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Abstract
Deep learning technologies are empower-

ing IoT devices with an increasing number of 
intelligent services. However, the contradiction 
between resource-constrained IoT devices and 
intensive computing makes it common to transfer 
data to the cloud center for executing all DNN 
inference, or dynamically allocate DNN computa-
tions between IoT devices and the cloud center. 
Existing approaches perform a strong dependence 
on the cloud center, and require the support of a 
reliable and stable network. Thus, it may directly 
cause unreliable or even unavailable service in 
extreme or unstable environments. We propose 
DeColla, a decentralized and collaborative deep 
learning inference system for IoT devices, which 
completely migrates DNN computations from 
the cloud center to the IoT device side, relying 
on the collaborative mechanism to accelerate the 
DNN inference that is difficult for an individual 
IoT device to accomplish. DeColla uses a parallel 
acceleration strategy via a DRL-based adaptive 
allocation for collaborative inference, which aims 
to improve inference efficiency and robustness. 
To illustrate the advantages and robustness of 
DeColla, we built a testbed and employ DeCol-
la to evaluate MobileNet DNN network trained 
on the ImageNet dataset, and also recognize the 
object for a mobile web AR application and con-
duct extensive experiments to analyze the latency, 
resource usage, and robustness against existing 
methods. Numerical results show that DeColla 
outperforms other methods in terms of latency 
and resource usage, which can especially reduce 
at least 2.5 times latency than the hierarchical 
inference method when the collaboration is inter-
rupted abnormally.

Introduction
With the rapid development of artificial intelli-
gence (AI) chip-making technology, an increasing 
number of smart end devices, including Internet 
of Things (IoT) devices, can independently collect 
and process data in real-time [1, 2]. This elimi-
nates the demand to transfer data over the cellu-
lar network to the cloud center, which reduces 
transmission overhead, avoids leakage of user’s 
privacy, and reduces the load of the cloud center 
[3]. Also, custom embedded implementation of 
Deep Neural Networks (DNNs) that is suitable for 

IoT devices, expands the scenarios of DNNs such 
as driverless vehicles, security monitoring, and 
so on. This also illustrates the gradual expansion 
of AI capabilities from the remote cloud to the 
IoT device side, such as Huawei’s HiAI 3.0, which 
provides an open platform for smart end devic-
es, and supports multiple end devices to share AI 
capabilities.

However, executing intensive DNN computing 
for IoT devices is still challenging to acquire a real-
time and satisfactory experience by employing 
the following three approaches summarized in 
Table. 1:

The most common way is to offload the DNN 
tasks to the cloud center (e.g., remote cloud and 
edge cloud in 5G networks), and execute the 
whole DNN inference there [4, 5]. This introduc-
es the load of the cloud center and increases the 
dependency on the availability of the network and 
high-quality service of the cloud center, which 
also means that the AI capability of IoT devices 
entirely relies on the cloud center. 

The second approach implements collabora-
tive inference between the IoT device and the 
cloud center by dynamically partitioning DNNs, 
which leverages available resources of the IoT 
device, reduces the load of the cloud center, and 
somewhat accelerates DNNs inference. Neuro-
surgeon [6] is a classic device-cloud collabora-
tive DNN inference scheme, which automatically 
chooses the partition points pursuing the optimal 
latency and energy consumption. LcDNN [7] and 
DeepAdapter [8] provide lightweight collabora-
tive frameworks for executing distributed DNN 
inference between the mobile web and edge 
server, which also rely on the edge server. DDNN 
[9] further extends the collaborators, which jointly 
trains mapped sections of a DNN onto a distribut-
ed computing hierarchy over the cloud, the edge, 
and end devices. Unfortunately, this approach 
also has a strong dependency on the quality of 
network communications to exchange interme-
diate results of DNN inference. Especially in an 
extreme environment where the network or ser-
vice of the cloud center is unstable, this solution 
may be unavailable for a scenario of the autopilot, 
which may cause a major hazardous accident in 
no-man’s-land. 

The third approach is to execute all DNN com-
putations on the IoT device side, which can be 
classified as custom embedded implements, and 
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distributed collaborative inference over IoT devic-
es, neither of which is dependent on the cloud 
center or network resources. Custom embedded 
implements require extensive expert experience 
and skills to design DNNs with low accuracy loss 
(e.g., MobileNet, ShuffleNet, and so on) [10], or 
various compression technologies (e.g., low-rank 
factorization, knowledge distillation, quantiza-
tion, and pruning) to reduce unimportant weights 
and neurons of trained models to acquire light-
weight DNNs [8]. Currently, only a small portion 
of DNNs such as image recognition DNNs, has 
a low accuracy loss and is difficult to generalize 
to other areas. DNN inference solutions for IoT 
device-side collaboration are important ideas to 
address this challenge. Musical Chair [11] imple-
ments efficient real-time recognition using collab-
orative IoT devices, which proposes model and 
data parallelism by layers to distribute the com-
putation of a model over multiple IoT devices. 
The authors further put forward to conduct sin-
gle-batch influence in real-time while exploiting 
several new model-parallelism methods with col-
laborative IoT devices in [12].

Despite the success of implementing collabo-
rative DNN inference over multiple IoT devices 
[11, 12], and removing the dependency on the 
cloud center, there are still two key challenges 
for employing this approach in real applications, 
which include the following: 
•	 Traditional collaborative approaches execute 

DNN layers with obvious sequential charac-
teristics, which may cause a large number 
of IoT devices to be waiting, thus failing to 
further accelerate the DNN inference. They 
partition the DNN into multiple sequen-
tial sub-tasks by layers and distribute them 
across IoT devices for sequential execution. 
This may lead to a situation where one IoT 
device is performing a sub-task while the 
others are waiting, failing to improve the 
resource utilization of IoT devices. When an 
anomaly occurs in one of the assigned IoT 
devices, this DNN layer may require reas-
signing a new IoT device and broadcasting 
updated collaboration to each IoT device.

•	 Traditional collaboration typically uses offline 
and linear models to predict the execution 
latency of DNN layers and assigns DNN 
computations to IoT devices for collabora-
tion according to such simple predictions. 
However, these methods struggle to achieve 
optimal resource utilization and latency per-
formance in dynamic environments. These 
approaches require maintaining an IP routing 
table on each IoT device for collaborative 
computing, which increases communication 
costs and reduces robustness. This happens 
because IoT devices execute different DNN 
layers inference separately, performing 
sequential feature and monitoring the status 
of IoT devices and inference dependencies 
in a timely manner. 
To address the first challenge, we describe 

the overall system architecture of the proposed 
DeColla, including a remote cloud layer, an edge 
cloud layer, and an IoT device layer in 5G net-
works, which weakens the role of the cloud cen-
ter during online collaborative DNN inference. 
The remote cloud can provide offline training 
and optimization of precise DNN models, and 
the edge cloud trains a dynamic task assignment 
engine for assigning computations, which has no 
impact on online real-time collaboration at the 
IoT device layer. We further enhance the effi-
ciency and the robustness of DNN collaborative 
inference for IoT devices by a novel mechanism 
for parallel inference in DNN layers. Unlike the 
traditional hierarchical inference, we implement 
collaboration of multiple IoT devices at a fine-
grained level to each DNN layer, rather than the 
entire DNN inference. In other words, multiple 
IoT devices work together to execute each DNN 
layer to replace traditional methods of a single 
IoT device to perform one or several DNN layers 
independently. To address the second challenge, 
we provide a DeColla engine trained on the edge 
cloud to provide optimal and adaptive assign-
ment, performing parallel inference in DNN layers 
for IoT devices. This distinguishes it from the tra-
ditional method of assigning DNN sub-tasks using 
offline predicted latency models. We leverage 

TABLE 1. Summary of existing approaches for executing DNNs on IoT devices.

Technique
Used

Typical
Literature

Problem
Addressed Advantages Disadvantages

Remote
Execution

DeepQuery [4] Cloud-based
DNN inference

1) Low-latency;
2) High GPU utilization. 1) High pressure of the cloud server;

2) Requiring high network bandwidth;
3) Privacy concerns.MobiEye [5] 1) Deep feature flow;

2) Dynamic scheduling.

Partitioning
-offloading

Neurosurgeon [6] Distributed DNN
inference over
cloud, edge, and
device

1) DNN computation partitioning across
the cloud and mobile edge. 1) Requiring retraining the DNN model;

2) Requiring ingenious design of the
structure and branches;
3) Requiring an available environment
between the device and the cloud.

LcDNN [7],
DeepAdapter [8]

1) Lightweight branch at device side;
2) High throughput;
3) Reduce the pressure of the cloud.

DDNN [9] 1) A distributed computing hierarchy;
2) Joint training method.

Device-side
inference

Compression
DNNs [10] Device-side

DNN inference

1) Small DNN model size;
2) Fast inference.

1) Accuracy loss;
2) Design the network with expert
knowledge.

Musical Chair [11],
Hadidi [12]

1) Distributes the DNN inference among
multiple IoT devices;
2) Dynamically changes the distributed
tasks.

1) Hierarchical inference characteristic;
2) High waiting latency;
3) Low robustness.
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a message queue to judge whether the parallel 
inference on the current DNN layer is complete 
or not. Instead of broadcasting and updating the 
message queue on all IoT devices, we just need 
to initialize and update it on the task requester, 
reducing the communication cost during the col-
laboration. Since the message queue records the 
results of the parallel inference for IoT devices in 
a DNN layer, DeColla can determine whether a 
delay or exception has occurred for IoT devices 
by the results that have been returned. We can 
see that this collaborative mechanism is more 
eff ective in improving the resource utilization of 
IoT devices, reducing the waiting latency, and 
improving the robustness when compared with 
existing methods. We use a case study on image 
recognition of mobile augmented reality and con-
duct experiments to indicate that DeColla off ers 
better latency and resource usage than existing 
approaches. Our contributions can be summa-
rized as:
• We propose DeColla, providing a collabora-

tive mechanism for parallel inference within 
the DNN layer, and enhancing the effi  ciency 
and the robustness of decentralized and col-
laborative DNN inference.

• We give detailed methods of DeColla to pro-
vide a DRL-based adaptive allocation strate-
gy that greatly improves resource utilization 
of IoT devices, which also uses a message 
queue to replace the traditional IP routing 
table, reducing the waiting latency during 
collaboration.

• We build a testbed and deploy a simplified 
demo of mobile AR applications. The exper-
imental results demonstrate that DeColla 
performs better than existing collaboration 
methods in terms of latency and system 
robustness.

system ArchItecture
In Fig. 1 we present the overall system architec-
ture of DeColla, including a remote cloud layer, 
an edge cloud layer, and local IoT devices layer. 
To better understand the workfl ow of DeColla, we 
use an example of image recognition to describe 
the architecture details of the system. First, an IoT 
device with a camera launches a task request for 
real-time object recognition. The IoT device then 

collects the contexts needed for collaborative 
computing such as the network bandwidth, the 
number of IoT devices, and their real-time sta-
tus. With this necessary information, the DeCol-
la engine can dynamically and adaptively assign 
computations of each DNN layer to collabora-
tive IoT devices for parallel inference. In contrast 
to existing methods, our parallel inference aims 
at each DNN layer rather than the entire DNN 
network. During the parallel inference, we use 
an output message queue to judge whether the 
current layer has completed all calculations. Once 
the current DNN layer has been successfully pro-
cessed, we remove to the next DNN layer and 
repeat the same processing until the final result 
is obtained, and return it to the initial IoT device. 

We further describe these layers of the sys-
tem architecture in detail to better understand the 
idea of the DeColla system. 

Remote Cloud Layer: In the DeColla system, a 
remote cloud layer is often viewed as a computa-
tionally resource-rich cloud center that is used to 
train or optimize DNN models, as accurate DNN 
models are key to ensuring satisfactory service 
at the IoT device layer. It is also responsible for 
network control and the deployment of DNN ser-
vices between the remote cloud and the edge 
cloud. Updating DNN services to the edge cloud 
in real-time can ensure the reliability and accuracy 
of DNN models. 

Edge Cloud Layer: Unlike the device-cloud col-
laborative inference approach, the edge cloud 
layer of DeColla is not involved in the DNN infer-
ence processing at all, which is mainly responsi-
ble for the initialization and optimization of the 
DeColla engine. Note that the DeColla engine 
provides a dynamic and adaptive allocation strat-
egy for performing each DNN layer inference 
collaboratively and in parallel. On the one hand, 
there is no need to place the training phase of 
the DeColla engine at the IoT device layer, which 
avoids the resource and energy consumption of 
IoT devices. On the other hand, the edge cloud 
can provide offline training for a more precise 
allocation strategy of the DeColla engine. 

IoT Device Layer: Our DeColla system can 
be applied to a wide range of scenarios, which 
are filled with a large number of connected IoT 
devices and provide a credible environment, such 

FIGURE 1. Overall system architecture.
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as smart factories, home intelligence, healthcare, 
and so on. In the IoT device layer, we use the 
available resources of collaborative IoT devices to 
accelerate DNN inference. There is no dependen-
cy between DNN calculation assigned to each 
IoT device, which also does not rely on the cloud 
center and can be executed independently. We 
periodically update the DeColla engine to the IoT 
device from the edge cloud when the IoT device 
is idle, and feedback history behaviors to enhance 
the DeColla engine’s adaptive capabilities. Note 
that the technical details of communication in the 
IoT device layer are beyond the scope of this arti-
cle.

methods of the decollA engIne
The DeColla engine plays the role of the brain 
in implementing decentralized and collaborative 
inference over IoT devices. The engine provides a 
dynamic and adaptive allocation strategy for col-
laboratively executing each DNN layer in parallel 
(i.e., an optimal allocation that provides decentral-
ized collaborative inference for each DNN layer 
with optimal processing latency based on dynam-
ic contexts, including the number of IoT devices, 
available computing resource, and the network 
condition). We first introduce our parallel DNN 
layer inference in DeColla, which is more suitable 
than the existing hierarchical and collaborative 
inference.

how to eXecute decentrAlIZed And 
collAborAtIve dnn Inference In pArAllel?

We show the diff erence between traditional hier-
archical inference and proposed parallel infer-
ence for faster collaboration in Fig. 2. It can be 
seen that in traditional hierarchical inference, for 
a four-layer (excluding the input and output lay-
ers) DNN network, it can be divided into differ-
ent sub-tasks and assigned to the allocated IoT 
devices to execute the partial inference. Howev-
er, this inference scheme has a typical sequential 
nature during collaborative inference, whereby 
the latter device needs to wait for the previous 
device’s inference results as the input. Also, this 
hierarchical execution scheme reduces the sta-
bility and reliability in real scenarios due to the 
following considerations. First, maintaining an IP 
routing table across participating devices requir-

ing reallocation and updating changes when one 
collaborative device occurs abnormity or lost the 
connection, which causes the increase of the 
waiting latency. Second, the fluctuation of the 
network bandwidth may cause inconsistent updat-
ing of the IP table, and even lead to paralysis of 
current distributed collaborative inference. Since 
there are currently no methods to keep the con-
sistency and integrity of the IP table, it is also the 
potential reason for the increase of the waiting 
latency when applied in actual scenarios. Thus, 
although the IP table itself is small and does not 
need to consume computing resources, it is easy 
to be affected by the dynamic environment and 
running state of collaborative devices.

Unlike traditional hierarchical inference, we 
propose a novel way to implement parallel infer-
ence for accelerating multiple IoT device collab-
oration within the DNN layer, using a message 
queue to effectively reduce the waiting latency. 
When any one of the collaborative devices occurs 
an abnormity or leaves the current collaboration, 
the message queuing mechanism can quickly 
discover and re-allocate the task in time without 
aff ecting the other collaborative devices, avoiding 
a large amount of waiting latency. Instead of off -
loading one or more DNN layers to a single IoT 
device, we use multiple IoT devices in parallel for 
executing each DNN layer. We simply maintain a 
message queue on the IoT device requester and 
quickly decide whether the inference of the cur-
rent DNN layer is completed by judging whether 
the length of the message queue equals the num-
ber of neurons in the current DNN layer. After 
that, we simply repeat each DNN layer inference 
until we obtain the result of the last DNN layer. 
Hence, DeColla can provide a more effi  cient and 
robust collaborative mechanism to accelerate dis-
tributed DNN inference across multiple devices.

We give an example of parallel inference at 
layer l3 in the right part of Fig. 2. It can be seen 
that we take the output of layer l2 as input to 
layer l3, and assign the computations associated 
with the neuron in layer l3 to diff erent IoT devices 
for executing parallel inference. With this kind of 
intra-layer parallel inference, there are no com-
putational dependencies among IoT devices. The 
neuron of the red box in the right part of Fig. 2 
indicates that the computation associated with 

FIGURE 2. Various DNNs execution schemes for acceleration and collaboration.

C
us

to
m

 D
N

N
 N

et
ow

rk Input
Output

Task 1 Task 2 Task 3 Traditional
Hierarchical Inference

DeColla 
Parallel Inference

Device 1 Device 2 Device 3

Output

x1x1

Task 2 Task 3 Task 4 Task 5

Device 1
Device 2 Device 3

Message Queue O
utput

Parallel inference for each DNN layerTask1

Input

Input

Input

Input

O
utput

O
utput

O
utput

O
utput

Inference example

Device 1

Device 2

Device 3

Parallel inference results

Message Queue

Input of     D
N

N
 layer 

Input of next DNN layer 
(   )

Input of     D
N

N
 layer 

Input of next DNN layer 
(   )

IP routing table



IEEE Network • Accepted for Publication5

that neuron has been completed. When the 
length of the message queue equals the number 
of neurons in the DNN layer, the output can be 
combined in the order of the input to serve as 
the input to the next DNN layer. The most critical 
problem with this parallel inference is how to pro-
vide a way to dynamically allocate computations 
of each layer to IoT devices, with the goal of mak-
ing the overall latency minimal. We next focus on 
how to provide optimal neuron allocation based 
on dynamic contexts (e.g., network and IoT devic-
es status).

Adaptive Allocation Strategy for DNN Layers in DeColla
To take full advantage of our parallel inference 
scheme of each DNN layer for non-dependent 
DNN inference in DeColla, it is also vital to design 
an on-line scheduling algorithm to allocate sub-
tasks of each DNN layer for executing collabo-
rative inference across IoT devices. To solve this 
problem, in Fig. 3 we propose DRL-ES, a real-time 
dynamic allocation algorithm based on deep rein-
forcement learning (DRL), which is a machine 
learning technology that learns which allocation 
behavior can yield better rewards by observing 
the state of the environment through an agent. 
During each time slot t, the agent selects an opti-
mal action at that means how to allocate the neu-

rons to IoT devices by observing the current state 
st. Especially, the agent selects the optimal action 
according to a policy network that is performed 
by a deep neural network representing probabil-
ity distribution p(s, a) to better fit the state-action 
value function. We describe the gradient of the 
optimized objective to maximize the expected 
reward as: 

DEq[Sgtrt] = Epq[Dqlogpq(s, a)Qpq(s, a)], 		 (1)

where Eq[Sgtrt] represents the expected cumu-
lative reward and g  ∈ [0, 1] is the discount 
reward. Qpq(s, a) is the expected reward when 
the agent picks action a in state s. Assuming Pj is 
the required processing time of the neurons set 
j (i.e., the latency between the receiving neurons 
set and completing the computing of the neuron 
set), and Tj is the theoretical processing latency 
by calculating FLOPs of the neuron set j. Thus, 
we minimize the average slowdown of process-
ing the neuron set, represented by Sj = Pj/Tj, to 
pursue an optimal allocation for proposed paral-
lel inference. 

With such a basic framework, we define the 
basic elements of the state, the action, and the 
reward of this DRL problem to better understand 
the proposed scheduling algorithm as follows:

FIGURE 3. Adaptive allocation strategy for executing DNN layers in parallel based on DRL. In the state exam-
ple at the bottom, we have completed the neuron (which means the sub-task) allocation of l5, and are 
considering how to allocate neurons of l6 layer into collaborative IoT devices. The blank blocks repre-
sent the remaining available resources of IoT devices. 
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State Space: At each time slot t, the state St
can be denoted by St = <lt, Bt, Ct, nt>, where lt
is the current DNN layer and Bt is the network 
bandwidth. C = <c1

t, c2
t, …, cN

t > represents the 
available computing resource of N IoT devices, 
and nt denotes the current neurons in lt. Since the 
number of IoT devices is always not constant, this 
indicates that we have to retrain the DRL policy 
network when a part of IoT devices join or leave 
the collaboration, which is not practical. There-
fore, we fix the number of available IoT devices 
in the policy network to always be constant value 
Mc, and when the number of available IoT devices 
Ma is more than Mc, the highest available resourc-
es in the first Mc will be selected as the collab-
oration IoT devices. If Ma < Mc, Mc – Ma excess 
IoT devices are set as ø, indicating that these IoT 
devices are not involved in collaboration.

Action Space: Based on the above defini-
tions, the real-time scheduling algorithm requires 
matching sub-tasks of N neurons in each DNN 
layer to Mc IoT devices appropriately, using at to 
denote the selected allocation result at time slot 
t. However, the large-scale neurons of DNN lay-
ers cause a large amount of action space of Mc

N, 
which means each neuron can be assigned to 
any available IoT device. Also, it is hard to train 
such a policy network with a dynamic and large 
number of neurons in the state. Since the amount 
of computations involved in each neuron is too 
small and frequent allocation may increase the 
communication cost and reduce the stability, it 
is unnecessary to allocate the computing to IoT 
devices at the level of each neuron. To this end, 
we always divide the neurons of each DNN layer 
equally into K pieces to keep the state stable and 
signifi cantly reduce the action space. In particular, 
the value of K can be determined by the maxi-
mum number of neurons of the DNN network 
and the number of available IoT devices.

Reward: DeColla’s parallel inference for each 
DNN layer utilizes the computing resource of col-
laborative IoT devices without data transmission 
with the cloud center. As a result, more IoT devic-
es involved in parallel inference will accelerate the 
DNN layer inference and reduce the overall laten-
cy. To guide the agent to minimize the average 
slowdown, we employ the similar defi nition of the 
reward R = Sj∈nt(–1/Tj), which has been illustrated 
to be eff ective in [13]. nt is the current waiting pro-
cessing neurons at time slot t. We can maximize 
the cumulative reward to mimic that minimizing 
the average slowdown when setting the discount 
factor as g = 1. Based on the above defi nitions, to 
better train the DNN policy network by reverse 
propagation and relieve the problem of sparse 
rewards, we adopt a DRL training approach with 
a fusion evolutionary strategy [14, 15]. As shown 
in the upper part of Fig. 3, the specific process 
is applying evolution strategy to candidate sam-
ple populations by increasing the random noise 
and producing offspring that perform the selec-
tion. The more well-adapted off spring have more 
opportunities to retain and produce new off spring.

A cAse study on mobIle Augmented reAlIty
Since it is promising to use the cross-platform 
mobile web to develop various applications, 
especially popular AR applications recently [3], 
in Fig. 4 we built a testbed to illustrate the perfor-

mance of the DeColla system when employing 
it to recognize the object for a mobile web AR 
application. As object recognition is the key step 
in AR applications, which is currently still chal-
lenging to execute intensive and heavy DNNs on 
resource-constrained mobile web, we leverage 
DeColla to provide efficient collaboration with 
three IoT devices for accelerating the DNN recog-
nition and relieve the shortcoming of the mobile  
web. As shown in Fig. 4, users fi rst scan the object 
(e.g., pandas) via the camera invoked by the web 
API, and then identify the object by executing a 
precise MobileNet DNN network trained on the 
ImageNet dataset, whose model size is about 14 
MB. Once the mobile device receives the correct 
recognition result, the render module performs 
the 3D animated model for interaction using 
WebGL and other technologies. Hence, we can 
employ this use case to evaluate the performance 
and efficiency of DeColla from the perspective 
of latency, and resource usage compared with 
existing methods such as traditional hierarchical 
inference.

eXperIment settIngs
As shown in the bottom part of Fig. 4, we use a 
high-performance server with two GPU cards at 
the remote cloud layer, which is responsible for 
training DNNs and providing services for the edge 
server. A common server with a six-core interpro-
cessor of 2.9 GHz and 16 GB RAM is deployed 
near the 5G base station, which is a real-world 5G 
network at Beijing University of Posts and Tele-
communications supported by China Unicom. 
We also use a HUAWEI 5G CPE to connect to 
the base station to provide stable communica-
tion. We use a Huawei honor smartphone as a 
DNN task requester, and to complete visual ren-
dering. Three RaspBerry 4 Pi’s with 4G RAM are 
used to complete collaborative DNN inference. 
Since executing DNN inference on the mobile 
web is mainly done by JavaScript, here we only 
use a smartphone as a task requester and ren-
der to simplify heterogeneous DNN inference, 
which means all DNN calculations are executed 
entirely in collaborative IoT devices. To train the 
DeColla engine and provide an initialized allo-
cation strategy model, we experimentally obtain 
real measurements of parameter configuration, 
IoT device available capacity, network bandwidth, 
and inference latency. We generate simulation 
data for training the DRL algorithm at different 
DNN layers to obtain an optimal parallel collabo-

FIGURE 4. System testbed for recognizing case of a mobile web AR application.
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rative inference strategy in various DNN models, 
network conditions, the available resource of IoT 
devices, and so on. We analyze DeColla’s perfor-
mance against mobile-only, partition-offloading, 
and the traditional collaborative method in the 
latency and the resource usage variance of IoT 
devices. The mobile-only offloads all the compu-
tations to any one IoT device. The partition-off-
loading approach distributes the computations 
between any one IoT device and the edge server, 
and traditional hierarchical inference, named Hier-
archical Colla, distributes DNN layers to multiple 
IoT devices layer by layer.

Numerical Results and Analysis
Based on the above testbed and experimental set-
tings, in Fig. 5 we discuss the performance of the 
proposed DRL-ES allocation algorithm from the 
perspective of convergence and scheduling effi-
ciency. For training the scheduling algorithm, we 
set the learning rate as lr = 0.002 and the output 
size of the policy network as Mc =100, respective-
ly. We also set K = 6 to divide neurons of each 
DNN layer into twice the number of IoT devices. 
We define the training iterations as 1500 and set 
the number of children as C = 10 in the evolu-
tion strategy. Especially, Figs. 5a and 5b describe 
the convergence performance of DRL-ES on the 
average slowdown and total reward compared 
with other representative approaches.We observe 
that DRL-ES converges faster than the basic DRL 
method and has better average slowdown per-
formance as the iteration increases, which also 
means that employing evolution strategy can 
provide DeColla a better sub-task allocation of 
each DNN layer. In general, DRL-based meth-
ods show significant advantages compared with 
non-DRL methods, where the Random method 
represents the random distribution of computing 
tasks, the Average method represents the aver-
age distribution of computing tasks to each IoT 
device, and the Least method means that tasks 
are prioritized to the IoT device with the high-
est computing resource. The Least method has 
better average slowdown than the Random and 

Average methods, but worse than DRL methods. 
This is because prioritizing tasks assigned to the 
IoT device with the highest computing resource 
may directly cause the IoT device to exceed the 
current computing capacity and cause the wait-
ing latency of computing tasks, while DRL-based 
methods can provide dynamic and reasonable 
computing task allocation based on the status of 
all IoT devices. Also, Fig. 5b illustrates that DRL-
ES can converge faster than the basic DRL meth-
od, and show better convergence results via the 
comparative analysis of the total reward. Further, 
we discuss the runtime performance of DRL-ES 
scheduling when deployed on IoT devices in Figs. 
5c and 5d by using the microsecond as the unit 
to measure the average runtime performance of 
100 task schedules. In particular, we use the CPU 
Usage Limiter (https://github.com/opsengine/
cpulimit) to control available CPU resource to 
simulate various computing status. The results 
show that DRL-ES can execute task scheduling 
under different conditions in 1–2ms, which is effi-
cient enough without increasing additional sched-
uling costs. This is because we only need to spend 
time on training DRL models offline, and the 
inference phase of the running trained model is 
real-time, even in the complex scenario with large-
scale tasks. In summary, our DRL-ES scheduling 
strategy does provide real-time, available schedul-
ing for the DeColla system. In addition, the DRL-
based method has been widely used in intelligent 
decision-making in different scenarios. This is one 
of the main reasons that we adaot and extend the 
DRL method to schedule our DeColla system.

In Fig. 6 we analyze DeColla’s performance 
against the mobile-only, the partition-offloading 
and hierarchical collaborative methods in the 
latency and the resource usage variance of IoT 
devices. We further illustrate that DeColla out-
performs the traditional hierarchical method by 
simulating different running states of collabora-
tive devices such as low available resources and 
abnormal disconnection. We use Wonder Shaper 
(https://github.com/magnific0/wondershaper) to 
control the communication and thus obtain vari-
ous network bandwidths. We measure the latency 
by calculating the average latency between the 
smartphone’s request and the receipt of the final 
result 10 times, excluding the image transfer and 
result response between the smartphone and the 
IoT device. The CPU usage of IoT devices is set 
as 30 percent in Fig. 6a. By comparing DeColla 
with representative methods in different network 
bandwidths in Fig. 6a, we observe that:
•	 As the network bandwidth increases, the 

latency of Hierarchical Colla decreases and 
stabilizes, while the partition-offloading meth-
od has the best latency performance with 
the help of the edge server. 

•	 The overall performance of mobile-only is 
less affected by the network bandwidth 
because it is only used for one IoT device 
and does not require data on the interaction 
with other IoT devices. 

•	 For Hierarchical Colla and our DeCol-
la system, the increase in network band-
width significantly lifts the data transferring 
rate among IoT devices, and therefore the 
increase in network bandwidth effectively 
improves latency performance. 

FIGURE 5. Performance in different networks.
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When the network bandwidth reaches 10 
Mb/s, DeColla exhibits lower latency than Hier-
archical Colla, suggesting that when the network 
bandwidth is stable and strong, the collaborative 
inference approach is the key factor constraining 
the performance, which also suggests that parallel 
inference within our method exhibits better per-
formance. Fig. 6b shows the comparison among 
different methods in various CPU usages with a 
stable network bandwidth of 20 Mb/s. We can 
see that:
•	 Partition-offloading is least influenced by 

the available computing resources of the 
IoT device, and as the available computing 
resources decrease, most DNN computa-
tions will be offloaded to the edge server. 

•	 For the mobile-only method, since all com-
putations are done on one IoT device, the 
latency to complete DNN collaborative 
inference increases dramatically as the IoT 
device’s CPU usage increases. 

•	 Compared to Hierarchical Colla, DeColla 
shows better latency performance when the 
IoT device’s CPU usage is high, illustrating 
that DeColla’s is better than that of Hierar-
chical Colla. This is because the Hierarchical 
Colla method not only spends much time on 
the inference of each DNN layer, increasing 
waiting latency between DNN layers, but 
also takes a lot of time for each IoT device 
to maintain the IP routing table. 
Further, in Figs. 6c and 6d we evaluate the nor-

malized resource utilization variance of involved 
IoT devices under different networks and task 
scales. Note that the smaller the normalized 
resource utilization variance, the smaller the fluc-
tuation, representing a balanced task scheduling. 
We have found that: 
•	 With the continuous increase of network 

bandwidth, the mobile-only method has a 
small increase, which shows the computing 
load of the processing IoT device increases. 
The partition-offloading method can dynam-
ically adjust the partitioning point according 
to the network bandwidth, so when the net-
work bandwidth is low, the resource utiliza-
tion variance performance is low, indicating 
that most of the computations are execut-
ed on the edge server. Once the network 
bandwidth increases, a lot of computations 
are offloaded to one IoT device, increasing 
the resource utilization variance, while DRL-
based methods can always provide more 
reasonable and dynamic allocation accord-
ing to the network bandwidth and the sta-
tus of IoT devices. Therefore, as the network 
bandwidth increases, the resource utilization 
variance shows a gradually decreasing trend.

•	 We also evaluate the resource usage per-
formance of DeColla by simulating mul-
tiple request tasks and setting the network 
bandwidth as 20 Mb/s. Since mobile-only 
and partition-offloading always offload com-
puting tasks to one of the IoT devices, mul-
tiple concurrent tasks cause an increase in 
the variance of resource utilization until one 
device reaches full load. Once the device 
reaches full load, tasks will be unloaded to 
other devices, so there is a certain reduc-
tion in resource utilization variance until all 

IoT devices are fully loaded and stabilized. 
In contrast, DRL-based methods effective-
ly allocate these concurrent tasks to IoT 
devices for collaborative execution. Thus, 
the resource utilization variance appears to 
gradually decrease until a full load of all IoT 
devices reaches a stable state. In general, 
online scheduling using DRL improves the 
collaboration capabilities and resource utili-
zation of IoT devices and effectively reduces 
the processing latency at the same time.
In Figs. 6e and 6f, we show the advantages of 

DeColla’s parallel inference in each layer over the 
traditional hierarchical method and give a deep 
analysis and discussion. Figure 6e presents the 
performance between DeColla and the traditional 
hierarchical scheme by executing the same task 
10 times, when controlling the CPU usage of any 
collaborative device from low to high but still 
within the available range. The results in the left 
part of Fig. 6e show that the average processing 
latency of Hierarchical Colla increases significant-
ly due to the waiting latency of other collaborative 
devices when increasing the CPU usage of any 
collaborative device. This also means the perfor-

FIGURE 6. Comparing DeColla with representative methods. 
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mance of using a single device to execute a single 
DNN layer in Hierarchical Colla is greatly limited 
by the computational complexity of the current 
DNN layer and the running state of the device. 
Because of the fluctuation of the running state of 
collaborative devices, it may increase the waiting 
latency of subsequent collaborative devices and 
reduce the whole inference efficiency. In contrast, 
DeColla can greatly improve efficiency, mainly 
because the fine-grained collaborative inference 
in each DNN layer has the essential difference 
when compared with Hierarchical Colla. The right 
part of Fig. 6e shows that the average waiting 
latency of different distributed inference when 
executing the same task 10 times. We use the his-
tory log to obtain the latency of the collaborative 
device waiting for the output of the current run-
ning device, and further, analyze the efficiency of 
these two methods. We also observe that DeCol-
la significantly reduces the waiting latency of the 
participating device and improves the resource 
utilization of the collaborative device. Also, in Fig. 
6f we experiment on the robustness by randomly 
disconnecting one or two collaborative devices to 
simulate the abnormal scenarios that collaborative 
devices may out of collaboration. The left part 
of Fig. 6f indicates the average latency of Hier-
archical Colla is 2.5 times of DeColla when col-
laborative inference is interrupted abnormally. In 
addition to the above-mentioned acceleration of 
intra-layer parallel inference in Fig. 6e, the main 
reasons are: 
•	 Once the collaborative device cannot 

acquire the layer input from other devices in 
a given response time t1, it requires to send 
the reallocation for the rest of DNN layers 
by the task requester. While DeColla does 
not receive the results in a given response 
time t2, it just reallocates the tasks in the cur-
rent layer and does not influence other col-
laborative devices.

•	 Generally, the response time t2 of DeColla is 
smaller than t1 of Hierarchical Colla because 
of parallel inference of participating devic-
es in each DNN layer, which reduces the 
influence and waiting latency of the abnor-
mal device. In summary, DeColla’s intra-lay-
er parallel inference speeds up the whole 
collaboration and also improves the robust-
ness of distributed collaborative inference by 
efficient task reallocation and adjustment of 
using message queue, which is more stable 
and reliable than the traditional Hierarchical 
Colla method.

Discussion
In this section, we discuss DeColla’s improve-
ments for IoT devices, the generalizability, and 
some limitations. First, our proposed method of 
decentralized and collaborative inference system 
based on DNN layer parallel inference and adap-
tive allocation strategy performs no computational 

dependences among IoT devices. The approach is 
widely applicable in different IoT domains and 
can improve the efficiency and quality of service 
via decentralized and collaborative computing 
over IoT devices. Second, in this work, we use 
image recognition as an example to illustrate the 
effectiveness of DeColla, which absolutely can be 
extended to other DNN networks, such as object 
detection networks and speech recognition net-
works. More importantly, DeColla represents the 
distributed and collaborative inference that is 
considered and designed from the perspective of 
stability and robustness for real scenarios. Also, 
DeColla primarily provides a novel attempt of 
decentralized and collaborative thinking for DNN 
inference. Third, the DeColla system focuses on 
the optimal allocation in terms of latency and the 
available resource of the IoT device. However, 
the IoT device is usually sensitive to energy con-
sumption, and therefore needs to further pro-
vide more rational IoT device-side decentralized 
and collaborative DNN inference. In this work, 
DeColla’s task scheduling and resource allocation 
mainly consider optimizing the inference latency, 
which should take mobile energy consumption 
into account. DeColla is also a kind of Edge-AI 
framework and aims to the deployment and infer-
ence of AI models, which is different from fed-
eration architectures mainly used for distributed 
training of AI models. As we have mentioned in 
the introduction, the development of AI chips and 
the commercial deployment of the basic infra-
structure of 5G and MEC have provided promis-
ing solutions for sharing distributed AI computing 
capabilities across various end devices.

Conclusions
In this work, we propose a DeColla system based 
on a decentralized and collaborative DNN infer-
ence scheme, which is different from the tradi-
tional collaborative mechanism by hierarchical 
inference. For the purpose of acquiring faster 
DNN inference, our parallel inference solution in 
the DNN layer has the characteristics of indepen-
dent computation and no computation depen-
dency between sub-tasks. It effectively improves 
the efficiency and service quality of collaborative 
DNN inference without the assistance of the 
cloud center. In addition, our proposed DRL-
based adaptive allocation strategy provides the 
most optimal allocation of DNN layer inference 
for IoT devices according to dynamic contexts. 
Numerical results show that DeColla can reduce 
the waiting latency by at least 2.5 times com-
pared with the traditional hierarchical collabora-
tive method when abnormally occurs during the 
collaborative inference. More importantly, when 
the collaborative device falls into an abnormal 
state, experimental results show that DeColla has 
better robustness and stability than that of hierar-
chical inference by using the intra-layer parallel 
inference and message queuing mechanism. In 
conclusion, the advantages of DeColla are not 
only to accelerate the collaborative inference of 
multiple devices but also to improve the stabili-
ty, robustness, and fluency of service in dynamic 
collaboration scenarios. As future work, we plan 
to extend DeColla to more deep learning fields, 
and apply it to more complex scenarios to obtain 
more promising results.

For the purpose of acquiring faster DNN inference, our parallel inference solution in the DNN layer has 
the characteristics of independent computation and no computation dependency between sub-tasks. 

It effectively improves the efficiency and service quality of collaborative DNN inference without the 
assistance of the cloud center.
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The advantages of DeColla are not only to accelerate the collaborative inference of multiple devices but 
also to improve the stability, robustness, and fluency of service in dynamic collaboration scenarios. 

As future work, we plan to extend DeColla to more deep learning fields, and apply it to more complex 
scenarios to obtain more promising results.


