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Abstract—Satisfying the software requirements of emerging service-based Internet of Things (IoT) applications has become

challenging for cloud-centric architectures, as applications demand fast response times and availability of computational resources

closer to end-users. Meeting application demands must occur at runtime, facing uncertainty and in a decentralized manner, something

that must be reflected in system deployment. We propose a decentralized resource management technique and accompanying

technical framework for the deployment of service-based IoTapplications at the edge. Faithful to services engineering, applications we

consider are composed of interdependent tasks, which in the IoTsetting may be concretized as containerized microservices or

serverless functions. A deployment for an arbitrary application is found at runtime through satisfiability; the mapping produced is

compliant with tasks’ individual resource requirements and latency constraints by construction. Our approach ensures seamless

deployment at runtime, assuming no design-time knowledge of device resources or the current network topology. We evaluate the

applicability and realizability of our technique over single-board computers as edge devices, particularly in the absence of cloud

resources.

Index Terms—Resource management, edge computing services, decentralization, Internet of Things

Ç

1 INTRODUCTION

CONTEMPORARY Internet of Things (IoT) systems consist of
multiple heterogeneous computing nodes often running

software tasks packaged as containerized services. Utilizing
distributed computing resourceswithin an IoT system is chal-
lenging, as applications often have stringent performance and
deployment requirements. Current cloud-centric designs fail
to satisfy such requirements, due to inherent centralization
limitations and the often high volumes of data required to be
transferred to the cloud leading to congestion and bandwidth
waste [1]. Those shortcomings can be tackled by taking
advantage of distributed computational resources in the spirit
of edge computing, where data processing occurs locally by
functionality deployed on edge nodes, with advantages
including data locality and fast response times [2].

IoT applications are often comprised of multiple intercon-
nected tasks in turn characterised by special resource require-
ments which must be fulfilled upon deployment. This is in
line with typical service-oriented applications, i.e., ones
defined as a service composition, where interconnected serv-
ices create a workflow to achieve a certain goal [3]. As such,
wework within Service-OrientedArchitectures (SOA), which
in the IoT setting ensure interoperability among heteroge-
neous nodesmaking up the system, and abstract functionality

as a set of well-defined services. SOA applied to IoT provides
extensibility, scalability, modularity, and interoperability
among heterogeneous software components; functionalities
and capabilities are abstracted as a common set of tasks,
where each represents a service.

Consider an application that is particularly data-inten-
sive and requires low latency communication to function
properly. To satisfy its requirements, a deployment strategy
should as much as possible take advantage of available
resources distributed at the edge of the network and avoid
utilization of the cloud, as latency would be prohibitive and
uplink bandwidth may be saturated. However, benefiting
from distributed computational resources is not trivial and
requires novel resource management techniques.

Resource management in this context [4] aims at enabling
collaboration between edge nodes by sharing their available
computational resources. IoT applications are deployed on
possibly resource-constrained devices and in dynamic net-
works where high uncertainty is introduced by (i) nodemobil-
ity, (ii) node heterogeneity, as an edge node can range from
single-board computer to datacenter-grade, and (iii) lack of
knowledge at design time of network topology and edge
nodes’ available resources. We propose a novel resource man-
agement technique focusing particularly on resource sharing
and allocation for application deployment. Previously, deploy-
ment of applications at the edge of the network has been gener-
ally tackled from two perspectives: (i) task offloading from
resource-constrained devices to improve objectives such as
energy consumption [5] or (ii) relying on the cloud to perform
task allocation [6]. Still, such approaches do not sufficiently
take into account latency application requirements, do not con-
sider node’s preferences, and assume knowledge of partici-
pant nodes’ internals. We have tackled resource management
in previous work, providing (i) resource coordination for IoT
systems [7], investigated (ii) research challenges inherent in
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decentralized resource management at the edge [8], and intro-
duced (iii) resource auctioning as a resource management
abstraction [9].

In this paper, we propose a decentralized resource alloca-
tion technical framework aiming to deploy applications at the
edge of the network, guaranteeing adherence to (i) defined
latency Service Level Agreements (SLAs) and (ii) resource
preferences of participating nodes. We extend previous
work [9] by focusing solely on task allocation performed by a
resource-constrained single-board device, by providing opti-
mized procedures, and by framing our work within services
engineering. Specifically, our contributions are:

� A decentralized task allocation technique for sharing
IoT resources with nearby nodes based on applica-
tion requirements;

� A scheme where participating nodes on the network
may utilize multiple decision strategies, making
their own choices regarding their contribution of
their local resources, including data;

� We advocate decentralization, as the system can
operate without an assumed connection to the cloud,
if there are enough available resources at the edge of
the network.

In our framework, an IoT application to be deployed con-
sists of interdependent discrete tasks, which can be concret-
ized as, e.g., containerized microservices or serverless
functions. Nodes participating in the system individually
select tasks they may host – perhaps based on some incentive
scheme [10], [11]. The overall application has certain (strict)
latency requirements, while other concerns may impose fur-
ther constraints over where a task may be deployed as well.
Our framework encodes the resource allocation problem
within Satisfiability Modulo Theories (SMT [12]), where
placement of tasks on edge nodes generates constraints in
first-order logic while latency SLAs are encoded with integer
linear arithmetic. Thus, we provide guarantees – if a mapping
exists, it is always found at runtime by a solver situated in
some edge node deploying the application, and is always cor-
rect, i.e., it satisfies latency SLAs, preferences of participating
nodes, and other constraints.

Our framework provides seamless deployment for ser-
vice-based IoT applications, independent of the target
domain. We evaluate the applicability and performance of
our technique, especially compared to the absence of cloud
resources. Our obtained results demonstrate its efficiency
for relevant problems, particularly on resource-constrained
single-board edge devices. Our experiments show that our
framework is capable of deploying IoT applications entirely
at the edge, the SMT solver providing the mapping being
deployed on a resource-constrained device as well.

The remainder of the paper is structured as follows. In
Section 2, we present an overview of our solution and intro-
duce a motivational example. Section 3 defines the IoT
application and architecture considered in this paper. In
Section 4, we describe implementation details of our pro-
posed technique, while Section 5 presents the methodology
and results of our evaluation regarding applicability and
performance. Section 6 discusses related work on resource
allocation techniques, and finally Section 7 concludes the
paper and provides an outlook on future work.

2 DECENTRALIZED RESOURCE MANAGEMENT

Novel types of distributed systems achieved through new
paradigms such as the IoT are composed of heterogeneous
nodes, computing infrastructures, and cloud services,
recently known as the edge-fog-cloud continuum [13]. Gener-
ally, applications provide data-centric, device-centric, and
service-centric functionalities where data, computation, or
control is situated locally near nodes and not in the cloud. As
such, resources needed for the application’s operation must
be dynamically allocated among different nodes and in a
decentralizedmanner, withminimal central coordination.

Faithful to the services engineering viewpoint, we assume
a general model where an IoT application is composed of
interdependent tasks which need to be executed in some spe-
cific way to provide the application’s functionality [3], [5].
Within the IoT context, tasks may be concretized as e.g., con-
tainerized microservices or serverless functions. Applications
have a single point of entry (the initial task) and some sink (or
final) task, signifying the result of the computation (i.e., the
service composition). Within the IoT setting, those tasks may
be deployed on different networked physical nodes. Network
latency between edge nodes must be also taken into account,
as it may affect the overall application execution time. More
precisely, latency is understood as an adherence to certain
defined Service Level Agreements (SLAs) and represents the
time required for a message to traverse the application’s com-
munication flow (i.e., from the input data task to a sink task).
As nodes may participate in multiple application deploy-
ments at the same time, they may thus contribute different
resources of their own to each, perhaps based on some reward
mechanism.

The functionality of the framework we advocate revolves
around two key concepts; decentralization and node partici-
pation. To encourage edge nodes to participate and share
resources with applications on the network, we assume that
an incentive mechanism exists that offers rewards based on
the involvement of a participant node. As such, the frame-
work establishes collaboration between nodes to achieve
the deployment goal. Two key components can be found in
our solution: the coordinator node, which seeks to deploy
some application and the collaborator nodes, which are the
system participants. Any edge node can in principle take
any of those roles. Once a request for deployment of an
application arrives, a list of participants is created. We con-
sider some limited number of them, chosen based on some
manifestation of proximity to the coordinator node. The
coordinator serves as the local decision making authority,
by advertising the IoT application to the nearby participants
and eventually deciding a task distribution that satisfies
latency, preferences of participants and other requirements.
Collaborator nodes offer resources for parts of the applica-
tion, at their own preference and based on their current state
of available resources. Our framework provides seamless
deployment of applications with latency requirements; as
illustrated in Fig. 1, the application designer defines the
building blocks of an application (as tasks) as well as their
dependencies in an application model, at design time –
essentially the service composition. In practice, tasks are
concretized as containerized microservices. When the sys-
tem is operational, tasks are deployed to appropriate nodes
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so that requirements are satisfied, without requiring any
knowledge of the current network topology.

Running Example. Consider a public safety application
that aids law enforcement officers to identify wanted per-
sons in a crowd by performing video analysis utilizing
available resources found in their proximity; this is per-
formed by processing video captured from the police offi-
cer’s body camera, or on video and images stored in nearby
edge nodes (i.e., other smartphones, tablets, dashboard
cameras, etc.). Such video analysis is computation-intensive
and may require specialized hardware running machine
learning workloads, such as tensor processing units. The
officer’s smartphone (or dash cam) represents the applica-
tion coordinator which is connected to his/her body cam-
era. The application, illustrated in Fig. 2, consists of
multiple distinct services (abstracted as tasks) including (i)
motion detection, (ii) object detection, (iii) object tracking,
and (iv) result generation; arrows indicate the invocation of
tasks within the application workflow.

Deploying such an application to a centralized location is
not desirable due to its stringent requirements as well as
inherent privacy concerns – video data should not be stored
in a remote centralized location. First, we can observe that
the decentralized nature of our technique fits well the appli-
cation requirements since it handles video without sending
it to a central facility for processing. Furthermore, the partic-
ular application is data-intensive, as vast amounts of gener-
ated data are analyzed. The centralization imposed by a
cloud design has implications for both network congestion
as well as latency, among others. Moreover, some tasks may
require specialized device resources (e.g., the object detec-
tion task may require machine learning supporting hard-
ware), making deployment on a single edge node which
does not possess such capabilities infeasible. Considering
this, deployment on nearby end-devices is advised – in this

manner, computation and data management can be per-
formed closer to the targeted area and distributed among
participating nodes.

3 PROBLEM FORMULATION

The objective of taking advantage of resources distributed
among multiple interconnected nodes lies at the core of
edge computing [14]. Application deployment implies utili-
zation of these distributed resources. We consider an appli-
cation modeled as a collection of tasks, each having a set of
resource requirements that must be fulfilled under a set of
application objectives. In this section, we outline our system
model and the assumptions behind it, as well as the objec-
tives that we consider.

3.1 Application and System Model

The edge computing setting we consider, is a distributed
system consisting of multiple, possibly heterogeneous edge
nodes. Nodes, with different architectures (ranging from
mobile devices and single-board computers to powerful
edge data centers), are capable of executing tasks and to
communicate with others. Each edge node has a certain set
of available resources Eres = fr1, r2; . . . } that can be shared
within the network. Let EN = {E1, E2; . . . } be the group of
nodes selected by the coordinator. Finally, we assume that
nodes collaborate and share resources willingly. We point
out the importance of suitable incentive mechanisms to pro-
vide rewards to nodes that share resources and behave
cooperatively instead of competitively, and identify their
development as future work.

To fully utilize nearby available computational resour-
ces, an application may be deployed on different edge
nodes. We note that faithfully to SOA principles, a partition
of application functionality into tasks is typical within dis-
tributed edge computing architectures, where the execution
of an entire application may not fit on a single edge
node [15]. For example, one could deploy the application
described in the previous section, on a single node if there
are enough available resources, but performance will be
hindered. Moreover, considering that data of interest is dis-
tributed among multiple nodes, deploying the application
on a single edge node is not feasible since data must be sent
to a central point, increasing communication latency while
failing to preserve tasks’ requirements.

An application model is defined by the developer at
design time and consists of a set of tasks T = ft1, t2; . . . },
along with links representing communication flow. We
assume that this flow starts with a source task which pro-
vides source data e.g., from an IoT sensor, and a sink, i.e.,
an actuator task, to take actions on the obtained results.
More concretely, we assume that an application model is

Fig. 1. Resource management: From design time to runtime.

Fig. 2. Public safety application model.
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described by a direct acyclic graph (DAG), Gapp = (V, E),
where vertices represent tasks and edges shows the links
between them. Considering this, we can model our motiva-
tional example as shown in Fig. 2. We abstain from applica-
tion particulars such as how coordination occurs at the
business logic level; our approach is concerned with finding
a suitable deployment strategy across the edge network.
Given the application model, our technique is agnostic
about the inner workings of the deployed application.

A task ti represents a containerized microservice or serv-
erless function, which implements a set of instructions that
perform application business logic. Each task may require
distinct computational or other resources. To this end, we
assume that a task is defined by a set of resource require-
ments, Treq = fr1, r2; . . . }, that may consist not only of
generic memory, storage, and computational aspects but
also could represent specific requirements like data,
domain-specific hardware such as machine learning acceler-
ators, sensors, or actuators. For example, a particular
requirement, for the motion detection microservice of our
example, besides computational resources, like RAM, CPU
and storage capacity, is represented by the collected data
from a specific area during a time frame.

A communication link between two edge nodes, E1 and
E2, has an associated latency lE1;E2

; latency is inherited by
tasks from their host node. For example, if t1 is mapped on
E1 and t2 on E2, the communication latency of lt1;t2 is equal
to lE1;E2

. Furthermore, the latency is computed as the sum of
all communication delays between dependent tasks along
the application’s communication flow. Acknowledging the
important role of latency, a latency monitoring function is
imperative to the overall functionality. We consider this out
of our scope as we work on a model level; we assume that
latency is adequately measured and provided.

3.2 Objectives

Applications may be deployed across different connected
nodes, making latency induced due to network and distri-
bution a prime concern. A secondary concern highly perti-
nent to peer-to-peer systems, is edge node’s resource
preferences; participant nodes should be able to take deci-
sions on how many (and how much of) resources to share
and for what tasks, according to internal strategies defined
by their administrative entity and possibly by other incen-
tives. We treat those two concerns as key drivers, which
must be satisfied upon deployment.

Our first objective targets one of the fundamental con-
cerns of edge applications. We focus on a particular mani-
festation of latency, which is the e2e (end-to-end) delay of
an application when operational. The e2e delay is defined
by the duration of time required by an application to pro-
duce a result from received source data. For example, the
e2e delay of our example application (Fig. 2) captures the
duration of time for t4 to generate a result once t1 collects
data from its sensors. We assume that the desired e2e delay
(as an SLA) for an application is defined at design time.

Our second objective is to respect resource preferences of
participating nodes. Each node has authority on how its
resources (including hardware or sensing capabilities) are
shared with others – data that may reside locally are

similarly treated. We achieve this behaviour by enabling
edge nodes to take decisions locally, which guarantees the
mapping of tasks where data or resources reside as dictated
by participating nodes.

Note that a centralized solution where the coordinator
resides in the cloud is generally and traditionally possible.
However, we target decentralized edge-intensive systems,
where (i) a connection to the cloud (for all participating
nodes) cannot be assumed, and (ii) we seek to avoid the sin-
gle point of failure that such an arrangement would intro-
duce – in fact, any participating edge node (with or without
a cloud connection) can serve the role of a coordinator.

4 RESOURCE MANAGEMENT FRAMEWORK

An overview of our resource management technique is pre-
sented in Fig. 3, showing the internal exchange between dif-
ferent modules as well as the communication between an
application coordinator and a collaborator when an applica-
tion is deployed. Two major components define our pro-
posed technical framework– (i) the deployment policy module,
implementing decentralized resource allocation functional-
ity which aims to deploy an application without prior
knowledge of edge nodes’ available resources, and (ii) the
decision policy module, where multiple decision strategies
enable participant nodes to take local decisions regarding
their current available resources.

4.1 Deployment Policy Module

We design the deployment policy module with the purpose
of distributing tasks to a set of participants such that the
overall application requirements are satisfied. Therefore,
the functionality of this module captures the base capabili-
ties of the coordinator node and consists of two different
stages:

1) Advertising stage. Once an inquiry for application
deployment is received, the application coordinator
creates a message containing the tasks application
model which is advertised to each participant node.

Fig. 3. Resource management: deployment & dataflow diagram.
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The coordinator allocates a bounded time frame for
receiving node’s preferences; if during this period a
node does not send its preferences, then the node is
not considered for deployment.

2) Deployment stage. When all preferences arrive, the
deployment stage starts. The coordinator finds a sat-
isfiable allocation of tasks to participant nodes by
considering the application requirements and partic-
ipant preferences; a node preference can be partial or
fully fulfilled.

We note that for complex resource allocation problems,
research efforts in the field have proposed solutions based on
metaheuristic optimization algorithms. As a result, a central-
ized solution where the coordinator is deployed in the cloud
or on nodes with powerful computational resources is fol-
lowed [16], [17]. Such solutions typically yield a near-optimal
solution over a longer period of time. Our differences to these
approaches are as follows. First, our target domain is edge
computing where (i) edge nodes may have limited computa-
tional resources, and (ii) latency and nodes’ preferences are
first-class concerns. Second, we aim for guarantees. Our
approach provides a satisfiable solution that does not repre-
sent the near-optimal task allocation, but arguably more valu-
able in a dynamic network settings where the topology can
change during execution rendering an optimized solution
unnecessary. In metaheuristic approaches, there are no guar-
antees that the generated solution satisfies the objectives,
especially if simulation time is limited. In contrast, we choose
to work within Satisfiability Modulo Theories (SMT) [12], a
generalization of the boolean satisfiability problem. By casting
the problemwithin SMT,we provide guarantees that if a solu-
tion exists, it is found and it correctly satisfies the application
requirements.

Notice that SMT fits our resource allocation problem par-
ticularly well; (i) the placement of tasks on nodes are essen-
tially constraints over the space of deployment options,
which can be encoded in first-order logic, and (ii) numerical
latency SLAs can be encoded by integer linear arithmetic.
Consequently, to solve our task allocation problem, we
divide our encoding into four different parts, i.e., the task
facts, the domain facts, preferences constraints, and constraint
formulation. These capture different constraints over the
desired solution, and are illustrated in the following.

Task Facts. First, we encode the logical placement of a
tasks. As a rule, a task ti can be deployed on an edge node
En only if it is part of the task preferences sent by that partic-
ular node. Furthermore, we ensure that in the placement
solution exactly one task ti is mapped on a node En. For
example, recall the motivational example application of Sec-
tion 2, composed of five tasks t0, t1, t2, t3, and t4, on an edge
architecture with two nodes, i.e., E1 and E2. Now, let us
assume that the coordinator receives the following preferen-
ces: P1 = {[t3, t4]} from node E1 and P2 = {[t1, t2, t3]} is
received from E2. Based on the rules enforced by this encod-
ing, each participant node can receive the tasks that are not
common between P1 and P2. However, the common ones
can be deployed only on one node, independent of how
many nodes prefer to receive it. The general formula is
shown in Formula (1), where nT represents the total number
of tasks. The semantics of map() is to provide a task alloca-
tion between ti and one participant, where participants

represents the set of nodes that preferred to share resources
for that particular task

taskFacts :

n̂T

i¼1

ð9! E : mapðti ¼ EÞÞ;

8E 2 participants:

(1)

Domain Facts. These capture the latency between two
dependent tasks which are mapped on different nodes. The
latency is found by giving an analogy between the task
mapping derived from the task facts and their associated
node latency. As a result, if a task t1 is deployed on E2 and
t2 is deployed on E1, the communication latency between t1
and t2 is equal to the communication latency of the two
edge nodes, i.e., E1 and E2. The general formula is shown in
Formula (2), where lti;tj represents the latency between two
tasks, while lEi;Ej

represents the latency between two nodes,
and nEN represents the total number of participant nodes

domainFacts :
D̂

k¼1

ðti ¼ Ei; tj ¼ EjÞ ) ðlti;tj ¼ lEi;Ej
Þ

for D ¼ fi; jgwhere i 2 ½0; nt� and j 2 ½0; nEN�:
(2)

To ensure the correct functionality of our deployment
technique and guarantee that the selected collaborator
receives tasks that combined do not exceed its available
resources, we must incorporate in our encoding multiple
constraints for mapping tasks from the same P. Creating
such an encoding is not trivial since each participant com-
putes its preferences locally and the coordinator does not
know any information about the node’s available resources.
As a result, the coordinator makes a decision based on the
node preferences received. This functionality is defined in
the preferences constraints part explained below.

Preferences Constraints. We encode task allocation con-
straints by defining a preferences constraints function. Its
functionality entails creating a set of mapping rules to the
tasks to the boundary of an individual group. As a conse-
quence, only one group can be chosen from the preferences
sent by a participant. Recalling our motivating example, a
participant E1 receives in the advertisement message the
motivation example application model and based on its
own decision strategies creates the following set of preferen-
ces P = {p1, p2, p3, p4}, where pi contains a list of preferred
tasks, e.g., p1 = [t3, t4], p2 = [t1, t2], p3 = [t1, t4] and p4 = [t2,
t3]. As a consequence, the coordinator can choose tasks
from a single group to be mapped on a participant node; a
group is obtained using a decision strategy, thus assuring
that a group will not exceed the available resources of that
particular node (i.e., the owner of P).

Let us consider that the coordinator chooses p2 as the
best group sent within P. In this case, choosing p2 means
that every other group from P cannot be satisfied, since it
will exceed the available resources of that node. However,
notice that there is a common task t2 with p4. Hence, we
must guarantee that, if t2 is mapped first on E1, we do not
block the tasks from p2 or p4 since with the current informa-
tion, both offers can be chosen. Now, if t1 is mapped on E1,
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only then the remaining tasks from p4 are blocked. In con-
trast, if t3 is chosen, then p2 is blocked. The general formula
is shown in Formula (3), where n represents the total num-
ber of node’s preferences received

prefConstaint :
n̂

i¼1

ððp1 _ p2 _ p3 _ p4Þ

^ ðp1 ) ! ðp2 _ p3 _ p4Þ: . . .ÞÞ:
(3)

e2eConstraint. Finally, the last component of the encoding
ensures that the deployment meets the latency SLA of the
application; e2eConstraint captures rules that account for the
latency in the e2e delay. To instrument a complete applica-
tion, the developer should additionally account for its exe-
cution overhead as well. As a result, Formula (4) ensures
that the sum of the communication latency lt1t2 is less or
equal than the total required SLA, where ne represents the
number of edges

e2eConstraint :
Xne

i¼1

li � SLA: (4)

By combining the aforementioned constraints, we obtain
the complete formula F used by the coordinator to find a
satisfiable allocation according to application requirements

F : taskFacts ^ domainFacts

^ prefConstraints ^ e2eConstraint: (5)

Solving F incurs an energy cost, something which has to
be accounted for since we target possibly resource con-
strained edge settings. The energy cost amounts to the exe-
cution of an SMT solver against the formula – later, we
demonstrate that it is quite feasible to do so on single-board
computers for relevant problems. The energy draw depends
on the CPU power draw to solve F – full CPU usage for cer-
tain amount of time, depending on the problem size. Fur-
thermore, executing the deployment policy also introduces
a communication cost, for which we can calculate bounds
for the exchanges required for each stage. In the advertising
stage, the coordinator node sends a message to all partici-
pants and waits for their preferences. This stage requires a
total of 2*m messages, where m is the number of nodes. In
the deployment stage, the coordinator informs only the nodes
that will receive tasks, with a maximum of m.

4.2 Decision Policy Module

The decision policy module concerns strategies that a partici-
pant uses to create a set of preferences P for an advertised
application. As previously mentioned, these strategies enable
the collaborator to create groups of preferred tasks based on
their own preferences and current internal state. As such,
nodes’ preferences are enforced since every decision is made
locally without sharing information with other nodes in the
network. Besides the feature of considering collaborator’s task
preferences, the strategies play a fundamental role in the over-
all functionality – they ensure coverage of tasks. Generally, to

ensure that the application coordinator receives at least one
preference for every advertised task, a consensus model is
typically preferred where participant nodes communicate
with each other to decide for what tasks to share their resour-
ces. However, in this scenario, there is an increased communi-
cation overhead and a node does not take decisions by
itself; forcing the node to make compromises according to the
preferences of other nodes. As such, in the following we out-
line some indicative strategies that participants may use to
createP.

We especially note that the coordinator has no control
over the participants’ task preferences; in our conception,
they are free to contribute (any) resources by sending tasks
preferences of the advertised application. The rationale of
giving participants free rein about their resource contribu-
tion to the system is as follows. Every participant may
decide to adopt four default, indicative tactics to increase
the number of groups sent in an instance of P. These intend
to aim for greater coverage without requiring any informa-
tion from other nodes. Each tactic has a different role in cre-
ating a group of preferred tasks. Hence, we conceptually
group them based on their role in two different strategies.

Maximization Strategy. The first strategy aims to maximize
the number of tasks, placed in a group (i.e., pi), by utilizing all
the available resources of a node, using two tactics. The first
tactic is based on the well-known 0-1 knapsack dynamic pro-
gramming algorithm. We note that this fits well the context
since it yields the near-optimal solution. However, although
near-optimal, this tactic has high computational demands – as
we focus on task allocation, we consider efficient tactic devel-
opment as an interesting avenue of further investigation. An
alternative can use heuristics to approximate knapsack-like
solutions. The second tactic adopted in this strategy is based
on a random selection of tasks. Notice that even though the
overall strategy offers great coverage, these tactics do not con-
sider dependencies between tasks.

Dependencies Strategy. The second strategy aims at creat-
ing more custom groups that take into account dependen-
cies between tasks. For this reason, we employ two graph-
theoretical algorithms as tactics, strongly connected compo-
nents and fan-out. The former finds the largest strongly con-
nected component into the application model and builds a
group selecting tasks from the component until reaches the
maximum available resources. In contrast, the latter selects
tasks from the biggest edge fan-out found in the DAG.

It is important to stress that these strategies are indicative
to participant nodes and are built to offer suitable node
preferences for a wide range of applications. However,
because a key driver of the approach is the collaborator’s
decision to contribute resources, the coordinator does not
have any control over what decision strategies may be
employed by participants. The above indicative strategies
aim to bootstrap choices for a collaborator, which then can
amend based on its internal resource sharing rules.

Each collaborator utilizes the strategies above to generate
its task preferences within an advertised application. As we
observed, the coordinator then proceeds to calculate a satis-
fiable mapping based on the technique of Section 4.1. Note
that the preferences of a participant for certain tasks might
be fully or partially satisfied, based on application-wide
objectives. Energy costs for collaborators can be adjusted by
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selection of different strategies to capture the nodes’ prefer-
ences. We especially note that different strategies would be
interesting to develop in tandem with incentive mecha-
nisms – in essence, to encourage participants to consider
more tasks, something we identify as future work. Finally,
the actual tasks have to be deployed in nodes. In practice,
this entails downloading containers from a container reposi-
tory. Costs arising from this are application dependent; size
of containers comprising the application tasks and down-
link bandwidth are key such factors.

5 EVALUATION

To evaluate our technique and accompanying technical
framework, we consider two evaluation goals; applicability
and performance. For the former, we model four different
applications obtained from literature to be deployed at the
edge, while for the latter we follow a quantitative approach
to evaluate the performance of our technique on resource-
constrained devices. To concretely support evaluation, we
realized a prototypical tool based on the CVC4 SMT
solver [18] – implementation and technical details can be
found at [19] – which is deployed on a resource-constrained
device, a single -board computer featuring an ARMv8
1.2GHz CPU, acting as the coordinator. After applicability
aspects, we describe the experimental setup and finally dis-
cuss the obtained results.

5.1 Applicability: IoT Applications at the Edge

To investigate applicability, we model four applications,
usually deployed on devices incapable of executing an
entire application locally: (A1) an antivirus application,
(A2) a face recognition application, (A3) the public safety
motivational example of Section 2, and (A4) a team-building
application. The first three applications are obtained from
the literature and represent realistic applications – all three
applications consists of 5 tasks and 5 edges [5] and have a
maximum SLA = 30. In contrast, we adopt the fourth to
demonstrate the framework’s capability to deploy more
complex applications, one that consists of 8 tasks and 10
edges with SLA = 50.

We consider that deployment may be intended for three
different scenarios – offloading, mapping, and job assign-
ment. Offloading refers to deployment of tasks of an appli-
cation to nearby edge nodes to ensure better functionality
and optimize e.g., energy consumption – such a practice is
usually employed for mobile applications. The second sce-
nario represents mapping of tasks permanently deployed
on multiple nodes found at a certain locale, most useful in
case of applications that do not feature mobile edge nodes,
such as a smart traffic lights application [13] or do have
mobile nodes but a self-adaptive technique ensures correct
functionality after changes in the network. Finally, the third
scenario considers applications that are instance based,
meaning that a deployment occurs only when a request to
do so is received. This captures utilization of resources of
nearby edge nodes only for a limited period of time. Our
technique is capable of deploying application for all three
scenarios, however, we consider that, due to its nature, it
will provide the most benefits in the context of task offload-
ing; we can enable a resource-constrained device make

decisions locally what tasks to offload and where, without
the need of a central entity. We select two mobile applica-
tions (A1 and A2), one that fits the second scenario (A3) and
one instance-based (A4), to be deployed on an edge system
comprised of five nodes.

Each task and node is characterized by a set of computa-
tional resource requirements, i.e., a tuple (RAM, CPU, HDD,
{OTHER}), where OTHER represents a set of special task
requirements or special resources a node has, capturing their
functionality and capabilities. The tasks which require no
other specific resources (i.e., shownwith ;) can bemapped on
any node if there are enough available resources. Further-
more, for every individual application model we randomly
distribute on participant nodes a set of available computa-
tional resources. When selecting the node’s available resour-
ces, we considermultiple factors, i.e., (i) the application’s size,
(ii) the total number of participant nodes, and (iii) the tasks’
resource requirements. Note that for evaluation purposes,
when choosing the available resources, we seek to create an
environment that can host the deployed applications – at the
same time,we seek to have limited available resources to chal-
lenge the framework. As a result, for applications A1-A3 we
select for each resource a value between 5 to 10 units, while
for application A4we choose between 10 to 20 units, as appli-
cation A4 contains more tasks. In addition, other resources
required by the application are deployed on different nodes.
For illustration purposes, we adopt a generalized ’unit’ for
resource quantification – in practice this would be refined per
application (e.g., in MB/GB for RAM, GHz for CPU, etc.).
Moreover,we assign a communication latency between nodes
chosen randomly between 1 and 10 ms. For all application
deployments, the coordinator is deployed on an ARMv8 R-
Pi3 device featuring a 1.2GHz CPU and 1GB RAM, serving as
the edge node. In contrast, the participant nodes are simulated
on a machine with a single-core Intel i5 2.3GHz processor.
Application models, further details, and evaluation results
can be found in the online appendix [20].

Antivirus Application (A1). This application is a represen-
tative mobile application, widely used by users on their
devices, that behaves like a software antivirus. The applica-
tion requires: a graphical user interface (GUI) to interact
with the user, i.e., task t0, computational tasks like scan file
and compare that represents the core functionality, and a
task that present the output. Furthermore, some tasks may
require special resources, e.g., task t0 requires a set of files
to be scanned, and t5 requires a host node with a display. In
Fig. 4, one can observe the deployment strategy found, as
well as the available resources of each edge node and the
resource requirements of each allocated task. The successful
mapping (indicated on Fig. 4 with the dotted edge nodes) is
found in 434 mswith SLA = 23.

Facerecognizer Application (A2). This application is an image
processing application able to identify a face in an image.
Two tasks provide the interaction with the user, i.e., t0 that
requires a set of images as input and provides the
application’s GUI and task t4 that presents the output on dis-
play. In contrast, the remaining tasks require specialized AI
hardware such as a GPU or TPU. The requirements of each
task and the available resource of participant nodes alongside
the satisfiable solution found, is shown in Fig. 5. In this casea
deployment solution is found in 422ms, with SLA = 22.
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Public Safety Application (A3). This application aids
authorities in video analysis in the field. All tasks require
special resources – task t0, represents the source of video
data, e.g., a CCTV camera, while task t1 is capable of detect-
ing motion and requires as input the raw video data
received from t0. Based on the output of t1, the next two
tasks, i.e., t2 and t3, detect and track objects – those utilize
on machine learning algorithms requiring specialized hard-
ware. Finally, t4 requires a user-facing node with a display
to present the generated results. Their resource require-
ments and available resources are shown in Fig. 6. A satisfi-
able allocation is found in 407 mswith SLA = 17.

Team Building Application (A4). The application aims to
help companies finding the perfect team building location
based on an analysis of user personal data. Each task
resource requirements and the 5 collaborators available
resources are shown in Fig. 7); task t0 represents the starting
task and symbolizes the need for different types of data
required by the next 4 tasks. The tasks that analyze the
stored data are: t1, which performs analysis of the employ-
ee’s stored health information, t2 requiring video data as
input to perform motion detection, t3 requiring images on
which it performs object detection, and t4 which does an
analysis of the environment. Based on this information, t5
generates a list of possible locations on which t6 computes
the budget required. Finally, t7 represents the end task and
creates a report suggesting possible destinations as well as
an estimation of travel cost. Considering the defined experi-
mental setup, a solution is found in 510 mswith SLA = 31.

5.2 Performance: Experiments Setup and Results

To quantitatively evaluate our task allocation framework, we
consider as a performance metric the execution time required
to obtain a distribution of tasks to the collaborators. This
amounts to the coordinator’s ability to find a satisfiable solu-
tion at the edge, considering the highly computationally-
demanding solving component of our technique. Further-
more, we perform an analysis of the SMT encoding by exam-
ining the number of symbols of each part of the encoding

presented in Formula (5), i.e., domainFacts, taskFacts, and pre-
fConstraints. For this purpose, we design an experimental
setup of an application and an edge computing setting.

For the application model, we adopt montage [21], a real-
world DAG workflow. The application is composed of 24
tasks, each having allocated resource constraints in the
range of 1 to 10 units, and 50 edges. Furthermore, to accu-
rately evaluate performance and avoid discarding satisfi-
able solutions due to randomness in node distribution of
resources and other limitations introduced by other factors
like SLA and required data, we set the SLA to a large value
and ignore data requirements of each task. The overall
objective of our experiment setup is to map the application
to an edge computing architecture in which we gradually
increase the available resources (i.e., by increasing the size
of the network). We randomly assign to each edge node a
set of available resources chosen in the range of 10 to 20
units.

We adopt the same test environment used in the applica-
bility scenario 5.1. We perform 500 tests for each newly cre-
ated edge architecture, on which we measure: (i) the
percent of successful mapping and exclusively at the edge
mapping for different number of participating nodes, (ii)
the time required by the coordinator to find a successful
mapping of tasks to different size group of participants, and
(iii) the number of symbols each part of the SMT encoding
requires. Our results are presented in Figs. 8, 9 and 10. In
Fig. 8 we observe that as the number of nodes increases, the
successful mapping rate improves. This behaviour is simi-
larly shown in Fig. 9, where both the execution time and the
number of symbols required by F increase with the number
of participant nodes. Finally, in Fig. 10, the relation between
the total number of symbols of F and each individual com-
ponents is presented.

Fig. 4. Antivirus application and deployment (in overlay).

Fig. 5. Facerecognizer application and deployment (in overlay).

Fig. 6. Public safety application and deployment (in overlay).

Fig. 7. Team building application and deployment (in overlay).
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5.3 Discussion

Wehave demonstrated that by using our framework, a decen-
tralized resource management in an edge setting can be per-
formed. Furthermore, we note that for all applications
considered (Section 5.1), a successful task allocation at the
edge (without resorting to cloud resources) is achieved in
under 510 ms, i.e., A1 is determined in 434 ms, A2 in 422 ms,
A3 in 407 ms, and A4 in 510 ms. This demonstrates efficiency
over different types of applications in under a second, a dura-
tion suitable for three scenarios involving offloading, map-
ping and job assignment. Note that the time it takes to deploy
an application is negligible for the overall application’s life-
cycle, because this happens once before it starts executing and
not continuously, unless the network circumstances change;
moreover, a deployment time of 500 ms is small compared to
the overhead ofmoving tasks as containers.

Notice that our framework does not perform any optimi-
zation, but yields a task allocation strategy that satisfies the
considered objectives. As a result, observe that the obtained
SLA is not optimized. For example, for A1, it is possible to
improve the SLA by mapping dependent tasks on the same
node if there are available resources. In this case, some tasks
like t3 and t4 can be mapped on the same node E3, yielding
a lower SLA. However, the SMT-based approach may find
other solutions, in the case when application constraints are
relaxed (and if they exist).

In Fig. 8, we have recorded the successful rate of our
framework to find an allocation of tasks at the edge with or
without the need for computational resources found in the
cloud. For each number of participants, we illustrate the
total number of satisfiable solutions found and the number
of solutions found using only edge resources. As one can
observe, the total number of the former is influenced by the
available resources shared between the participants. How-
ever, the decision strategies used by the participants have a
bigger impact on the number of solutions fully mapped at
the edge. As a result, to fully utilize the available resources
found in an edge architecture, we must optimize the strate-
gies to ensure greater task coverage.

Fig. 9 illustrates the impact that an increase in the num-
ber of participant nodes has on the execution time required
by the coordinator to yield a task allocation. In this case, we
can observe that the growth of the number of nodes influen-
ces the SMT formula size which ultimately has an impact on
the time required to find a solution. Besides the number of

nodes and application size, other factors that influence the
framework’s performance are the e2e latency desired and
the nodes’ resources, albeit on a lesser scale. Moreover,
since all nodes are considered reachable, their connection
density, a concern in certain edge settings, has no impact on
the framework’s performance (Section 3.1). We note that
with respect to previous work [9], the memory requirements
of the SMT formulae produced are reduced – for instance,
consider the reduction of a problem size of 20 nodes with
respect to the SMT formula size, where a decrease of 12.5
percent in the formula size is obtained. This increase in effi-
ciency grows with the number of participating nodes (e.g.,
for 4 nodes we see a decrease of 6.67 percent, while for 12
nodes a decrease of 12.12 percent). Memory is a significant
factor because resource-constrained devices typically have
limited amounts. The encoding used in this paper repre-
sents scalability improvements over previous work [9].

We performed an analysis on the three parts of the
encoding, i.e., domain facts, task facts, and preferences con-
straints to better understand which has the biggest impact
on the overall SMT formula size, since their size increases
with the number of nodes in the network. In Fig. 10 the total
number of symbols required for each part is illustrated, on
which we apply the base e logarithmic function for presen-
tation purposes. To have a better understanding of the num-
ber of symbols of each encoding, for the considered
montage graph application of 24 tasks and an edge architec-
ture of 20 nodes, the number of symbols of each is the fol-
lowing; the domain facts has a total number of 211K, the task
facts has 8K symbols, and preferences constraints has a total of
5K. Observe that encoding the latency objective in the for-
mula is highly expensive (i.e., 90 percent of the total number
of symbols) since the generated encoding is additive for
every task’s latency. To properly capture e2e delay, the for-
mula requires all possible task mappings to nodes as well as
their associated latency. As a result, the number of nodes
and the application size have a greater impact compared to
any other factor.

The framework can support any microservice-based IoT
application that can be decomposed as a DAG. The first part
of the evaluation (Section 5.1) demonstrates applicability on a
diverse set of applications, intended to represent different sce-
narios obtained from the literature like offloading, mapping,
and task assignment. These applications have different char-
acteristics such as variable number of tasks and communica-
tion links. Furthermore, to quantitatively assess the effect of

Fig. 8. Successful mapping over number of participant nodes.

Fig. 9. Mapping time over number of participant nodes and formula size.

2990 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 15,2022 at 13:39:21 UTC from IEEE Xplore.  Restrictions apply. 



the major computational-demanding factors – application’s
size, node’s available resources, and number of nodes – we
considered a real-world workflow, intended to stress the
framework (Section 5.2). We believe this shows that results
are generalizable, even in large applications – the extent of
which is demonstrated on the time it takes to find deployment
strategies. As such, we believe that the framework perfor-
mance is acceptable for relevant problems – considering that
for the experiments performed the coordinator resides on a
single-board computer.

We acknowledge the high computational demands of our
proposed technique, but we note that it offers guarantees –
something demonstrated in the scenarios A1-A4 presented.
Results show that the framework can successfully deploy, in
absence of cloud resources, realistic applications with distrib-
uted resources at the edge of the network. Scaling up to higher
numbers of participants is hindered by the sizable encoding of
the e2e delay objective (Fig. 10). If the focus is on other objec-
tives that scale linearly with the fan-out degree of a service
(such as bottleneck avoidance), the overall performance will
improve significantly. As a result, we conclude that the pro-
posed technique will perform best in scenarios where only a
slice of the entire network is considered for an application
deployment (e.g., a disaster scenario or task offloading from a
resource-constrained device) or an extra module is intro-
duced that is capable of creating a group of participants,
selecting them from the proximity of the coordinator node.
Finally, we note that the technique does not guarantee the
best latency, only one that is less than the latency requirement
specified. However, the deployment solution is guaranteed to
be correct (by virtue of SMT), and is obtained rather fast.

6 RELATED WORK

Resource management techniques have been sought by the
community focusing on different aspects of the problem.
Accordingly, we discuss related work from three main per-
spectives; first, as resource offloading, next as resource allo-
cation, and finally, as resource auctioning.

6.1 Resource Offloading

Recent novel directions in distributed systems have demon-
strated advanced resource management techniques to offload
parts of an application from resource-constrained devices like
smartphones, to nearby edge servers (mobile edge computing

(MEC) nodes). By offloading tasks, computational demand-
ing applications can run on end-user devices.

A low-latency distributed computation offloading tech-
nique aiming at distributing tasks in a pervasive system is
proposed in [22]. By combining serverless and edge comput-
ing, a fully distributed domainwas created consisting of three
different entities: (i) clients who wish to offload tasks, (ii) dis-
patchers who are in charge of distributing the incoming tasks
to a group of computers, and (iii) computers which provides
the computational resources. The system is divided into two
main categories: an online phase where the dispatcher
decided the distribution of all incoming task and an offline
phase where important functions, like setup of containers or
dispatcher configuration are performed. An offloadingmodel
based on a heuristic approach is presented in [5], considering
parameters like application runtime, battery lifetime, and
user cost as its objectives. The offloading technique is com-
posed of three different components, i.e., an application pro-
filer which takes as input the running mobile application and
converts it to aDAG structure,monitoring of the remote infra-
structure status, and taking an offloading decision based on
the input received from the first two components and the user
preferences. As a result, a task can be executed either locally
or on an edge/cloud node.

6.2 Resource Allocation

Besides the offloading area, resource allocation techniques
are adopted to use the available resources found on nearby
edge devices. With this purpose, a competitive-cooperative
game-theoretic resource allocation framework to deploy
latency-sensitive application at the edge is developed,
ensuring cooperation between nodes by offering incentives
based on their work [23]. In this case, edge devices are con-
sidered to be rational actors that have no desire of sharing
their resources and collaborate with other nodes if proper
payoff for their services is not offered.

In [24], a three-level resource allocation technique for edge
computing is proposed. The first level optimizes the distribu-
tion of data replicas on multiple devices to minimize the exe-
cution of a task at the cost of increased data management.
Both, the number of replicas and the data allocation is decided
based on a context-aware replication technique that accounts
for data size, current fluctuation of the system, the available
storage, and application characteristics. Next, the second level
distributes the tasks based on different scheduling strategies,
while the third level monitors the task deployment and
adapts data placement if needed. A task assignment tech-
nique for data shared MECs is presented in [25]. The solution
considers the distributed data found at the edge of the net-
work when tasks are deployed closer to the end-user. To effi-
ciently deploy the tasks, the authors grouped them into two
different categories: (i) holistic tasks that cannot avoid raw
data transmissions and (ii) divisible tasks that can be proc-
essed in a distributedmanner.

In [26] a cooperative fog platform ensuring a collaboration
betweenmultiple static andmobile fog devices by using a dis-
tributed communication model is described. Moreover, to
improve the service efficiency of IoT applications, an alloca-
tion algorithm is used to select the host based on the character-
istics of the system. A similar approach of a mapping

Fig. 10. Contribution in symbols of different problem components to the
overall formulae, over increasing node count.
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algorithm composed of two stages is proposed in [27]. First,
the application is divided into multiple different tasks anno-
tated with location information; in the second stage each task
is deployed on an edge node based on its location.

6.3 Resource Auctioning

With regards to resource auctioning techniques, in scientific
literature we can find several proposals that focus on off-
loading tasks to edge devices. In [28], an auction-based
mechanism to perform resource allocation to MECs and
compute the related price for each resource is proposed.
The main idea is to have mobile users compete for resources
available at the edge servers to execute IoT applications.
Once a user submits a request to the nearest edge server, a
pricing mechanism computes the price for that particular
resource both in the cloud and edge. Based on this, the user
can decide if the deployment of their application to the edge
benefits them taking into account the cost.

An auction-based solution where users bid for resources
and edge servers sell their own for a certain price is
described in [29]. For this purpose, a model of a two-sided
interaction between a MEC server which plays the role of
the seller and the bidders representing the IoT mobile devi-
ces is developed. A double auction scheme is used to effi-
ciently map computational resources of a MEC server to the
needs of a mobile device by determining the matchmaking
between the bidders and sellers. Another auction mecha-
nism for determining the optimal content placement, on
mobile edge devices, based on user’s bids is presented
in [30], where a mechanism that can find true valuations
from the users and promote participation.

A reverse auction which considers partial fulfillment of
tasks, as well as attribute and price diversity, is proposed
in [31]. A framework where each task owner is in charge of
hosting his/her auction without the need of collecting
global information. The authors offer two different auction
schemes, i.e., the cost-preferred auction that schedules tasks
according to users’ asking price and time scheduled-pre-
ferred auction that considers their arrival time. A distrib-
uted auctioneer for resource allocations on distributed
systems is proposed in [32]. A set of distributed protocols to
be shared between multiple participants with the intent to
simulate a centralized auctioneer. The main motivation is
device trust and their operators’ true intentions. By doing a
decentralized auctioneer the problem of trust disappears
since all operators have a say in how the resources are dis-
tributed; eliminating the need of different participant nodes
to get an unfair advantage. The solution considers both the-
oretical and practical implications of a decentralized auc-
tioneer, by using game theoretical perspective as well as
limiting the communication overhead.

Overall, different service placement approaches adopt dif-
ferent methods – from heuristic algorithms to ILP, DNN and
others. Both the objectives and edge settings of those
approaches differ (e.g., optimizing for latency, cost, or
resource utilization). The setting that we treat are dynamic
edge systems as well as meeting nodes’ preferences and pro-
viding guarantees. Specifically, our framework differs from
three perspectives; (1) we guarantee that if there is a solution
possible, it is always found, (2) we maintain device

preferences by enabling local decisions, and (3) we perform
resource management in a decentralized manner, on
resource-constrained devices without requiring knowledge
about resources of participants.

7 CONCLUSION

Taking advantage of available resources closer to end-devi-
ces in a service-oriented fashion calls for novel resource
management techniques that comply with latency, consider-
ation of nodes’ preferences and decentralization demands
of contemporary IoT applications. We proposed a novel
decentralized resource management technique and accom-
panying technical framework for deployment of latency-
sensitive applications on the cloud-fog-edge continuum;
our application coordinator being able to reside on any of
the three layers. We specifically focused on deploying appli-
cations in the absence of cloud resources, where the coordi-
nator is deployed on a resource-constrained device. We
demonstrated that our technique can efficiently utilize
available resources at the edge and provide guarantees – if
a solution that satisfies latency and task’s requirements
exists at the edge, it will be found and it will be correct.

Regarding future work, we plan to investigate decision
strategies that ensure better coverage with lower computa-
tional demands. Furthermore, we intend to incorporate an
incentive system to reward participant nodes for sharing
their resources, perhaps by enticing them to use strategies
particularly efficient to the collective. An extension of the
proposed technique may be desired to consider deployment
of service models with multiple input and output tasks (i.e.,
where the invocation or execution path in the service com-
position has multiple entry and exit points). In this case,
each individual execution path may have a certain e2e delay
constraint set, yielding a further constraint that task alloca-
tion must consider. Similar to the notion of considering
resource preferences of edge nodes, security and privacy
mechanisms [33] can be further integrated [34]. Finally, to
account for dynamic behaviour at runtime, we aim to incor-
porate task migration techniques.
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