
Microservices: Migration of a Mission
Critical System

Manuel Mazzara , Nicola Dragoni , Antonio Bucchiarone , Alberto Giaretta ,

Stephan T. Larsen, and Schahram Dustdar , Fellow, IEEE

Abstract—An increasing interest is growing around the idea of microservices and the promise of improving scalability when compared

to monolithic systems. Several companies are evaluating pros and cons of a complex migration. In particular, financial institutions are

positioned in a difficult situation due to the economic climate and the appearance of agile competitors that can navigate in a more

flexible legal framework and started their business since day one with more agile architectures and without being bounded to outdated

technological standard. In this paper, we present a real world case study in order to demonstrate how scalability is positively affected by

re-implementing a monolithic architecture (MA) into a microservices architecture (MSA). The case study is based on the FX Core

system, a mission critical system of Danske Bank, the largest bank in Denmark and one of the leading financial institutions in Northern

Europe. The technical problem that has been addressed and solved in this paper is the identification of a repeatable migration process

that can be used to convert a real world Monolithic architecture into a Microservices architecture in the specific setting of financial

domain, typically characterized by legacy systems and batch-based processing on heterogeneous data sources.

Index Terms—Service computing, software architecture, scalability, microservices

Ç

1 INTRODUCTION

THE history of software architectures has been character-
ized in the last fewdecades by a progressive shift towards

distribution, modularization, and loose coupling. The main
purpose is increasing code reuse and robustness [1], a neces-
sity dictated by the need of increasing software quality, not
only in safety and financial-critical applications, but also in
more common off-the-shelf software packages.

In service-oriented architectures [2], the emphasis was
on cross-boundaries inter-organization technology-agnostic
communication, and on orchestration of business processes
[3]. The research community dedicated significant attention
to foundational aspects, such as correctness and verifiability
of service composition [4]. Nonetheless, little effort was
spent on defining the nature of the internal logic of services,
on scalability and maintainability issues, concerns of major
importance formodern organizations.

The latest step in this process is the microservice architecture
(MSA). Inspired by service-oriented computing, MSA aims to
change the way in which software is perceived, conceived,
and designed [5]. A number of programming languages based
on this new paradigm are emerging. As an example, Jolie [6]
allows describing computation from a data-driven perspec-
tive, instead of a process-driven one [7], and introduces as first-
class entities concepts that are fundamental tomicroservices [8].

The shift towards MSA is a sensitive topic these days, as
several companies are deeply refactoring their back-end
systems, which is the case of the institution considered in
this paper (i.e., the FX Core of Danske Bank). MSA paradigm
relies upon simple principles [5]:

� Bounded Context: first introduced in [9], this concept
captures one of the key properties of MSA: focus on
business capabilities. Related functionalities are
combined into a single business capability which is
then implemented as a service.

� Size: this represents a crucial concept for microservi-
ces and brings major benefits in terms of service
maintainability and extendability. Idiomatic use of a
MSA suggests that if a service is too large, it should
be refined into two or more services, thus preserving
granularity and maintaining focus on providing
only a single business capability.

� Independency: this concept encourages loose coupling
and high cohesion by stating that each service in
MSA is operationally independent from others, and
the only form of communication between services is
through their published interfaces.

The MSA style enables to handle scalability almost out of
the box, since that many of the techniques and principles

� M. Mazzara is with the Innopolis University, Innopolis 420500, Russia.
E-mail: m.mazzara@innopolis.ru.

� N. Dragoni is with the Technical University of Denmark, Copenhagen
2800, Denmark, and also with the €Orebro University, €Orebro 702 81,
Sweden. E-mail: ndra@dtu.dk.

� A. Bucchiarone is with the Fondazione Bruno Kessler, Trento 38122, Italy.
E-mail: bucchiarone@fbk.eu.

� A. Giaretta is with the €Orebro University, €Orebro 702 81, Sweden.
E-mail: alberto.giaretta@oru.se.

� S.T. Larsen is with the Danske Bank, Copenhagen 1092, Denmark.
E-mail: stephantl@gmail.com.

� S. Dustdar is with the TUWien, Wien 1040, Austria.
E-mail: dustdar@dsg.tuwien.ac.at.

Manuscript received 13 Oct. 2017; revised 7 Dec. 2018; accepted 16 Dec. 2018.
Date of publication 21 Dec. 2018; date of current version 8 Oct. 2021.
(Corresponding author: Antonio Bucchiarone.)
Digital Object Identifier no. 10.1109/TSC.2018.2889087

1464 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

1939-1374 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0003-1154-1382
https://orcid.org/0000-0003-1154-1382
https://orcid.org/0000-0003-1154-1382
https://orcid.org/0000-0003-1154-1382
https://orcid.org/0000-0003-1154-1382
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

used are inherently beneficial to scalability. Such character-
istics have first been introduced in [10], although no practi-
cal case study has been considered in that contribution.

In this paper, we consider a real world case study concern-
ing themigration of amission critical system from an existing
monolithic architecture (MA) toMSA, i.e., the FX Core system
of Danske Bank, the largest bank in Denmark and one of the
leading financial institutions in northern Europe. The contri-
bution of the paper is threefold. First, we highlight the key
technical aspects that need to be considered for full system
scalability in the microservice context. Second, we show how
a real world MA can be converted into a MSA, and we high-
light the resulting benefits of thismigration. Finally,we study
in detail how scalability has positively been affected by this
paradigm transition. To the best of our knowledge, this is the
first fully and publicly documented real world migration of a
mission-criticalMA toMSA.

Outline of the Paper. The paper is structured as follows:
Section 2 summarizes the related work in the monoliths
migration topic, Section 3 discusses the technical aspects to
consider, in order to exploit the scalability potential of micro-
services. In Section 4 the Danske Bank FX Core system func-
tionalities are described, as well as its general structure. The
legacyMA is then presented in Section 5, while the proposed
MSA appears in Section 6. The comparison between the two
architectures is detailed in Section 7. Section 8 concludes the
paperwith the lessons learned and open research challenges.

2 RELATED WORK

Since the 2014, as shown by Balalaie et al. [11], MSA has
steadily grown as a concept, and plenty of businesses
decided to migrate their MA and service-oriented architec-
tures (SOA) to MSA. Taibi et al. [12] conducted an empirical
investigation through interviews to experienced practi-
tioners, and outlined three migration processes adopted.
Among the motivations for migration, both maintainability
and scalability are the common ones. Unsurprisingly, the
main issue was the monetary expenditure.

In another study, Knoche and Hasselbring [13] report
that discussions with practitioners highlighted that industry
looks at MSA as a promising way to solve maintainability
issues, even in those cases where scalability is not a critical
priority. The authors provide a decomposition process to
achieve an incremental migration, which is the most com-
mon approach, and argue that for critical deployments it is
better to implement new functionalities within the MA, and
then incrementally migrate all the services, starting with the
clients applications.

Di Francesco et al. [14] conducted another empirical study,
similar to the one conducted by Taibi et al. [12] putting
greater focus on the details of each migration phase, as well
as analyzing migrations both from MA and SOA. In particu-
lar, the work shows that more than half of the migrations did
not migrate the existing data together with the architecture.
The authors argue that this does not align well with two
microservices typical principles: hiding internal implementa-
tions details, andmanaging data in a decentralized fashion.

In 2015, Levcovitz et al. [15] proposed a technique to
identify, within monoliths, service candidates for migrat-
ing to microservices based on mapping the dependencies

between databases, business functions, and facades. To the
best of our knowledge, apart from our work, this is the only
publication that discusses migration techniques applied to a
specific banking case study. Moreover, while their approach
aims to automatize the migration from the legacy monolith,
our case study was primarily business-driven. Therefore,
our approach had to be necessarily manual and iterative.

Again, Balalaie et al. [11], [16] reported their experience of
performing an incremental migration of a mobile back-end
as a service (MBaaS) tomicroservices, couplingwith DevOps
methodologies. The authors caution a posteriori about two
important lessons learned. First, migration can introduce
small errors in service contracts that can potentially break
down a substantial part of the architecture. Second, a MSA is
not a silver bullet, as it can bring scalability to services, but it
can introduce higher complexity as well.

Following the previous works, the authors collected and
reported some empirical migration patterns derived from
medium to large-scale industrial projects, aiming to help
others to perform a smooth migration [17]. They evaluate
such patterns through qualitative empirical research, and
cite as future work the development of a pattern language
that would allow to automatically compose the patterns.

In a recent work, Furda et al. [18] agree on defining the
migration to MSA a promising way to modernize MA and
to full-scale utilize cloud computing. Moreover, they iden-
tify three major challenges in migrating a MA to MSA,
namely: multitenancy, statefulness, and data consistency.

3 MSA AND SCALABILITY

Proponents of MSA claim that per se this style increases sys-
tem scalability. However, it is necessary to pay particular
attention to certain technical features, to fully enable its
potential. This section covers all the aspects that need to be
taken care of, in order to achieve full scalability: automation,
orchestration, service discovery, load balancing, and clustering.

Automation. In a MA, at times it is possible to manually
manage the system and the hosts on which it is running.
However, as soon as the system scales, the number of hosts
may increase leading to a hard-to-maintain system. This
applies to MSA too, as services are scattered across multiple
hosts, with each one running multiple services. Manually
managing a MSA would result in an enormous overhead,
since deployment, configuration, and maintenance extends
to each and every service instance and host. Every time a
new service or host is introduced, the system requires an
increasing amount of time for manual management. When
standard management activities (i.e., builds, tests, deploy-
ment, configuration, host provisioning, and relocation of
services) are automated, the introduction of new services
does not imply a management overhead. Only maintenance
of scripts is required, and developers are expected to man-
age all the system via automation. The bottom line is auto-
mation of growth-sensitive tasks, in order to contain the
time overhead.

Orchestration. In MSA, orchestration is necessary for
managing service containers and infrastructure. Without an
orchestration system, engineers would have to develop and
maintain themselves a number of necessary features for a
large scale system. Open source orchestration systems such

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1465

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

as Google Kubernetes [19], Mesosphere Marathon [20] and
Docker built-in Swarm Mode [21] all provide a number of
features which are necessary to achieve scalability, such as
service discovery, load balancing and cluster management.
Orchestration systems also handle replication of services
and distribution of replicas across the nodes.

Service Discovery. Widespread diffusion of the traditional
SOA failed due to fundamental shortcomings related to ser-
vice discovery and, in particular, dynamic binding and
invocation [22]. Microservices and orchestration tools are
trying to overcome these issues.

MSA consists of many services, and a mechanism has to
be deployed to keep track which instances are running and
how to reach them. This is typically done with a service dis-
covery tool, either a separate service such as Consul [23], or
as part of the aforementioned orchestration tools. Service
discovery provides more than simple DNS lookups, it also
includes health-checking mechanisms that ensure that the
services it resolves names to are actually alive and available.

Service discovery is a must in MSA, since services do not
have static IP addresses and require a mapping from a host-
name. Service discovery can make use of locality, resolving
hostnames to the service instance that is closest to the
requester, hereby achieving geographical scalability. Service
discovery also creates the illusion of interacting with a sin-
gle service, although a sequence of requests actually might
be handled by multiple service replicas.

Load Balancing. Load balancing is critical for service discov-
ery, necessary to ensure that load is equally balanced across
service replicas. This can be done in a number of ways, such
as by using DNS mechanisms to resolve hostnames, or look-
ing up for a different replica IP each time. The latter option
can be achieved through a dispatcher server that hands out
replicas IPs (based on some scheduling algorithm), or by
appointing clients themselves to decide which replica
should be used. Typically implemented as part of service
discovery and orchestration, if services integrate via a mes-
saging system, distributing messages and events to different
replicas can help to distribute load.

Clustering. MSAs can be deployed on a single host, but
this would not contribute to scalability. To enable full scal-
ability, deployment has to happen on a cluster of hosts.
Clustering enables a system to utilize multiple hosts resour-
ces as a single system. It also enables elasticity in the form
of expansion with additional hosts when needed and
decrease of hosts when not. This may be achieved without
clustering, but it would require the entire system to run on
each host, like vertically scaled MAs.

Clusters can be configured and run with a variety of
tools but, if containerization is used, it is typically part of
the orchestration. Orchestration tools allow services and
replicas to spread across the cluster (while ensuring that
they can reach each other), enabling higher availability,
increased resilience and better load scalability.

Running services in a cluster, requires them to either run
actively in parallel or, in the case of infrastructure and data
storage, to use clustering mechanisms in order to collabo-
rate. These clustering mechanisms differ depending on their
requirements to performance, consistency, availability etc.,
but are typically included in scalable messaging systems,
such as RabbitMQ [24], and databases such as Redis [25].

4 DANSKE BANK FX CORE SYSTEM

The Danske Bank FX Core system is a paradigmatic case
study to demonstrate how to effectively migrate from a MA
to a MSA, and how this affects scalability. The documenta-
tion of the original system architecture was sparse and the
vast majority of technical details have been obtained by
direct conversations, interviews and discussions with the
FX Core team, and by manually inspecting the source code.
This was a lengthy process given the complexity of the MA.
The outcome of this process is reported in this paper, where
we describe the system in terms of responsibilities and orga-
nization. All confidential information, such as concrete
names of protocols, external providers and specific services
has been withheld in order for the results to be published.

4.1 Foreign Exchange

Foreign Exchange, often abbreviated as forex or FX, is the con-
version from one currency to another. Exchange of currencies
is of interest to private individuals, corporations, financial
institutions, and governments. FX encompasses everything,
from private transactions performed in foreign countries
(e.g., use of credit cards while traveling), to corporations
working with foreign markets. FX has become the largest
financial market in the world, averaging a daily transaction
volume of roughly 5 trillion dollars, with single transactions
reaching the 100 millions of dollars. Unlike the centralized
stock exchange, FX is decentralized and pen 24 hours a day,
five days a week [26]. Transactions happen over-the-counter
(OTC), which means that traders (typically large multina-
tional banks) negotiate directlywith each other.

4.2 FX IT

The FX IT (Fig. 1) system is part of the banks Corporates and
Institutions (C&I) department and handles price streaming,
trades, line-checks, and associated tasks, such as analy-
tics and post-trade management. FX IT acts as a gateway
between the international markets and Danske Bank clients,
mainly large financial institutions and multi-national corpo-
rations. Such institutions continuously process currency pri-
ces and calculate margins to reduce important risks on swaps

Fig. 1. FX IT handles both price streaming and requests for trades and
line-checks from global markets. Prices of currency pairs are streamed
to FX IT, which then calculates prices of specific trades, before stream-
ing them to external and internal clients. Clients can request FX IT for
trades or line-checks on the prices they have received. Clients are
usually Danske Bank internal traders and external customers, but trade
and line-check requests can also be received from the markets, when
banks wish to exchange currencies directly. FX Core is part of FX IT, but
handles tasks associated with trades and line-checks, thus not handling
any of the price streaming and stream processing.

1466 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

and forwards, before streaming final prices to their clients.
Then, clients can act on a price by registering a trade, or
check if they have the required collateral with line-checks.

4.3 FX Core

The FX Core system is part of FX IT and it handles trades
and line-checks. This includes registration, validation and
post-trade management. Below there is a brief description
of the two main responsibilities of FX Core.

LineChecks are used to check whether a client has the
financial collateral to perform a trade and how a trade will
affect said collateral, also called their Line. This collateral
can be a multitude of financial assets, e.g., stocks, bonds or
cash. Line-checks are always executed as part of a trade, but
is also run separately, so Danske Bank traders can ensure
that their customers are capable of requested trades.

Trades are received from both Danske Bank clients and
external providers, i.e., external clients and markets. The trade
is then validated and line-checked, before being registered.
Depending on the type of trade, the trade is either per-
formed immediately, (i.e., a spot trade), or registered in the
system as a contract for future execution (i.e., swaps and for-
wards). When the trade is executed, financial assets are
moved between banking books. After a trade has been regis-
tered, a number of actions can be executed: trades can be
joined to ease administration or split into smaller ones to
reduce margins, forward and swap contracts can be extended
or pre-settled, and trades can be corrected or deleted by
internal clients. Additionally, the system can also run batch

jobs in order to balance books between departments, or to
analyze trades.

5 FX CORE MONOLITH

In this section, in order to evaluate the benefits of a MSA FX
Core implementation, we cover the old MA. This includes
an overview of the architecture, how it copes with scaling,
the scalability techniques applied, and the related achieve-
ments. We also depict other problems, non-related to scal-
ing, that motivated the system redesign.

5.1 Architecture

Danske Bank monolithic system was in part already service-
based, as it can be seen in Fig. 2. The system copes with scale
in a variety of different ways. The services are deployable
individually, and are actually already replicated and
deployed across a cluster. The system also utilizes APIs as
interfaces for clients to interact with the services of the sys-
tem, and a messaging system to delegate received requests
from external providers. At a first sight, it looks like an ideal
and scalable solution. However, Danske Bank has experi-
enced severe challenges when trying to rapidly develop the
system and deploying consistent changes, and in general in
handling system complexity. We will describe here systems
components, how they integrate and how they are deployed.

5.1.1 System Components

The MA, shown in Fig. 2, is componentized in a variety of
ways. The system utilizes both services, shared software
libraries and thick desktop clients. This section will briefly
cover each of these components, their type and their respon-
sibilities, in order to give an idea of how functionalities and
data is distributed across the system. The thick clients will
not be covered, as they are not going to be replaced by the
MSA, but simply be updated to interface with it.

External APIs. The external APIs integrate with external
providers of trades and line-checks, not mentioned explic-
itly due to confidentiality reasons. APIs have open TCP
sockets to communicate with external providers. The APIs
receive requests for trade and line-checks from different
providers, each with their own trading protocol, and feed
them into the system via the messaging queues in RabbitMQ
[24]. The protocols are not translated by the APIs, so
requests are simply wrapped in messages and fed to the
system as is. The APIs are two-way, to notify the external
providers with status of their line-checks and trades, and
receive responses via RabbitMQ as well.

ForexAPI. The ForexAPI receives all requests for trades
and line-checks from the external APIs through RabbitMQ.
It translates the proprietary protocols from the APIs to a
uniform local format, and the other way around when
responding. Some integration with RequestService is done
via RPC and some through ForexData, which is shared
between the two. ForexAPI also provides interfaces to exter-
nal clients and users for several system functionalities,
which it either handles itself or mediates to RequestService.
This also means that the ForexAPI knows of most functional-
ity in the system, resulting in unintended functionalities
having been implemented directly in the service over time.

Fig. 2. Danske Bank MA. Red services are infrastructure services, green
are part of the monolith, blue is the client, yellow are external provider
APIs and grey are external Danske Bank systems. The external provider
APIs are part of the monolith and consist of multiple services, with each
one connecting to a different provider. Their names have been excluded
due to confidentiality. The ForexData database is one big monolithic MS
SQL database, shared amongst many of the monolithic components
and also accessed by external systems.

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1467

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

RequestService. The RequestService receives requests for
trades and line-checks from ForexAPI and feeds them to the
mainframe. Beyond this, the service provides data and info-
rmation from the mainframe and ForexData to the ForexClient.
Most of the business logic lies within this service as well,
including authentication of clients and requests, trade respon-
sibility assignment, trade validation, trade registration, and
line-check processingwith data from themainframe.

The RequestService shares part of its business logic with
the ForexAPI, for example trade registration logic, and the
knowledge of all protocols from the external APIs. Records
of all received messages and trades processed are stored in
the database ForexData.

ForexData and ForexBasicData. The states of both ForexAPI
and RequestService are persisted in the relational SQL data-
base ForexData, which includes records of trades alongside
with the original raw messages from the external APIs. The
data is also used to integrate some of the trade-registration
logic, spread across ForexAPI and RequestService. The Fore-
xBasicData service synchronizes some of the often accessed
static data from the mainframe database in order to speed
up access, acting therefore like a cache. However, differ-
ently from a cache, some data is sometimes also synchro-
nized down to the mainframe from ForexData.

PushService. It listens to updates on trades and line-
checks in the mainframe and fetches additional information
from the ForexAPI. It pushes updates to the ForexClient.

Shared Libraries. Following the Do not Repeat Yourself
(DRY) principle [27], a number of shared libraries and

components have been created, which are used across the
system. These can be seen in the upper left corner, in Fig. 2.
They are simple .NET DLLs, which are maintained and used
across almost all components of the system and include a
unified model in Models and access to the database through
DataAccess. The libraries have dependencies between each
other, resulting in difficulties when it comes to updates.

Mainframe and DB2. Although the mainframe and its
associated database DB2 are not official parts of the FX Core,
the system relies on its functionalities, such as fetching of
account balances used for line-checks, and the final registra-
tion of trades, i.e., requests to move assets from one account
to another. It also contains organization information, such
as users and their access rights, which is used for authoriza-
tion purposes.

5.1.2 Integration

A wide variety of integration mechanisms and technologies
are used between components and to external clients. In the
following we provide a brief description.

� Proprietary external protocols from external clients and
providers of trade and line-check requests, to the
external APIs. Protocol messages are sent to the sys-
tem through a TCP socket established between the
providers and the external APIs. One of these propri-
etary protocols is the FIX protocol, which is used by
many financial institutions.

� .NET RPC over TCP is used to integrate some of the
internal components, RequestService, ForexAPI and
PushService.

� Messages via RabbitMQ is used to integrate the exter-
nal APIswith the ForexAPI.

� Web-service interface in the form of Windows Commu-
nication Foundation (WCF) and SOAP, provided by
the ForexAPI to some clients, including traders wish-
ing to manually fetch information.

� Mainframe calls are done over a proprietary RPC pro-
tocol on TCP sockets, and is used by most of the
services in the system, to integrate with functionality
and data in the mainframe.

� Database integration is used between ForexAPI and
RequestService for some functionalities, such as trade-
registration, meaning that instead of communicating
trade registration data directly, they do it indirectly
through the database. It is also used by some traders
and other external systems to fetch data directly
from the database.

5.1.3 Deployment

The system is deployed on three Windows Server hosts, in
three different Danske Bank data centers, as shown in
Fig. 3. Each component can potentially be deployed individ-
ually, as they are independent processes, but they are
always co-located both for availability reasons and for the
high coupling between them.

All the components hold local references to all instances
(replicas) of the services, on which they depend. This means
that, in case a co-located dependency should fail, compo-
nents can fail-over and establish a connection to another
instance, on another host. The external provider APIs all

Fig. 3. Illustration of how the older MA is deployed on Danske Bank
internal datacenters, which are connected via a VPN on a WAN. Three
servers are provisioned to run the system, and the whole systems is
replicated across the three servers. The mainframe and ForexData
database are not deployed together with the system, but are managed
by the IT department.

1468 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

run in active/passive fail-over, since only one socket per
external provider can be opened. If an external provider
API terminates, its connections will be taken over by one of
the passive replicated instances, hereby becoming active. The
problem with both types of fail-overs is that, once fail-over
has occurred and the failed component is alive again, the
dependants will not fall back. This can result in only a single
instance actually being active and serving the system,
should two previous nodes have failed, whether or not they
are alive again. Manual intervention is required to fall back
services to their co-located dependency-replica.

The RabbitMQ messaging system runs clustered across
all nodes, since it is responsible for routing messages. This
effectively functions as a load balancer of trade and line-
check requests from external providers. The clustering
ensures that no messages from external providers are
missed, should a RabbitMQ node terminate, maintaining the
at least once delivery guarantee provided by RabbitMQ. All
servers are manually maintained, hereby becoming snow-
flakes, i.e, manually configured hosts that increase the risk
of heterogeneous and non-replicable environments [28].
Deployment of components is automated with the continu-
ous integration system GoCD [29].

5.2 Scalability

The MA paradigm itself applies some scalability techniques.
First, the system is scaled horizontally by usage of multiple
hosts, as seen in Fig. 3, in a non-elastic way. Hosts are man-
ually configured, and services need to be configured upon
introduction of additional replicas since they hold internal
references to all dependency replicas. Therefore, although
possible, introducing additional hosts is too cumbersome to
face temporary needs.

Distribution of functionality into services has been imple-
mented, but such distribution does not result in high cohesion
and low coupling. This results in small degrees of load distribu-
tion, not significant enough to improve load scalability. The
usage of functionality distribution into thick clients is utilized,
meaning that clients handle a lot of logic for data inspection,
e.g., filtering, sorting and visualization, which relieves the
monolithic system from some load. In theory, thick clients
should enable better geographical scalability and lower
latency, as it reduces the amount of networked communica-
tion necessary between the ForexClient and FXCore. Instead,
the high coupling between ForexClient and RequestService
results in extensive communication.

The whole system is replicated and runs concurrently in
active/active mode across the three servers. The external
APIs are the only exception. Replicated in active/passive
mode, only a single replica is active at a time, as shown in
Fig. 3. This replication allows load to be split amongst repli-
cas, resulting in better load scalability. The replicas also act
as redundant instances hereby improving availability.

Since all trades and line-checks are independent they
can be executed concurrently. The trades are spread amongst
the replicated systems by RabbitMQ, somultiple trades can be
executed in parallel. Services such as RequestService, also use
multi-threading, in order to concurrently processes requests.

In order to achieve higher availability and throughput,
system clustering is applied to RabbitMQ messaging. Should
a RabbitMQ node terminate or become unavailable due to a

network partition, the cluster automatically handles parti-
tioning based on its consistency configuration. The Fore-
xData database is stored on a database cluster, externally
managed by the IT department, thus out of our scope.

The ForexBasicData component mirrors some data to Fore-
xData from the mainframes DB2. This is somewhat a cache,
as it speeds up access to some mainframe static data, but
not significantly fast as the database is not optimized for
fast reads. Additionally, many services use simple internal
memory caches to reduce latency on serving requests.

The Brewer’s CAP theorem [30], states that at any given
time it is impossible for a distributed system to simulta-
neously provide consistency, availability, and partition toler-
ance. In network partition scenarios, only the clustered
components are required to choose between consistency
and availability (i.e., only RabbitMQ since ForexData is an
external dependency). Since availability is desired, Rab-
bitMQ is configured to handle partitions with its auto-heal
feature, optimized for availability [31].

Fault tolerance is mainly implemented as part of the fail-
over mechanisms in replication, load-balancing and routing.
This ensures that if a component of the system fails, a rep-
lica is ready to take over its load.

Load balancing is mainly handled by RabbitMQ, which
distributes messages from the external APIs in a round-robin
manner among ForexAPI replicas. For other clients, e.g., the
ForexClient, load is determined by which host they have a
reference to, configurable on each client from a central man-
agement tool. Routing between the system components is
manually configured, so each instance of a component has a
list of all available replicas.

The MA has no centralized logs nor monitoring, but
instead relies on manual inspection and reports of erroneous
behavior from the users. All system components create local
logs, which are manually aggregated, searched, and investi-
gated by the developers as a post-mortem analysis (i.e., after
errors have occurred). Only one preventive monitoring is
done, by inspecting the size of RabbitMQ error queue. This is
wheremessages are located, when not handled successfully.

5.3 Achieved Characteristics and Goals
of the Monolith

Here we provide a summary of the (fully or partially)
achieved scalability characteristics.

Load scalability has been achieved, since it can handle load
up to the statically allocated resources limits. The system
can be expanded manually, in case more load occurs.

Geographical scalability has been partially achieved. Since
the system is accessed by external providers, and is not
latency critical, geographical scalability is mostly a question
of keeping the system available via the Internet. However,
components are highly coupled, resulting in extensive mes-
sage exchanges and reduced geographical scalability

Elasticity has not been achieved, since the infrastructure
cannot expand and contract based on load. Additionally, the
architecture is not suited for dynamic additions of resources
and replicas, as load balancing is mainly done by the
requester having references to all replicated dependencies.

Fault-tolerance is achieved to a limited degree, since the
system can handle faults with fail-over, but fall-back after a
component is alive again does not function optimally.

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1469

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

High Availability is achieved to a limited degree, since the
system has implemented fault-tolerance mechanisms in the
form of redundant replicas, fail-over, and configuration of
RabbitMQ to prefer availability during network partitions.
That being said, since the system does not provide any cen-
tralized aggregation of health-checking, monitoring, or log-
ging, the system cannot act in a preventive manner, and this
could lead to reduced availability.

Weak Consistency is achieved by choosing availability over
strong consistency within RabbitMQ. ForexData is an external
transactional MS SQL database, which ensures that writes
are strongly consistent. The asynchronous at-least-once deliv-
ery guarantee, together with the strong consistency guarantee
ofMS SQL, results in an eventually consistent system.

Three main techniques have contributed to the scalability
goals. Throughput has been improved by implementing hori-
zontal scaling, replication, concurrency, and load-balancing.
Distribution of functionality has not contributed much to
throughput, as the components are highly coupled.

Availability has been improved through horizontal
scaling, replication, load-balancing, clustering, and fault-
tolerance. Accordingly to the CAP theorem, we configured
the clustering to prefer availability over consistency. Fixing
the fail-over mechanisms, as well as allowing the system to
act preventively on aggregated health-checking, monitoring
and logging, could lead to further improvements.

Latency has been improved by caching, load-balancing,
replication, and concurrency. Services tight coupling between,
and the use of many communication paradigms makes it
difficult to optimize latency even further. Distribution might
also have introduced some extra latency, since the system
can no longer rely on IPC for communication. Again, tight
coupling increases the messages exchange, simultaneously
introducing evenmore latency.

5.4 Problems

Beyond scalability, the system has some other problems
which motivated the team to design and implement a new
architecture from scratch. Below are some of the major prob-
lems with the old MA.

5.4.1 Large Components

As many organizations experience, functionality after func-
tionality, at some point the components grow too big. In
particular, the analyzed system suffers from monolithic
services that contain too many functionalities. This results
in unnecessary complexity, confusion on where to locate
new functionality and consequent hindered development.

As an example, RequestService suffers from size and con-
tains too many functionalities, some of which are even
shared with ForexAPI. As visible in Fig. 2, it interacts with
nearly all the system components, making it both a critical
and a too complex component to handle. Over time, this
resulted in low cohesion and high coupling, especially
between RequestService and ForexAPI.

5.4.2 Shared Components

Although the system is split into separate services, a lot of
functionalities are shared in the form of shared components,
as it can be seen in Fig. 2. Since the components are shared

across the services, updating a shared component can result
in forced updates across all services, as well as comprehen-
sive testing of such changes across all dependent compo-
nents. In turn, the more the shared components, the tighter
the coupling and the lower the cohesion, since the function-
alities are shared amongst dependent services. Simply put,
shared components are tempting, but lead to unclear
boundaries and unnecessary coupling.

5.4.3 The Mainframe

Due to the system age, a lot of the business logic and data
are located within the organization mainframe. The devel-
opers estimate that around 90 percent of the business logic
is still located in the mainframe. Clearly, this results in
some difficulties. First, most of the mainframe code is devel-
oped with old legacy technologies, such as Cobol and DB2,
and follows the imperative paradigm. Therefore, its struc-
ture is complex and nearly incomprehensible by any devel-
oper. Calls and dependencies criss-cross the system, with
no kind of management or overview, making extremely dif-
ficult to optimize the system. The mainframe is not an easy
component to replace, as it contains many core functionali-
ties. However, the developers have started to pull out some
functionalities and migrate them in external services, hereby
slowly abstracting the mainframe away and minimizing its
necessity over time. The FX Core MA was the first attempt
to decouple the mainframe.

5.4.4 Complex Deployment

Deployment is somewhat risky and a very intricate process.
Although the system has automated pipelines, the high cou-
pling between components and the usage of shared compo-
nents, makes deployment pipelines coupled and complex.
Updating a single component can result in the whole system
requiring a rebuild and redeployment, meaning that the
whole system now needs to be tested.

5.4.5 Organizational Culture and Unknown Dependants

DanskeBank is a huge organization and the systemhas a large
number of users outside the IT department, some of which
have the capabilities to develop their own solutions, depen-
dent on internal system components. An example is business
people which rely on the data found in ForexData. Since these
people are not educated in software architecture, they have
made the mistake of writing quick scripts that read data
directly from the database. Thismakes difficult for the team to
modify the database structure, since it might break unknown
important business processes. The team has already devel-
oped APIs for stakeholders and clients, but the transition is a
slow process. At some point the system needs clear bound-
aries, hindering similar practices that slow down develop-
ment andmight cause errors.

5.4.6 Multiple Communication and Integration

Paradigms

The system utilizes various integration and communication
paradigms. This makes communication and integration
between components unnecessarily complex, often result-
ing in violation and bad definition of interfaces. The usage

1470 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

of RPC and database integration also results in high coupling
between components. Often, services also communicate
directly and two-way, resulting in even higher coupling.

5.4.7 Technology Dependence

Monoliths also strongly limit the use of different technologies.
If a developer needs to develop a new feature within the
monolith, said developer is limited to the technologies the
monolith is already implemented in, although another tech-
nology might be a better fit, either for the feature or the devel-
oper’s expertise. Although the system is not one bigmonolith,
the choice of databases, integration paradigms, reliance on
shared components and choice of deployment platform, limits
the choice withinMicrosoft .NET platform. In turn, heavy reli-
ance on Microsoft technologies also limits the deployment
platform to Windows Server, which in general provides less
flexibility, compared to running on Linux servers.

5.4.8 Missing System Status Overview

Since the system does not have a central location and aggre-
gation of monitoring data, health-checks and logs, there is
no way to get an overview of the system status. This short-
age forces developers to manually investigate logs or the
messaging system, minimizing any opportunity to apply
preventive measures based on system warnings.

6 FX CORE MSA

The Danske Bank new FXCore architecture is based on the
MSA style and is intended to completely replace the oldMA.
This section will cover how Danske Bank FX Core team has
chosen to implement aMSA, thus giving an idea of how such
an architecture can be implemented in an enterprise setting.
This includes a description of the infrastructure as depicted
in Fig. 4, a brief description of the implemented services,
some of the additional architectural principles used, what
scalability techniques have been applied andwhat scalability
characteristics and goals have been achieved.

Danske Bank FX CoreMSA is hosted on private data-cen-
ters, i.e., not in the cloud. This means that new hosts can not
be provisioned and de-provisioned as rapidly and auto-
mated as in a cloud. It is in their interest to provide a private
cloud for systems to run in, but due to regulations on bank-
ing data, this is still work in progress. There are three data-
center locations in Denmark, which can be utilized to
achieve better availability and increased resilience to the
internal systems.

On the IT department roadmap there is the adoption of
the Red Hat OpenShift [32] Iaas/PaaS platform, on the inter-
nal data-centers. However, at the moment, the infrastruc-
ture consists of VMs ordered through a web-portal,
manually setup by the FX Core team.

6.1 Containerization

All services in Danske Bank FXCore architecture are hosted
in Linux Containers on the Docker Swarm cluster [21]. Con-
tainerization enables a whole suite of tools, provided by
Docker platform. Docker Compose, for example, allows the
deploy the entire architecture with a single command, so
that developers define all service dependencies and deploy
them for local testing during development. Services are
deployed locally, since they are running in containers, but
their environments are exactly as if deployed to production.

All container images are hosted on an internal Docker
Registry, a central repository for container images, where
the official registry is hub.docker.com [33]. New images
are deployed to the internal registry when a new version of
a service is successfully built and tested by the continuous
integration system. Furthermore, the services images inherit
from infrastructure and base images hosted on the same
hub. A list of all FX Core images can be retrieved with a
search within the local registry.

6.2 Automation

All services in the architecture, including infrastructural
clusters, has an automated continuous integration and contin-
uous deployment (CICD) pipeline on their internally hosted
GoCD server [29]. The GoCD platform offers a simple inter-
face, which gives an overview and interaction with build-
ing, testing and deployment. The tooling which comes with
the orchestration system Docker Swarm, has APIs which ena-
bles automation of many infrastructural tasks, such as roll-
ing updates. These are utilized by the CICD system,
combined with checks on correct functioning.

6.3 Orchestration

All deployment and execution of services, in containers, is
managed by Docker Swarms orchestration on the swarm clus-
ter. Swarm uses the notion of a service which is an aggre-
gation of containers, meaning that multiple replicas of the
service containers are treated as a single swarm service,
also called managed containers. An example of this can be
seen in Fig. 6, where the service trading-service has
multiple replicated containers, i.e., trading-service.1
and trading-service.2, but service discovery and per-
sistence in the same database, allows them to act as a single
service. The swarm cluster is also managed by Swarm and
hosts all services on the cluster. The orchestration tooling

Fig. 4. The new FX Core MSA. Red services are infrastructure services,
green are foundation services, blue are business services and the yellow
is external provider APIs. Databases in the diagram should be seen as
database management systems (DBMS), meaning that although four
services use PostgreSQL they all have their own standalone database
within the DBMS.

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1471

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

also handles service discovery and load balancing, and has
web and command line interfaces which can be used for
automation of rolling updates, scaling etc.

6.4 Clustering

Clustering is one of the primary techniques used in the FX
Core. The architecture runs across five virtual hosts located
in the three data-centers. On the hosts a Docker Swarm clus-
ter has been setup, with each host acting as a Swarm Node.
This allows the three container engines on the Swarm Nodes,
i.e., Docker Engines, to act as a single engine, allowing con-
tainers to run spread across the cluster. This is illustrated in
Fig. 6 Since Swarm is also a container orchestration system,
it provides the features mentioned in Section 3.

Docker Swarm [21] allows for overlay networking, which
enables the developers to define internal networks which is
used to communicate between service containers, which all
expose their ports to the internal network. Docker Swarm also
allows formanagement of storage volumes, which are spread
across the cluster nodes and are used to persist data from
databases andRabbitMQ. The cluster allows for dynamic join-
ing and leaving of Swarm nodes, and automatically rebalances
location of services to efficiently use resources.

Beyond clustering the container engines, some of the
services also utilize clustering. This includes the messag-
ing system RabbitMQ, monitoring system Icinga and all

databases, i.e., Redis, Cassandra and PostgreSQL. These
services use clustering mostly due to requirements to their
availability, since they are critical components of the infra-
structure. Therefore all infrastructure service clusters are
deployed with a service cluster node on at least one Swarm
cluster node in each datacenter (as depicted in Fig. 5). Ensur-
ing that the system can keep running as long as a single data-
center is available and has an active Swarm cluster node.

6.5 Load Balancing and Service Discovery

Service discovery is implemented as part of Swarm, which
ensures that service hostname lookups from containers are
translated into IPs of concrete containers. Since RabbitMQ is
used to communicate between services, Swarms service dis-
covery is only used by services requesting infrastructure
services. RabbitMQ knows of services which have actively
subscribed to one of its queues, hereby not needing service
discovery. Load balancing is therefore required to be imple-
mented by both RabbitMQ and Swarm service discovery.

RabbitMQ implements load balancing by distributing
messages between subscribers to a queue, hereby spreading
load between them. Usually all replicas of a service sub-
scribe to the same queue, and they can hereby share the
load. This is usually done in a round-robin, distributing mes-
sages to replicas in sequential order. RabbitMQ queues rely
on acknowledgements upon successful processing of a mes-
sage. Should a replica not acknowledge a message, it will
simply be handed to the next replica, ensuring the message
is processed at-least-once. In the case no replica can handle
the message, it will be sent to an error queue, hereby notify-
ing the developers. RabbitMQ can be configured to distrib-
ute messages in other ways if load balancing is not needed,
which is done upon creation of a queue.

Swarm utilizes the built-in service discovery to balance
load between replicated service containers. When a service

Fig. 6. Load balancing is implemented in two places in the infrastructure,
as part of RabbitMQ message distribution between replicas and as part
of Docker Swarm built-in service discovery. In this diagram, when a
trading-service replica sends a request to redis, Swarm will
translate the message to one of the replicas, e.g., redis.1, redis.2
or redis.3. Since all three replicas run in a cluster, they ensure that
state is shared and consistent amongst each other.

Fig. 5. Danske Bank MSA is deployed in three datacenters. The
operating system on all hosts is Red Hat Enterprise Linux (RHEL) 7,
which has been configured to open network ports for the installedDocker
Engines to run and communicate. The Docker Engines are configured to
run as a cluster, i.e., each in Swarm Mode as part of the Swarm Cluster.
The infrastructure services, such as databases and messaging software,
here Redis and RabbitMQ, are configured to run on at least one host
in each datacenter, and do so in clusters. Services running in active/
passive failover, such as the TradingAPI services here, also run
replicated across the cluster.

1472 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

hostname is requested, Swarm translates to an IP of a replica
container. For now, this is done in a round-robin fashion, but
one might consider translating based on proximity, i.e., to
co-located replicas to reduce latency, or based on load, i.e.,
to least busy replicas to improve throughput.

An illustration of RabbitMQ and Swarm load balancing,
can be found in Fig. 6.

6.6 Services

Here will give a short overview of the services within the
system, how they are implemented, how they integrate and
their different fail-over modes, which are important to how
they are scaled. The services’ responsibilities and function-
ality will not be covered in depth, but it should be apparent
from their naming.

6.6.1 Integration

All services written by Danske Bank integrate via message-
based choreography, as it is asynchronous and decouples serv-
ices entirely. The chosenmessaging system is RabbitMQ [24],
which provides configurable publish/subscribe mechanisms
in the form of messaging exchanges, queues, and bindings
between these two. Typically, a producer service pushes
messages to an exchange component, whereas consumer
services pull messages from a queue. Between exchanges
and queues occur bindings, which define how messages are
distributed from the exchange component to one (or more)
queues, based on message metadata. This decouples serv-
ices from each other and makes all communication between
them asynchronous.

Queues function as a load balancer between consuming
replicas of specific services. When a queue is shared among
services replicas, each replica gets messages in a round-robin
manner, as shown in Fig. 6. RabbitMQ supports acknowl-
edgements from consumers, so if a message is not acknowl-
edged after a predefined timeout it is redistributed to another
replica. If the redistribution happens too many times, the
message is forwarded to an error queue. Acknowledgements
are put in place, in order to ensure that all messages are
handled eventually and if not the developers will be notified
from the error queue.

6.6.2 Fail-Over Modes

All the services are categorised into two failover modes,
which not only describes how the services handle failure,
but also helps define how they are run in production.

Active/Active failover means that multiple service replicas
can run alongside each other, providing better scalability
through load sharing. Besides, if one replica fails others can
take over its intended load, while the failed one recovers.
This can also be used for rolling updates, where replicas are
updated one at a time, resulting in zero-downtime updates.

Active/Passive failover means that only a single instance
of a service can be running at a time. Therefore it cannot be
scaled by replication, but only by increasing resources, i.e.,
vertical scaling. During runtime a passive service will be
idling until the active service fails, and the passive service
will become active and take over the workload from
the failed service. The same approach applies to updates,
where a new version of the service will be deployed and

take over the old versions workload when ready, hereby
letting the old service terminate.

6.6.3 Foundation Services

These services function as the foundation of the architec-
ture, meaning that they implement supportive functions
and not business related functionalities. They implement
centralized logging and monitoring, centralized service con-
figuration and handling of active/passive failover. All of these
services run in active/active failover, meaning they can be
replicated and run concurrently:LoggingService, Moni-
toringService, ConfigurationService, FailoverService, Data-
SyncService, TracingService.

6.6.4 Business Services

These are the services that are actually implementing busi-
ness logic. They process trades, line-checks and authorization
of actions in the system. This is mainly the group of services
which will be expanded before deployment to production.
All of these services also run in active/active failover, meaning
they can also be replicated and run concurrently: Linecheck-
Service, TradingService, ResponsibilityService, AuthService.

6.6.5 Infrastructure Services

All of these services make up the infrastructure of the archi-
tecture, which includes messaging, monitoring, logging and
databases. All of these infrastructure services run in clus-
ters, to provide high availability and better performance,
i.e., load scalability.

� Elasticsearch stores logs and health check data from
services.

� Icinga aggregates, visualizes and inspects monitoring
data.

� Kibana aggregates, searches and inspects logs from
all services.

� PostgreSQL is a database used by most of the services
which require persistence.

� RabbitMQ is the main messaging system, used by all
services.

� Cassandra is a database used by the TracingService.
� Redis is used as a cache for static data from the

mainframe database.
� cAdvisor is used to retrieve performance metrics

about containers and hosts, from the Swarm cluster
nodes.

6.6.6 External API Services

These services provide interfaces to the external providers
of trades and line-checks. Their main task is to have an open
socket to the providers, translate the messages they receive
on proprietary protocols to a standard format that can be
fed to the system, via RabbitMQ. They are all active/passive
as a provider typically only provides a single socket. The
names of the concrete services will not be mentioned, as
they are confidential.

7 MA VERSUS MSA

After having presented both architectures, we will now dis-
cuss the migration process how they differ in handling the

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1473

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

effects of scale. Beyond comparing their scalability, this
section will also explain how the new MSA copes with the
problems we have presented for the MA.

7.1 Migration Process and Principles

In Section 8 we will emphasize the key aspects that are rele-
vant to the migration, and that could help to replicate the
process within another organization. Here we focus on the
process of migration itself, showing how the MA was con-
verted into MSA and what principles have been followed to
divide a complex business service into multiple microservi-
ces. First, as we will repeat in the lesson learned, the sce-
nario has to be business-driven and outside-in, meaning led
by the necessity of the stakeholders, and in a precise order
elicited through conversations with them. In our work, the
business functionalities were defined mostly by communi-
cating with forex traders and were iteratively added accord-
ing to the level of priority for the business itself. The
complexity of the whole system is therefore addressed out-
side-in, therefore not moved by internal needs of the hosting
organization. The migration was performed manually, con-
sidering each specific functionality and identifying whether
it should have resulted in a new service or not.

The divide et impera principle that emerged in our work
can be synthesized as follows, as result of empirical experi-
ence: when a business functionality is isolated and sufficiently
big, or shared among many other business functionalities, it
should result in a new service. As we will discuss later, often
the iterative approach was necessary and some functionali-
ties were included in the same service, before splitting them
on a successive iteration. This approach has at least one
advantage and one disadvantage: on the positive side it pro-
gressively distances the team from the legacy system, avoid-
ing the implementation of a distributed monolith; on the
negative side, “sufficiently big” is a fuzzy and highly subjec-
tive definition. In this case, we have to keep in mind that the
process is business-driven and, considering business priori-
ties, it is generally clear how to identify the functionalities
which need to be often updated and redeployed, therefore
worth to become a new standalone service.

7.2 Effects of Scale

Both architectures apply techniques to achieve a certain
degree of scalability, which ensures they can cope with the
effects of scale. In the following, we will discuss how they
differ in handling these effects.

Availability is handled better by the MSA, since the MA
has problems with fall-back after a fail-over. They have
both applied techniques to improve availability, but the
MSA loose coupling and reliance on replication and load-
balancing of individual services has ensured availability
will not be affected by scale.

Reliability may become an issue at scale since both archi-
tectures integrate components with unreliable networked
communication. In theMSA, all integration between services
rely on RabbitMQwhich can be configured to ensure reliable
transfer of messages [31]. This may apply to the APIs used
to integrate with infrastructure services as well. The simpler
integration in theMSA, combinedwith its principle of design-
ing for failure, could result in better tackling of reliability at

large scale. Additionally the use of containerized and inde-
pendent environments of the individual microservices,
should also provide the same reliability between local testing
and deployment. This is not the case with the monolithic
components, which are run directly on the developers
machines for testing, and server OS for deployment.

System Load is handled in both architectures by horizon-
tally scaling the hosts and load-balancing between replicas,
thus spreading overall system load between hosts. One might
also argue that the MSA, although distributed, ensures
through loose coupling that messaging does not create too
much network traffic. Elasticity also ensures that theMSA can
make use of extra allocated resources, which could be used to
reduce system load on individual hosts, when needed.

Complexity is handled better by the MSA, although more
distributed and thus with more moving parts. This is mainly
due to its high cohesion, low coupling, extensive monitoring
and logging, and reliance on automation. All of this contrib-
ute to reduced complexity in structure, separation of respon-
sibilities, and deployment. This is likely to endure over time,
as the architecture is optimized to evolve by services addi-
tion. Conversely, the MA exhibits high coupling between
large components, making structure and services integration
complex, without a clear separation of responsibilities. The
variety of integration patterns also contributes to such com-
plexity and, although automated, deployment is still a com-
plex process due to shared components. Furthermore, the
missing centralized logging and monitoring makes complex
to keep thewhole system running.

Administrative costs are greatly reduced in the MSA as it
relies on orchestration tooling, automation and extensive
centralized monitoring and logging. The MA requires more
manual work to keep running at large scale, as deployments
are more complex, there is no centralized monitoring, and
the server environments are manually maintained.

Consistency in both systems is simply kept weak, or more
precisely eventual. This also ensures that the system can be
kept highly available at large scale, although network parti-
tions might occur.

Heterogeneity is effectively handled by the MSA due to
the use of containerized environments, which results in
highly portable services. This is also substantiated by its
ability to be deployed to heterogeneous infrastructure, such
as differently sized hosts. On the other hand, MA is less por-
table as it requires a specifically configured and maintained
environment, in this particular case a Windows Server.
Besides, it requires homogeneous infrastructure (i.e., same
amount of resources), since the whole architecture is repli-
cated on each and every host.

From the above analysis, it results evident that, in gen-
eral, FX CoreMSA scales better than the MA version.

7.3 Solving Monolithic Problems

Let us now see how the MSA has improved or solved some
of the problems identified in the MA.

Large Components. The large components of the MA
which were highly coupled, had overlapping responsibili-
ties and integrated in a multitude of ways, have been substi-
tuted with several independent microservices. Just the
name of the services reveal their responsibility and they are
generally way smaller compared to the large monolithic

1474 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

services. They do not integrate directly, resulting in looser
coupling and less chance of feature overlapping in the
future. As an example, trade-registration and line-checks
were handled both by ForexAPI and RequestService amongst
almost all other functionality in the MA. In the MSA a Tra-
dingService and a LineCheckService are handling these tasks
individually instead. This is the case with all other function-
alities in the MSA, resulting in low coupling, high cohesion
and small services.

Shared Components. The shared component were many in
the MA, but in the MSA, this has been reduced to only one
shared component, the Lambda framework. Lambda is very
minimal and is only meant to be a framework to connect to
the infrastructure and provide standard formatting meth-
ods for e.g., messages, logs and health-checks.

The Mainframe. The mainframe will still be attached for a
while in the MSA, but over time the functionalities from the
mainframe will be implemented as new services. In turn,
this will result in all Forex functionalities being extracted,
totally decoupling the mainframe from the system. For
now, the impact of the mainframe has been reduced by
caching.

Complex Deployment. Since the microservices are indepen-
dent, loosely coupled and isolated components, they can be
deployed individually, without affecting the other compo-
nents. There is no dependency hell and the only shared com-
ponent is Lambda. Even when Lambda is updated, all the
services are not necessarily required to update, since they
run in their own containerized environments and do not
directly share any dependencies, i.e., libraries. This makes
deployment very simple and the usage of Docker and Linux
containers ensures that services run in the same environ-
ment during local testing, on test servers and in production.

Organisational Culture and Unknown Dependants. The
whole re-implementation brings other benefits with it than
a new MSA. It also allows the team to kill all paths into the
system, which they do not control. Since the team controls
the whole infrastructure with Docker, including databases
and ports open to outside clients, the team can eliminate all
unwanted access. This allows the team to develop open
APIs for clients and traders in the bank to use, thus elimi-
nating direct database queries and the like. This gives the
team full ownership and control of internal implementation
details.

Multiple Communication and Integration Paradigms. Inter-
nally the microservices integrate only via messaging on Rab-
bitMQ. Due to using message-based choreography the services
do not call each other directly, thus resulting in very low
coupling and no interfaces to violate. The system does com-
municate to external systems via other paradigms, such as
the proprietary protocols to external providers and future
REST APIs, but this does not compromise internal system
complexity. The integration between services and their
infrastructure dependencies, does not result in internally
complexity either, as it is not used for any integration
between business or foundation services.

Technology Dependence. The team aimed for a polyglot
architecture, meaning that it is not technology dependent.
The team is no longer dependent on the .NET platform or
MS SQL databases, but can implement the services in what-
ever language they like. One might argue that they are just

becoming dependent on other technologies, such as Docker,
but Linux containers are becoming a standard through the
Open Container Initiative [34].

Missing System Status Overview. The MSA has centralized
logging in the form of LoggingService, ElasticSearch and
Kibana, allowing for aggregation of logs from all services.
The same applies to monitoring implemented with theMon-
itoringService, Icinga and cAdvisor, allowing for aggregated
monitoring of metrics. Centralizing and aggregating both
logs and monitoring, gives the team a complete system sta-
tus overview, allowing them to act proactively on suspi-
cious and faulty behaviour.

8 CONCLUSION AND LESSONS LEARNED

An increasing interest is growing around the idea of micro-
services, and companies are evaluating pros and cons of a
complex migration. Not every business domain is affected
the same way by the necessity of migrating legacy systems.
In particular, financial institutions are positioned in a diffi-
cult situation due to the economic climate, but even more
by the appearance of small players that grew big fast in
recent times, such as alternative payment systems that can
also navigate in a more flexible (and less regulated) legal
framework. Evolution is necessary to stay competitive.
When compared with companies (such as Paypal) that
started their activities using innovative technologies as a
business foundation, in order to scale and deliver value, old
banking institutions appear outdated with regards to tech-
nology standards. The Danske Bank system itself was
largely monolithic and mostly batch-based, generally deal-
ing with an heterogeneity of data sources. For example,
batch jobs were in place to balance books between depart-
ments, and to analyze trades aiming to detect fraudulent
behaviors. Nowadays, customers expect to conduct online
most of their operations but, even if mobile banking applica-
tions can be built from scratch according to agile and
DevOps principles, data dependencies still apply. It is easy
to see that, if the core banking legacy system is based on
batch jobs, huge performance bottlenecks can be expected.
A MSA solution, like the one developed for Danske Bank, is
capable of increasing the agility of the whole company.

The re-engineering of the system discussed in this paper
led to reduced complexity, lower coupling, higher cohesion,
and a simplified integration. Comparing the two architec-
tural designs, we have seen how microservices led to better
scalability and solved the major problems caused by the MA
solution. Although the comparison did not include quantita-
tive metrics, the implementation of specific techniques has
been used as an argument in support of increased scalability.

There are a few points worth emphasizing about the
migration process, which may be useful to engineers and
specialist that have to cope with similar problems. First, our
approach was incremental and we would generally suggest
to follow this line starting from a proof-of-concept and then
generalizing into a replicable process. Approaching a legacy
system that served successfully its purposes for literally
decades does not seem to be advisable, independently from
howmuch support is received by top management.

Instead of starting with several services, developing
functionalities in a single one allows the team and the

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1475

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

organization to uniform the vision, but also the understand-
ing of the specific approach and of the coding standard. A
split into two or more services will then appear natural.
Second, use of agile methodologies, in any declination of
the concept, suits particularly well the migration process.
However, for this to be effective it is necessary that the
company has already an established agile culture, otherwise
risks and threat to success may sum up. In this sense
the incremental approach and the agile culture go together,
operating the development sprint by sprint.

Third, DevOps and MSA appear to be an indivisible pair
for organizations aiming at delivering applications and
services at high velocity. The philosophy may be introduced
in the company with adequate training, but only if certain
technological, organizational and cultural prerequisites are
present [35]. If not, the prerequisites should be developed.
Investing in DevOps is a good idea in general, and after a
migration of this kind is even more crucial.

Fourth, the order in which the migration is performed is
important. Even if the whole system will be migrated, it is
advisable to focus first on those parts that are important for
relevant stakeholders and their specific business. In this
case, we designed and implemented one business function-
ality at a time, following an order defined together with
forex traders, and iteratively integrated them accordingly to
the level of priority for the business itself.

Fifth and last, although somehow obvious, things should
follow appropriate communication patterns. This is a pre-
rogative of any business and any process, so it does not add
much to the discussion, but it is important to organize the
channel through which the information is passed, in order
to avoid work duplication or lack of synchronization.

The future will see a growing attention regarding themat-
ters discussed in this paper, and the development of new
programming languages intended to address the microser-
vice paradigm [8]. Object-Oriented programming brought
fresh ideas in the last decades, and the expectation is that a
comparable shift may be just ahead of us. Innovative engi-
neering is always looking for adequate tools to model and
verify software systems, as well as support developers in
deploying correct software. As we have demonstrated in this
paper, MSA is an effective paradigm to cope with scalability.
However, the paradigm still misses a conceptual model able to
support engineers since the early phases of development. In
the following, we describe a set of research challenges that a
complete software-engineering approach (within the micro-
services field)must cover in the next years.

Tomake the engineering process of a microservices-based
application efficient, we need a uniform way to model autono-
mous and heterogeneous microservices, at a level of abstraction
that allows for easy interconnection through dynamic rela-
tions. Eachmicroservice must have a partial view on the sur-
rounding operational environment (i.e., system knowledge)
and at the same time must be able to be specialized/refined
and adapted to face different requirements, user needs, con-
text-changes, andmissing functionalities.

An important feature of dynamic and context-aware ser-
vice-based systems is the possibility of handling at run-time
extraordinary/improbable situations (e.g., context changes,
availability of functionalities, trust negotiation), instead of
analyzing such situations at design-time and pre-embedding

the corresponding recovery activities. The intrinsic charac-
teristics of microservice architectures make possible to
nicely model run-time dependability concepts, such as
“self-protecting” and “self-healing” systems [36]. To make
this feasible, we should enable microservices to monitor
their operational environment and trigger adaptation needs
each time a specific system property is violated. To cover the
aforementioned research challenges, we already started to
define a roadmap [37] that includes an initial investigation
on how Domain Objects [38] could be an adequate formalism
both to capture the peculiarity of MSA, and to support the
software development since the early stages.

REFERENCES

[1] E. S. de Almeida, A. Alvaro, D. Lucr�edio, V. C. Garcia, and S. R. de
Lemos Meira, “RiSE project: Towards a robust framework for soft-
ware reuse,” in Proc. IEEE Int. Conf. Inf. Reuse Integr., 2004, pp. 48–53.

[2] M. C. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference model for service oriented architecture
1.0,”OASIS Standard, vol. 12, pp. 1–31, 2006.

[3] Z. Yan, M. Mazzara, E. Cimpian, and A. Urbanec, “Business pro-
cess modeling: Classifications and perspectives,” in Proc. 1st Int.
Work. Conf. Bus. Process Serv. Comput., 2007, Art. no. 222.

[4] M.Mazzara, “Towards abstractions forweb services composition,”
Ph.D. Thesis, University of Bologna, Department of Computer
Science, 2006.

[5] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: Yesterday,
today, and tomorrow,” in Present and Ulterior Software Engineering,
B. Meyer and M. Mazzara, Eds. Berlin, Germany: Springer, 2017.

[6] F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented
programming with jolie,” in Web Services Foundations. Berlin,
Germany: Springer, 2014, pp. 81–107.

[7] L. Safina, M. Mazzara, F. Montesi, and V. Rivera, “Data-driven
workflows for microservices (genericity in jolie),” in Proc. 30th
IEEE Int. Conf. Adv. Inf. Netw. Appl., 2016, pp. 430–437.

[8] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, “Microservices:
A language-based approach,” in Present and Ulterior Software
Engineering. Berlin, Germany: Springer, 2017.

[9] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Boston, MA, USA: Addison-Wesley Profes-
sional, 2004.

[10] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and
L. Safina, “Microservices: How to make your application scale,”
in Proc. Int. Andrei Ershov Memorial Conf. Perspectives Syst. Infor-
mat., 2017, pp. 95–104.

[11] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
architecture enables DevOps: Migration to a cloud-native archi-
tecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016.

[12] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and
issues for migrating to microservices architectures: An empirical
investigation,” IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32,
Sep. 2017.

[13] H. Knoche and W. Hasselbring, “Using microservices for legacy
software modernization,” IEEE Softw., vol. 35, no. 3, pp. 44–49,
May 2018.

[14] P. D. Francesco, P. Lago, and I. Malavolta, “Migrating towards
microservice architectures: An industrial survey,” in Proc. IEEE
Int. Conf. Softw. Archit., Apr. 2018, pp. 29–2909.

[15] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique
for extracting microservices from monolithic enterprise systems,”
in Proc. III Workshop de Visualizaç~ao, Evoluç~ao e Manutenç~ao de
Softw., 2015, pp. 97–104.

[16] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-
native architectures using microservices: An experience report,”
in Proc. Eur. Conf. Serv.-Oriented Cloud Comput., 2016, pp. 201–215.

[17] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and
T. Lynn, “Microservices migration patterns,” Softw.: Practice Expe-
rience, vol. 48, pp. 2019–2042, Nov. 2018.

[18] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros,
“Migrating enterprise legacy source code to microservices: On
multitenancy, statefulness, and data consistency,” IEEE Softw.,
vol. 35, no. 3, pp. 63–72, May 2018.

1476 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

[19] Kubernetes, “Kubernetes-production-grade container orches-
tration,” (2016). [Online]. Available: http://kubernetes.io

[20] I. Mesosphere, “Marathon: A container orchestration platform for
mesos andDC/OS,” (2016). [Online]. Available: https://mesosphere.
github.io/marathon/

[21] I. Docker, “Swarm mode overview-docker,” (2016). [Online].
Available: https://docs.docker.com/engine/swarm/

[22] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar, “Towards recovering the broken SOA triangle: A
software engineering perspective,” in Proc. 2nd Int. Workshop Serv.
Oriented Softw. Eng.: In Conjunction 6th ESEC/FSE Joint Meeting,
2007, pp. 22–28.

[23] HashiCorp, “Consul by hashicorp,” (2016). [Online]. Available:
https://www.consul.io/

[24] I. Pivotal Software, “RabbitMQ-messaging that just works,”
(2016). [Online]. Available: https://www.rabbitmq.com

[25] redis.io, “redis,” (2016). [Online]. Available: http://redis.io
[26] A. MacEachern, “How are international exchange rates set?” (2017).

[Online]. Available: http://www.investopedia.com/ask/answers/
forex/how-forex-exchange-rates-set.asp

[27] S. Smith, “Don’t repeat yourself,” (2018). [Online]. Available: http://
programmer.97things.oreilly.com/wiki/index.php/Donurself

[28] M. Fowler, “Snowflakeserver,” (2012). [Online]. Available: http://
martinfowler.com/bliki/SnowflakeServer.html

[29] T. Inc., “Gocd, open source continuous delivery service,” (2017).
[Online]. Available: https://www.gocd.io

[30] E. Brewer, “Pushing the cap: Strategies for consistency and
availability,” Comput., vol. 45, no. 2, pp. 23–29, Feb. 2012.

[31] I. Pivotal Software, “RabbitMQ-clustering and network parti-
tions,” (2016). [Online]. Available: https://www.rabbitmq.com/
partitions.html

[32] R. Hat, “OpenShift: Paas by red hat, built on docker and
kubernetes,” (2017). [Online]. Available: https://www.openshift.
com/

[33] I. Docker, “Overview of docker hub-docker,” (2016). [Online].
Available: https://docs.docker.com/docker-hub/

[34] O. C. Initiative, “About, open container initiative,” (2016).
[Online]. Available: https://www.opencontainers.org

[35] M. Mazzara, A. Naumchev, L. Safina, A. Sillitti, and K. Urysov,
“Teaching devops in corporate environments: An experience
report,” CoRR, vol. abs/1807.01632, 2018. [Online]. Available:
http://arxiv.org/abs/1807.01632

[36] N. Dragoni, F. Massacci, and A. Saidane, “A self-protecting and
self-healing framework for negotiating services and trust in auto-
nomic communication systems,” Comput. Netw., vol. 53, no. 10,
pp. 1628–1648, 2009.

[37] K. Mikhail, A. Bucchiarone, M. Mazzara, L. Safina, and V. Rivera,
“Domain objects and microservices for systems development: A
roadmap,” in Proc. 5th Int. Conf. Softw. Eng. Defence Appl., 2017,
pp. 97–107.

[38] A. Bucchiarone, M. D. Sanctis, A. Marconi, M. Pistore, and
P. Traverso, “Incremental composition for adaptive by-design ser-
vice based systems,” in Proc. IEEE Int. Conf. Web Serv., 2016,
pp. 236–243.

Manuel Mazzara is professor of computer
science at Innopolis University (Russia) with a
research background in software engineering,
service-oriented architectures, concurrency theory,
formalmethods and software verification. He coop-
erated with European and US industry, plus gov-
ernmental and inter governmental organizations.

Nicola Dragoni is associate professor in Distrib-
uted Systems and Security at DTU Compute,
Technical University of Denmark, and professor
in computer engineering at Centre for Applied
Autonomous Sensor Systems, €Orebro University,
Sweden. His main research interests lie in the
areas of pervasive computing and cyber-security,
with focus on Internet-of-Things, fog computing,
and mobile systems.

Antonio Bucchiarone is a senior researcher of
FBK in Trento, Italy. His main research interests
are: self-adaptive systems, applied formal meth-
ods, run-time service composition and adaptation,
specification and verification of component-based
systems, dynamic software architectures. He has
been actively involved in various research projects
in the context of service-based adaptive systems.

Alberto Giaretta received the MSc degree in
computer science from the University of Padova,
Padova, Italy, in 2016. He is currently working
toward the PhD degree at €Orebro University,
€Orebro, Sweden, under the supervision of Prof.
Nicola Dragoni and Prof. Amy Loutfi. His main
interests include Security, Internet of Things, and
Bio-inspired Networks.

Stephan Thordal Larsen received the MSc
degree in computer science and engineering
from the Technical University of Denmark, in
2017. He is software engineer at Danske Bank,
Copenhagen, Denmark. He has been the key
actor in the Danske Banks transition of their FX
Core system to a microservice architecture,
showing that this transition significantly yields
increased scalability over their legacy monolithic
architecture.

Schahram Dustdar is full professor of computer
science and head of The Distributed Systems
Group at the TUWien, Austria. He is an associate
editor of the IEEE Transactions on Services
Computing, the ACM Transactions on the Web,
and the ACM Transactions on Internet Technol-
ogy and on the editorial board of IEEE Internet
Computing and IEEE Computer. He is recipient
of the ACM Distinguished Scientist award (2009),
the IBM Faculty Award (2012), an elected mem-
ber of the Academia Europaea: The Academy of
Europe, and an IEEE fellow (2016).

MAZZARA ET AL.: MICROSERVICES: MIGRATION OF A MISSION CRITICAL SYSTEM 1477

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2021 at 13:52:07 UTC from IEEE Xplore. Restrictions apply.

http://kubernetes.io
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://docs.docker.com/engine/swarm/
https://www.consul.io/
https://www.rabbitmq.com
http://redis.io
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
http://programmer.97things.oreilly.com/wiki/index.php/Don urself
http://programmer.97things.oreilly.com/wiki/index.php/Don urself
http://martinfowler.com/bliki/SnowflakeServer.html
http://martinfowler.com/bliki/SnowflakeServer.html
https://www.gocd.io
https://www.rabbitmq.com/partitions.html
https://www.rabbitmq.com/partitions.html
https://www.openshift.com/
https://www.openshift.com/
https://docs.docker.com/docker-hub/
https://www.opencontainers.org
http://arxiv.org/abs/1807.01632

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

