to use any kind of function that
is appropriate for a specific QoS metric, as long as the output
values are between 0 and 1. The newly added performance
metric has been added to Equation 2 and α needs to be
adjusted to achieve the desired weighting for overall QoS.

f (x) = (
(a− b)

(1+ e−c∗(x−d))))
+ b) = A (1)

and

P = A ∗ α + B ∗ (1− α) (2)

where:
a = the curve’s top asymptote value
b = the curve’s bottom asymptote value
c = the logistic growth rate of the curve
d = the x value of the sigmoid’s midpoint
x = input FPS value
A = normalized FPS
B = AI model accuracy in percent
P = performance value
α = performance metric weight

Algorithm 1 shows the model analysis algorithm. The
algorithm is given amodelM as an input to perform themodel
analysis (line 1). At first, two empty sets to store the PCPs and
available functionalities found in M are created (line 2-3).
Afterwards, placeholders to store the global numeric cost,
energy consumption and performance value are created (line
4-6). By using graph-pattern matching, the engine is search-
ing for PCP instances in M using a set of all PCPs designed
at design time. Whenever a PCP instance is found, it is stored
in PCPM (line 7-12). The same procedure is used to identify
instances of predefined functionality patterns. Whenever an
available functionality is found, it is stored in FM . By using
the functionality instance costs, energy consumption, and

Algorithm 1Model Analysis Algorithm.
1: Input:M F model to be analysed
2: PCPM ← {} F set of PCP instances inM
3: FM ← {} F set of available functions inM
4: CM ← 0 F global costs ofM
5: EM ← 0 F global energy consumption ofM
6: PM ← 0 F global performance value ofM
7: PCPA← getPCPs( ) F set of all designed PCPs
8: for each pcp ∈ PCPA do
9: if pcp exists inM then
10: add pcp to PCPM
11: end if
12: end for
13: FA← getFunctions( ) F set of all designed functions
14: for each f ∈ FA do
15: if f exists inM then
16: add f to FM
17: CM += calcCosts(M , f )
18: EM += calcEnergyConsumption(M , f )
19: PM += calcPerformance(M , f )
20: end if
21: end for
22: M .setPCPs(PCPM )
23: M .setFunctions(FM )
24: M .setMetrics(PCPM .length, FM .length, CM , EM , PM )

performance are calculated and the result is added to the
global placeholders CM , EM , PM . (line 13-21). Finally, the
PCP instances (PCPM ), the functionality instances (FM ), and
the the calculated systemmetrics are stored inM (line 22-24).
To determine whether a possible adaptation is better than

another, we are comparing models. As stated in section IV,
the engine is searching for the best possible system con-
figuration by evaluating sequences of adaptations that are
reachable from the current run-time model. To do so, a search
tree is constructed. A child node represents the run-time
model obtained from the run-time model of the parent node
through an adaptation. The search tree is built up during the
search, by iteratively adding unexplored child nodes to the
nodes already visited. An evaluation of different strategies
has shown that a best-first search approach leads to the best
results [24]. The model comparison takes the prioritization
of the comparison metrics into account. By using an API,
a human operator can decide which metric should be used
first to optimize the VAP after ensuring adequate data protec-
tion.

Algorithm 2 explains how the best model is determined.
First, the algorithm keeps track of the best solution and the
path from the root node to the respective solution (line 1-2).
Moreover, the current prioritization order of the metrics list
is queried (line 3). As long as unexplored nodes exist (set of
nodes S is not empty, starting with the current run-time model
MRT, line 4-5), the algorithm is searching for the best node.
While evaluating nodes from S, a selected nodeM out of S is
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first analysed with regard to the amount of PCP instances,
the amount of available functions, the overall energy con-
sumption, the overall performance value and the total costs
(line 6-7). To do so, algorithm 1 is used. Afterwards, M is
compared to the actual best node by comparing both models.
Whenever two models are compared, the algorithm picks a
metric in a defined order from the list of metrics (line 8-9).
As long as there are further comparison metrics (line 10), the
selected comparison metric is used to compareM to the best
solution (line 11). If the calculated values for a metric are
equal the next metric is used for comparison, otherwiseM is
either better or worse than the best solution (line 12-21). If
M is better than the best solution in regard to a specific com-
parison metric, the best solution is replaced by M , the path
to the best solution is stored, and the comparison ends (line
12-16). The comparison also ends ifM is worse than the best
solution (line 17-19). It is important to state that the amount
of PCP instances will always be the first metric that will be
used for comparison (line 9). In the end it should be possible
to state which of the two models is optimal. After the current
node has been evaluated, it is removed from S and the children
of the node are added to S instead (line 22-23). To avoid an
endless search in the potentially unbounded space of possible
solutions, the search is aborted when a predefined termination
criterion is met (lines 24-26). Such a termination criterion
could be for instance a maximum allowed time budget for the
execution of the algorithm. Finally, the algorithm returns the
adaptation sequence leading to the best found solution (line
28), which should then get executed in the real system.

As already stated, the algorithm is capable of using dif-
ferent prioritization orders for the list of comparison metrics.
The order of the metrics can be changed at runtime by using
an API while the engine keeps the amount of PCP instances
(i.e., threats to data protection) always as the metric with the
highest priority to optimize towards.

C. SUMMARY
To summarize, we highlight the most important additions and
upgrades to RADAR in order to fulfill the needs of a data
protection focused edge computing system, particularly for a
distributed AI-assisted VAP:

• Added security and privacy features to the meta-model
according to the Parkerian Hexad model.

• Added machine learning entities to the meta-model to
enable the modelling of AI-based systems.

• Enhanced the meta-model to allow for fine grainedmod-
eling of infrastructural aspects of a system.

• Added energy consumption and performance as part of
optimization goals.

• PCPs can now handle set operators, thereby enabling
the algorithm to dynamically compare either monitoring
variables or static variables. This is for example needed
to enable software compatibility or version checks.

• The adaptation algorithm is now able to change the pri-
oritization of different metrics namely costs, QoS (avail-

Algorithm 2Model Comparison Algorithm.
1: best← NULL F best solution found so far
2: bestPath← NULL F path from root to best solution
3: ML← getListOfMetrics( ) F sorted list of metrics
4: S ← {MRT

} F set of nodes that are being explored
5: while S 6= ∅ do
6: M ← selectNode(S)
7: AnalyseModel(M ) F see algorithm 1
8: i← 0
9: CM ← ML(i) F comparison metric fromML
10: while CM 6= ∅ do
11: CompareModels(M , best, CM )
12: if M is better than best in regard to CM then
13: best← M
14: bestPath← path fromMRT to M
15: break
16: end if
17: if M is worse than best in regard to CM then
18: break
19: end if
20: i++ F M and best are equal in regard to CM
21: end while
22: T ← generateChildren(M )
23: S ← S \ {M} ∪ T
24: if termination criterion then
25: break
26: end if
27: end while
28: return bestPath

able functions), energy consumption, performance,
while always aiming for the lowest amount of PCP
instances.

VI. EVALUATION
In this section we demonstrate how the engine behaves with
different configurations and correctly solves PCPs, based on a
simplified example implementation of the traffic monitoring
use case as described in section III. This is followed by a
discussion on the limitations of our approach and its general
applicability to other use cases. The runtime behavior of
RADAR has been evaluated in previous work [24]. Addi-
tional information on the evaluation of the pattern-matching
algorithm can be found on the Henshin website.8

A. EVALUATION OF THE CONSIDERED USE CASE
In order to evaluate our approach we modelled a system con-
figuration comprising five heterogeneous compute nodes and
defined a scenario typical for the considered traffic monitor-
ing use case. The system configuration can be seen as a part of
the traffic monitoring system, e.g., a large crossing with five
smart lampposts. Initially, the system is configured so that
low energy consumption is prioritized. As long as only trusted

8https://www.eclipse.org/henshin/publications.php
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actors access the monitoring component, an unanonymized
video is transferred.

Fig. 6 displays a descriptive simplified model representa-
tion that reflects our considered system configuration and use
case scenario. It can be seen that the different edge nodes
differ in their video processing performance (frames per
second), their AI model accuracy (object detection accuracy
in per cent), their average energy consumption (in watt),
and their security features (trusted / untrusted). The nodes
model real world edge computing nodes, highlighted by their
factory naming, e.g., a RaspberryPi 4B, and their respective
capabilities. Solid lines represent the initial situation. Dot-
ted lines represent possible offloading solutions that are not
taken into account due to data protection and optimization
reasons. Dashed lines represent possible offloading solutions
depending on the prioritization of performance vs. energy
consumption. In the following, the different scenarios are
described in detail.

In the use case scenario, we handle a request from an
untrusted user wanting to access video data that is recorded
by a smart lamppost. This actor is only allowed to access
anonymized video data. The access of the untrusted actor is
detected by our engine as a PCP instance, highlighted in Fig. 6
with a thunderbolt. Therefore, the goal is to mitigate this
PCP instance while maintaining low energy consumption.
As described in section V, the algorithm combines several
possible adaptations and compares different system configu-
rations.

The best solutions consists of two adaptations that need
to be both carried out subsequently. First, an anonymization
software component needs to be activated, and a data flow
transferring video data with blurred faces and number plates
needs to replace the data flow transferring the unanonymized
video. The associated adaptation rule modelled with Henshin
is shown in Fig. 7. Concretely, it shows that whenever a
personal record is transferred via a data flow to a software
component that is controlled by an untrusted data controller
(precondition), the particular data flow is removed and a
new data flow transferring a new non-personal video from a
software component called ‘‘Anonymization’’ to the software
component used to access the video is created (adaptation
action). The corresponding PCP is not represented separately
because it is already part of the adaptation rule as its precon-
dition.

It has to be noted that another solution would be to adapt
the system in a way in which the video stream would be
stopped. However, this adaptation implies a drastic decrease
in available functionality and should therefore only be used
as a last resort.

In this particular use case, the adaptation that activates
video anonymization is the best choice. However, another
PCP instance is created when enabling video anonymization
at Node1 because Node1 is not capable of processing the
video fast enough (output video FPS < 25) to ensure QoS at
an acceptable level. Hence, a second adaptation that offloads
the video processing from Node1 to another node has to

be carried out. Fig. 8 shows the corresponding adaptation
rule. Again, the PCP instance is already part of the adap-
tation rule as its precondition: Whenever the avgFPS of an
QoSMetrics object is below 25 and a software component
called ‘‘Anonymization’’ is transferring video data to another
software component that is not part of the same application
a PCP instance exists. In this case, the adaptation rule stip-
ulates the following adaptation action: reallocate all existing
data flows, starting at an IoT device and ending at software
components that are not part of the edge nodes application.
When reallocating, switch from each software components
used before to software components that have the same name
and are hosted on another edge nodes application.

Four different system configurations have to be compared
by the engines’ algorithm, each related to one of the four
existing nodes shown in Fig. 6. All four nodes are capable of
processing the video adequately, allowing for an continuous
video anonymization. However, in this particular use case
only Node3 and Node4 are reasonable possibilities because
an offloading to these nodes mitigates all PCP instances
and optimizes the system configuration based on the desired
metric prioritization.

When prioritizing optimal energy consumption, Node2
should be selected due to its low energy consumption. How-
ever, the algorithm always considers data protection the top
most priority before optimizing the system configuration
towards a QoS goal. Reallocating the video processing from
Node1 to Node2 leads to a new PCP instance because Node2
is untrusted. Therefore, Node2 is not taken into consideration
when comparing possible system configurations in terms of
improving the system configuration.

A reallocation to Node3, Node4, or Node5 does not lead
to a new PCP instance. When comparing the remaining
possible system configuration options in terms of energy
consumption, Node3 represents the best choice. Therefore,
both adaptations –activating object blurring and reallocating
the video processing– are carried out at once to enable video
access to an untrusted actor. This is represented by the dashed
line from Node1 to Node3 and from Node3 to theMonitoring
Component in Fig. 6.

When changing the prioritization from low energy con-
sumption first to high performance first, our engine detects
a possible improvement adaptation by comparing different
system configurations that are created by using the adaptation
rule described in Fig. 8. Three out of four possible system
configuration changes lead to newly arising PCP instances
or worse performance. Only the reallocation of the video
processing to Node4 does improve the overall system perfor-
mance because Node4 can process the video with the highest
amount of FPS combined with a high AI model accuracy.
Therefore, this adaptation is carried out. The dashed line from
Node4 to the Monitoring Component in Fig. 6 shows this
scenario.

Should the untrusted actor quit accessing to the monitoring
component, object blurring is not longer needed. The engine
detects a possible improvement and uses the adaptation rule
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FIGURE 6. Descriptive problem representation of the traffic monitoring use case model.

FIGURE 7. Adaptation rule that activates video anonymization.

shown in Fig. 9 to change the system configuration accord-
ingly. The respective rule does the opposite of the rule
shown in Fig. 7, i.e., removing the data flow transferring
an anonymized video record and reactivating a data flow

transferring an unanonymized video record. Depending on the
selected prioritization order, the video processing remains at
node4 (highest performance) or an adaptation based on the
adaptation rule shown in Fig. 8 (lowest energy consumption
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FIGURE 8. Adaptation rule that reallocates data flows.

when no object blurring is needed) is carried out, reallocating
the video processing to Node1.
In Fig. 10 the impact of the selected adaptations is shown.

S1 represents the initial situation where video blurring is
deactivated and energy consumption is prioritized. The VAP
system consumes a low amount of energy while the perfor-
mance is sufficient. S2 represents the system metric values
after video blurring was activated. Due to offloading video
processing from Node1 to Node3, an increase in performance
and energy consumption can be seen. However, due to the
activation of video blurring, the amount of available function-
ality has decreased, because seeing an unanonymized video
was designed as part of a functionality pattern. After changing
the prioritization from low energy consumption first to high
performance first, both performance and energy consump-
tion increase substantially. This is due to the migration from
Node3 to Node4. Node4 does support video processing and
AI-Task offloading to a dedicated video card, which affects
both performance and energy consumption. The system met-
rics in this situation are represented by S3. When video
blurring is no longer needed and therefore deactivated, the
amount of available functions increases (see S4) again. If,
in addition, the prioritization is changed back to low energy
consumption first, then the original situation S1 is adopted
due to the migration from Node4 to Node1.
A detailed version of all described scenario steps in the

style of a graphical run-timemodel (similar to an UML object
diagram) as well as graphical representations of PCPs and
adaptation rules can be found online.9 Moreover, the code
base and an instruction how to run this example use case are
included there.

9Seehttps://git.uni-due.de/fogprotect/vap-adaptation-engine

B. LIMITATIONS
In previous work, scalability experiments have shown that the
engine is capable of handling models with up to 200 nodes in
a given time frame of 10 seconds [24]. In our considered use
case scenario the engine is not limited by the size of the run-
time model. Thus, the engine is capable of always finding the
best solution in minimal time. To test how long it takes for the
engine to determine the best solution in this kind of scenario
we measured the time between the change of the run-time
model using the monitoring API until the engine found the
best solution. The tests were executed on a typical edge node
equipped with an Intel Core i5-4690K processor with 3.5GHz
clock frequency and with 16 GB DDR3 memory. The node
was running the Windows 10 OS and JDK14.0.1 as the Java
environment. After hundred rounds of testing, an average
evaluation time of round about 1.4 seconds was measured.
It should be mentioned that this measured time does not equal
the interval between a real world system change causing a
PCP instance and the final system change caused by the call
to execute the optimal adaptation by our engine.We tested our
engine independent from the managed self-adaptive system,
as this system could be a limiting factor that we cannot
influence.

Thus, our solution is mainly limited by monitoring and
adaptation execution capabilities of the self-adaptive system.
On the one hand, the possible frequency ofmonitoring reports
as well as the quality and level of detail of the monitoring
reports will influence our proposed approach. For example,
if details are missing, our engine may not detect a PCP
instance or possible adaptation. If the report frequency is too
low, it takes longer for a PCP instance to be detected and
thus until the self-adaptive systems system configuration is
adapted. Furthermore, the adaptation execution capabilities
of the self-adaptive system may limit our approach because
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FIGURE 9. Adaptation rule that deactivates video anonymization.

FIGURE 10. Changes in the metric values after the described adaptations.

only supported system adaptations can be taken into account
when then engine is searching for adaptations. Moreover,
an adaptation selected for execution may not be carried out
successfully. In this case, our engine can only try to carry out
the proposed adaptation again or try to carry out the next best
adaptation.

C. APPLICABILITY
Our evaluation has shown that the adaptation engine is
capable of solving data protection risks in Video Analytics
Pipelines while also finding the optimal system configuration
regarding global energy consumption, system performance
and available functionalities. However, our approach is not
limited to VAPs. Systems that face similar challenges, such

as surveillance applications, can also implement our meta-
model, PCP language, and adaptation language. If extensions
to the meta-model are needed, this changes do not affect
existing run-time models, PCPs, or adaptations. Therefore,
our approach is transferable to many edge systems dealing
with data protection and optimization problems at runtime.
Additionally, our previous research [24] has shown that data
protection risks related to location and jurisdiction restric-
tions are also covered by our approach. Therefore, the range
of different data protection problems this approach can handle
is not limited to the content of the data but also handles
geospatial or environmental constraints, such as data locality
requirements.

VII. CONCLUSION
Operating a distributed Video Analytics Pipeline (VAP)
comes with many associated challenges. Adhering to data
protection regulations, dealingwith changes in computational
load, targeting low energy consumption or facing a hetero-
geneous hardware and software environment are prominent
examples of those challenges. In order to provide an ade-
quate QoS and comply to data protection policies, a VAP
has to react and adapt to face those challenges. While there
is state of the art literature dealing with either performance
or data protection related adaptations, most of them solely
focus on increasing certain security or privacy aspects of a
system, leaving previously mentioned performance charac-
teristics out of scope or the other way round. To the best of our
knowledge, there is no solution that covers data protection,
computational performance and energy consumption aspects.
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In this paper, we presented a data protection focused adap-
tation engine that leverages the application- and infrastructure
based adaptation space of a distributed VAP. The engine
employs a system model and adaptation rules that are based
on previous research. The model was specifically extended
and enhanced to meet the requirements of AI-assisted VAPs
at the Edge. Furthermore, the engine features an optimization
algorithm to improve performance, energy consumption and
data protection of a distributed VAP and its functionalities.
Using a traffic monitoring use case as running example,
we demonstrated how the engine behaves with different con-
figurations and correctly solves problematic configurations
during design- and runtime.

Since our approach is extendable by adjusting the
meta-model and by adding further PCPs and corresponding
adaptations, future work will focus on applying the adapta-
tion engine to related environments. Based on the respective
system, additional metrics, such as business metrics, will be
taken into account. Due to the nature of edge systems, decen-
tralizing our approach and deploying it multiple times in the
edge network of a self-adaptive system may enable better
performance and faster responses to PCPs. However, further
research is needed to find a suitable way of coordinating
multiple adaptation engines.
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