
Optimal Application Deployment in Resource
Constrained Distributed Edges

Shuiguang Deng , Senior Member, IEEE, Zhengzhe Xiang, Student Member, IEEE,

Javid Taheri ,Member, IEEE, Mohammad Ali Khoshkholghi , Jianwei Yin,Member, IEEE,

Albert Y. Zomaya , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—The dramatically increasing of mobile applications make it convenient for users to complete complex tasks on their mobile

devices. However, the latency brought by unstable wireless networks and the computation failures caused by constrained resources

limit the development of mobile computing. A popular approach to solve this problem is to establish a mobile service provisioning

system based on a mobile edge computing (MEC) paradigm. In the MEC paradigm, plenty of machines are placed at the edge of the

network so that the performance of applications can be optimized by using the involved microservice instances deployed on them. In

this paper, we explore the deployment problem of microserivce-based applications in the MEC environment and propose an approach

to help to optimize the cost of application deployment with the constraints of resources and the requirement of performance. We

conduct a series of experiments to evaluate the performance of our approach. The result shows that our approach can improve the

average response time of mobile services.

Index Terms—Mobile service, distributed system, mobile edge computing, service deployment

Ç

1 INTRODUCTION

WE are now embracing an era of mobile computing
where about 5.18 million mobile services are serving

Chinese mobile users alone.1 As a result, mobile devices
and mobile services play more and more important roles
and remolded the communication between people and
machines. However, the instability of channels and lim-
ited resources of mobile devices prevent users from
experiencing high efficiency and seamless interactions
with applications. For example, the low computational
capability and energy storage [1], [2], [3] of mobile devi-
ces restrict the popularization of novel services such as
Augmented Reality (AR)/Virtual Reality (VR)/Artificial
Intelligence (AI), and the packet losses cause external
waiting time for urgent messages. Mobile Edge Comput-
ing (MEC) technology is proposed to solve some relevant
problems for the aforementioned services [4]. MEC is a
novel paradigm that emerges recently as a reinforcement
of mobile cloud computing, to optimize the mobile

resource usage and wireless network to provide context-
aware services [5].

In the MEC paradigm, users can easily connect to the
nearby edge servers via wireless network [6] and offload
their computation tasks to them. The short-distance con-
nection between users and edge servers can dramatically
reduce the latency, and the computation capability of the
edge servers are quite qualified to finish those conventional
tasks. Additionally, the edge servers do not act alone in
many cases–with the help of cluster management techni-
ques, edge servers may coordinate with each other. For
example, one edge server can dispatch users’ requests to
other servers that can handle them. Besides this, the services
will also not work alone to fulfill simple tasks–with the
help of microservice architecture [7], [8], [9], more complex
applications will be easily developed using services in some
specific orders. It’s a trend that more and more influential
IT companies or application vendors start to develop com-
plex applications with microservice techniques (e.g., Kuber-
netes, Apache Mesos, etc.) nowadays. With this technique,
though the developers should be more cautious about the
external complexities in application development, the com-
munication controlling and failure recovering, the advan-
tage of decomposing applications into several logically
related but functionally individual microservices will bring
a high degree of flexibility and reuse and makes it much
easier for updating. What’s more, it will be much easier to
scale out for better performance. And with the help of Con-
tainer-based techniques, these microservice-based applica-
tions can be easily deployed on edge servers.

However, the deployment scheme must be carefully con-
sidered, because these servers may have various computa-
tion or data storage capacities [10], [11], while the mobile

� S. Deng, Z. Xiang, and J. Yin are with the College of Computer Science,
Zhejiang University, Hangzhou 310027, China.
E-mail: {dengsg, xiangzhengzhe, zjuyjw}@zju.edu.cn.

� J. Taheri and M. Khoshkholghi are with the Department of Computer
Science, Karlstad University, 651 88 Karlstad, Sweden.
E-mail: {javid.taheri, ali.khosh-kholghi}@kau.se.

� A.Y. Zomaya is with the School of Computer Science, The University of
Sydney, Sydney 2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

� S. Dustdar is with Distributed Systems Group, TU Wien, 1040 Vienna,
Austria. E-mail: dustdar@infosys.tuwien.ac.at.

Manuscript received 16 Jan. 2019; revised 1 Nov. 2019; accepted 23 Jan. 2020.
Date of publication 30 Jan. 2020; date of current version 2 Apr. 2021.
(Corresponding author: Shuiguang Deng.)
Digital Object Identifier no. 10.1109/TMC.2020.2970698

1. https://aso114.com

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021 1907

1536-1233� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0001-9194-010X
https://orcid.org/0000-0001-9194-010X
https://orcid.org/0000-0001-9194-010X
https://orcid.org/0000-0001-9194-010X
https://orcid.org/0000-0001-9194-010X
https://orcid.org/0000-0002-6101-4305
https://orcid.org/0000-0002-6101-4305
https://orcid.org/0000-0002-6101-4305
https://orcid.org/0000-0002-6101-4305
https://orcid.org/0000-0002-6101-4305
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:dengsg@zju.edu.cn
mailto:xiangzhengzhe@zju.edu.cn
mailto:zjuyjw@zju.edu.cn
mailto:javid.taheri@kau.se
mailto:ali.khosh-kholghi@kau.se
mailto:albert.zomaya@sydney.edu.au
mailto:dustdar@infosys.tuwien.ac.at
https://aso114.com

users may have different application preferences—if micro-
services are deployed on servers with low-level hardware
or deployed on the edge servers whose connected users
rarely use them, the performance of the system will not sat-
isfy both users and vendors. More critically, there would be
no doubt that the application vendors can rent lots of edge
servers and deploy many instances of microservices to pro-
vide better user experience, but the cost of renting edge
servers then becomes a major challenge. According to the
report of RightScale,2 a company that specializes in cloud
delivery, 26 percent of enterprises with more than 1,000
employees are spending more than 6 million dollars a year
on public cloud, but 35 percent of their cloud spendings is
wasted—the users may always overrate the resource con-
sumption. On the contrary, the vendors always have clear
demand about their applications: they want the applications
to keep some key performance indicators (KPIs) [12], e.g.,
average response time. In this way, we need to work out
how to find an appropriate deployment scheme of a micro-
service-based application with low cost while its actual
KPIs are ensured in the service provisioning system based
on the MEC paradigm.

In this paper, we mainly focus on the deployment prob-
lem of the microservice-based applications with the con-
straints of application average response time and server
resources. The main contributions of this paper are:

1 We highlight the advantages of using MEC architec-
ture to improve the performance of applications.

2 We consider the cooperation of edge servers and the
core server in MEC service provisioning systems
based on the MEC paradigm, and model the applica-
tion with a composition of microservices. Based on
this, we translate the application deployment prob-
lem to the problem of deploying heterogeneous
microservice instances.

3 We consider the constraints of resource limitations of
edge servers, the business logic of applications as
well as the average response time of applications,
and then propose an approach to generate appropri-
ate deployment schemes with minimum cost under
the on-demand billing model.

4 We conduct a series of experiments to evaluate the
performance of the generated deployment schemes
and show the improvement compared with other
existing baselines.

The rest of this paper is organized as follows. In Section 2
we describe the motivation and scenario of the application
deployment problem with an example of a virtual applica-
tion called Clairvoyance. In Section 3 we present how the
entities of an MEC service provisioning system work when
the microservice-based application is deployed on the sys-
tem, and give the definition of our problem. In Section 4 we
introduce how we formulate this deployment problem to an
optimization problem. In Section 5 we describe the details
of the approach we proposed to solve this problem. In Sec-
tion 6 we show the experimental results and analysis about
the factors that may affect the results. In Section 7 we
highlight related work of edge computing and the

corresponding approaches. In Section 8, we conclude our
contribution and outline future work.

2 MOTIVATION AND SCENARIO

In this section, we will outline the scenario and motivation
of our problem with an example. The concept of ”Smart
City” integrates information and communication technol-
ogy (ICT), and Internet of things (IoT) to optimize the effi-
ciency of city operations [13], [14], [15], [16]. It allows city
officials to interact directly with both community and city
infrastructure and to monitor what is happening in the
city and how the city is evolving. In smart city projects, one
of the most popular topics is smart policing. By deploying
webcams, velometers, decibelmeters in the city, illegal
behaviors like speeding and unpermitted road work can be
easily detected. By equipping the policemen with portable
alcometers and ID card readers, lawbreakers will get pun-
ished in time. Under this background, assume that an IT
company SoftPoliz, which devotes itself to help to simplify
policing affairs with information technology, has developed
an application called Clairvoyance. This application aims at
providing fast authentication service for policemen so that
they can verify criminal suspects effectively. Clairvoyance is
made up of 3 related microservices SC ¼ fFaceRecognizer,
IllegalQuery, AutoAlarmg. Besides packing and unpacking
the data according to the communication protocol, these 3
microservices have their own function. FaceRecognizer is
an image processing service that receives a face image and
recognizes the owner, IllegalQuery is data access service
which receives ID card number and queries the criminal
database with it, AutoAlarm is an alarm service which
receives the illegal or criminal records of someone, evalu-
ates the danger level of him (a drug abuser may be not as
dangerous as a murder with weapons), and give recommen-
dations about what to do (e.g., wait for reinforcement or
arrest on the spot) to policemen according to some laws and
cases. By invoking the service in the service chain SC in
order, the task will be easily finished. Therefore, the police-
men can patrol the city with portable ID card readers and
check whether a man is a criminal suspect by taking his
photos using the application Clairvoyance.

It will be convenient for developers of SoftPoliz to deploy
the related microservices on a cloud and to invoke them
with RESTful APIs [17]. However, better performance is
required in this situation, because there are too many people
in overcrowded places like railway stations or airports. It is
not acceptable to wait minutes for results. A good way to
improve the performance is to turn to the MEC architecture.
In MEC architectures, the servers in proximity work cooper-
atively as a platform that integrates the computation and
storage capacities of them. With plenty of microservice
instances deployed on the distributed nearby edge servers,
the latency will be dramatically reduced. According to the
experiment in [18], it shows that as much as 72 percent of
the communication cost will be saved by taking advantage
of MEC architecture in some cases. Fig. 1 shows how it
works. In this scenario, every edge server has its own serv-
ing area and resource limitation, users in different serving
areas will connect to the nearest edge server to invoke the
application. The users are not evenly distributed: from2. https://www.rightscale.com/lp/state-of-the-cloud

1908 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

https://www.rightscale.com/lp/state-of-the-cloud

Fig. 1 we can find that the Railway Station and other
crowded places included in the serving area of edge server
s1 while s3 will only serve residential areas. Therefore, more
policemen will be assigned to the serving area of s1, and
Clairvoyancewill be invoked more frequently in the serving
area of s1 than s3. Intuitively, it will be better to deploy
more microservice instances on s1. However, it is not
acceptable for SoftPoliz to rent all the resources of edge serv-
ers for microservice instances—the cost will be too high to
afford. There must be a trade-off between performance and
expense: Fig. 2 gives an example of the deployment scheme
of application Clairvoyance. In this case, there are 3 edge
servers and a cloud server (core server). Users invoke the
application from different areas, and the related microservi-
ces on different servers will be invoked in order to generate
the final results. Table 1 shows the configurations of servers
in this situation, in which s0 means the cloud server. The
bandwidths (mbps) between the cloud server and edge
servers are smaller because of the long-distance communi-
cation. And because the core server is a cluster of machines
that can easily scale-out, it can have a very large resource
capacity. Table 2 shows the parameters of related microser-
vices. When a microservice is deployed on a machine, it will
consume some computational and storage resources. There
are many types of computational resources like memory
and CPU, and we take memory as an example in this case.
These microservices may not be homogeneous on different
servers, because the operating system and hardware can be
different and some special optimization technologies can be
adopted on these machines. Therefore, we can find from

Table 2 that microservice FaceRecognizer will use 10 MB
memory and 50 MB disk space, and can process 20 requests
per second when it is deployed on edge server s1. Because
the microservices are invoked in order, the output of the
previous microservice will be the input of the next microser-
vice. In many cases, resources are charged by the amount of
consumption. In this situation, we assume that the price of
memory is $10/MB and the price of the disk is $25/GB. In
addition, we assume that in this time period, the request
rates from devices of these three areas can be modeled with
Poisson flows [19] whose parameters (request arrival rate)
are 20 requests per second, 30 requests per second and 50
requests per second. Then there will be many feasible
deployment schemes for the application Clairvoyance. For
example, the deployment scheme V1 = [[2,0,2,6];[4,0,1,1];
[3,3,0,1]] which means deploying 2 instances of
FaceRecognizer on s0, 0 instance of FaceRecognizer on s1, 2
instances of FaceRecognizer on s2 and 6 instances of
FaceRecognizer on s3 etc.. When we use the scheme V1, the
expectation of response time for the application will be
9.56s, and the cost will be $3872.5. However, if some investi-
gations tell that it is acceptable to wait for less than 12s, a
better deployment scheme V2 = [[2,0,2,3];[4,0,1,1];[3,2,0,1]]
would be worth considering because the expectation of
application response time is 11.15s and the cost can be
$3310.0. Thus, we can find out that it is important to select
the deployment scheme carefully.

3 SYSTEM MODEL

3.1 Servers and Network

In a typical MEC service provisioning system based on the
MEC paradigm, there will be a core server s0 which acts like
the typical cloud platform and n edge servers s1, s2, . . ., sn
distributed in different areas. These servers are available for
application developers. Considered as a major form of
MEC, mobile base stations (BSs) endowed with cloud-like
computing and storage capability are the most common
devices that play the role of edge servers [20]. Every edge
server sj has its own serving area and Uj is the set of mobile
users in this serving area. The average transmission rate
between sj and users in Uj is vju. These edge servers can
cooperate with each other to form a local mobile edge com-
puting platform (sometimes it is named with “Fog
Platform”) to make full use of their resources. The average
bandwidth between the jth edge server and the kth server
is Bj;k. Especially, because the edge servers can communi-
cate with s0, the average bandwidth between the core server
and the jth edge server is denoted with B0;j (In general, as
the edge servers in a local MEC platform may communicate
with each other in a single-hop, B0;j will always be smaller

Fig. 1. Smart policing using wearable equipments.

Fig. 2. Using microservice-based applications.

TABLE 1
Configurations of Servers

Server Bandwidth Computation
capacity

Storage
capacity

Wireless
rates0 s1 s2 s3

s0 +1 5 2 4 +1 +1 0.6
s1 4 +1 20 25 200 400 4
s2 6 20 +1 40 200 200 2
s3 2 10 20 +1 100 600 4

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1909

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

than Bk;j, k > 0). The edge server sj can provide at most Lj
c

computation resource and Lj
d storage resource for deploy-

ing microservice instances.

3.2 Microservice-Based Application

A microservice msi is an abstract concept that describes
what task it can complete with specific parameters, it has
its own responsibility and scope and can be launched as
instances based on container techniques. Receiving a
request for msi whose average data size is Din

i as input, an
instance of msi on sj can process the request with process-
ing capacity mi;j and output the result whose average data
size is Dout

i while it consumes ci;j computation resource
and di;j storage resource on sj. Here we use the M/M/c
queue model to describe and evaluate the running of those
microservice instances [21], [22], [23], it means there are
Vi;j workers serving the requests as a queue node Qi;j if
there are Vi;j instances of microservice msi deployed on
server sj. We use this model because that the sojourn time
of M/M/c system is less than that of c parallel M/M/1
system. This is easy to prove – if there are k jobs in system,
then the M/M/c queue will process with rate = min{k, c}m
while the c paralleling M/M/1 system will process with
rate = jm where j � min{k, c} is the number of active
queues. By fulfilling the tasks described by microservices
in a service chain SC = (ms1, ms2 ; . . . ; msm), the function
declared by a microservice-based application is imple-
mented. Though sometimes there will be data access oper-
ations in the application which may break the chain
structure as shown in Fig. 3, we can also use the following
transformation to create a equivalent service chain: In
Fig. 4, we can find that microservice ms2 will access its
data (data2). ms2 first sends query q2 to tell which part of
data it wants, and receives the querying results d2. The
structure (a) can be transformed to (b) by adding two vir-
tual microservices ms2s and ms2e—the input of ms2s is
Dout

1 and the output of ms2s is q2, the input of ms2e is d1
and the output of ms2e is Dout

2 . The data microservice then
becomes the successor of ms2s and the predecessor of ms2e
in the service chain. Here the resource consumption of

ms2s is the same as ms2, but ms2e will not consume any
resources. What’s more, ms2s and ms2e will share the same
deployment scheme as ms2. In this way, we only focus on
the chain structure, which means that the input of the
application is the input of ms1 and the output of msm is
the required output for the application. Besides these,
msiþ1 will use the output of msi as input.

3.3 Request Life Cycle

Denote the probability that server sj dispatch requests
about msi to sk with Prij;k, which describes the routing pol-
icy, we can overview the life cycle of a request in Fig. 5:
For u in Uj, when he/she tries to use application described
by SC, his/her device will first produce a request with
input in1 about it and send the request to sj. According to
the probabilities Pr1j;�, this request is sent to server sk1 to
fulfill the task declared in ms1. The instances of ms1 on sk1
finish this task and get the output out1, then produce a
new request whose input in2 = out1 and send it to server
sk2 according to the probabilities Pr2k1;�. Step by step, the
instances of msm on skm finally get the output outm, which
is the result of the application. The final result will be sent
back to sj and then to u via sj.

As requests produced by Uj will be dynamic in one day,
here we follow the works in [20], [24] etc. to divide time into
discrete time periods (or time slots) in which the requests of
Uj in time period tp can be modeled with a Poisson flow
whose average request arrival rate is �

tp
j (some techniques

like [25] may be used to help to predict). In every time
period, the deployment scheme can be updated. The length
of a time period is not fixed, but it won’t be long so that the
system won’t update frequently. Therefore, the deployment
problem over time is divided into a series of service deploy-
ment subproblems over time periods. In the rest of this
paper, we will omit the superscript tp of �

tp
j (namely, we

will use �j) and focus on the service deployment scheme in
one time period.

3.4 Billing Model

Different companies have their own billing models. For
example, there are two types of billing models for Amazon

TABLE 2
Resource Consumption and Running Parameters of Microservices

Microservice Computation resource Storage resource Processing capacity Input size Output size
s0 s1 s2 s3 s0 s1 s2 s3 s0 s1 s2 s3

FaceRecognizer 10 10 20 10 50 40 50 50 40 20 30 20 10 1
IllegalQuery 30 30 40 30 30 30 10 30 50 30 40 30 1 5
AutoAlarm 10 10 20 10 60 50 60 60 60 40 50 40 5 2

Fig. 3. An example of application deployment. Fig. 4. An example of equivalent structure transformation.

1910 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

Elastic Container Service:3 the Fargate launch type model
and the EC2 launch type model. With the Fargate model,
you pay for the amount of vCPU and memory resources
that your containerized application requests and you pay
for AWS resources you create to store and run your applica-
tion in the EC2 model. In this work, we mainly consider the
on-demand billing in evaluating the cost of the deployment
scheme—it means that the more resource is used, the more
you have to pay. Without loss of generation, here we
assume that the cost is proportional to the used resource,
and the unit cost of computation resource and storage
resource are represented by a and b respectively.

3.5 Problem Definition

With the introduction of related concepts, nowwe can give the
definition of the Optimal Instance Deployment Problem (OIDP)
clearly: Given the core server and edge servers S ¼ fs0; s1;
. . . ; sng, an application A whose service chain is SC = fms1;
ms2; . . . ;msmg, and users’ average request rate forA on differ-
ent edge servers represented with �� = ð�1; �2; . . . ; �nÞT in a
time period, find the deployment schemeVV = fVi;jgm;n

i¼1;j¼0 with
minimum cost so that the application can serve the users with
an average response time nomore than T �.

4 PROBLEM FORMULATION

In this section, we will clarify the objective and constraints
of the problem and formulate them in a brief way.

4.1 Objective of Deployment Problem

In this work, we mainly consider the computation cost and
storage cost of microservices. According to the explanation
of billing model in Section 3, the cost of resource consump-
tion can be represented as

CðVÞ ¼ a
Xm
i¼0

Xn
j¼0

ci;jVi;j þ b
Xm
i¼0

Xn
j¼0

di;jVi;j: (1)

If we denote gi;j , aci;j þ bdi;j as the cost of instances of
different microservices. By vectorize gi;j and Vi;j with the

order of service chain, we can get two column vectors gg =
(g1;0 ; . . . ; g1;n ; . . . ; gm;0 ; . . . ; gm;nÞœ and V = (V1;0 ; . . . ; V1;n

; . . . ; Vm;0 ; . . . ; Vm;nÞœ whose dimension u is m � ðnþ 1Þ.
Then the cost CðVÞ can be represented as

CðVÞ ¼ ggœVV: (2)

4.2 Constraint of Application Response Time

Here we denote f = ðfs;f1;f2; . . . ;fm;feÞ as the request
path to describe a request’s life cycle, it shows the order of
hosts to handle this request. Denote Pf the probability of
request path f, and Tf is the total time for requests that go
through path f. The average application response time can
be represented as

E½T � ¼
Xn
fs¼1

Xn
f1¼0

� � �
Xn
fm¼0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

m

Xn
fe¼1

PffTff: (3)

In this way, we will investigate Pf and Tf respectively to
calculate E½T �.

4.2.1 Probability of Request Path

With the definition of Prti;j, we can represent Pf as

Pf ¼ PrfsPr
s
fs;f1

Ym�1

t¼1

Prtft;ftþ1

 !
Prefm;fe

: (4)

Here Prfs means the probability that the nearby edge
server is sfs . Because the requests will always go back to the
caller and his nearby edge server, Prefmfe

will not effect the
value of Pf. Thus, we have

Pf ¼ PrfsPr
s
fs;f1

Ym�1

t¼1

Prtft;ftþ1

 !
: (5)

Pf will be different under different service routing polices.
There are many reasonable routing polices because different
developers may consider different factors. For example:

Fig. 5. An overview of the MEC service provisioning system.

3. https://aws.amazon.com/ecs/pricing/?nc1=h_ls

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1911

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ecs/pricing/?nc1=h_ls

Round-Robin. Under this policy, the instances of a micro-
service on different servers will have the same probability
to receive requests—if ms1 has 1 instance on s1 and has 2
instances on s2, the probability that request of ms1 goes to
s2 is twice as much as that to s1.

Weighted Routing. Under this policy, the processing capa-
bility is considered as another factors that can help schedul-
ing requests, the probability a instance of microservices
receives is proportional to processing capability—if ms1 has
1 instance on s1 whose processing capability is 200 request/
sec and has 2 instances on s2 whose processing capability is
100 request/sec, the probability that request of ms1 goes to
s2 is the same as that to s1, because 1 � 200 = 2 � 100.

In this work, we will take the round-robin policy as
example to explain how we will formulate the deployment
problem, so that developers can easily follow the process
with their own routing policies.

It is obvious that Prfs is dependent on the distribution of
application requests, therefore we have

Prfs ¼
�fsPn
i¼1 �i

; (6)

because the requests will be dispatched to instances accord-
ing to the amount in round-robin policy, we have

Prsfs;f1 ¼
V1;f1Pn
k¼0 V1;k

; Prtft;ftþ1
¼ Vtþ1;ftþ1Pn

k¼0 Vtþ1;k
: (7)

4.2.2 Response Time of Request Path

For each Tff, it includes the access time, routing time, queue
time and backhaul time

Tff ¼ Taccess þ Trouting þ Tqueue þ Tbackhaul: (8)

Where the four parts can be computed as follows:
a) Access Time. The access time has two parts, the trans-

mission time between mobile devices to their nearby edge
server sfs and the transmission time from sfs to server sf1
which caches the instances of ms1. Therefore, the access
time is

Taccess ¼ Din
1

v
fs
u

þ Din
1

Bfsf1

: (9)

b) Routing Time. When any instance has finished its work,
the result will be routed to the next microservice instance.
Therefore, the routing time can be represented as

Trouting ¼
Xm�1

i¼1

Dout
i

Bfifiþ1

: (10)

c) Queue Time. The queue time includes the execution time
and waiting time. Given the processing capacity mi;fi

, the
execution time Te

i;fi
can be represented as

Te
i;fi

¼ 1

mi;fi

: (11)

At the same time, we use Tw
i;fi

to denote the expectation of
waiting time in the queue of msi’s instance on server sfi .
According to the queuing theory, Tw

i;fi
can be represented as

Tw
i;fi

¼ 1=mi;fi
Vi;fi ð1�ri;fi Þ½1þð1�ri;fi Þ�i;fi �

; (12)

where �i;fi , Vi;fi !

ðVi;firi;fi Þ
Vi;fi

PVi;fi�1

k¼0

ðVi;firi;fi Þk
k! is used here to

simplify the expression.

Note that there is a parameter ri;j involved in the expression
of Tw

i;fi
. It means the serving utilization of queuing node Qi;j.

And according to the queuing theory, ri;j can be represented as

ri;j ¼
�
0
i;j

m
0
i;j

; (13)

here �
0
i;j is the average request arrival rate of for microser-

vice instances msi at node Qi;j, and m
0
i;j = Vi;jmi;j is the proc-

essing rate. ri;j is always less than 1 so that requests will not
be blocked in the queuing node.

Suppose �
0

�
0
iþ1 = ð�0

iþ1;0; �
0
iþ1;1; . . . ; �

0
iþ1;nÞœ is the request

arrival rates for instances on different severs ofmsiþ1. Accord-
ing to Burke’s theorem [19], the request leaving rates for instan-
ces on different severs ofmsi will be equal to �

0
�
0
iþ1. Denote Pr

i

as the routingmatrix for requests generated frommsi

Pri ,

Pri0;0 Pri1;0 � � � Prin;0
Pri0;1 Pri1;1 � � � Prin;1

..

. ..
. . .

. ..
.

Pri0;n Pri1;n � � � Prin;n

266664
377775: (14)

As the microservices are invoked one by one, the requests
will go to the next microservice instances when previous
tasks are fulfilled. Therefore, we can use the following equa-
tion to describe the relation between �

0
�
0
iþ1 and �

0
�
0
i:

�
0

�
0
iþ1 ¼ Pri�

0
�
0
i; (15)

while the elements of �
0

�
0
1 are initialized with

�
0
1;j ¼

Xn
k¼1

Prsk;j�k: (16)

By solving the Equation (15), we can get

�
0
i;j ¼

Vi;jPn
k¼0 Vi;k

Xn
k¼1

�k: (17)

Therefore, the sojourn time in queue is

Tqueue ¼
Xm
i¼1

ðTe
i;fi

þ Tw
i;fi

Þ: (18)

d) Backhaul Time. The backhaul time has two parts as
well—the transmission time between the edge server sfe to
connected mobile devices and the transmission time from
sfm to server sfe (fe = fs). Therefore, the backhaul time is

Tbackhaul ¼ Dout
m

v
fe
u

þ Dout
m

Bfmfe

: (19)

4.2.3 Application Response Time Estimation

As the response time of a request path is divided into four
parts, and because E½X þ Y � = E½X� + E½Y �, the expectation

1912 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

of application response time E½T � can be represented by the
sum of E½Taccess�, E½Tbackhaul�, E½Trouting� and E½Tqueue�. With
the former equations, we can get these time costs separately,
and substitute Eqs. ((5), (6), (7), (9), (10), (18), (19)) into
Eq. (3), the expectation of application response time can be
represented as follows (with the help of auxiliary variables
shown in Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2020.2970698)

E½T � ¼ k ��œv	u þ ��œHVV

eeœ1VV

� �
þ
Xm�1

i¼1

VVœWiVV

VVœJJiVV
þ
Xm
i¼1

hh
œ
iVV

eeœiVV
:

(20)

As a consequence, when rewrite E½T � with E½T ðVVÞ� for the
decision variable VV, the constraint of application response
time can be represented as

E½T ðVVÞ� � T �: (21)

4.3 Constraint of Resource Consumption

Though edge servers are powerful machines with larger
storage and faster computation units, they have limitations
on their resources. Besides this, there are still many other
application to be deployed, it is not possible to give all the
resource to an specific application. Here we use LcLc = ðL0

c , L
1
c

; . . . ; Ln
c Þœ and LdLd = ðL0

d, L
1
d ; . . . ; Ln

dÞœ to represent the com-
putation resource quota and storage resource quota for
application A. By denoting CR the constraint matrix of
resources, and L the concatenation of LcLc and LdLd,

CR ,

c1;0 . . . 0 cm;0 . . . 0

..

. . .
. ..

.
.

. . .
. ..

.

0 . . . c1;n 0 . . . cm;n

d1;0 . . . 0 dm;0 . . . 0

..

. . .
. ..

.
.

. . .
. ..

.

0 . . . d1;n 0 . . . dm;n

2666666664

3777777775
;

then we can describe the constraint of edge resources as

CRV � L: (22)

4.4 Constraint of Business Logic

As the microservices works in order to fulfill complex tasks,
the absence of microservice instance for any microservice in
the service chain SC will not be allowed. Therefore, we have

�CBV � �~1~1: (23)

Here the business logic constraint matrix CB is denoted by

CB ,

1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0
..
. . .

. ..
. ..

. . .
. ..

.
.

. . .
. ..

.

0 . . . 0 0 . . . 0 . . . 1 . . . 1

2664
3775;

and~1~1 = ð1; 1; . . . ; 1Þœ.

4.5 Constraint of Queuing System

In queuing system, the parameter r means the serving uti-
lization of the queuing node. As mentioned in Section 4.2.2,

r should be positive and less than 1.0 for a stable queuing
system. Otherwise, the requests will heap up so that the sys-
tem cannot handle them anymore. With Eq. (12), we can
represent the constraint by

�CQV � �L �~1~1; (24)

where the constraint matrix of queue system CQ is denoted
with

CQ ,

minj m1;j . . . minj m1;j . . . 0 . . . 0
0 . . . 0 � � � 0 . . . 0
..
. . .

. ..
. � � � ..

. . .
. ..

.

0 . . . 0 . . . minj mm;j . . . minj mm;j

26664
37775;

and L =
Pk¼1

n �k is the total request arrival rate.

5 APPROACHES

With the objective and constraints shown in Section.6, we
now can easily the formulate the OIDP as the following
optimization problem:

PP 1 : min ggœVV

s:t:
kð��œv	u þ ��œHVV

ee
œ
1
VV
Þ þPm�1

i¼1
VVœWiVV
VVœJJiVV

þPm
i¼1

hh
œ
i
VV

ee
œ
i
VV
� T �

AVV � b;VV 2 Nu

8<: ;

(25)

where A , (CR, - CB, - CQÞœ and b , (L, -~1~1, - L �~1~1Þœ. The
definitions of the auxiliary variables v	u , k, eei, hhi, H, Wi and
Ji are shown in Appendix B, available in the online supple-
mental material.

Therefore, searching the optimal application deploy-
ment scheme is to find the scheme VV� from the feasible
region which has the minimum cost ggœVV�. From the
form of PP 1, we can find that it is a nonlinear integer pro-
gramming problem, which is NP-Complete. Therefore,
we turn to approaches that can help to find some sub-
optimums. At first, we will relax the constraint of N to
R0 (R0 = R - Rþ) so that we can take advantage of the
optimization technology for continuous problems. And
then, the branch and bound technique will be adopted to
find the integer solutions.

However, as the queue time vector hi is derived from
the queueing theory, in which the waiting time Tw

i;j is cal-
culated by summation of sequence (in �i;j). It will be
hard for us to compute the derivatives. Therefore, we
need a continuous and easier form of Tw

i;j, and if it is an
approximation form, we should quantify the gap
between it and the original one. By setting r = ri;fi and
n = Vi;fi for the 3rd Lemma shown in Appendix A,
available in the online supplemental material, we will
have the approximation form of �i;fi

�̂i;fi ¼ e�ð1�ri;fi ÞðVi;fi�1Þri;fi
�Vi;fi ; (26)

and �i;fi � �̂i;fi . Then the upper bound bTw
i;fi

of waiting time
in queue is

bTw
i;fi

¼ 1
mi;fiVi;j

1
1�ri;fi

� 1
1�ri;fiþ�̂�1

i;fi

� �
: (27)

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1913

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TMC.2020.2970698
http://doi.ieeecomputersociety.org/10.1109/TMC.2020.2970698

Similarly, we can also get that

1

1� ri;fi þ��1
i;fi

� 1

1� ri;fi þ �̂�1
i;fi

� Vi;fi : (28)

Therefore, the relation between Tw
i;j and

bTw
i;j will be clear

bTw
i;j � Tw

i;j � 1
mi;jVi;j

�Vi;j ¼ 1
mi;j

: (29)

On the other hand, for all positive vector xx 2 Ru we have

min
q2½1;u�

vq � vœxx

1 � x1 � x � max
q2½1;u�

vq: (30)

Therefore, by carefully choosing a parameter � 2 ½0; 1
mmin

�
(mmin ¼ mini;jmi;j), we can transform the constraint of
E½T ðVVÞ� to the following equivalent one:

E½T̂ ðVVÞ� � � � T �; (31)

where the E½T̂ ðVVÞ� has the same structure as Eq. (20), except
that the queue time vector hi in E½T̂ ðVVÞ� is replaced with

hihi , ð 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
ði�1Þðnþ1Þ

;
1

mi;0

þ T̂ w
i;0; . . . ;

1

mi;n

þ T̂ w
i;n; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

ðm�iÞðnþ1Þ

Þœ:

(32)

Suppose bk is the kth element of vector bb and AAk is the kth
column vector of AA, and denote the constraints with

c0ðVVÞ ¼ �þ T � � E½T̂ ðVVÞ�
ckðVVÞ ¼ bk �AAkVV;

(33)

then we can minimize an l1-penalty function with some suf-
ficiently-large penalty factor n to solve PP 1 [26]

min
VV2Ru

CðVV; nÞ ¼ CðVVÞ þ n
X
k

maxð�ckðVVÞ; 0Þ: (34)

What’s more, by smoothing this penalty function with
some elastic variables ww and regarding the concatenated
vector xxP = (VV, ww) as points in the expanded space, we can
get problem PP 1’s smooth version (PP 2)

PP 2 : min
VV2Ru

CSðVV; ww; nÞ ¼ CðVVÞ þ n
X
k

wk

s:t: ckðVVÞ þ wk
 0; wk
 0:

(35)

Thus we can now apply the primal-dual interior point
method [27] to find the suboptimal of PP 2. Namely, we need
to solve a sequence of unconstrained problems (QQt)

QQt : min
ðVV;wwÞ

CBðVV; ww; tt; nÞ; (36)

where the objective CBðVV; ww; tt; nÞ is represented with the
following logarithmic barrier form:

CBðVV; ww; tt; nÞ ¼ CSðVV; ww; nÞ � tt
X
k

log ðwkÞ

� tt
X
k

log ðckðVVÞ þ wkÞ;
(37)

n is the penalty factor that measures the infeasibility of sub-
problem QQt and tt is the barrier factor that manages the con-
straints shown in PP 2. According to the requirement of the
primal-dual interior point method [27], {t} should be a
decreasing sequence where limt!1 = 0, and the minimizer
(VV�

tþ1, ww
�
tþ1) will be generated by solving QQt with QQt’s mini-

mizer (VV�
t , ww�

t) as initial point. And the minimizer will
finally converge to the minimizer of PP 2 (see in Section 5.1).
It’s worth noting that with the elastic variable ww, the initial
feasible point for the interior point method will be easily got
by setting wk
maxð�ckðVVÞ; 0Þ for anyVV.

Before solving the problemQQt, we will first denote the pri-
mal-dual function FðxxP ; xxD; t

t; nÞ for it. Suppose the primal
first-order Lagrangemultiplier estimates are denotedwith

yy , ttðCCdiagðVVÞ þWWdiagÞ�1~11

uu , ttðWWdiagÞ�1~11;
(38)

where we use vectors ccðVVÞ to represent the above con-
straints for convenience, CCdiagðVVÞ and WWdiag are matrices
that diagonalized from ccðVVÞ and ww. Then the primal-dual
function for primal vector xxP = (VV, ww) and dual vector xxD =
(yy, uu) can be represented with

FðxxP ; xxD; t
t; nÞ ,

gg � JœðVVÞyy
n� yy� uu

ðCCdiagðVVÞ þWWdiagÞyy� tt

WWdiaguu� tt

2664
3775; (39)

here JðVVÞ is the Jacobian matrix of ccðVVÞ, and the sum of vec-
tor xx and scalar a here means that every elements of xx is
added with a for convenience. Then the Karush-Kuhn-
Tucker (KKT) condition can be represented with

FðxxP ; xxD; t
t; nÞ ¼ 00

ðccðVVÞ þ ww;ww; yy; uuÞ
 00:
(40)

As limt!1 tt = 0, and the KKT condition for PP 2 can be repre-
sented with FðxxP ; xxD; 0; nÞ, then we can find that if there is a
limit point xx� = (VV�, ww�, yy�, uu�) generated by solving QQt

when t is sufficiently large, it will be a KKT point for PP 2.
And because PP 2 is equivalent to PP 1, it will also be the KKT
point for PP 1.

As with the process introduced in [28], the goal to solve
the problem QQt is to generate appropriate (xxtþ1

P , xxtþ1
D). Sup-

pose d = (dP , dD) is the direction vector so that (xxtþ1
P ; xxtþ1

D) =
(xxtþ1

P + dP , xx
tþ1
D + dD), then d can be approximated by

min
dd

ddœFðxxt
P ; xx

t
D; t

t; nÞ þ 1

2
ddœrFðxxt

P ; xx
t
D; t

t; nÞdd: (41)

Thus, the solution of the following linear system

rðxxt
P
;xxt

D
ÞFðxxt

P ; xx
t
D; t

t; nÞdd ¼ �FðxxtP ; xxt
D; t

t; nÞ; (42)

can be used as the direction vector [29].
With the above statements, the framework of the primal-

dual interior point algorithm will be clear: iteratively find
the by approximately solving QQt until tt is small enough
and jjFðxxP ; xxD; t

t; nÞjj less or equal than some tolerance, the
detail of it is shown in Algorithm 1, whose name is

1914 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

ID4AReE. It is named after Instance Deployment Approxi-
mation algorithm for Resource constrained Edges.

Algorithm 1. Instance Deployment Approximation
Algorithm for Resource constrained Edges, IDA4ReE

Input:
gg: the cost vector;
ccð�Þ: the constriant functions;
t: the initial barrier factor, t 2 ð0; 1Þ
n: the penalty factor, n > 0

Output:
VV�: the deployment scheme of instances;

1 Initialize VV0 2 Ru

2 Initialize ww0 2 RK
þ so that ccðVV0Þ þ ww0 > 00

3 Initialize dual estimates yy0; uu0 2 RK
þ

4 xxt ¼ ðVVt; wwt; yyt; uutÞ
5 for t = 0, 1, 2, ... do
6 solve linear system (42) to get ddt

7 xxtþ1 ¼ xxt þ ddt

8 if

k gg � JœðVVtÞyytþ1

n� yytþ1 � uutþ1

" #
k � t

3
2

jjðCCdiagðVVtþ1Þ þWtþ1Wtþ1
diagÞyytþ1 � tjj � t

jjWWtþ1
diaguu

tþ1 � tjj � t

ðyytþ1; uutþ1Þ > 00

ðccðVVtþ1Þ þ wwtþ1; wwtþ1Þ > 00

(43)

then
9 ðVVtþ1; wwtþ1; yytþ1; uutþ1Þ = xxtþ1

10 VV� = VVtþ1

11 return VV�

12 else
13 t ¼ t

4
3

However, in Eq. (25), the instance number of microser-
vices should be an integer, we should go back to N to
find our optimal solutions. There are several methods help-
ing us to solve this integer programming problem like
decomposition method [30], cut-and-solve method [31]
and branch-and-bound method [32]. In our work, we will
choose the branch-and-bound method. The branch-and-
bound algorithm enumerates candidate solutions with a
rooted tree. By checking against upper and lower estimated
bounds on the optimal solution, the algorithm traverses the
rooted tree and terminates if it cannot produce a better
solution than the best one. By branching the optimization
problem with the bound of integer constraint in different
steps, we can get the searching algorithm–the instance
deployment algorithm for resource-constrained edges
(ID4ReE), whose process is shown in Algorithm 3. It con-
tains a branch-and-bound function (Algorithm 2) which
finds the bounds and branches the searching space of the
problem with a First-In-First-Out (FIFO) queue. The upper
bound means the current minimum cost for solutions 2 Nu

while the lower bound stands for the minimum cost for sol-
utions 2 Ru

0. A problem will be branched only when the
minimizer is not integer and its corresponding cost is less
than the upper bound (Algorithm 2 - Line 11-19).

5.1 Convergence Analysis

In this section, we will examine the convergence of the algo-
rithms. Specifically, according to the structure of ID4ReE,
we need to analyze both the interior point method and the
branch-and-bound method. With an equivalent smooth
reformulation of the penalty function, we can naturally
adopt the primal-dual interior-point method to solve the
problem. And with the help of [29] and [33], we have:

Algorithm 2. Branch and Bound, BnB

Input:
VVy: the currently best solution;
lb, ub: the lower and upper bound of BnB;
ccð�Þ: the constraint functions;
gg: the cost vector;
n: the penalty factor, n > 0
t: the barrier factor, t 2 ð0; 1Þ

Output:
VV�: the deployment scheme of instances;

1 Q = Queue()
2 Q.enqueue(cc)
3 while Q is not empty do
4 cco = Q.dequeue()
5 VVo = IDA4ReEðgg; cco; t; nÞ
6 v = ggTVVo

7 if VVo 2 Nu and v � ub then
8 VVy, ub = VVo, v
9 if VVo =2 Nu then
10 if v � ub then
11 lb =minðlb; vÞ
12 k� ¼ argmaxk2½1;u�;VVo

k
=2 Zgk

13 Ik ¼ bVVo
k� c

14 uuk ¼ ½0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k��1

; 1; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
u�k�

�œ

15 c< ðVVÞ ¼ Ik� uuœ
kVV

16 c> ðVVÞ ¼ uuœ
kVV - Ik - 1

17 cclðVVÞ; ccrðVVÞ ¼ ccðVVÞ
c< ðVVÞ
� �

;
ccðVVÞ
c> ðVVÞ
� �

18 Q.enqueue(ccl)

19 Q.enqueue(ccr)

20 VV� = VVy

21 return VV�

Lemma 1. The stopping conditions are satisfied at xxtþ1 ¼
ðxxt

P ; xx
t
DÞ with tt for sufficiently large t, and

jjFðxxtP ; xxt
D; t

t; nÞjj ¼ oðttÞ: (44)

Proof. The details are described in Theorem 6.2 of [29]. tu
Lemma 2. In Algorithm 1, the complete sequence {xxt} converges

to xx� and sequence {Fðxxt; tt; nÞ} converges to zero, the asymp-
totic convergence rate can be described with

jxxtþ2 � xx�j
jxxtþ1 � xx�j32

¼ M; (45)

whereM is a constant.

Proof. It can be proved with Theorem 6.5 of [29] and
Theorem 3.2 of [33] by setting {gk} with {12}. tu

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1915

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

Lemma 1 shows the convergence, and by denoting the
error after nth step in Lemma 2 with "n = jxxn � xx�j, we can
iteratively estimate the error with

lg "n þ 2 lg M ¼ 3
2 ðlg "n�1 þ 2 lg MÞ: (46)

Then when the precision of a dp-dight number is required
for IDA4ReE, the iteration number can be described with
Oðlg dpÞ by solving Eq. (46). On the other hand, because the
main process of the ID4ReE is the branch and bound algo-
rithm, it will be extremely hard to determine when the inte-
ger solutions will occur. What’s more, if no bounds are
available in running this algorithm, the method will degen-
erate to an exhaustive search. To avoid this situation, we
heuristically try to solve an integer linear programming
(ILP) problem whose objective is max

Pu
i¼1 Vi and con-

straints are c1�kðVVÞ
 0. This is because the application is
more likely to have smaller average response time if more
microservice instances are deployed in the system. By
selecting solutions that have c0ðVVÞ
 0 from this ILP’s solu-
tion set, we can roughly get the initial upper bound. Even
though, the computation complexity may be as large as

OðQm;nþ1
i¼1;j¼0 minðLj

c
ci;j

;
L
j
d

di;j
ÞÞ in the worst case (here minðLj

c
ci;j

;
L
j
d

di;j
Þ

determines the upper bound of Vi;j according to Eq. (22)).

6 EXPERIMENTS AND ANALYSIS

6.1 Preliminary

We have implemented the proposed algorithms in Matlab
2018b and our experiments are conducted on a machine
with Intel Xeon E5-2620 v4@2.10 GHz � 2 CPU and 64 GB
memory on Windows 10 operating system. Due to the lack
of well-adopted platforms and datasets, we generate a data-
set for configurations of services and servers in a synthetic

way for our experiment. Therefore, several edge service
provisioning systems are created with the system configura-
tion settings shown in Table 3. Though in many cases (e.g.,
like [24], [34] .etc) simulations are conducted on the single
computer to check the results, here we try to use a multi-
machine environment to make the results more convincing.
Meanwhile, as we also want to investigate the factors that
may affect the results by keeping other factors fixed, we
finally turn to a powerful simulation tool whose name is
CloudSim [35]. It can model the edge environments and
measure the impact of resources, and many existing edge
computing simulation platforms are built on it [36].

6.2 Baselines

Generally, researchers prefer to adopt some heuristic algo-
rithms to solve the constrained nonlinear integer program-
ming problem. Therefore, we choose some of the represe-
ntative approaches as our baselines besides the brute-force
(BF) one.

6.2.1 Genetic Algorithm

Genetic algorithm (GA) is one of the famous methods [34]
which can be used for this purpose. GA simulates the evolu-
tion of populations with operations like selection, crossover,
and mutation. It is designed to favor chromosomes with the
highest fitness values to produce the next populations (solu-
tions). As a result, the quality of solutions for a problem is
gradually improved (population by population) until the
optimal answer is reached.

1) Selection. Suppose the population is initialized with
C = (VV1, VV2, . . ., VVP). Then in each successive genera-
tion, a portion of the existing population is selected

TABLE 3
Configurations of Edge Service Provision Systems

1916 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

to breed a new generation. Individual solutions are
selected through a fitness-based process, where fitter
solutions are typically more likely to be selected. The
fitness function measures the solution quality. In our
approach, it can be defined by

F ðVViÞ ¼ 1

CðVVi; nÞ (48)

where n is a large positive number. In this way, the
kth solution will be selected with probability Pk =

F ðVVkÞPP

i¼1
F ðVViÞ

to produce new generation.

2) Crossover and Mutation. To produce a new solution
with crossover operation, a pair of ”parent” chromo-
somes are selected with probability reflected in Pk.
A new solution is created by exchanging parts of the
selected parents with each other. On the other hand,
the selected ”parents” may choose not to crossover,
then the new ”offspring” are identical to themselves.
The mutation operation changes some points of a
solution, it gives the algorithm the ability to avoid
premature convergence. At last, several solutions
with good fitness will stay unchanged as elites in the
next generation to keep the convergence. This pro-
cess finally stops when converged after 5 consecutive
iterations, it results in solutions with appropriate fit-
ness values.

Algorithm 3. Instance Deployment Algorithm for
Resource Constrained Edges, ID4ReE

Input:
ccð�Þ: the constraint functions;
gg: the cost vector;
n: the penalty factor, n > 0
t: the barrier factor, t 2 ð0; 1Þ

Output:
VV�: the deployment scheme of instances;

1 VVy; lb; ub ¼ ½1�œu ;1;1
2 solve the following ILP , and get the solution set L:
3

max ½1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u

�T �VV

s:t: ckðVVÞ >¼ 0ðk ¼ 1; . . . ;KÞ;VV 2 Zu

(47)

for VV 2 L do
4 if c0ðVVÞ
 0 and ggœVV < ub then
5 VVy; lb; ub ¼ VV; ggœVV; ggœVV

6 return BnBðVVy; lb; ub; g; n; tÞ

6.2.2 Teaching-Learning-Based Optimization Algorithm

The teaching-learning-based optimization (TLBO) algo-
rithm was first proposed by Rao and Kalyankar [37]. TLBO
is a population-based method that uses a population of sol-
utions to proceed to the global solution. In TLBO, this popu-
lation is named with “Class”, in which “Teacher” is the
optimal solution and “Learners” are the feasible solutions.
When the ith feasible solution is denoted with VVi, the class

C can be represented with C = (VV1, VV2, . . ., VVP). TLBO con-
sists of two parts: “Teacher Phase” and “Student Phase”.

1) Teacher Phase. The “Teacher Phase” means learning
from the teacher. Every learner in the class will learn
from the teacher through the difference between the
teacher and the mean value of the learners

mean ¼
PP

i¼1 VV
i

P

diff ¼ ri � ðVVteacher � TFi �meanÞ
VVi

new ¼ VVi
old þ diff;

(49)

here ri = rand(0,1) is the learning step-length for VVi,
and TFi = round(1 + rand(0,1)) is the teaching factor
for VVi. With the fitness function F ðVViÞ in Eq. (48) as
grade for VVi, all learners will update themselves
with VVi

new when F ðVVi
newÞ > F ðVVi

oldÞ.
2) Student Phase. The “Student Phase” means learning

through interactions between learners. A learner
learns something new if another learner has more
knowledge, it can keep the population diverse. For
each learner VVi in the class, it will randomly choose
a classmate VVj (i 6¼ j) to see if it can learn something

VVi
new ¼ VVi

old þ riðVVi �VVjÞ; F ðVVjÞ > F ðVViÞ
VVi

old þ riðVVj �VViÞ; F ðVVjÞ < F ðVViÞ

(
:

(50)

6.2.3 Simulated Annealing Algorithm

Taking advantage of the idea from the annealing technique
in metallurgy, the Simulated Annealing (SA) algorithm sim-
ulates the cooling steps for materials. It is a probabilistic
technique for approximating the global optimum of a given
function [38]. Suppose the current solution after the ith step
is VVi while the temperature is T i. Then the energy of VVi can
be estimated with Ei = F ðVViÞ, where F is the fitness func-
tion shown in Eq. (48). To generate a new possible solution
in step i + 1, SA will randomly select a solution VVi

n from the
neighborhood of VVi in the searching space. Suppose Ei

n is
the energy of solution VVi

n. Then we can compare Ei
n and Ei

to produce the solution VViþ1

VViþ1 ¼ VVi
n; E

i
n > Ei or P ðEi; Ei

n; T
iÞ > ri

VVi; otherwise

(
: (51)

Here ri = rand(0,1) is the acceptance threshold, and the
acceptance probability P ðEi; Ei

n; T
iÞ can be calculated with

P ðEi; Ei
n; T

iÞ = e
�Ei�Ei

n
kTi . After that, SA will conduct cooling

operation T iþ1 = C � T i to adjust the temperature (C is the
cooling factor). With this policy, the algorithm will finally

find some solutions with high energies.

6.3 Performance Comparison And Data Analysis

Based on the different configurations shown in Table 3, we
construct 50 edge service provisioning systems for each of the
configurations. For example,with configuration #1,wewill con-
struct a service provisioning systemwith 5 edge servers and the
application to be deployed is made up of 2 microservices.

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1917

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

Besides these, we set the running parameters with
mi;j � Uð20; 50Þ qps, ci;j � Uð100; 200Þ MB, di;j � Uð2; 5Þ GB,
Lj
c � Uð512; 2048Þ GB, Ld

j � Uð32; 128Þ GB, Bi;j � Uð80; 100Þ
MB/s, D

in=out
i � Uð1; 5Þ MB, vju � Uð1; 3Þ MB/s, and the price

of computation/storage resource is set with a = 10$/MB and b

= 25$/GB. Then we apply different approaches on these sys-
tems to find the appropriate deployment schemes. By evaluat-
ing the average cost, which is the objective of our problem for
those systems with different configurations, we can explore
how these factors will effect the performance of edge service
provision system.

In Fig. 6, we illustrate the average costs of deployment
schemes generated by different approaches on 50 edge ser-
vice provisioning systems with a grouped bar chart. For
each group of bars, they show the deployment costs for sys-
tems with some specific configurations. Namely, the costs
of deployment schemes generated by GA, ID4ReE, SA and
TLBO with the ith configuration set in Table 3. In summary,
our approach performs better than other baselines, which
means that it will cost less to deploy application microservi-
ces with our approach.

To go a step further, we then apply the deployment
schemes generated by these approaches on those provisioning
systems to explore the response time of requests. Therefore,
we simulate 10,000 requests for every edge service provi-
sioning system, and show the distributions of application

response time for these requests for the 4 approaches with a
heat-map. In the heat-map Fig. 7, the colored blocks stand for
the distributions of the application response times. We can
find that the application response times derived by ID4ReE is
more concentrated, and most of application response times
are less than 1.64s.

Besides the comparison between approaches, we will dis-
cuss what are the factors that may impact the results and
how they will impact the results in the following parts.

6.3.1 Impact of Microservices

The number of microservices or the length of the service chain
determines the complexity of an application. From Fig. 8 and
the comparison of system #01, #02 and #03, we can find that
the cost of the generated deployment scheme increases when
the application becomes complex. Because more instances of
the new microservices will be deployed to fulfill new tasks.
Besides this, we can find that the cost increases when compu-
tation resource consumption or storage resource consumption
of microservices becomes larger. This result is very clear
because the cost is the linear weighting sum of the costs of
computation resource consumption and storage resource con-
sumption. At the same time, the cost increment caused by
computation resource consumption is larger than that of stor-
age resource consumption because of its larger unit price.

Microservice instances with larger processing capacity
handle the requests more efficiently, which means the

Fig. 6. The costs of deployment schemes generated by different approaches.

Fig. 7. The distribution of application response time. Fig. 8. Scheme costs for different microservice number.

1918 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

execution time can be reduced dramatically. Therefore,
given the requirement of response time we will need fewer
instances to fulfill the tasks of the application, as shown in
Fig. 6 that the cost of #02 is less than that of #06. Besides
these, the comparison of #12 and #13 points out that when
the input and output size of microservices becomes smaller,
the cost will also be less than before.

6.3.2 Impact of Pricing Policy

The pricing policy here means the price of different resources,
it is determined by the infrastructure providers in general.
Similar with the situation of microservice resource consump-
tion, because the cost is proportional to the unit prices of com-
putation resource and storage resource, we can find that a
higher unit price of resources will cause the increasing of cost
by comparing the results of #02 and #15, #16.

6.3.3 Impact of Servers

The edge server number, available resources and communi-
cation bandwidth determines the potential of the edge ser-
vice provisioning system altogether if we regard the system
as a distributed machine. The number of edge server deter-
mines the complexity of system topology. It provides more
possibilities for deployment schemes. For example, if a new
edge server es0 which has the same parameters with es� was
added to the system, the instances deployed on es� origi-
nally can be moved to es0 partially without any loss while
the risk resistance capacity can even increase. Not only com-
paring the results of #4, #5 and #6 in Fig. 6, we can go a step
further with the result shown in Fig. 9. In this figure, we can
find that the costs of these schemes decrease at first and
then keep almost the same with the increasing of server
numbers. This is caused by the changing of total available
edge resources. Because there is no enough resource for the
edge servers, microservice instances have to be deployed on
the core server to offset the response time loss for the low
transmission rate between edge servers and core server.
Then, when the total available resource is enough so that
most of the instances can be deployed on the edge servers,
the generated deployment schemes will be similar.

The bandwidth is another important factor that can
impact the deployment scheme. In reality, the transmission
time is always a major part of response time. Therefore, we
keep the configuration of a system fixed, and adjust the
average bandwidth between servers and finally get Fig. 10

(to illustrate both the computation resource consumption
and storage resource consumption, here we multiply the
storage resource consumption with 50 in the figure). We can
find that, by increasing the bandwidth between servers, the
resource consumption and instance number both decrease.
And these will directly decrease the cost of schemes. Besides
the data transmission between servers, the data transmis-
sion between mobile devices and edge servers are also an
important factor that can impact the results. By comparing
the results of #2 and #14, it can be found that costs increase
8.32 percent when the transmission rate between the user
and edge server becomes lower.

Besides the former relations, there is another interesting
point that the microservice instances show a trend of aggre-
gation in the deployment in the experiment. The aggrega-
tion here means that microservice instances would like to
be deployed on the same server. For example, the list [2, 0,
2, 0] has a larger aggregation degree than the list [1, 1, 1, 1].
Naturally, here we use the variance to quantify the aggrega-
tion degree of instance number on server, and the results
are shown in Fig. 11. In this figure we census the instance
numbers on servers for different microservices in 50 edge
service provision systems (the system configuration is #2),
and illustrate the results with a scatter plot. In this figure,
we can find that the variance becomes larger with the
increasing of instances on the edge server, which means the
aggregation degree becomes larger. This phenomenon can

Fig. 9. Scheme costs for different server number.

Fig. 10. The resource consumption and instance number under different
bandwidth.

Fig. 11. The aggregation degree of microservice instances.

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1919

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

be explained with the queuing theory, because that the
sojourn time of M/M/c system is less than c parallel M/M/
1 systems.

6.3.4 Impact of Response Requirement

The requirement of response time reflects the developers’
expectations for their application. In many cases, the applica-
tion providers need a trade-off between performance and
cost, so they should be more careful about the balance so that
they can savemoney aswell as keep the quality of experience.
In Fig. 12, we draw the curve for deployment schemes with
different application response time requirements to show this
relation (to illustrate both the computation resource consump-
tion and storage resource consumption, here we multiply the
storage resource consumption with 5 in the figure). We can
find that there is an obvious trend that the cost increaseswhen
we want to have a lower response time. By drawing figures
for different systems, the application developers will get a
general idea of the cost they have to pay for given response
requirements. This will help the developers balance the cost
and performance.

6.3.5 Impact of Queue Time Approximation

As we use the approximation form E½T̂ ðVVÞ� instead of
E½T ðVVÞ� to simplify the problem in this work, some extra
loss in accuracy maybe introduced for it. Though the gap
between E½T̂ ðVVÞ� and E½T ðVVÞ� can be estimated with
Eqs. (29) and (31), we also need to check how it will affect
the results with experiments. Therefore, we choose � =
[1
5mmin

, 2
5mmin

, 3
5mmin

, 4
5mmin

, 1
mmin

] and Eq. (31) to find service

deployment scheme individually, and compare them with
response time constraint Eq. (21) and � = 0. The comparison
result is shown in Fig. 13. In this figure, we can find that:
compared with the original form, the deployment scheme
generated with the approximation form can get more or less
cost with different choice of �. This is easy to understand
because the real gap �r may locate in [0; �) or [�; 1

mmin
]: a

smaller guess for �r may result in a smaller response time
requirement, and the corresponding deployment scheme
will result in a smaller average response time but a higher
cost; a larger guess for �r may result in a larger response
time requirement, and the corresponding deployment
scheme will result in a larger average response time but a
lower cost.

6.3.6 A Guide for Service Deployment

To go a step further, we can investigate the relationship
between the instance number of microservice and the states
of different edge servers to explore the best practice of
deploying. In this way, the first thing to do is to represent
the state of an edge server. As the edge server will provide
resources, process requests and communicate with different
devices, we can describe its state from these perspectives.
From the perspective of resource provision, every edge
server can provide computation and storage resources,
which are represented with Lc and Ld. From the perspective
of communication efficiency, the communication of every
edge server can be classified into machine-to-machine
(M2M) communication and machine-to-device (M2D) com-
munication. The efficiency of M2M can be defined with

eM2M ¼ 1

n

X
s
0 2ES;s0 6¼s

1

Bs;s
0
: (52)

And the efficiency of M2D can be defined with

eM2D ¼
1
vsu

; s 2 ES
1
n

Pn
s¼1

1
vsu
þ 1

n

P
s
0 2ES

1
B
s;s

0 ; s 2 CS

(
; (53)

these two definitions measure the transmission efficiency
for 1 MB data to users and servers. From the perspective of
request processing, the efficiency can be described by the
average processing capacity m̂j =

Vi;jmi;jPm

i¼1
Vi;j

and active request

to an edge server, which can be quantified with �j. There-

fore, we can represent the state of an edge server with these

6 indicators.
In general, Pearson correlation coefficient can be used to

describe the relation between two sequenceX and Y .

rpðX;Y Þ ¼
Pn

i¼1 ðXi � �XÞðYi � �Y ÞffiPn
i¼1 ðXi � �XÞ2

q ffiPn
i¼1 ðYi � �Y Þ2

q : (54)

Therefore, by using Pearson correlation coefficient to calcu-
late the correlation between the instance number and these
indicators, we can get the radar plot shown in Fig. 14.

In this figure, we can find that the deployed instance num-
ber of an edge server is related to the processing capacity and
the requests generated from the devices in its serving area.
This will be reasonable because deploying instances on these
edge servers will result in a reduction in execution and

Fig. 12. The costs with different response requirement.
Fig. 13. The costs with different �.

1920 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

transmission. Compared with the storage resource, the com-
putation resource will affect more on the deployment
schemes. This is true according to our settings, because the
computation resource will be the bottleneck in most cases.
Therefore, a heuristic guide for the developers is to putmicro-
service instances on the servers whose processing capacity is
better andwhose users in the serving area aremore active.

7 RELATED WORK

With an increasing number of mobile devices connecting to
the cloud, the demand for high-quality service provision
becomes urgent. It drives more and more researchers to pay
attention to issues of the MEC model that affects the effec-
tiveness of service provision. In this section, we review the
research related to our study, i.e., the research about MEC
framework and service deployment.

7.1 MEC Framework

With the help of a MEC model, researchers and developers
reconstruct their system components to achieve their different
goals. Since the MEC model focuses on mobile end devices,
energy consumption reduction and performance optimiza-
tion become the main research topics to perform computation
in an economical and efficient way. For example, Li et al. [39]
consider the energy consumption ofmobile devices; they ana-
lyze overheads of mobile devices and propose an overhead-
optimizing multi-device task scheduling strategy for ad-hoc-
basedMEC systems. Stefania et al. [40] consider a Multi-Input
and Multi-Output (MIMO) multi-cell system where multiple
mobile users ask for computation offloading to servers; they
formulate the offloading problem as the joint optimization of
the radio resources and the computational resources to satisfy
the latency constraints. Yu et al. [41] consider incorporation
with dense cellular networks; they propose an online algo-
rithm based on Lyapunov optimization to determine offload-
ing and edge server sleeping policy and increase performance
while keeping low energy consumption. Yi et al. [42] propose
LAVEA, a system built for edge computing, which offloads
computation tasks between clients and edge nodes, collabo-
rates nearby edge nodes, to provide low-latency video analyt-
ics at places closer to the users.

7.2 Microservice Deployment

The nature of microservice deployment problems is an
assignment problem. By considering different types of

constraints in reality, researchers have done lots of work on it.
Fan et al. [6] consider the applicationworkloads among cloud-
let and propose an application-aware workload allocation
scheme for edge to minimize the response time of application
requests by assigning requests to appropriate destination
cloudlets. And they also consider the workload balance prob-
lem [43], they propose a workload balancing scheme to mini-
mize the latency of data flows by associating devices to
suitable edge servers. Huang et al. [44] present a load-aware
service deployment approach for dynamic workloads and a
service request scheduling method based on task ranking
mechanisms to improve the execution performance of com-
posite cloud services in dynamic cloud environments. Moens
et al. [45] present and evaluate a formal model for resource
allocation of virtualized network functions within NFV envi-
ronments. Wu et al. [46] have proposed an elastic framework
to automatically and dynamically deploy cloud services on
data center, base stations, client units, even peer devices, so
that all available resources around mobile users are made use
of to provide seamless service. Li et al. [47] study the joint
problem of service function chain deploying and path selec-
tion for bandwidth saving and virtual network functions
reuse, model it as a multi-objective problem and propose a
heuristic approach to solve it. Wu et al. [46] propose an elastic
framework that can automatically and dynamically deploy
cloud services on data center, base stations, client units, even
peer devices based on their context-aware model so that the
cost can be optimized. V€ogler et al. [10] present a framework
for the dynamic generation of optimized deployment topolo-
gies for IoT cloud applications that are tailored to the cur-
rently available physical infrastructure so that the application
components on edge devices can provide service flexibly.

These researches shed light on the fundamental concepts
involved in the cache problem in MEC models. Based on
their work, we can go a step further to explore how to
deploy microservice instances on the mobile edge servers
for the microservice-based applications with both perfor-
mance and cost requirements.

8 CONCLUSION AND FUTURE WORK

This paper introduces the mobile edge computing model
and highlights the scenario of deploying the microservice-
based application on the edge service provisioning system.
Based on them, we model the microservice instances on
servers as the queuing node and propose an approach to
find optimal deployment schemes with lower cost while
meeting the demand of application average response time.
In addition, we explore the factors that may affect the
results and give some guidance to developers in deploying
microservice-based applications.

As the approach can generate deployment schemes for
applications when the location-aware request arrival rate ��
is given in a time period, the application developers can
dynamically update the deployment schemes when the
request arrival rate can be predicted accurately. It means
that we can turn to develop some prediction models in
future work. Besides this, the routing policy can also act as
a decision variable. If we can determine the routing policy
as well as the deployment scheme, there also may be an
improvement in saving the cost.

Fig. 14. The correlations between instance number and 6 dimensions for
microservices.

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1921

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China (No. 2017
YFB1400601), National Science Foundation of China (No. 617
72461 & No. 61825205) and Natural Science Foundation of
Zhejiang Province (No. LR18F020003).

REFERENCES

[1] A. Paya and D. C. Marinescu, “Energy-aware load balancing and
application scaling for the cloud ecosystem,” IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 15–27, Jan.–Mar. 2017.

[2] K. Li, “Improving multicore server performance and reducing
energy consumption by workload dependent dynamic power man-
agement,” IEEE Trans. Cloud Comput., vol. 4, no. 2, pp. 122–137,
Apr.–Jun. 2016.

[3] S. Deng, H. Wu, W. Tan, Z. Xiang, and Z. Wu, “Mobile service
selection for composition: An energy consumption perspective,”
IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1478–1490,
Jul. 2017.

[4] M. Patel et al., “Mobile-edge computing introductory technical
white paper,” 2014, Accessed: Jul. 4, 2018. [Online]. Available:
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-
edge_computing_-_introductory_technical_white_paper_v1\%
2018-09-14.pdf

[5] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “QoS predic-
tion for service recommendations in mobile edge computing,”
J. Parallel Distrib. Comput., vol. 127, pp. 134–144, 2017.

[6] Q. Fan and N. Ansari, “Application aware workload allocation for
edge computing-based IoT,” IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[7] I. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices sched-
uling model over heterogeneous cloud-edge environments as sup-
port for IoT applications,” IEEE Internet Things J., vol. 5, no. 4,
pp. 2672–2681, Aug. 2018.

[8] P. D. Francesco, P. Lago, and I. Malavolta, “Migrating towards
microservice architectures: An industrial survey,” in Proc. IEEE
Int. Conf. Softw. Architecture, 2018, pp. 29–39.

[9] F. Boyer, X. Etchevers, N. D. Palma, and X. Tao, “Architecture-
based automated updates of distributed microservices,” in Proc.
16th Int. Conf. Service-Oriented Comput., 2018, pp. 21–36.

[10] M. V€ogler, J. M. Schleicher, C. Inzinger, and S. Dustdar,
“Optimizing elastic IoT application deployments,” IEEE Trans.
Services Comput., vol. 11, no. 5, pp. 879–892, Sep./Oct. 2018.

[11] S. Nastic, H. L. Truong, and S. Dustdar, “Data and control points:
A programming model for resource-constrained IoT cloud edge
devices,” in Proc. IEEE Int. Conf. Syst., Man Cybern., 2017,
pp. 3535–3540.

[12] H. Xu et al., “Unsupervised anomaly detection via variational
auto-encoder for seasonal KPIs in web applications,” in Proc. Web
Conf., 2018, pp. 187–196.

[13] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya,
“Composition-driven IoT service provisioning in distributed
edges,” IEEE Access, vol. 6, pp. 54 258–54 269, 2018.

[14] M. D. Cia et al., “Using smart city data in 5G self-organizing
networks,” IEEE Internet Things J., vol. 5, no. 2, pp. 645–654,Apr. 2018.

[15] S. Dustdar, S. Nastic, and O. Scekic, Smart Cities - The Internet of
Things, People and Systems. Berlin, Germany: Springer, 2017.

[16] M. V€ogler, J. M. Schleicher, C. Inzinger, S. Dustdar, and R. Ranjan,
“Migrating smart city applications to the cloud,” IEEE Cloud
Comput., vol. 3, no. 2, pp. 72–79, Mar./Apr. 2016.

[17] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes, “An analysis of
restful APIs offerings in the industry,” in Proc. Int. Conf. Service-
Oriented Comput., 2017, pp. 589–604.

[18] C. Ding, A. Zhou, J. Huang, Y. Liu, and S. Wang, “ECDU: An edge
content delivery and update framework in mobile edge
computing,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
2019, Art. no. 268.

[19] P. Burke, “The output process of a stationary M/M/s queueing
system,” The Ann. Math. Statist., vol. 39, no. 4, pp. 1144–1152, 1968.

[20] Y.Mao, J. Zhang, andK. B. Letaief, “Dynamic computation offload-
ing for mobile-edge computing with energy harvesting devices,”
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605,
Dec. 2016.

[21] W.-P. Yang, L.-C. Wang, and H.-P. Wen, “A queueing analytical
model for service mashup in mobile cloud computing,” in Proc.
IEEE Wireless Commun. Netw. Conf., 2013, pp. 2096–2101.

[22] Y. Xiao, C. Lin, Y. Jiang, X. Chu, and X. Shen, “Reputation-based
QoS provisioning in cloud computing via dirichlet multinomial
model,” in Proc. IEEE Int. Conf. Commun., 2010, pp. 1–5.

[23] D. Chouhan, S. D. Kumar, and J. A. Ajay, “A MLFQ scheduling
technique usingM/M/c queues for grid computing,” Int. J. Comput.
Sci. Issues, vol. 10, no. 2 Part 1, 2013, Art. no. 357.

[24] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[25] Z. Xiang, S. Deng, J. Taheri, and A. Zomaya, “Dynamical service
deployment and replacement in resource-constrained edges,”
Mobile Netw. Appl., pp. 1–16, 2019. [Online]. Available: https://
link.springer.com/article/10.1007/s11036-019-01449-7

[26] T. Antczak, “The L1 penalty function method for nonconvex dif-
ferentiable optimization problems with inequality constraints,”
Asia-Pacific J. Oper. Res., vol. 27, no. 05, pp. 559–576, 2010.

[27] A. Forsgren and P. E. Gill, “Primal-dual interior methods for
nonconvex nonlinear programming,” SIAM J. Optim., vol. 8, no. 4,
pp. 1132–1152, 1998.

[28] A. R. Conn, N. I. Gould, D. Orban, and P. L. Toint, “A primal-dual
trust-region algorithm for non-convex nonlinear programming,”
Math. Program., vol. 87, no. 2, pp. 215–249, 2000.

[29] N. I. Gould, D. Orban, A. Sartenaer, and P. L. Toint, “Superlinear
convergence of primal-dual interior point algorithms for nonlin-
ear programming,” SIAM J. Optim., vol. 11, no. 4, pp. 974–1002,
2001.

[30] F. Yang, K. Gao, I. W. Simon, Y. Zhu, and R. Su, “Decomposition
methods for manufacturing system scheduling: A survey,” IEEE/
CAA J. Automatica Sinica, vol. 5, no. 2, pp. 389–400, Mar. 2018.

[31] P. Wu, A. Che, F. Chu, and M. Zhou, “An improved exact "-con-
straint and cut-and-solve combined method for biobjective robust
lane reservation,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3,
pp. 1479–1492, Jun. 2015.

[32] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell,
“Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning,” Discr. Optim., vol. 19,
pp. 79–102, 2016.

[33] N. I. Gould, D. Orban, A. Sartenaer, and P. L. Toint,
“Componentwise fast convergence in the solution of full-rank sys-
tems of nonlinear equations,” Math. Program., vol. 92, no. 3,
pp. 481–508, 2002.

[34] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
“Mobility-aware service composition in mobile communities,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 555–568,
Mar. 2017.

[35] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simu-
lation of scalable cloud computing environments and the cloud-
sim toolkit: Challenges and opportunities,” in Proc. Int. Conf. High
Perform. Comput. Simul., 2009, pp. 1–11.

[36] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of resource man-
agement techniques in the Internet of Things, edge and fog com-
puting environments,” Softw. Pract. Experience, vol. 47, no. 9,
pp. 1275–1296, 2017.

[37] R. V. Rao, V. J. Savsani, and D. Vakharia, “Teaching–learning-
based optimization: A novel method for constrained mechanical
design optimization problems,” Comput.-Aided Des., vol. 43, no. 3,
pp. 303–315, 2011.

[38] S. Lyden and M. E. Haque, “A simulated annealing global maxi-
mum power point tracking approach for PV modules under par-
tial shading conditions,” IEEE Trans. Power Electron., vol. 31, no. 6,
pp. 4171–4181, Jun. 2016.

[39] L. Tianze, W. Muqing, Z. Min, and L. Wenxing, “An overhead-
optimizing task scheduling strategy for ad-hoc based mobile edge
computing,” IEEE Access, vol. 5, pp. 5609–5622, 2017.

[40] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of
radio and computational resources for multicell mobile-edge
computing,” IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2,
pp. 89–103, Jun. 2015.

[41] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411,
Mar. 2017.

1922 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1\%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1\%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1\%2018-09-14.pdf
https://link.springer.com/article/10.1007/s11036-019-01449-7
https://link.springer.com/article/10.1007/s11036-019-01449-7

[42] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA:
Latency-aware video analytics on edge computing platform,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 2573–2574.

[43] Q. Fan and N. Ansari, “Towards workload balancing in fog
computing empowered IoT,” IEEE Trans. Netw. Sci. Eng., to be
published, doi: 10.1109/TNSE.2018.2852762.

[44] K.-C. Huang, Y.-C. Lu, M.-H. Tsai, Y.-J. Wu, and H.-Y. Chang,
“Performance-efficient service deployment and scheduling meth-
ods for composite cloud services,” in Proc. 9th Int. Conf. Utility
Cloud Comput., 2016, pp. 240–244.

[45] H. Moens and F. De Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manage. Workshop, 2014, pp. 418–423.

[46] K. Wu, W. Liu, and S. Wu, “Dynamic deployment and cost-sensi-
tive provisioning for elastic mobile cloud services,” IEEE Trans.
Mobile Comput., vol. 17, no. 6, pp. 1326–1338, Jun. 2018.

[47] D. Li, J. Lan, and P. Wang, “Joint service function chain deploying
and path selection for bandwidth saving and VNF reuse,” Int. J.
Commun. Syst., vol. 31, no. 6, 2018, Art. no. e3523.

Shuiguang Deng (Senior Member, IEEE)
received the BS and PhD degrees both in com-
puter science from Zhejiang University, China, in
2002 and 2007, respectively. He is currently a full
professor with the College of Computer Science
and Technology, Zhejiang University. He was pre-
viously a visiting scholar worked with the Massa-
chusetts Institute of Technology, Cambridge,
Massachusetts, in 2014, and at Stanford Univer-
sity, Stanford, California, in 2015 as a visiting
scholar. His research interests include edge com-

puting, service computing, mobile computing, and business process
management. He serves as associate editor for the journal IEEE Access
and IETCyber-Physical Systems: Theory & Applications as an associate
editor. During the past ten years, he has published more than 90 papers
in journals, such as the IEEE Transactions on Computers, IEEE
Transactions on Parallel & Distributed Systems, IEEE Transactions
on Services Computing, IEEE Transactions on Cybernetics and IEEE
Transactions on Neural Networks and Learning Systems, and refereed
conferences including WWW, ER, ICWS, ICSOC, etc. In 2018, he was
granted the Rising Star Award by IEEE TCSVC.

Zhengzhe Xiang (Student Member, IEEE)
received the bachelor’s degree of computer
science and technology in Zhejiang University,
China. He is currently working toward the PhD
degree in the College of Computer Science,
Zhejiang University, China. His research interests
lie in the fields of service computing, cloud
computing, and edge computing.

Javid Taheri (Member, IEEE) received the bach-
elor’s and master’s degrees in electrical engineer-
ing from the Sharif University of Technology,
Tehran, Iran, in 1998 and 2000, respectively, and
the PhD degree in mobile computing from the
School of Information Technologies, University of
Sydney, Australia. Since 2006, he has been
actively working in several fields, including: Net-
working, optimization, parallel/distributed comput-
ing, and cloud computing. Because of for his
contribution to the vibrant area of cloud comput-

ing, he was selected among 200 top young rehearses by the Heidelberg
Forum, in 2013. He also holds several cloud/networking related industrial
certification from VMware (VCP-DCV, VCP-DT, and VCP-Cloud), Cisco
(CCNA), Microsoft, etc. He is currently working as an associate professor
at the Department of Computer Science, Karlstad University, Sweden.
His major areas of interest include (1) profiling, modeling and optimization
techniques for private and public cloud infrastructures, (2) profiling,
modeling and optimization techniques for software defined networks, and
(3) network-aware scheduling algorithms for cloud and green computing.

Mohammad Ali Khoshkholghi received the
bachelor’s and master’s degrees of computer
engineering, in 2007 and 2010, respectively,
and the PhD degree in computer science from
the Faculty of Computer Science and Information
Technology, University Putra Malaysia, Seri Kem-
bangan, Malaysia, in 2017. He is currently a post-
doctoral research fellow at the Department of
Computer Science, Karlstad University, Sweden.
Before joining KAU, he worked as researcher and
university lecturer within computer science. His

research interests lie in the area of edge and cloud computing, network
function virtualization and optimization techniques.

Jianwei Yin (Member, IEEE) received the PhD
degree from Zhejiang University, China, in 2001. He
is a full professor with the College of Computer Sci-
ence and Technology, Zhejiang University, China.
His current research interests include cloud com-
puting, performance evaluation, service computing,
middleware, etc. He has published more than 120
research papers in major peer-reviewed interna-
tional journals and conference proceedings in these
areas. He is the associate editor of the Transaction
onServiceComputing.

Albert Y. Zomaya (Fellow, IEEE) is currently a
chair professor of high performance computing &
networking in the School of Information Technolo-
gies, TheUniversity of Sydney, Sydney, Australia. He
is also the director with the Centre for Distributed
and High Performance Computing, which was
established in late 2009. He has published more
than 500 scientific papers and articles, and is a
author, co-author or editor of more than 20 books.
He served as the editor-in-chief of the IEEETransac-
tions on Computers (2011-2014). He serves as

an associate editor for 22 leading journals, such as the ACM Computing
Surveys, IEEE Transactions on Computational Social Systems, IEEE Trans-
actions onCloudComputing, and Journal of Parallel andDistributedComput-
ing. He delivered more than 150 keynote addresses, invited seminars, and
media briefings and has been actively involved, in a variety of capacities, in
the organization of more than 600 national and international conferences. He
received the IEEE Technical Committee on Parallel Processing Outstanding
Service Award (2011), IEEE Technical Committee on Scalable Computing
Medal for Excellence in Scalable Computing (2011), and IEEE Computer
Society Technical Achievement Award (2014). He is a chartered engineer, a
fellow of AAAS, and IET (U. K.). His research interests include the areas of
parallel and distributed computing and complex systems.

Schahram Dustdar (Fellow, IEEE) is currently a
full professor of computer science (informatics) with
a focus on Internet Technologies heading the Dis-
tributed Systems Group at the TU Wien. He is the
chairman of the Informatics Section of the Acade-
mia Europaea (since December 9, 2016). He is ele-
vated to IEEE fellow (since January 2016). From
2004-2010 he was honorary professor of Informa-
tion Systems at the Department of Computing
Science, University of Groningen (RuG), The Neth-
erlands. From December 2016 until January 2017,

he was a visiting professor with the University of Sevilla, Spain, and from
January until June 2017, he was a visiting professor at UC Berkeley, Berke-
ley, California. He is amember of the IEEEConference Activities Committee
(CAC) (since 2016), of the Section Committee of Informatics of the Acade-
mia Europaea (since 2015), a member of the Academia Europaea: The
Academy of Europe, Informatics Section (since 2013). He is recipient of the
ACM distinguished scientist award (2009) and IBM Faculty Award (2012).
He is an associate editor of the IEEE Transactions on Services Computing,
ACMTransactions on theWeb, andACMTransactions on Internet Technol-
ogy and on the editorial board of the IEEE Internet Computing. He is the
editor-in-chief of theComputing (an SCI-ranked journal of Springer).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

DENG ETAL.: OPTIMAL APPLICATION DEPLOYMENT IN RESOURCE CONSTRAINED DISTRIBUTED EDGES 1923

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 06,2021 at 05:58:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSE.2018.2852762

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

