
IEEE Network • Accepted for Publication1 0890-8044/21/$25.00 © 2021 IEEE

Abstract
Deep learning technologies are empower-

ing IoT devices with an increasing number of
intelligent services. However, the contradiction
between resource-constrained IoT devices and
intensive computing makes it common to transfer
data to the cloud center for executing all DNN
inference, or dynamically allocate DNN computa-
tions between IoT devices and the cloud center.
Existing approaches perform a strong dependence
on the cloud center, and require the support of a
reliable and stable network. Thus, it may directly
cause unreliable or even unavailable service in
extreme or unstable environments. We propose
DeColla, a decentralized and collaborative deep
learning inference system for IoT devices, which
completely migrates DNN computations from
the cloud center to the IoT device side, relying
on the collaborative mechanism to accelerate the
DNN inference that is difficult for an individual
IoT device to accomplish. DeColla uses a parallel
acceleration strategy via a DRL-based adaptive
allocation for collaborative inference, which aims
to improve inference efficiency and robustness.
To illustrate the advantages and robustness of
DeColla, we built a testbed and employ DeCol-
la to evaluate MobileNet DNN network trained
on the ImageNet dataset, and also recognize the
object for a mobile web AR application and con-
duct extensive experiments to analyze the latency,
resource usage, and robustness against existing
methods. Numerical results show that DeColla
outperforms other methods in terms of latency
and resource usage, which can especially reduce
at least 2.5 times latency than the hierarchical
inference method when the collaboration is inter-
rupted abnormally.

Introduction
With the rapid development of artificial intelli-
gence (AI) chip-making technology, an increasing
number of smart end devices, including Internet
of Things (IoT) devices, can independently collect
and process data in real-time [1, 2]. This elimi-
nates the demand to transfer data over the cellu-
lar network to the cloud center, which reduces
transmission overhead, avoids leakage of user’s
privacy, and reduces the load of the cloud center
[3]. Also, custom embedded implementation of
Deep Neural Networks (DNNs) that is suitable for

IoT devices, expands the scenarios of DNNs such
as driverless vehicles, security monitoring, and
so on. This also illustrates the gradual expansion
of AI capabilities from the remote cloud to the
IoT device side, such as Huawei’s HiAI 3.0, which
provides an open platform for smart end devic-
es, and supports multiple end devices to share AI
capabilities.

However, executing intensive DNN computing
for IoT devices is still challenging to acquire a real-
time and satisfactory experience by employing
the following three approaches summarized in
Table. 1:

The most common way is to offload the DNN
tasks to the cloud center (e.g., remote cloud and
edge cloud in 5G networks), and execute the
whole DNN inference there [4, 5]. This introduc-
es the load of the cloud center and increases the
dependency on the availability of the network and
high-quality service of the cloud center, which
also means that the AI capability of IoT devices
entirely relies on the cloud center.

The second approach implements collabora-
tive inference between the IoT device and the
cloud center by dynamically partitioning DNNs,
which leverages available resources of the IoT
device, reduces the load of the cloud center, and
somewhat accelerates DNNs inference. Neuro-
surgeon [6] is a classic device-cloud collabora-
tive DNN inference scheme, which automatically
chooses the partition points pursuing the optimal
latency and energy consumption. LcDNN [7] and
DeepAdapter [8] provide lightweight collabora-
tive frameworks for executing distributed DNN
inference between the mobile web and edge
server, which also rely on the edge server. DDNN
[9] further extends the collaborators, which jointly
trains mapped sections of a DNN onto a distribut-
ed computing hierarchy over the cloud, the edge,
and end devices. Unfortunately, this approach
also has a strong dependency on the quality of
network communications to exchange interme-
diate results of DNN inference. Especially in an
extreme environment where the network or ser-
vice of the cloud center is unstable, this solution
may be unavailable for a scenario of the autopilot,
which may cause a major hazardous accident in
no-man’s-land.

The third approach is to execute all DNN com-
putations on the IoT device side, which can be
classified as custom embedded implements, and

Toward Decentralized and Collaborative Deep Learning Inference for Intelligent IoT
Devices
Yakun Huang, Xiuquan Qiao, Schahram Dustdar, Jianwei Zhang, and Jiulin Li

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000639

Yakun Huang, Xiuquan Qiao are with Beijing University of Posts and Telecommunications; Schahram Dustdar is with the Technische Universität Wien;
Jianwei Zhang is with the Capinfo Company Limited; Jiulin Li is with the Beijing National Speed Staking Oval Operation Company Limited.

IEEE Network • Accepted for Publication 2

distributed collaborative inference over IoT devic-
es, neither of which is dependent on the cloud
center or network resources. Custom embedded
implements require extensive expert experience
and skills to design DNNs with low accuracy loss
(e.g., MobileNet, ShuffleNet, and so on) [10], or
various compression technologies (e.g., low-rank
factorization, knowledge distillation, quantiza-
tion, and pruning) to reduce unimportant weights
and neurons of trained models to acquire light-
weight DNNs [8]. Currently, only a small portion
of DNNs such as image recognition DNNs, has
a low accuracy loss and is difficult to generalize
to other areas. DNN inference solutions for IoT
device-side collaboration are important ideas to
address this challenge. Musical Chair [11] imple-
ments efficient real-time recognition using collab-
orative IoT devices, which proposes model and
data parallelism by layers to distribute the com-
putation of a model over multiple IoT devices.
The authors further put forward to conduct sin-
gle-batch influence in real-time while exploiting
several new model-parallelism methods with col-
laborative IoT devices in [12].

Despite the success of implementing collabo-
rative DNN inference over multiple IoT devices
[11, 12], and removing the dependency on the
cloud center, there are still two key challenges
for employing this approach in real applications,
which include the following:
•	 Traditional collaborative approaches execute

DNN layers with obvious sequential charac-
teristics, which may cause a large number
of IoT devices to be waiting, thus failing to
further accelerate the DNN inference. They
partition the DNN into multiple sequen-
tial sub-tasks by layers and distribute them
across IoT devices for sequential execution.
This may lead to a situation where one IoT
device is performing a sub-task while the
others are waiting, failing to improve the
resource utilization of IoT devices. When an
anomaly occurs in one of the assigned IoT
devices, this DNN layer may require reas-
signing a new IoT device and broadcasting
updated collaboration to each IoT device.

•	 Traditional collaboration typically uses offline
and linear models to predict the execution
latency of DNN layers and assigns DNN
computations to IoT devices for collabora-
tion according to such simple predictions.
However, these methods struggle to achieve
optimal resource utilization and latency per-
formance in dynamic environments. These
approaches require maintaining an IP routing
table on each IoT device for collaborative
computing, which increases communication
costs and reduces robustness. This happens
because IoT devices execute different DNN
layers inference separately, performing
sequential feature and monitoring the status
of IoT devices and inference dependencies
in a timely manner.
To address the first challenge, we describe

the overall system architecture of the proposed
DeColla, including a remote cloud layer, an edge
cloud layer, and an IoT device layer in 5G net-
works, which weakens the role of the cloud cen-
ter during online collaborative DNN inference.
The remote cloud can provide offline training
and optimization of precise DNN models, and
the edge cloud trains a dynamic task assignment
engine for assigning computations, which has no
impact on online real-time collaboration at the
IoT device layer. We further enhance the effi-
ciency and the robustness of DNN collaborative
inference for IoT devices by a novel mechanism
for parallel inference in DNN layers. Unlike the
traditional hierarchical inference, we implement
collaboration of multiple IoT devices at a fine-
grained level to each DNN layer, rather than the
entire DNN inference. In other words, multiple
IoT devices work together to execute each DNN
layer to replace traditional methods of a single
IoT device to perform one or several DNN layers
independently. To address the second challenge,
we provide a DeColla engine trained on the edge
cloud to provide optimal and adaptive assign-
ment, performing parallel inference in DNN layers
for IoT devices. This distinguishes it from the tra-
ditional method of assigning DNN sub-tasks using
offline predicted latency models. We leverage

TABLE 1. Summary of existing approaches for executing DNNs on IoT devices.

Technique
Used

Typical
Literature

Problem
Addressed Advantages Disadvantages

Remote
Execution

DeepQuery [4] Cloud-based
DNN inference

1) Low-latency;
2) High GPU utilization. 1) High pressure of the cloud server;

2) Requiring high network bandwidth;
3) Privacy concerns.MobiEye [5] 1) Deep feature flow;

2) Dynamic scheduling.

Partitioning
-offloading

Neurosurgeon [6] Distributed DNN
inference over
cloud, edge, and
device

1) DNN computation partitioning across
the cloud and mobile edge. 1) Requiring retraining the DNN model;

2) Requiring ingenious design of the
structure and branches;
3) Requiring an available environment
between the device and the cloud.

LcDNN [7],
DeepAdapter [8]

1) Lightweight branch at device side;
2) High throughput;
3) Reduce the pressure of the cloud.

DDNN [9] 1) A distributed computing hierarchy;
2) Joint training method.

Device-side
inference

Compression
DNNs [10] Device-side

DNN inference

1) Small DNN model size;
2) Fast inference.

1) Accuracy loss;
2) Design the network with expert
knowledge.

Musical Chair [11],
Hadidi [12]

1) Distributes the DNN inference among
multiple IoT devices;
2) Dynamically changes the distributed
tasks.

1) Hierarchical inference characteristic;
2) High waiting latency;
3) Low robustness.

IEEE Network • Accepted for Publication3

a message queue to judge whether the parallel
inference on the current DNN layer is complete
or not. Instead of broadcasting and updating the
message queue on all IoT devices, we just need
to initialize and update it on the task requester,
reducing the communication cost during the col-
laboration. Since the message queue records the
results of the parallel inference for IoT devices in
a DNN layer, DeColla can determine whether a
delay or exception has occurred for IoT devices
by the results that have been returned. We can
see that this collaborative mechanism is more
eff ective in improving the resource utilization of
IoT devices, reducing the waiting latency, and
improving the robustness when compared with
existing methods. We use a case study on image
recognition of mobile augmented reality and con-
duct experiments to indicate that DeColla off ers
better latency and resource usage than existing
approaches. Our contributions can be summa-
rized as:
• We propose DeColla, providing a collabora-

tive mechanism for parallel inference within
the DNN layer, and enhancing the effi ciency
and the robustness of decentralized and col-
laborative DNN inference.

• We give detailed methods of DeColla to pro-
vide a DRL-based adaptive allocation strate-
gy that greatly improves resource utilization
of IoT devices, which also uses a message
queue to replace the traditional IP routing
table, reducing the waiting latency during
collaboration.

• We build a testbed and deploy a simplified
demo of mobile AR applications. The exper-
imental results demonstrate that DeColla
performs better than existing collaboration
methods in terms of latency and system
robustness.

system ArchItecture
In Fig. 1 we present the overall system architec-
ture of DeColla, including a remote cloud layer,
an edge cloud layer, and local IoT devices layer.
To better understand the workfl ow of DeColla, we
use an example of image recognition to describe
the architecture details of the system. First, an IoT
device with a camera launches a task request for
real-time object recognition. The IoT device then

collects the contexts needed for collaborative
computing such as the network bandwidth, the
number of IoT devices, and their real-time sta-
tus. With this necessary information, the DeCol-
la engine can dynamically and adaptively assign
computations of each DNN layer to collabora-
tive IoT devices for parallel inference. In contrast
to existing methods, our parallel inference aims
at each DNN layer rather than the entire DNN
network. During the parallel inference, we use
an output message queue to judge whether the
current layer has completed all calculations. Once
the current DNN layer has been successfully pro-
cessed, we remove to the next DNN layer and
repeat the same processing until the final result
is obtained, and return it to the initial IoT device.

We further describe these layers of the sys-
tem architecture in detail to better understand the
idea of the DeColla system.

Remote Cloud Layer: In the DeColla system, a
remote cloud layer is often viewed as a computa-
tionally resource-rich cloud center that is used to
train or optimize DNN models, as accurate DNN
models are key to ensuring satisfactory service
at the IoT device layer. It is also responsible for
network control and the deployment of DNN ser-
vices between the remote cloud and the edge
cloud. Updating DNN services to the edge cloud
in real-time can ensure the reliability and accuracy
of DNN models.

Edge Cloud Layer: Unlike the device-cloud col-
laborative inference approach, the edge cloud
layer of DeColla is not involved in the DNN infer-
ence processing at all, which is mainly responsi-
ble for the initialization and optimization of the
DeColla engine. Note that the DeColla engine
provides a dynamic and adaptive allocation strat-
egy for performing each DNN layer inference
collaboratively and in parallel. On the one hand,
there is no need to place the training phase of
the DeColla engine at the IoT device layer, which
avoids the resource and energy consumption of
IoT devices. On the other hand, the edge cloud
can provide offline training for a more precise
allocation strategy of the DeColla engine.

IoT Device Layer: Our DeColla system can
be applied to a wide range of scenarios, which
are filled with a large number of connected IoT
devices and provide a credible environment, such

FIGURE 1. Overall system architecture.

Remote Cloud
Layer

Edge Cloud
Layer

IoT Device Layer

 . . .

Smart factory Home intelligence Healthcare Unmanned vehicles Entertainment

D2D link Cellular link

Edge node 1

Edge node n

 ...
 ...

 ...

 ...
 ...

 ...

 ...

DeColla DNN inference

Image recognition as an example

Real-tim
e deep learning inference (im

age,
video, speech analysis etc.)

End device
Request for

image
recognition

Gather data on
 environment

Return
results

DeColla
Engine

DeColla Engine
(Allocating
strategy)

Task processing

Training or optimizing DNNs

Network control

IEEE Network • Accepted for Publication 4

as smart factories, home intelligence, healthcare,
and so on. In the IoT device layer, we use the
available resources of collaborative IoT devices to
accelerate DNN inference. There is no dependen-
cy between DNN calculation assigned to each
IoT device, which also does not rely on the cloud
center and can be executed independently. We
periodically update the DeColla engine to the IoT
device from the edge cloud when the IoT device
is idle, and feedback history behaviors to enhance
the DeColla engine’s adaptive capabilities. Note
that the technical details of communication in the
IoT device layer are beyond the scope of this arti-
cle.

methods of the decollA engIne
The DeColla engine plays the role of the brain
in implementing decentralized and collaborative
inference over IoT devices. The engine provides a
dynamic and adaptive allocation strategy for col-
laboratively executing each DNN layer in parallel
(i.e., an optimal allocation that provides decentral-
ized collaborative inference for each DNN layer
with optimal processing latency based on dynam-
ic contexts, including the number of IoT devices,
available computing resource, and the network
condition). We first introduce our parallel DNN
layer inference in DeColla, which is more suitable
than the existing hierarchical and collaborative
inference.

how to eXecute decentrAlIZed And
collAborAtIve dnn Inference In pArAllel?

We show the diff erence between traditional hier-
archical inference and proposed parallel infer-
ence for faster collaboration in Fig. 2. It can be
seen that in traditional hierarchical inference, for
a four-layer (excluding the input and output lay-
ers) DNN network, it can be divided into differ-
ent sub-tasks and assigned to the allocated IoT
devices to execute the partial inference. Howev-
er, this inference scheme has a typical sequential
nature during collaborative inference, whereby
the latter device needs to wait for the previous
device’s inference results as the input. Also, this
hierarchical execution scheme reduces the sta-
bility and reliability in real scenarios due to the
following considerations. First, maintaining an IP
routing table across participating devices requir-

ing reallocation and updating changes when one
collaborative device occurs abnormity or lost the
connection, which causes the increase of the
waiting latency. Second, the fluctuation of the
network bandwidth may cause inconsistent updat-
ing of the IP table, and even lead to paralysis of
current distributed collaborative inference. Since
there are currently no methods to keep the con-
sistency and integrity of the IP table, it is also the
potential reason for the increase of the waiting
latency when applied in actual scenarios. Thus,
although the IP table itself is small and does not
need to consume computing resources, it is easy
to be affected by the dynamic environment and
running state of collaborative devices.

Unlike traditional hierarchical inference, we
propose a novel way to implement parallel infer-
ence for accelerating multiple IoT device collab-
oration within the DNN layer, using a message
queue to effectively reduce the waiting latency.
When any one of the collaborative devices occurs
an abnormity or leaves the current collaboration,
the message queuing mechanism can quickly
discover and re-allocate the task in time without
aff ecting the other collaborative devices, avoiding
a large amount of waiting latency. Instead of off -
loading one or more DNN layers to a single IoT
device, we use multiple IoT devices in parallel for
executing each DNN layer. We simply maintain a
message queue on the IoT device requester and
quickly decide whether the inference of the cur-
rent DNN layer is completed by judging whether
the length of the message queue equals the num-
ber of neurons in the current DNN layer. After
that, we simply repeat each DNN layer inference
until we obtain the result of the last DNN layer.
Hence, DeColla can provide a more effi cient and
robust collaborative mechanism to accelerate dis-
tributed DNN inference across multiple devices.

We give an example of parallel inference at
layer l3 in the right part of Fig. 2. It can be seen
that we take the output of layer l2 as input to
layer l3, and assign the computations associated
with the neuron in layer l3 to diff erent IoT devices
for executing parallel inference. With this kind of
intra-layer parallel inference, there are no com-
putational dependencies among IoT devices. The
neuron of the red box in the right part of Fig. 2
indicates that the computation associated with

FIGURE 2. Various DNNs execution schemes for acceleration and collaboration.

C
us

to
m

 D
N

N
 N

et
ow

rk Input
Output

Task 1 Task 2 Task 3 Traditional
Hierarchical Inference

DeColla
Parallel Inference

Device 1 Device 2 Device 3

Output

x1x1

Task 2 Task 3 Task 4 Task 5

Device 1
Device 2 Device 3

Message Queue O
utput

Parallel inference for each DNN layerTask1

Input

Input

Input

Input

O
utput

O
utput

O
utput

O
utput

Inference example

Device 1

Device 2

Device 3

Parallel inference results

Message Queue

Input of D
N

N
 layer

Input of next DNN layer
()

Input of D
N

N
 layer

Input of next DNN layer
()

IP routing table

IEEE Network • Accepted for Publication5

that neuron has been completed. When the
length of the message queue equals the number
of neurons in the DNN layer, the output can be
combined in the order of the input to serve as
the input to the next DNN layer. The most critical
problem with this parallel inference is how to pro-
vide a way to dynamically allocate computations
of each layer to IoT devices, with the goal of mak-
ing the overall latency minimal. We next focus on
how to provide optimal neuron allocation based
on dynamic contexts (e.g., network and IoT devic-
es status).

Adaptive Allocation Strategy for DNN Layers in DeColla
To take full advantage of our parallel inference
scheme of each DNN layer for non-dependent
DNN inference in DeColla, it is also vital to design
an on-line scheduling algorithm to allocate sub-
tasks of each DNN layer for executing collabo-
rative inference across IoT devices. To solve this
problem, in Fig. 3 we propose DRL-ES, a real-time
dynamic allocation algorithm based on deep rein-
forcement learning (DRL), which is a machine
learning technology that learns which allocation
behavior can yield better rewards by observing
the state of the environment through an agent.
During each time slot t, the agent selects an opti-
mal action at that means how to allocate the neu-

rons to IoT devices by observing the current state
st. Especially, the agent selects the optimal action
according to a policy network that is performed
by a deep neural network representing probabil-
ity distribution p(s, a) to better fit the state-action
value function. We describe the gradient of the
optimized objective to maximize the expected
reward as:

DEq[Sgtrt] = Epq[Dqlogpq(s, a)Qpq(s, a)], 		 (1)

where Eq[Sgtrt] represents the expected cumu-
lative reward and g ∈ [0, 1] is the discount
reward. Qpq(s, a) is the expected reward when
the agent picks action a in state s. Assuming Pj is
the required processing time of the neurons set
j (i.e., the latency between the receiving neurons
set and completing the computing of the neuron
set), and Tj is the theoretical processing latency
by calculating FLOPs of the neuron set j. Thus,
we minimize the average slowdown of process-
ing the neuron set, represented by Sj = Pj/Tj, to
pursue an optimal allocation for proposed paral-
lel inference.

With such a basic framework, we define the
basic elements of the state, the action, and the
reward of this DRL problem to better understand
the proposed scheduling algorithm as follows:

FIGURE 3. Adaptive allocation strategy for executing DNN layers in parallel based on DRL. In the state exam-
ple at the bottom, we have completed the neuron (which means the sub-task) allocation of l5, and are
considering how to allocate neurons of l6 layer into collaborative IoT devices. The blank blocks repre-
sent the remaining available resources of IoT devices.

rr

θ

θ

θp

Q

C

lr

i
←

1
;

i
<

C
?

s
a

s

θ i
←

θ p
+
n
oi
se

;

θ i
←

re
w
a
rd

i;

g i
←

re
w
a
rd

i
−
r̂; θ p

IEEE Network • Accepted for Publication 6

State Space: At each time slot t, the state St
can be denoted by St = <lt, Bt, Ct, nt>, where lt
is the current DNN layer and Bt is the network
bandwidth. C = <c1

t, c2
t, …, cN

t > represents the
available computing resource of N IoT devices,
and nt denotes the current neurons in lt. Since the
number of IoT devices is always not constant, this
indicates that we have to retrain the DRL policy
network when a part of IoT devices join or leave
the collaboration, which is not practical. There-
fore, we fix the number of available IoT devices
in the policy network to always be constant value
Mc, and when the number of available IoT devices
Ma is more than Mc, the highest available resourc-
es in the first Mc will be selected as the collab-
oration IoT devices. If Ma < Mc, Mc – Ma excess
IoT devices are set as ø, indicating that these IoT
devices are not involved in collaboration.

Action Space: Based on the above defini-
tions, the real-time scheduling algorithm requires
matching sub-tasks of N neurons in each DNN
layer to Mc IoT devices appropriately, using at to
denote the selected allocation result at time slot
t. However, the large-scale neurons of DNN lay-
ers cause a large amount of action space of Mc

N,
which means each neuron can be assigned to
any available IoT device. Also, it is hard to train
such a policy network with a dynamic and large
number of neurons in the state. Since the amount
of computations involved in each neuron is too
small and frequent allocation may increase the
communication cost and reduce the stability, it
is unnecessary to allocate the computing to IoT
devices at the level of each neuron. To this end,
we always divide the neurons of each DNN layer
equally into K pieces to keep the state stable and
signifi cantly reduce the action space. In particular,
the value of K can be determined by the maxi-
mum number of neurons of the DNN network
and the number of available IoT devices.

Reward: DeColla’s parallel inference for each
DNN layer utilizes the computing resource of col-
laborative IoT devices without data transmission
with the cloud center. As a result, more IoT devic-
es involved in parallel inference will accelerate the
DNN layer inference and reduce the overall laten-
cy. To guide the agent to minimize the average
slowdown, we employ the similar defi nition of the
reward R = Sj∈nt(–1/Tj), which has been illustrated
to be eff ective in [13]. nt is the current waiting pro-
cessing neurons at time slot t. We can maximize
the cumulative reward to mimic that minimizing
the average slowdown when setting the discount
factor as g = 1. Based on the above defi nitions, to
better train the DNN policy network by reverse
propagation and relieve the problem of sparse
rewards, we adopt a DRL training approach with
a fusion evolutionary strategy [14, 15]. As shown
in the upper part of Fig. 3, the specific process
is applying evolution strategy to candidate sam-
ple populations by increasing the random noise
and producing offspring that perform the selec-
tion. The more well-adapted off spring have more
opportunities to retain and produce new off spring.

A cAse study on mobIle Augmented reAlIty
Since it is promising to use the cross-platform
mobile web to develop various applications,
especially popular AR applications recently [3],
in Fig. 4 we built a testbed to illustrate the perfor-

mance of the DeColla system when employing
it to recognize the object for a mobile web AR
application. As object recognition is the key step
in AR applications, which is currently still chal-
lenging to execute intensive and heavy DNNs on
resource-constrained mobile web, we leverage
DeColla to provide efficient collaboration with
three IoT devices for accelerating the DNN recog-
nition and relieve the shortcoming of the mobile
web. As shown in Fig. 4, users fi rst scan the object
(e.g., pandas) via the camera invoked by the web
API, and then identify the object by executing a
precise MobileNet DNN network trained on the
ImageNet dataset, whose model size is about 14
MB. Once the mobile device receives the correct
recognition result, the render module performs
the 3D animated model for interaction using
WebGL and other technologies. Hence, we can
employ this use case to evaluate the performance
and efficiency of DeColla from the perspective
of latency, and resource usage compared with
existing methods such as traditional hierarchical
inference.

eXperIment settIngs
As shown in the bottom part of Fig. 4, we use a
high-performance server with two GPU cards at
the remote cloud layer, which is responsible for
training DNNs and providing services for the edge
server. A common server with a six-core interpro-
cessor of 2.9 GHz and 16 GB RAM is deployed
near the 5G base station, which is a real-world 5G
network at Beijing University of Posts and Tele-
communications supported by China Unicom.
We also use a HUAWEI 5G CPE to connect to
the base station to provide stable communica-
tion. We use a Huawei honor smartphone as a
DNN task requester, and to complete visual ren-
dering. Three RaspBerry 4 Pi’s with 4G RAM are
used to complete collaborative DNN inference.
Since executing DNN inference on the mobile
web is mainly done by JavaScript, here we only
use a smartphone as a task requester and ren-
der to simplify heterogeneous DNN inference,
which means all DNN calculations are executed
entirely in collaborative IoT devices. To train the
DeColla engine and provide an initialized allo-
cation strategy model, we experimentally obtain
real measurements of parameter configuration,
IoT device available capacity, network bandwidth,
and inference latency. We generate simulation
data for training the DRL algorithm at different
DNN layers to obtain an optimal parallel collabo-

FIGURE 4. System testbed for recognizing case of a mobile web AR application.

De
Co

lla
 D

NN

in
fe

re
nc

e

Camera Object
recognizer Render

User

DNN (MobileNet, ResNet, etc.)

Results

5G Base Station with
 Edge Server

5G CPE

Resource-constrained
mobile web Using WebGL etc.

IEEE Network • Accepted for Publication7

rative inference strategy in various DNN models,
network conditions, the available resource of IoT
devices, and so on. We analyze DeColla’s perfor-
mance against mobile-only, partition-offloading,
and the traditional collaborative method in the
latency and the resource usage variance of IoT
devices. The mobile-only offloads all the compu-
tations to any one IoT device. The partition-off-
loading approach distributes the computations
between any one IoT device and the edge server,
and traditional hierarchical inference, named Hier-
archical Colla, distributes DNN layers to multiple
IoT devices layer by layer.

Numerical Results and Analysis
Based on the above testbed and experimental set-
tings, in Fig. 5 we discuss the performance of the
proposed DRL-ES allocation algorithm from the
perspective of convergence and scheduling effi-
ciency. For training the scheduling algorithm, we
set the learning rate as lr = 0.002 and the output
size of the policy network as Mc =100, respective-
ly. We also set K = 6 to divide neurons of each
DNN layer into twice the number of IoT devices.
We define the training iterations as 1500 and set
the number of children as C = 10 in the evolu-
tion strategy. Especially, Figs. 5a and 5b describe
the convergence performance of DRL-ES on the
average slowdown and total reward compared
with other representative approaches.We observe
that DRL-ES converges faster than the basic DRL
method and has better average slowdown per-
formance as the iteration increases, which also
means that employing evolution strategy can
provide DeColla a better sub-task allocation of
each DNN layer. In general, DRL-based meth-
ods show significant advantages compared with
non-DRL methods, where the Random method
represents the random distribution of computing
tasks, the Average method represents the aver-
age distribution of computing tasks to each IoT
device, and the Least method means that tasks
are prioritized to the IoT device with the high-
est computing resource. The Least method has
better average slowdown than the Random and

Average methods, but worse than DRL methods.
This is because prioritizing tasks assigned to the
IoT device with the highest computing resource
may directly cause the IoT device to exceed the
current computing capacity and cause the wait-
ing latency of computing tasks, while DRL-based
methods can provide dynamic and reasonable
computing task allocation based on the status of
all IoT devices. Also, Fig. 5b illustrates that DRL-
ES can converge faster than the basic DRL meth-
od, and show better convergence results via the
comparative analysis of the total reward. Further,
we discuss the runtime performance of DRL-ES
scheduling when deployed on IoT devices in Figs.
5c and 5d by using the microsecond as the unit
to measure the average runtime performance of
100 task schedules. In particular, we use the CPU
Usage Limiter (https://github.com/opsengine/
cpulimit) to control available CPU resource to
simulate various computing status. The results
show that DRL-ES can execute task scheduling
under different conditions in 1–2ms, which is effi-
cient enough without increasing additional sched-
uling costs. This is because we only need to spend
time on training DRL models offline, and the
inference phase of the running trained model is
real-time, even in the complex scenario with large-
scale tasks. In summary, our DRL-ES scheduling
strategy does provide real-time, available schedul-
ing for the DeColla system. In addition, the DRL-
based method has been widely used in intelligent
decision-making in different scenarios. This is one
of the main reasons that we adaot and extend the
DRL method to schedule our DeColla system.

In Fig. 6 we analyze DeColla’s performance
against the mobile-only, the partition-offloading
and hierarchical collaborative methods in the
latency and the resource usage variance of IoT
devices. We further illustrate that DeColla out-
performs the traditional hierarchical method by
simulating different running states of collabora-
tive devices such as low available resources and
abnormal disconnection. We use Wonder Shaper
(https://github.com/magnific0/wondershaper) to
control the communication and thus obtain vari-
ous network bandwidths. We measure the latency
by calculating the average latency between the
smartphone’s request and the receipt of the final
result 10 times, excluding the image transfer and
result response between the smartphone and the
IoT device. The CPU usage of IoT devices is set
as 30 percent in Fig. 6a. By comparing DeColla
with representative methods in different network
bandwidths in Fig. 6a, we observe that:
•	 As the network bandwidth increases, the

latency of Hierarchical Colla decreases and
stabilizes, while the partition-offloading meth-
od has the best latency performance with
the help of the edge server.

•	 The overall performance of mobile-only is
less affected by the network bandwidth
because it is only used for one IoT device
and does not require data on the interaction
with other IoT devices.

•	 For Hierarchical Colla and our DeCol-
la system, the increase in network band-
width significantly lifts the data transferring
rate among IoT devices, and therefore the
increase in network bandwidth effectively
improves latency performance.

FIGURE 5. Performance in different networks.

0 300 600 900 1200 1500

2

4

6

0 300 600 900 1200 1500
-120

-90

-60

-30

0 5 10 15 20
800

1000

1200

1400

20 40 60 80 100

1000

1200

1400

Training iteration

(d) Runtime with various CPU usage(c) Runtime with various request tasks

(b) Convergence on total reward

Av
er

ag
e

slo
w

do
w

n
 DRL-ES
 Basic DRL
 Random
 Average
 Least

(a) Convergence on average slowdown

To
ta

l r
ew

ar
d

Training iteration

 DRL-ES
 Basic DRL

1 ms

Numbers of request

 Runtime of DRL-ES

1 ms

CPU usage (%)

 Runtime of DRL-ES

IEEE Network • Accepted for Publication 8

When the network bandwidth reaches 10
Mb/s, DeColla exhibits lower latency than Hier-
archical Colla, suggesting that when the network
bandwidth is stable and strong, the collaborative
inference approach is the key factor constraining
the performance, which also suggests that parallel
inference within our method exhibits better per-
formance. Fig. 6b shows the comparison among
different methods in various CPU usages with a
stable network bandwidth of 20 Mb/s. We can
see that:
•	 Partition-offloading is least influenced by

the available computing resources of the
IoT device, and as the available computing
resources decrease, most DNN computa-
tions will be offloaded to the edge server.

•	 For the mobile-only method, since all com-
putations are done on one IoT device, the
latency to complete DNN collaborative
inference increases dramatically as the IoT
device’s CPU usage increases.

•	 Compared to Hierarchical Colla, DeColla
shows better latency performance when the
IoT device’s CPU usage is high, illustrating
that DeColla’s is better than that of Hierar-
chical Colla. This is because the Hierarchical
Colla method not only spends much time on
the inference of each DNN layer, increasing
waiting latency between DNN layers, but
also takes a lot of time for each IoT device
to maintain the IP routing table.
Further, in Figs. 6c and 6d we evaluate the nor-

malized resource utilization variance of involved
IoT devices under different networks and task
scales. Note that the smaller the normalized
resource utilization variance, the smaller the fluc-
tuation, representing a balanced task scheduling.
We have found that:
•	 With the continuous increase of network

bandwidth, the mobile-only method has a
small increase, which shows the computing
load of the processing IoT device increases.
The partition-offloading method can dynam-
ically adjust the partitioning point according
to the network bandwidth, so when the net-
work bandwidth is low, the resource utiliza-
tion variance performance is low, indicating
that most of the computations are execut-
ed on the edge server. Once the network
bandwidth increases, a lot of computations
are offloaded to one IoT device, increasing
the resource utilization variance, while DRL-
based methods can always provide more
reasonable and dynamic allocation accord-
ing to the network bandwidth and the sta-
tus of IoT devices. Therefore, as the network
bandwidth increases, the resource utilization
variance shows a gradually decreasing trend.

•	 We also evaluate the resource usage per-
formance of DeColla by simulating mul-
tiple request tasks and setting the network
bandwidth as 20 Mb/s. Since mobile-only
and partition-offloading always offload com-
puting tasks to one of the IoT devices, mul-
tiple concurrent tasks cause an increase in
the variance of resource utilization until one
device reaches full load. Once the device
reaches full load, tasks will be unloaded to
other devices, so there is a certain reduc-
tion in resource utilization variance until all

IoT devices are fully loaded and stabilized.
In contrast, DRL-based methods effective-
ly allocate these concurrent tasks to IoT
devices for collaborative execution. Thus,
the resource utilization variance appears to
gradually decrease until a full load of all IoT
devices reaches a stable state. In general,
online scheduling using DRL improves the
collaboration capabilities and resource utili-
zation of IoT devices and effectively reduces
the processing latency at the same time.
In Figs. 6e and 6f, we show the advantages of

DeColla’s parallel inference in each layer over the
traditional hierarchical method and give a deep
analysis and discussion. Figure 6e presents the
performance between DeColla and the traditional
hierarchical scheme by executing the same task
10 times, when controlling the CPU usage of any
collaborative device from low to high but still
within the available range. The results in the left
part of Fig. 6e show that the average processing
latency of Hierarchical Colla increases significant-
ly due to the waiting latency of other collaborative
devices when increasing the CPU usage of any
collaborative device. This also means the perfor-

FIGURE 6. Comparing DeColla with representative methods.

0 5 10 15 20 25 30 35 40

100

150

200

250

300

20 30 40 50 60 70 80 90
0

500

1000

1500

0 10 20 30 40

0.4

0.5

0.6

0.7

0 10 20 30 40 50

0.4

0.5

0.6

0.7

25 50 75

150

300

450

600

750

900

25 50 750

75

150

1 20

350

700

1050

1400

1750

1 20

150

300

450

600

(d) Resource usage variance with
different tasks

(c) Resource usage variance with
different networks

Av
er

ag
e

la
te

nc
y

(m
s)

Network Rate (Mbps)

 Mobile-olny
 Partition-offloading
 Hierarchical Colla
 DeColla

(a) Latency performance with various
networks

Av
er

ag
e

la
te

nc
y

(m
s)

CPU Usage (%)

 Mobile-olny
 Partition-offloading
 Hierarchical Colla
 DeColla

(b) Latency performance with
different CPU usages

Re
so

ur
ce

 u
sa

ge
 v

ar
ia

nc
e

Network Rate (Mbps)

 Mobile-olny
 Partition-offloading
 Hierarchical Colla
 DeColla Re

so
ur

ce
 u

sa
ge

 v
ar

ia
nc

e

Number of tasks

 Mobile-olny
 Partition-offloading
 Hierarchical Colla
 DeColla

Av
er

ag
e

La
te

nc
y

(m
s)

CPU Usage (%)

 Hierarchical Colla
 DeColla

(e) Performance of adjusting running
state of any collaborative device

W
ai

tin
g

La
te

nc
y

(m
s)

CPU Usage (%)

 Hierarchical Colla
 DeColla

(f) Performance when abnormity
occurring in collaborative devices

Av
er

ag
e

La
te

nc
y

(m
s)

Abnormal devices

 Hierarchical Colla
 DeColla

W
ai

tin
g

La
te

nc
y

(m
s)

Abnormal devices

 Hierarchical Colla
 DeColla

IEEE Network • Accepted for Publication9

mance of using a single device to execute a single
DNN layer in Hierarchical Colla is greatly limited
by the computational complexity of the current
DNN layer and the running state of the device.
Because of the fluctuation of the running state of
collaborative devices, it may increase the waiting
latency of subsequent collaborative devices and
reduce the whole inference efficiency. In contrast,
DeColla can greatly improve efficiency, mainly
because the fine-grained collaborative inference
in each DNN layer has the essential difference
when compared with Hierarchical Colla. The right
part of Fig. 6e shows that the average waiting
latency of different distributed inference when
executing the same task 10 times. We use the his-
tory log to obtain the latency of the collaborative
device waiting for the output of the current run-
ning device, and further, analyze the efficiency of
these two methods. We also observe that DeCol-
la significantly reduces the waiting latency of the
participating device and improves the resource
utilization of the collaborative device. Also, in Fig.
6f we experiment on the robustness by randomly
disconnecting one or two collaborative devices to
simulate the abnormal scenarios that collaborative
devices may out of collaboration. The left part
of Fig. 6f indicates the average latency of Hier-
archical Colla is 2.5 times of DeColla when col-
laborative inference is interrupted abnormally. In
addition to the above-mentioned acceleration of
intra-layer parallel inference in Fig. 6e, the main
reasons are:
•	 Once the collaborative device cannot

acquire the layer input from other devices in
a given response time t1, it requires to send
the reallocation for the rest of DNN layers
by the task requester. While DeColla does
not receive the results in a given response
time t2, it just reallocates the tasks in the cur-
rent layer and does not influence other col-
laborative devices.

•	 Generally, the response time t2 of DeColla is
smaller than t1 of Hierarchical Colla because
of parallel inference of participating devic-
es in each DNN layer, which reduces the
influence and waiting latency of the abnor-
mal device. In summary, DeColla’s intra-lay-
er parallel inference speeds up the whole
collaboration and also improves the robust-
ness of distributed collaborative inference by
efficient task reallocation and adjustment of
using message queue, which is more stable
and reliable than the traditional Hierarchical
Colla method.

Discussion
In this section, we discuss DeColla’s improve-
ments for IoT devices, the generalizability, and
some limitations. First, our proposed method of
decentralized and collaborative inference system
based on DNN layer parallel inference and adap-
tive allocation strategy performs no computational

dependences among IoT devices. The approach is
widely applicable in different IoT domains and
can improve the efficiency and quality of service
via decentralized and collaborative computing
over IoT devices. Second, in this work, we use
image recognition as an example to illustrate the
effectiveness of DeColla, which absolutely can be
extended to other DNN networks, such as object
detection networks and speech recognition net-
works. More importantly, DeColla represents the
distributed and collaborative inference that is
considered and designed from the perspective of
stability and robustness for real scenarios. Also,
DeColla primarily provides a novel attempt of
decentralized and collaborative thinking for DNN
inference. Third, the DeColla system focuses on
the optimal allocation in terms of latency and the
available resource of the IoT device. However,
the IoT device is usually sensitive to energy con-
sumption, and therefore needs to further pro-
vide more rational IoT device-side decentralized
and collaborative DNN inference. In this work,
DeColla’s task scheduling and resource allocation
mainly consider optimizing the inference latency,
which should take mobile energy consumption
into account. DeColla is also a kind of Edge-AI
framework and aims to the deployment and infer-
ence of AI models, which is different from fed-
eration architectures mainly used for distributed
training of AI models. As we have mentioned in
the introduction, the development of AI chips and
the commercial deployment of the basic infra-
structure of 5G and MEC have provided promis-
ing solutions for sharing distributed AI computing
capabilities across various end devices.

Conclusions
In this work, we propose a DeColla system based
on a decentralized and collaborative DNN infer-
ence scheme, which is different from the tradi-
tional collaborative mechanism by hierarchical
inference. For the purpose of acquiring faster
DNN inference, our parallel inference solution in
the DNN layer has the characteristics of indepen-
dent computation and no computation depen-
dency between sub-tasks. It effectively improves
the efficiency and service quality of collaborative
DNN inference without the assistance of the
cloud center. In addition, our proposed DRL-
based adaptive allocation strategy provides the
most optimal allocation of DNN layer inference
for IoT devices according to dynamic contexts.
Numerical results show that DeColla can reduce
the waiting latency by at least 2.5 times com-
pared with the traditional hierarchical collabora-
tive method when abnormally occurs during the
collaborative inference. More importantly, when
the collaborative device falls into an abnormal
state, experimental results show that DeColla has
better robustness and stability than that of hierar-
chical inference by using the intra-layer parallel
inference and message queuing mechanism. In
conclusion, the advantages of DeColla are not
only to accelerate the collaborative inference of
multiple devices but also to improve the stabili-
ty, robustness, and fluency of service in dynamic
collaboration scenarios. As future work, we plan
to extend DeColla to more deep learning fields,
and apply it to more complex scenarios to obtain
more promising results.

For the purpose of acquiring faster DNN inference, our parallel inference solution in the DNN layer has
the characteristics of independent computation and no computation dependency between sub-tasks.

It effectively improves the efficiency and service quality of collaborative DNN inference without the
assistance of the cloud center.

IEEE Network • Accepted for Publication 10

Acknowledgment

This research was supported in part by the
National Key R&D Program of China under Grant
2019YFF0301500; in part by the National Nat-
ural Science Foundation of China (NSFC) under
Grant 61671081; in part by the Funds for Interna-
tional Cooperation and Exchange of NSFC under
Grant 61720106007; in part by the 111 Project
under Grant B18008; in part by the Fundamental
Research Funds for the Central Universities under
Grant 2018XKJC01; and in part by the BUPT
Excellent Ph.D. Students Foundation under Grant
CX2019135.

References
[1] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep

Learning for the Internet of Things with Edge Computing,”
IEEE Network, vol. 32, no. 1, 2018, pp. 96–101.

[2] P. Ren et al., “Edge-Assisted Distributed DNN Collaborative
Computing Approach for Mobile Web Augmented Reality
in 5G Networks,” IEEE Network, vol. 34, no. 2, 2020, pp.
254–61.

[3] X. Qiao et al., “Web AR: A Promising Future for Mobile Aug-
mented Reality — State of the Art, Challenges, and Insights,”
Proc. IEEE, vol. 107, no. 4, 2019, pp. 651–66.

[4] Z. Fang, D. Hong, and R. K. Gupta, “Serving Deep Neu-
ral Networks at the Cloud Edge for Vision Applications on
Mobile Platforms,” Proc. 10th ACM Multimedia Systems
Conf., 2019, pp. 36–47.

[5] J. Mao et al., “Mobieye: An Efficient Cloud-Based Video
Detection System for Real-Time Mobile Applications,” Proc.
56th Annual Design Automation Conf. 2019, 2019, pp. 1–6.

[6] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence
Between the Cloud and Mobile Edge,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 1, 2017, pp.
615–29.

[7] Y. Huang et al., “A Lightweight Collaborative Deep Neural
Network for the Mobile Web in Edge Cloud,” IEEE Trans.
Mobile Computing, Jan. 2020.

[8] Y. Huang et al., “Deepadapter: A Collaborative Deep Learn-
ing Framework for the Mobile Web Using Context-Aware
Network Pruning,” IEEE Conf. Computer Commun. (INFO-
COM), IEEE, 2020, pp. 834–43.

[9] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed
Deep Neural Networks over the Cloud, the Edge and End
Devices,” Proc. 2017 IEEE 37th Int’l. Conf. Distributed Com-
puting Systems (ICDCS), IEEE, 2017, pp. 328–39.

[10] M. Sandler et al., “Mobilenetv2: Inverted Residuals and
Linear Bottlenecks,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, IEEE, 2018, pp. 4510–20.

[11] R. Hadidi et al., “Musical Chair: Efficient Real-Time Rec-
ognition Using Collaborative IoT Devices,” arXiv preprint
arXiv:1802.02138, 2018.

[12] R. Hadidi et al., “Towards Collaborative Inferencing of
Deep Neural Networks on Internet of Things Devices,” IEEE
Internet of Things J., 2020.

[13] H. Mao et al., “Resource Management with Deep Rein-
forcement Learning,” Proc. 15th ACM Workshop on Hot
Topics in Networks, ACM, 2016, pp. 50–56.

[14] T. Salimans et al., “Evolution Strategies as a Scalable
Alternative to Reinforcement Learning,” arXiv preprint
arXiv:1703.03864, 2017.

[15] F. P. Such et al., “Deep Neuroevolution: Genetic Algo-
rithms are a Competitive Alternative for Training Deep Neu-
ral Networks for Reinforcement Learning,” arXiv preprint
arXiv:1712.06567, 2017.

Biographies
Yakun Huang is currently working toward the Ph.D. degree at
the State Key Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecommunications,
Beijing, China. His current research interests include mobile
computing, distributed systems, machine learning, edge comput-
ing and augmented reality.

Xiuquan Qiao is currently a full professor with the State Key
Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China. His
current research interests include the future Internet, services
computing, computer vision, distributed deep learning, aug-
mented reality, virtual reality, and 5G networks.

Schahram Dustdar [F] was an Honorary Professor of Infor-
mation Systems in the Department of Computing Science, Uni-
versity of Groningen, Groningen, The Netherlands, from 2004
to 2010. He is currently a professor of computer science with
the Distributed Systems Group, Technische Universität Wien,
Vienna, Austria. He was an elected member of the Academy of
Europe, where he is the Chairman of the Informatics Section.

Jianwei Zhang is currently the director of the Institute of Capin-
fo Company Limited. His research interests include cloud com-
puting, big data, and AI. He is dedicating himself to the research
of smart stadium of the national speed skating oval which is
funded by the National Key R&D Program of China under grant
2019YFF0301500.

Jiulin Li is currently the deputy chief engineer of Beijing Urban
Construction Group Company Limited. He is currently partic-
ipating in the research of smart stadium of the national speed
skating oval which is funded by National Key R&D Program of
China under grant 2019YFF0301500 as a senior consultant.

The advantages of DeColla are not only to accelerate the collaborative inference of multiple devices but
also to improve the stability, robustness, and fluency of service in dynamic collaboration scenarios.

As future work, we plan to extend DeColla to more deep learning fields, and apply it to more complex
scenarios to obtain more promising results.

