
EDITOR: Ewa Deelman, deelman@isi.edu

DEPARTMENT: VIEW FROM THE CLOUD

Interhost Orchestration Platform
Architecture for Ultrascale Cloud
Applications
Sasko Ristov and Thomas Fahringer , University of Innsbruck, 6020 Innsbruck, Austria

Radu Prodan , University of Klagenfurt, 9020 Klagenfurt, Austria

Magdalena Kostoska and Marjan Gusev , Ss. Cyril and Methodius University, Skopje 1000, Macedonia

Schahram Dustdar , TU Wien, 1040 Vienna, Austria

Cloud data centers exploitmanymemory pagemanagement techniques that reduce
the totalmemory utilization and access time.Mainly these techniques are applied to a
hypervisor in a single host (intra-hypervisor) without the possibility to exploit the
knowledge obtained by a group of hosts (clusters).We introduce a novel interhypervisor
orchestration platform to provide intelligentmemory pagemanagement for horizontal
scaling. It will use the performance behavior of faster virtualmachines to activate
prefetchingmechanisms that reduce the number of page faults. The overall platform
consists of fivemodules—profiler, collector, classifier, predictor, and prefetcher.We
developed and deployed a prototype of the platform, which comprises thefirst three
modules. The evaluation shows that data collection is feasible in real-time, which
means that if our approach is used on top of the existingmemory pagemanagement
techniques, it can significantly lower themiss rate that initiates page faults.

D ynamic memory page management techni-
ques, such as memory deduplication, page
faultsmanagement,memory overcommitment,

memory ballooning, or hot-swapping, rely on the cooper-
ation of the virtual machines (VMs) hosted on a single
physical host.1 Although all these techniques provide
autonomous and automatic memory page management
that reduces the total memory utilization and memory
access time, their application domain is still limitedwithin
a single host. On the other hand, cloud environments use
horizontal scaling such that hundreds or thousands of
VMs (VM-siblings) of the same image work on the same
problem. These VM-siblings use the same guest operat-
ing system, the same code segment, and many memory
pages of the same data segment are identical or similar,
thereby conducting similar memory access patterns.

Since VM-siblings may be scheduled on multiple hosts,
the state-of-the-art intrahost memory management
methods cannot be fully exploited. The goal of this article
is to introduce an interhypervisor orchestration platform,
which uses the knowledge obtained by VM-siblings that
are hosted on different hosts and potentially use it in
real-time to reduce thememory page fault ratio, for negli-
gible resource utilization overhead and latency.

RELATEDWORK
Wei-Zhe Zhang2 presented an automatic memory con-
trol of multiple VMs that dynamically adjusts alloca-
tion according to the used memory by the VMs, while
Qi Zhang3 used a shared memory pool for fast just-in-
time memory page recovery. Although these techni-
ques reduce the number of memory page faults, they
apply on a single host without being aware of other
VM-siblings at other hosts.

Hines4 and Tasoulas5 use the estimation of appli-
cation memory requirements for memory balancing
and distribution. Their techniques automate the

1089-7801 � 2020 IEEE
Digital Object Identifier 10.1109/MIC.2020.3034293
Date of publication 30 October 2020; date of current version
18 June 2021.

May/June 2021 Published by the IEEE Computer Society IEEE Internet Computing 23
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 

mailto:Interhost Orchestration Platform Architecture for Ultrascale Cloud Applications
https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0003-4293-1228
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-5594-6739
https://orcid.org/0000-0002-5594-6739
https://orcid.org/0000-0002-5594-6739
https://orcid.org/0000-0002-5594-6739
https://orcid.org/0000-0002-5594-6739
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821


distribution of the memory across VMs, but again limit
the hypervisor’s level on a single host. Additionally,
they quantify the amount of memory without a quali-
tative estimation of the specific page accesses in the
near future for each VM-sibling.

Several researchers presented an orchestration for
multiple hypervisors. Gopalan et al.6 introduced the
span virtualization, which allows multiple hypervisors to
control thememory of guest’s OS concurrently. Still, this
orchestration is on a single host. Fecade et al.7 orches-
trated multiple hypervisors in mobile cloud computing.
They used a Bayes-based classifier to predict failures in
hypervisor and to prevent VM failures bymigrating them
to another host. However, the authors verified their
approach with simulation, without real implementation
andwithout considering the network latency.

Prefetching is a commonly used technique inmemory
management. Ren et al.8 introduced an asynchronous
prefetching mechanism to speculatively prefetch the
dirty pages from a primary VM on a secondary VM on
another host without disrupting its execution. While this
algorithm shortens the sequential dependence when VM
checkpoints are generated and transmitted to a VM on
another host, still, it uses one-to-one mapping between
the primary and secondary VMs without considering
memory access patterns fromother VM-siblings.

INTERHYPERVISOR
ORCHESTRATION PLATFORM
Terminology
Before diving into details, we explain the used termi-
nology. Let VM11, VM12, and VM31 denote three VMs
hosted on two hosts (Host1 and Host3), as presented
in Figure 1, such that the first index identifies the host,
while the second one determines the VM on that host.
For example, VM12 represents the second VM hosted
on Host1. Let all VMs are a part of horizontal scaling,
which means they run the same application, either for
different input data or serve requests generated by
different users.

Definition 1. (VM-cluster). A VM-cluster is a set of
VMs that are scaled horizontally and usually
deployed across multiple hosts.

For example, Figure 1 illustrates a part of a data
center, where VMs are grouped in: VM-cluster1 with
three VM-siblings, while VM-cluster2 and VM-cluster3
with four. Each VM-sibling runs the same application,
which is scaled horizontally across three hosts.

Definition 2. (Specific VMs within a VM-cluster).
A VM-leader is the fastest VM-sibling that leads
the execution within one VM-cluster. Slack-VMs
are all other VM-siblings that perform slower than
the VM-leader within a specific VM-cluster.

Each VM-cluster identifies a single VM-leader at
each point of time, while all the other VM-siblings are
slack-VMs. However, these roles may change in time
for a specific VM.

Without losing generality, we assume a heteroge-
neous environment where the VMs and hosts perform
at different speeds. Figure 1 presents that VM11, VM32,
and VM14 are VM leaders of the corresponding VM-
clusters 1, 2, and 3. For example, besides the VM leader
VM11, the VM-cluster1 contains also other VM-siblings
(slack-VMs including VM12 and VM31).

Platform Architecture
The interhypervisor platform orchestrates hypervisors
of a group of horizontally scaled VM-clusters, as pre-
sented in Figure 2. To orchestrate VM-siblings in the
horizontal scaling, the first step of the orchestrator is
to classify all VMs in VM-clusters according to the
information from the cloud controller. Further on, the
orchestrator communicates with the agents on each

FIGURE 1. Definition of VM-cluster and VM-siblings (VM-

leader and slack-VMs).

FIGURE 2. Design of the interhypervisor orchestration

platform.

24 IEEE Internet Computing May/June 2021

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



host to gather the necessary access data that caused
page faults for each hosted VM-sibling. Finally, the
orchestrator detects patterns in the page faults to
determine the VM-leader of each VM-cluster, whose
behavior will be used later for prediction and prefetch-
ing the memory pages of the slack-VMs.

The proposed interhypervisor orchestration plat-
form consists of two main processes: i) a bottom-up
data collection and management, and ii) a top-down
control process. This paradigm is particularly suitable
for concurrent management of these two processes.
For example, hypervisors can manage VMs on the
same host, while our orchestrator supports global
views of VM-clusters, combining and analyzing data of
all VM-siblings of a single VM-cluster scattered on dif-
ferent hosts. On the other side, the top-down control
process allows flooding the information about pre-
fetching memory pages that already generated page
faults at the VM-leader, thereby reducing the page
faults ratio for the slack-VMs and significantly improv-
ing their performance.

The orchestration platform consists of five mod-
ules: classifier, collector, and predictor within the cen-
tral part of the orchestrator, together with profiler and
prefetcher distributed on each host. Since the orches-
trator collects data about page faults from profilers
and sends the predicted memory pages for all hosted
VMs back to prefetchers hosted on multiple hosts, the
modules of the orchestrator should be deployed on
servers with a higher bandwidth and a small network
diameter to the orchestrated hosts. Our approach with
the centralized orchestrator and distributed profilers
does not require a direct communication between
VMs’ operating systems.

The orchestrator will have access to memory
usage info for all orhestrated VMs, which may open
security and privacy risks. In order to mitigate such
risks, the profiler sends anonymized data that do not
contain information about the owners of the VMs,
their addresses, or credentials.

The orchestrator is only a logical representation
and any of its three modules may be hosted on a sepa-
rate server. Moreover, the modules may be container-
ized and managed with Kubernetes for higher
scalability. The orchestrator implementation is not
affected by the existing cloud infrastructure as it
works on a lower (hypervisor) level.

Classifier
The classifier groups all VMs in VM-clusters, such that
each VM member of horizontal scaling becomes a
VM-sibling within a specific VM-cluster. Clustering is a
dynamic process in the cloud ecosystem regularly

performed by the classifier, where VMs are instanti-
ated, replicated, migrated to another host and termi-
nated. The classifier can be extended to cluster VMs
that are not a part of horizontal scaling or VM-clusters
without VM-leader, if they have a similar memory
access pattern.16

Profiler
Each host deploys a profiler that communicates with
the local hypervisor to collect data about page faults
and swapping for each hosted VM, and sends it to the
collector within the centralized orchestrator. The pro-
filer can be built based on iBalloon,9 which provides
efficient intrahypervisor VM memory balancing within
a consolidated host. iBalloon runs a lightweight moni-
toring process (daemon) in each VM of the host that
gathers information about its memory utilization. This
technique improves the overall performance for mem-
ory-intensive applications with less than 5% CPU over-
head tradeoff, compensated due to the CPU under
utilization compared to the main memory.

Collector
The collector is a simple module that gathers the data
from all profilers in a single and persistent centralized
knowledge base, which contains memory access data
of all VM-siblings within each VM-cluster. The main
challenge of the collector is to determine the size and
length of historical data considered by the predictor.
Accordingly, the collector splits the received data into
hot and cold parts. The predictor uses the hot part to
determine the memory pages to be prefetched at VM-
siblings, while the cold part helps strategic planning of
future data center design and maintenance through
offline analysis. Extending the iBalloon, one can run a
daemon that collects all data from each host’s mem-
ory profiler. Although the concept of cold and hot
memory pages10 provides performance overhead, we
can still use this concept to reduce the memory
access interception.

Predictor
The predictor is the brain of the orchestrator that
exploits the collected data of the knowledge-base. It
possibly uses machine learning-based techniques
(beyond the scope for this article) to predict the mem-
ory page accesses for each VM-sibling within a VM-
cluster. Since the cloud environment is a heteroge-
neous one, both the VM type and the underlying host
computation resources (CPU, RAM) must be consid-
ered by the predictor to further improve the prediction
accuracy. The centralized predictor can exploit data
for memory access patterns of all VM-siblings within a

May/June 2021 IEEE Internet Computing 25

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



VM-cluster, regardless whether they are hosted on a
single host or scattered across several hosts. With
this knowledge, the predictor can estimate more accu-
rately which memory pages will be accessed by slack-
VMs and inform the prefetchers and hypervisors
accordingly to prefetch those memory pages into
guest main memory.

Prefetcher
The predictor submits the information to the pre-
fetcher on each host to initiate prefetching of memory
pages from local disks to all locally hosted VMs. The
prefetcher issues a command to the Hypervisor to pre-
fetch (swap-in) a memory page into each VM to
reduce the memory page fault.

PLATFORM PROTOTYPE
IMPLEMENTATION AND
EVALUATION

We implemented three modules (the classifier, profiler,
and prefetcher) to investigate the effectiveness of the
orchestration platform for data collection. The goal of
the initial platform prototype was to evaluate how
many memory page faults can be generated, profiled,
and transferred to the collector, both for traditional
and virtual environment.

Platform Prototype Implementation
Figure 3 presents the implementation of our platform
prototype. We deploy the profiler on two hosts, each
installed with XenServer (v7.6.0) and Ubuntu 16.04.6
amd64. The hosts (quad-core CPU, 4 GB RAM, SSD) are
connected using NAT and 1 Gb/s network. Each host
administers a VM-pool Host 0x=dom0x and each VM
gets a VMID, which is used to specify it as a source of
transferred data in the profiler. The collector and the
classifier are deployed on the orchestrator, which has
6 GiB RAMand is also installed with the sameUbuntu.

We used SysBench benchmark tool to generate
intensive memory allocation and page faults in
Ubuntu with a single thread, which generated a total
of 100GiB memory blocked in blocks of 1MB each:

sysbench - -num-threads=1 - -test =memory
- -memory-block-size =1M - -memory-total-
size=100G run

Generated page faults were profiled by systemtap,
which was extended to submit the VMID. The follow-
ing listing presents an entry from the page fault, and
shows when (including microseconds) and on which
host a process generated a page fault, which could be
either write (w) or read (r). Additionally, we submit the
type of the page fault, i.e., minor or major. The size of
each entry was always the same (51B).

ID:Timestamp:PID:fault_address:fault_access:kind:
fault_time

1:1591116972164574:30134:140013325101104d:w:
minor:1

For sending the profiled data, we used Apache Kafka
(v2.2.0) and Zookeeper configured with default ports
and JDK (1.8.0) on all brokers in the system. Systemtap
sends data to the Kafka producer at Host 0x=dom0x,
which is collected by the Kafka consumer at the collec-
tor. Finally, the collected stream data was stored in a file
and the collector (written in C) writes it in MySQL. The
classifier specifies VMIDsand groups them in a VM-clus-
ter. Our current classifier prototype uses only one VM-
cluster aswemeasure the data transfer rate.

Evaluation
We conducted two groups of experiments. The first
group of experiments was intended to investigate the
cap varying the number of sources (VMs and hosts),
i.e., how many entries the platform prototype is able
to generate and send them to the collector without
using the profiler systemtap. The second group of
experiments determined the overhead of introducing
the profiler, which resulted in lower number of records
that were collected in real-time. We run each experi-
ment in two different environments (bare metal and
virtual). We denote experiments as B1, B1P, B2, B2P,
V1, V2, and V1P, where B and V denote the environ-
ment (bare metal or virtual), 1 or 2 sources (VMs or
hosts), and P denotes experiments with the profiler.

Table 1 presents the achieved throughput of each
experiment. We observe that sending data without
the profiler achieved 17 million entries/s for one node
as a source, which is the maximum from all experi-
ments since we used only one node. Introducing
another node (B2) reduced the throughput to 12 mil-
lion entries/s. On the other side, the profiler (B1P)
reduces the throughput to 250000 entries/s with one
node and is stable even with two nodes because the
streaming cap of 17 million entries/s is not reached.

Virtual environment reduced the throughput by
half for the experiment with one VM compared to the

FIGURE 3. Platform prototype implementation

26 IEEE Internet Computing May/June 2021

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



equivalent B1 and 3.2 times with the profiler. An inter-
esting observation is the higher deviance in the virtual
environment.

Discussion
Since the memory access time at the host is around
50 ns,11 we estimate around 20 million memory
accesses/s if all accesses are page hits, without any
page misses and swaps. However, we are mostly inter-
ested in TLB misses and page faults, which happen in
a range between 0:1� 1%.11 This leads to a maximum
number of 200000 records/s that need to be stored
and processed. We assume the worst case where all
TLB misses are also page table misses (page faults),
which is opposite to the write count disparity feature.
On the other side, the total number of memory pages
is usually smaller than 200000, as the legacy page size
of 4 kB is nowadays abandoned to reduce the TLB
misses. More precisely, all modern CPU architectures
and operating systems support memory page size of
2 MB, while some even in the range of GiB. In a virtual
environment, extended page table (EPT) faults are
handled within 2.4 ms.

We selected the current state-of-the-art streaming
platforms to evaluate the feasibility of the new pro-
posed platform, such as Apache Kafka, which can han-
dle at each profiler up to 800000 of 100B-long
messages per second, regardless of the data size
(even up to 1.4 TB). Our platform achieved the maximal
throughput of 17 million entries/s, 51B each.

Although the profiler can collect and update the
page faults at each host, Zhang et al.12 specify a hybrid
hardware and software tracing mechanism to collect
and profile last-level TLB misses, up to cache line gran-
ularity of 64B. Moreover, another challenge is to col-
lect data from all profilers to the central orchestrator.
For example, for a network overhead of only 1% in 1s�1,
we can submit 1300 records, 100B each. Although pro-
filers can group several messages into a few larger

ones to reduce the packet header overhead, the total
bandwidth remains in a similar range.

Let us analyze the price to be paid to achieve
increased performance. At each host, the platform
runs both Kafka to utilize a portion of computing
resources. While the CPU is usually underutilized in
data centers, the memory is often a bottleneck. Addi-
tionally, there is a small network overhead depending
on the number of pages transmitted. This bottleneck
is visible when more nodes or VMs are used (see
Table 1).

FURTHER IMPLEMENTATION
CHALLENGES
Network Overheads
The designers and programmers must consider the net-
work latency and bandwidth that also impact the quality
of the gathered data. Another challenge is the network
heterogeneity, especially its latency, as hosts can be
connected througha single physical switch, while others
through several with higher latency. Recent high-speed
and high-throughput memory and network, such as
byte-addressable non-volatile memory express (NVMe)
over fabrics (NVMf) reported negligible application per-
formance degradation.13 For example, the latest net-
working generates very low latency of only 1 ms and a
very high bandwidth up to 200s�1.14 These trends in the
networking allow possibilities for broader dynamic
memory page management through the network and
make our orchestration platform feasible.

Prediction Implementation Challenges
The amount of data analyzed by the prediction process
impacts its performance. For example, a large history of
records has less impact over the current memory
accesses due to many context switches that may hap-
pen in the meantime. On the other side, considering a
small amount of historical records may not be enough
as a slack-VM may perform much worse than the VM-
leader and, thus, a memory access pattern cannot be
detected or valid for this particular case.

The predictor must propose the pages to swap to
the disk and avoid being prefetched to the other VM-
siblings. Various application types can also show dif-
ferent behavior.

The behavior of each VM fluctuates due to cloud
performance instability15 and therefore, there is no
simple and appropriate function for modelling varia-
tions in memory page accesses of a VM. Nevertheless,
we exploit the fact that caches and memory paging
are not directly mapped but associative, which means

TABLE 1. Results of the evaluation. Presented number for the

throughput shows the million of entries received by the

collector per second.

Experiment Average throughput (�106/s)
B1 17
B1P 0.25
B2 12
B2P 0.25
V1 8.5
V1P 0.078
V2 0.25

May/June 2021 IEEE Internet Computing 27

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



that even a relaxed prediction performance still dimin-
ishes the memory page fault rate.

The prediction accuracy is affected by other VMs
of other VM-clusters running other jobs on the same
host. For example, VM13, VM14, and VM15, which share
the same Host 1 memory with VM11 and VM12, will
affect their memory access and page faults (see Fig 1).
This may make the prediction of VM31 page access
less accurate based on VM11 ’s access pattern. This
problem is analyzed by Nemati et al..16 They intro-
duced inter- and intracluster similarity metrics to dis-
cover distinct groups of workloads with negligible
CPU and memory overhead.

The interhypervisor orchestrator needs to predict a
vector of memory page accesses for each VM-sibling,
as follows.

› Characterize the VM-cluster using a set of param-
eters that reflect the memory pages accesses for
each VM-sibling.16

› Estimate the memory access of each VM-leader
and use it for VM-siblings. Additionally, consider-
ing the heuristics with the write count disparity,
only a few and frequently updated memory pages
could reduce page faults evenmore.17

› Experimentally evaluate the various machine
learningmethods (including random forest or simi-
lar) considering the tradeoff among latency and
resource utilization overhead versus performance.

Prefetching Challenges
Modern operating systems and hypervisors support
memory pages of various size, such as small (4 KiB),
medium (2 MiB), and even large of up to 1GiB. While
such plethora of heterogeneous memory page sizes
may improve the performance,18 it may convolute
both prediction and prefetching. For example, memory
access pattern of a VM-leader that uses memory
pages of medium size differs from the access pattern
of slack-VMs that use small sized ones.

On the other side, write memory accesses on VM-
leaders may be logged by the hardware using the
Page-Modification Logging19 on commodity Intel pro-
cessors. This hardware-assisted enhancement allows
the hypervisor to monitor the modified (dirty) memory
pages directly while running VMs, thereby distinguish-
ing the “write-hot” and “write-cold” memory pages in
real-time.

CONCLUSION AND FUTUREWORK
We have introduced a platform that enhances the
memory page management techniques to reduce the

page faults and increase the performance of virtualized
data centers based on an interhypervisor (interhost)
approach. State-of-the-art techniques implemented in
today’s virtualized environments include host-based
prefetching and memory swapping concepts. Cur-
rently, these approaches are implemented for a single
host and cannot be exploited for VMs spread over dif-
ferent hosts.

The interhost orchestration platform has a poten-
tial to open up new research directions in cloud data
center memory management. Our approach enhances
the memory page management implemented for an
intrahypervisor solution by an interhypervisor plat-
form, as a more efficient dynamic technique intended
for cloud data centers. It can be efficiently imple-
mented for VMs running an application that imple-
ments large horizontal scaling among different hosts.

The basic principle of the new proposed approach
for the interhypervisor orchestration platform is to
detect memory access patterns that generate page
faults within VMs hosted on different hosts. Exploiting
the patterns in gathered data, the orchestrator may
predict which memory pages will be accessed in the
near future and, therefore, may avoid generating page
faults at the other VMs (slack-VMs).

The platform prototype was developed including
the three modules classifier, profiler, and collector.
The initial evaluation showed the effectiveness of the
platform to collect generated entries about page-
faults with a maximal throughput of 17 million entries/
s. Although the initial prototype of the profiler reduced
the throughput to 250000 entries/s of a host, still the
platform prototype was able to reach the estimated
200000 page faults/s,11 even with a low power hosts
and 1 s�1 network.

We are currently working in the PRE-FETCH project
on implementation of the other two modules the pre-
dictor and prefetcher and will investigate the effec-
tiveness of the overall interhost orchestration
platform. The initial experiments with the random for-
est predictor showed a promising accuracy.

ACKNOWLEDGMENTS
This work was supported in part by bilateral AUT-MKD
project PRE-FETCH: Pro-active Memory Management
with Page Faults Prediction in Clouds, financed by
Austrian Federal ministry of Science, Research and
Economy (BMWFW), and the Ministry of Education
and Science of Republic of North Macedonia, and in
part by the ASPIDE project funded European Union’s
Horizon 2020 research and innovation program under
Grant Agreement 801091.

28 IEEE Internet Computing May/June 2021

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES
1. H. Liu et al., “Hotplug or ballooning: A comparative

study on dynamic memory management techniques

for virtual machines,” IEEE Trans. Parallel Distrib.

Syst., vol. 26, no. 5, pp. 1350–1363, May 2015.

2. W. Z. Zhang, H. C. Xie, and C. H. Hsu, “Automatic

memory control of multiple virtual machines on a

consolidated server,” IEEE Trans. Cloud Comput,,

vol. 5, no. 1, pp. 2–14, Jan.–Mar. 2017.

3. Q. Zhang et al., “MemFlex: A shared memory swapper

for high performanceVMexecution,” IEEE Trans.

Comput., vol. 66, no. 9, pp. 1645–1652, Sep. 2017.

4. M. Hines et al., “Applications know best: Performance-

drivenmemory overcommitwith Ginkgo,” inProc. IEEE

CLOUDCOM, 2011, pp. 130–137.

5. E. Tasoulas, H. Haugerund, andK. Begnum, “Bayllocator:

A proactive system to predict server utilization and

dynamically allocatememory resources using Bayesian

networks and ballooning,” in Proc. 26th Large

Installation Syst. Admin. Conf., 2012, pp. 111–122.

6. K. Gopalan, R. Kugve, H. Bagdi, Y. Hu, D. Williams, and

N. Bila, “Multi-hypervisorvirtual machines: Enabling

an ecosystem ofhypervisor-level services,” in Proc.

Conf. Usenix Annu. Tech. Conf., 2017, pp. 235–249.

7. B. Fekade, T. Maksymyuk, and M. Jo, “Clustering

hypervisors tominimize failures inmobile cloud

computing,”Wireless Commun. Mobile Comput.,

vol. 16, no. 18, pp. 3455–3465, 2016.

8. S. Ren, Y. Zhang, L. Pan, and Z. Xiao, “Phantasy: Low-

latency virtualization-based fault tolerance via

asynchronous prefetching,” IEEE Trans. Comput.,

vol. 68, no. 2, pp. 225–238, Feb. 2019.

9. Q. Zhang et al., “iBalloon: Efficient VM memory

balancing as a service,” in Proc. IEEE Int. Conf. Web

Serv., Jun. 2016, pp. 33–40.

10. W. Zhao, Z. Wang, and Y. Luo, “Dynamic memory

balancing for virtual machines,” SIGOPS Oper. Syst.

Rev., vol. 43, no. 3, pp. 37–47, Jul. 2009.

11. D. Patterson and J. Hennessy, Computer Organization

andDesign RISC-V Edition, 1st ed. SanMateo, CA, USA:

Morgan Kaufmann, 2017.

12. J. Zhang, Y. Liu, H. Li, X. Zhu, and M. Chen, “PTAT: An

efficient and precise tool for tracing and profiling

detailed TLB misses,” ACM Trans. Embedded

Comput. Syst., vol. 17, no. 3, pp. 62:1–62:17, May 2018.

13. Z. Guz et al., “NVMe-over-fabrics performance

characterization and the path to low-overhead flash

disaggregation,” in Proc. ACM Int. Syst. Storage

Conf., 2017, pp. 16:1–16:9.

14. S. Gugnani, X. Lu, and D. K. D. Panda, “Swift-X:

Accelerating OpenStack swift with RDMA for

building an efficient HPC cloud,” in Proc. 17th IEEE/

ACM Int. Symp. Cluster, Cloud Grid Comput., 2017,

pp. 238–247.

15. R. Math�a, S. Ristov, T. Fahringer, and R. Prodan,

“Simplifiedworkflow simulation on clouds based on

computation and communication noisiness,” IEEE

Trans. Parallel Distrib. Syst., vol. 31, no. 7, pp. 1559–1574,

Jul. 2020.

16. H. Nemati, S. V. Azhari, and M. R. Dagenais, “Host

hypervisor trace mining for virtual machine workload

characterization,” in Proc. IEEE Int. Conf. Cloud Eng.,

2019, pp. 102–112.

17. X. Chen et al., “Refinery swap: An efficient swap

mechanism for hybrid DRAM-NVM systems,” Future

Gener. Comput. Syst., vol. 77, no. C, pp. 52–64, 2017.

18. T. Mason, T. D. Doudali, M. Seltzer, and A. Gavrilovska,

“Unexpected performance of Intel Optane dc

persistentmemory,” IEEEComp. Architecture Lett.,

vol. 19, no. 1, pp. 55–58, Jan.–Jun. 2020.

19. Intel Corporation, “Page modification logging for

virtual machine monitor white paper,” 2015,

Accessed on: Sep. 20, 2020. [Online]. Available:

https://www.intel.com/content/www/us/en/

processors/page-modification-lo gging-vmm-white-

paper.html

SASKO RISTOV is currently a Postdoctoral University Assis-

tant with the University of Innsbruck, Innsbruck, Austria. His

research interests include performance modeling, optimiza-

tion, scheduling, and resource management in distributed

and parallel systems. He received the Ph.D. degree from Sts.

Cyril and Methodius University, Skopje, North Macedonia, in

2012. He is the corresponding author of this article. Contact

him at sashko@dps.uibk.ac.at.

THOMAS FAHRINGER is currently a Full Professor of com-

puter science heading the Distributed and Parallel Systems

Group, University of Innsbruck, Innsbruck, Austria. His research

interests include software architectures, programming para-

digms, compiler technology, performance analysis, and predic-

tion for parallel and distributed systems. He received the Ph.D.

degree in 1993 from the Vienna University of Technology,

Vienna, Austria. Contact him at tf@dps.uibk.ac.at.

May/June 2021 IEEE Internet Computing 29

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 

https://www.intel.com/content/www/us/en/processors/page-modification-lo gging-vmm-white-paper.html
https://www.intel.com/content/www/us/en/processors/page-modification-lo gging-vmm-white-paper.html
https://www.intel.com/content/www/us/en/processors/page-modification-lo gging-vmm-white-paper.html


RADU PRODAN is currently a Full Professor of distributed

systems with the Institute of Software Technology, University

of Klagenfurt, Klagenfurt, Austria. His research interests

include performance, optimization, and resource manage-

ment tools for parallel and distributed applications. He

received his the Ph.D. degree in 2004 from the Vienna Univer-

sity of Technology, Vienna, Austria. He is a member of IEEE.

Contact him at radu@itec.aau.at.

MAGDALENA KOSTOSKA is currently an Associate Profes-

sor with the Sts. Cyril and Methodius University, Skopje,

North Macedonia. She received the Ph.D. degree from the Ss.

Cyril and Methodius University in 2014. Her research interests

include cloud computing and Internet of Things. Contact her

at magdalena.kostoska@finki.ukim.mk.

MARJAN GUSEV is currently a Full Professor with the Univer-

sity Sts. Cyril and Methodius, Skopje, North Macedonia. He

received the Ph.D. degree from University of Ljubljana, Ljubl-

jana, Slovenia, in 1992. His research interests include Internet

of Things, cloud computing, and eHealth solutions. Contact

him at marjan.gushev@finki.ukim.mk.

SCHAHRAM DUSTDAR is currently a Full Professor of Com-

puter Science heading the Distributed Systems Group, TU

Wien, Vienna, Austria. His work focuses on Internet technolo-

gies. He is an IEEE Fellow, a member of the Academia Euro-

paea, and an ACM Distinguished Scientist. Contact him at

dustdar@dsg.tuwien.ac.at.

30 IEEE Internet Computing May/June 2021

VIEW FROM THE CLOUD

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 14:12:16 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


