
1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 1

Fine-grained Elastic Partitioning for Distributed
DNN towards Mobile Web AR Services in the 5G Era

Pei Ren, Xiuquan Qiao, Yakun Huang, Ling Liu, Fellow, IEEE, Calton Pu, Fellow, IEEE,
and Schahram Dustdar, Fellow, IEEE

Abstract—Web-based Deep Neural Networks (DNNs) enhance the ability of object recognition and has attracted considerable
attention in mobile Web AR and other services. However, neither performing the DNN inference on mobile Web browsers locally nor
offloading computations to the cloud can strike a balance between accuracy and efficiency; generally, rude methods are often
accompanied by unsatisfactory accuracy. Collaborative approaches seem to fill this gap by coordinating the distributed hierarchical
computing resources, especially in the 5G era, but it still faces challenges in the current solutions, such as the lack of (1) full use of 5G
resources for the one point DNN computation partitioning schemes; (2) fine-grained branching mechanism; (3) efficient partitioning
method; and (4) multi-objective optimization. To this end, we present the fine-grained elastic computation partitioning mechanism for
distributed DNN in 5G networks. First, we elaborate two collaborative scenarios. Second, we study the DNN branching mechanism at
layer granularity. Next, we propose a DNN computation partitioning algorithm based on deep reinforcement learning. Finally, we
develop a mobile Web AR application as a proof of concept. The experiments were conducted in an actually deployed 5G trial network,
and the results show the superiority of this collaborative approach. The common theme is, under the premise that Quality of Service
(QoS) is satisfied, to balance multiple interests by orchestrating computations across heterogeneous computing platforms.

Index Terms—Mobile service computing, distributed deep neural networks, 5G networks, augmented reality, reinforcement learning

F

1 INTRODUCTION

The emergence of Augmented Reality (AR) [1] services
greatly changes the way we interact with the real-world.
Web-based AR (Web AR) in particular, which promises a
lightweight and cross-platform AR experience that is chal-
lenging for current App-based approaches, shows the great
potential of AR on mobile devices [2], [3]. Many factors con-
tribute to the phenomenal growth of AR. The boom of Deep
Neural Networks (DNNs) in the field of computer vision is
one of the most important, as it provides an accurate object
recognition solution which is the key for AR subscribers to
enter and interact with the mixed-reality world. Web-based
DNN has therefore recently become a research hotspot [4].

However, current DNN-based object recognition on mo-
bile Web browsers leaves an unsatisfactory choice, either
(1) perform DNN inference on the mobile Web browser,
especially a built-in browser, with an unacceptable response
latency and energy consumption due to its limited com-
puting capability, or (2) offload DNN computations to the
cloud, leading to increased deployment costs caused by the
occupation of bandwidth and computing resources and also
a degradation of the user experience in unstable networks.

To balance the interests of both service subscribers (i.e.,
maximized user experience) and provider (i.e., minimized
deployment overhead), it is natural to consider the use of
a collaborative computing approach. But the conventional
collaboration between the end-user and cloud still faces
significant challenges. Since AR is a computation- and data-
intensive service, this kind of cloud-assisted approach will
easily result in slowdowns due to the service congestions
under high concurrency.

Fortunately, the “network edge” is emerging as another
potential collaborator, which promises not only to alleviate

concurrency of the central site in a distributed manner
but also improve service performance due to the close
distance to the subscribers. More generally, edge devices
can refer to all equipments that can provide computing
services between the data source and the destination [5].
With the deployment of the infrastructure for ubiquitous
Mobile Edge Computing (MEC) [6] and Device-to-Device
(D2D) [7] communication support in the 5G era, this “edge”-
based collaborative approach will be a promising solution
for mobile Web AR services.

However, employing this collaborative approach over
a computing hierarchy is still challenging for the practical
application of mobile Web AR in 5G networks:

• The basis of collaborative computing is the computa-
tion partitioning. The state-of-the-art approach Neu-
rosurgeon [8] was proposed for collaborative DNN
inference but with only one partitioning point (i.e.,
coarse-grained partitioning), which fails to take full
use of 5G resources: for optimal inference latency or
energy saving, it will degenerate into a cloud-only
solution in the experiment. 5G technologies promise a
revolutionary network experience, a more flexible ap-
proach is therefore needed. Specifically, by adopting a
fine-grained mechanism with multi-partitioning points,
computation-intensive DNN layers will be assigned to
edge or cloud server for inference acceleration while
others will be completed on the mobile Web browsers
to reduce the system deployment cost. A comparison
of the DNN inference process is illustrated in Figure 1.
However, this has not yet been studied throughly.

• The features learned at the early stage of a DNN are suf-
ficient to provide credible recognition for simple sam-
ples [9]. But for current coarse-grained DNN branch-

1939-1374 ©2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

https://www.ieee.org/publications/rights/index.html

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 2

input output

L3L2 Li Ln

L1 Ln-1LiL2

Ln-1

Ln

.

.

.

L3

L1

.

(a) Coarse-grained DNN partitioning

input outputL1 L3L2 Ln

L1 L3L2 Li Ln

L1 Ln-1LiL2

Ln-1Li

Ln-1

Ln
.

.

.

.

.

.

L3

(b) Fine-grained DNN partitioning

Fig. 1. Comparison of the DNN inference process. (a) Current coarse-grained partitioning approach is based on only one partitioning point, which
divides the DNN computations into mobile Web and remote cloud for execution. Although this partitioning point can be dynamically selected in
different scenarios, it still lacks flexibility. (b) 5G network provides the basis for fine-grained elastic partitioning for distributed DNN. By adopting
multi-partitioning points, the computation of each DNN layer will be independent of its “neighbors” to be distributed to the mobile Web (red), network
edge (green), and remote cloud (blue). For example, assume that performing the Li DNN computation on the mobile Web browser takes a lot of time
and energy, generally, this DNN computation layer/block can be easily assigned to the network edge or remote cloud by our proposed fine-grained
partitioning approach. However, this is impossible with a coarse-grained partitioning approach.

L1

Potentional
Exit Point

L2

E1

L3 L4 L5 L6 Ex

Redundant Computationsinput

A B C D E
Class

A B C D E
ClassClass

A B C D E

Satisfied results,
but lack of exit.

Prediction results
at final exit.

Unsatisfied results
at current exit.

(a) Coarse-grained branching mechanism

L1 L2

E1

L3 L4 L5 L6 Ex

input

A B C D E
ClassClass

A B C D E

Satisfied results, DNN
inference terminate.

Prediction results
at final exit.

Unsatisfied results
at current exit.

E3 E4Exit Point

E2

A B C D E
Class

(b) Fine-grained branching mechanism

Fig. 2. Comparison of the DNN branching mechanism. (a) The coarse-grained DNN branching mechanism obviously causes redundant computa-
tions. For a pre-defined recognition accuracy threshold, although the intermediate result already meets the accuracy requirements after the process
of the first three DNN layers for the given input sample, the subsequent DNN processing still needs to be completed to obtain the recognition
results. (b) However, for our proposed fine-grained DNN branching mechanism, once the inference result of the intermediate DNN layer satisfies
the recognition requirements, the DNN inference process will be terminated, which will effectively reduce the redundant computations.

ing mechanism [10], the inference processing can only
be terminated when the next exit branch is reached,
although the intermediate results already satisfy the
recognition requirement as shown in Figure 2. Obvi-
ously, this will lead to redundant computations, and
thus increase the occupation of computing resources
and latency of the service response. In contrast, a
fine-grained DNN branching mechanism can therefore
significantly improve the inference efficiency as the
recognition result can be returned in a timely fashion.

• Furthermore, for layer granularity DNN computation
partitioning, because each layer is independent of the
others, which will then result in an explosive growth
in the partitioning decision space. For example, there
are only 57 potential partitioning points for ResNet-
56 when adopting Neurosurgeon, but will be about
5.23 × 1026 partitioning solutions within the “Device-
Edge-Cloud” collaborative scenario for layer granular-
ity DNN partitioning approach with multi-partitioning
points. Current partitioning schemes rely on the enu-
merative approach to get the optimal decision, but
obviously, a more efficient approach will be needed.

• Current collaborative approaches focus on the DNN
inference latency or mobile energy consumption sep-
arately in the computation partitioning process. How-
ever, AR service subscribers are sensitive to response
latency as well as energy consumption. Performing
DNN inference on mobile Web browsers, especially
built-in browsers, is more difficult than the App-based
approaches, due to their limited computing efficiency
of JavaScript. Therefore, both two factors need more
attention in mobile Web AR services.

Given these concerns, it is desirable that a collaborative
computing paradigm provide a win–win service provision-
ing solution in the 5G era. To this end, we first focus on the

two collaborative computing scenarios (i.e., “vertical”–the
collaboration between hierarchy computing resources and
“horizontal”–D2D-based resources collaboration) for mobile
Web AR services in 5G networks. Then we discuss the
architecture design of the enhanced Elastic Computation
Offloading (ECO) decision-making mechanism, which takes
into account the network performance, computing capabil-
ity, and customized requirements, simultaneously. Elastic
computation partitioning relies on the fine-grained design
of the DNN architecture. We next study the branching mech-
anism in different DNN architectures, and analyze the per-
layer latency and energy consumption prediction models
as well, which provide the basis for the multi-objective
optimization. An efficient DNN computation partitioning
approach is another core component for a distributed pro-
cessing platform. Finally, we propose a DNN computation
partitioning solution based on reinforcement learning in
order to address the problem of the explosive growth in
the partitioning decision space.

Experiments have been conducted within both “vertical”
and “horizontal” computing scenarios for mobile Web AR
services in 5G networks. The prototype demonstrates an
improvement of DNN inference latency by about 72.17%
and 47.02%, and 0.875× system throughput improvement
on average, also 66.91% mobile energy saving for different
DNN architectures (i.e., AlexNet, VGGNet-16, ResNet-32,
and MobileNet-V1) with the given partitioning decisions.

The main contribution lies in the following aspects:
• Prove the availability of collaborative computing mechanism

in mobile Web AR services. Where can the DNN compu-
tations be completed? We detail the first collaborative
computing scenarios for mobile Web AR in the 5G era,
which is the basis for the fine-grained DNN compu-
tation partitioning. But, more generally, this can also
contribute to other collaborative computing problems

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 3

especially in distributed systems over 5G networks.
• Design of the fine-grained DNN architectures. (1) To im-

prove the inference efficiency, we re-design the branch-
ing mechanism for DNN with the lowest inference
cost (i.e., only exits are added to each branch). Unlike
the status quo solutions, this fine-grained branching
approach will also effectively reduce the redundant
DNN computations. (2) On the basis of factor analysis
of the device computing capability and the DNN lay-
ers’ configurable parameters, we then present per-layer
inference latency and energy consumption prediction
models that give basic insights into the on-demand real-
time neural network computation partitioning.

• DNN partitioning algorithm. (1) We propose the Intent-
oriented Offloading algorithm (IoRLO) based on rein-
forcement learning, in which Deep Deterministic Policy
Gradient (DDPG) is used to learn the optimal partition-
ing decision, in order to address the challenge of the
explosive growth of the decision space. The core mecha-
nism of IoRLO can also provide valuable experience for
other decision-making problems. (2) Besides, we formu-
late a multi-objective optimization problem to meet the
user’s requirements for inference latency and energy
consumption simultaneously in the DNN computation
partitioning process. Unlike the status quo solutions,
our approach is more flexible based on the fine-grained
DNN computation partitioning mechanism.

• Mobile Web AR application. We examine the performance
of our proposed partitioning solution for Distributed
DNN (DDNN) for mobile Web AR applications in the
“vertical” and “horizontal” collaborative computing
scenarios over the actually deployed 5G networks1.

The remainder of this paper is organized as follows.
Section 2 presents the two collaborative scenarios for mobile
Web AR in 5G networks, followed by the overview of the
partitioning decision-making system. Section 3 gives the
per-layer characteristics prediction models. An analysis of
IoRLO is given in Section 4. Section 5 presents the exper-
imental analysis. Section 6 reviews the related literature.
Section 7 concludes the paper.

2 OVERVIEW OF THE ARCHITECTURE

The collaborative mechanism provides opportunities for
flexible service provisioning. For clarity, it is important
to detail the distributed computing scenario designed for
mobile Web AR over 5G networks before the analyzation of
the DNN computation partitioning method.

Typically, an AR system pipeline consists of three com-
ponents: object recognition, object tracking, and annotation
rendering [3]. When the AR subscriber targets the camera
at the object, the AR system first needs to know what the
user is focusing on (i.e., environment perception). That is,
object recognition, which provides a key for subscribers to
enter the mixed-reality world, and therefore, is one of the
most important components in AR systems. The traditional
object recognition methods need to first extract the local
feature points [11], [12], [13] from the video frames captured

1. The 5G trial network was supported by China Mobile Communi-
cations Group Beijing Co., Ltd. and Huawei Technologies Co., Ltd.

by the camera in real time, and then complete the recog-
nition process through object retrieval [14]. Remarkably,
the performance of this traditional recognition mechanism
is greatly limited by the ability of local feature extraction
and object retrieval techniques. With the boom of artificial
intelligence, deep learning technologies have been widely
used in the field of computer vision (such as object detec-
tion, recognition, and segmentation). By adopting the DNN
technologies into the augmented reality application, it will
be able to greatly improve the accuracy and generalization
ability of object recognition (i.e., environment perception),
thereby improving the AR application performance.

The rapid development of 5G network technologies
and large-scale commercial deployment are major factors
that mobile Web AR can be achieved [15]. Specifically, AR
is a kind of delay-sensitive and computationally-intensive
services. However, mobile Web platforms (especially built-
in Web browsers) often require additional computing re-
sources to complete the AR processes due to the limited
computing capability [16]. From the communication per-
spective, 5G networks promise even gigabyte-level band-
width and millisecond-level network delay, which will
greatly optimize the data transmission in the network and
thus provide the basis for collaborative computing. From
the computing perspective, both the ubiquitous edge servers
and surrounding mobile devices can provide AR subscribers
with additional computing resources. In this paper, we
explore the orchestration of the networking and computing
resources in 5G networks for adopting the distributed DNN
in mobile Web AR as a proof of concept.

2.1 Collaborative Scenarios in 5G Networks
In addition to the skip-type improvement of networking
performance, the emerging 5G networks also introduce a
variety of promising features, such as the pervasive edge
server deployment and D2D communication support. How-
ever, the evolution of both computing and communication
paradigms bring Web-based services new opportunities as
well as challenges. To this end, we propose the MEC-based
and D2D-based computing solutions directed at the prob-
lem of collaborative service provisioning. More generally,
the two collaborative modes can also contribute to other
types of services with heavy computation and communica-
tion demands, especially in the 5G era.

As shown in Figure 3a, the computing platform in
the “vertical” scenario mainly consists of the end device,
network edge, and cloud. All the computing and network
resources along the path between the end device (i.e., the
data source) and the cloud data center can be defined as an
“edge” [5]. For simplicity, we refer the micro data center that
is deployed on the 5G base station as the network edge.

The D2D-based collaborative computing mode is an-
other important and promising one, attributable to the
support of D2D communication technology in 5G networks
and the increasing popularity of intelligent devices [17]. The
D2D-based mobile Web AR implementations have prospec-
tive value for a wide range of applications, such as enter-
tainment (e.g., multiplayer games [18]) and training [19].
Figure 3b shows this collaborative computing scenario.

Based on the discussions above, the question then arises
as to how to balance multiple interests by leveraging the dis-

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 4

End Device

5G Base Station

Edge Servers

Cloud
Servers

Private/Public Cloud

(a) MEC-based Collaboration

Private Cloud Public Cloud

Cloud
Servers

5G Base Station

Client
Client

Collaborator

Candidate
Candidate

CollaboratorCellular
Communication

D
ata La

ye
r

C
o

n
tro

l Laye
r

WLAN
Communication

Customer Premise
Equipment (CPE)

Local Controller
(Router)

Data Link

Service Control
Signal

Computation
Control Signal

Service Link

(b) D2D-based Collaboration

Fig. 3. Two collaborative computing scenarios for mobile Web AR in the 5G era.

tributed and heterogeneous resources. Obviously, a flexible
computation scheduling approach is thus necessary.

2.2 Why Elastic Computation Offloading is Needed
The conventional offloading paradigms are proposed for
mobile cloud computing to solve the problem of Quality of
Service (QoS) degradation caused by insufficient computing
resources of the user device. However, these efforts, such
as MAUI [20] and CloneCloud [21], were all designed to
offload as many computations as possible to the cloud,
for the sake of improved performance. Service providers
therefore had to pay hefty deployment costs to support the
operation of the business.

Mobile edge computing as a revolutionary paradigm has
been widely recognized. But the offloading decision-making
process also becomes more difficult for the following rea-
sons: (1) Complex computing scenario. Computations can
be completed not only in the cloud or locally, but also
can be assigned to various distributed and heterogeneous
computing platforms. (2) Dynamic network situation. The
communication situation will also be more complicated and
changeable due to the increase in networking equipments.
(3) Diverse service requirements. Both the user experience
and service deployment costs need to be considered.

Fortunately, the computing capability of mobile devices
is now increasing rapidly: more and more complex com-
putations can be completed locally. With the breakthrough
of wireless transmission in 5G networks, the connection
between network edge devices (including these user end
devices) will be more closer. An elastic computation offload-
ing mechanism relies on efficient network communication
capability, which can realize dynamic decision-making in
changing application environment, and is expected to bal-
ance the interests of both the user and service provider.
Specifically, under the premise that QoS (it depends on
the service requirements, and here is just a generalized
concept) is satisfied, by coordinating computations across
heterogeneous platforms, the crowdsourced computing ca-
pability will therefore effectively alleviate the computational
pressure on the central site in the distributed manner.

3 FINE-GRAINED DEEP NEURAL NETWORKS

Features learned at the early stage of a DNN are sufficient
to provide credible result for simple samples. By placing
early exits at the appropriate position, this DNN architecture
can obviously reduce the inference time and simultaneously
reduce the computational cost [10]. This section focuses on
the improvement of the branch-based DNN architecture.

3.1 Design of the Branch-based DNN Architecture

Aiming at the fine-grained computation partitioning and
scheduling, we first explore the DNN branching mechanism
as follows. Figure 2 (see Supplementary Material) illus-
trates the architecture improvement of DNN; here we use
the AlexNet, VGGNet-16, ResNet-32, and MobileNet-V1 as
examples. Early exits have the potential to provide cred-
ible predictions and the number of input samples exiting
from each branch is illustrated in Table 1 (see Supplemen-
tary Material). Similarly, we use entropy (i.e., entropy(y)
=
∑
c∈C yc log yc) to measure the confidence of each side

branch [10]. When the classification result is sufficient (i.e.,
entropy(y) < Thrshld) for prediction, the output will then
be returned immediately as the final result without further
inference processing. Here y refers to the probabilities of
all possible class labels C, and Thrshld indicates the pre-
defined threshold of side branches.

This lightweight branching and processing mechanism
for DDNN can effectively improve the inference efficiency
and can also optimize the system load, but it is still affected
by the specific branch design mechanisms. Because this is
beyond the scope of this paper, here we only give a brief
and necessary discussion about it; and only use the dense
DNN branch structure with the FC layer for demonstration.

• The density of DNN branches (i.e., how the early exit points
are determined): The introduction of DNN early exit
branches will undoubtedly cause additional inference
processes in the case where the prediction results are
not credible enough, especially when the fine-grained
DNN branch design is intensive, the complex input

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 5

samples will continuously activate multiple branch in-
ference process, which is ineffective for prediction and
will lead to negative effects. While in practical appli-
cations, the determination of early exit points should
depend on multiple factors. For example, when all the
input samples are more complex, by avoiding the early
stage DNN branches can reduce the unnecessary com-
putations; while when service providers have lower
requirement for prediction accuracy, those early stage
DNN branches will help improve the system inference
efficiency. Moreover, in a distributed collaborative com-
puting scenario, the DNN service computational com-
plexity can also be reduced by adjusting the inference
process (i.e., execution mechanism). Assume that the
DNN computations are partitioned into several parts as
shown in Figure 4, here only certain side branches will
be activated. Specifically, before the intermediate results
are transmitted between two computing platforms, the
subsequent exit branch then will be activated, if the
features learned are sufficient for prediction, the DNN
inference process will be terminated and return the
results to the client immediately.

E2

Network Edge CloudEnd Device

E5 E8

Ex

Network Edge

E1 E3 E4 E6 E7 E9

input

Fig. 4. Execution mechanism of branch-based DNN. When the interme-
diate result is transmitted between different platforms, will the branch
exits be activated first to determine whether it is necessary to perform
the subsequent DNN computations.

• The complexity of each branch: On the other side, the
complexity of the introduced branch will also affect
the inference efficiency; Complex DNN branches often
lead to increased inference response latency, energy
consumption, and storage occupation. For example,
the branches in BranchyNet adopts the structure of
n× Convolutional layer + Fully-Connected layer, un-
doubtedly the introduction of convolution operation
will increase the complexity of the DNN branch; while
our proposed branching mechanism requires only one
Fully-Connected layer for each branch, which is neces-
sary to be used for early exit. By comparison, this cost is
still acceptable when compared with the other complex
branching mechanisms. In practice, the complexity of
the branch structure can be customized by the devel-
oper based on specific application requirements.

Theoretically, this collaborative method can achieve a
balance of DNN inference accuracy and efficiency, that is,
by dynamically adjusting the prediction accuracy threshold,
so as to meet the different inference efficiency requirements.
Partitioning schemes discussed in this paper are for the
DNN computations scheduling, the prediction accuracy of
the system is not directly related to it, but depends on
the accuracy threshold predefined by the service provider;
this partitioning mechanism can be directly applied to the
current mature DNN backbone networks without addi-
tional modification (if early exit is not considered). On the
other hand, compared with conventional methods, different

branch-based DNN training modes will also have different
effects on the DNN prediction accuracy. Specifically, if the
branch parameters are trained directly based on the pre-
trained DNN model for early exit, the parameters of the
DNN backbone network remain unchanged, and the pre-
diction accuracy of the system depends on the designate
of the threshold (i.e., the method we used in this paper);
while if all the parameters of the branch neural network
are retrained, these early exit points may play the same
role as the softmax in GoogLeNet [22], which can achieve
more efficient gradient transmission, thereby affecting the
prediction accuracy of the entire DNN model, but this is not
within the scope of our discussion.

3.2 Per-Layer Prediction Models
For the elastic computation partitioning, we give two pre-
diction models on DNN inference latency and energy con-
sumption by analyzing the per-layer input and/or output
size (although different DNN layers have different floating-
point operations, their inference efficiency is not propor-
tional to this value [23]) and capabilities of the comput-
ing platforms. The performance measurement is conducted
with different neural network architectures at layer level us-
ing various computing platforms (due to the limited data ac-
cess on iOS, we only used mobile devices with Android OS
for testing). To avoid the impact of architectural differences
between computing platforms on the DNN performance of
feedforward, we introduce a “standard” approach using an
edge server (IBM System x3650 M4, Intel Xeon E5-2600 v2 @
2.0 GHz) as a measurement benchmark to analyze the device
computing capability [24]. Moreover, only the mobile device
energy consumption is measured by collecting the idle and
active status using Power Monitor AAA10F.

Specifically, our obtained DNN layer characteristics
models are detailed below: (1) for convolution, pooling,
and fully-connected layers, both the inference latency and
energy consumption prediction model can be expressed as
prediction = d × (α × input + β × output + γ); (2) the
prediction model of ReLU and normalization layers only
considers the computing capability and input feature size,
that is, prediction = d× (α× input+ γ), since these layers
have fewer configurable parameters.

The parameters for the DNN layer characteristics pre-
diction models are listed in Table 1. Besides the linear
regression-based prediction models analysis, we also con-
sider logistic-based and polynomial-based approaches. But
the linear-based approach perform better than others, with
lower prediction errors for both DNN inference latency and
energy consumption, that is, on average 13.25% and 49.35%
lower compared to logistic-based approach, and 83.13% and
85.28% lower compared to polynomial-based approach.

Although the system status monitoring on the mobile
device may increase the energy consumption, it is negligible
since the energy required is small and the monitoring oper-
ation is only conducted periodically. Moreover, the fitting
processing of the proposed prediction models is completed
on the edge/cloud server automatically, which can be up-
dated effectively by collecting the feedforward performance
on the different computing platforms in real time.

Based on the analysis and discussion above, the pro-
posed per-layer latency and energy consumption prediction

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 6

TABLE 1
Parameters for the DNN Characteristics Prediction Models

Layer
Type

Inference Latency Models Energy Consumption Models
αl βl γl αe βe γe

Conv 6.240e−5 1.074e−4 −1.938e+0 9.240e−7 1.874e−6 3.810e−2

ReLU 1.534e−5 – 4.844e−1 1.435e−6 – 2.881e−1

Pooling 1.136e−5 1.313e−6 −1.695e+0 1.410e−6 1.312e−7 3.572e−1

Norm 5.182e−5 – 6.497e−1 5.187e−6 – 5.991e−1

FC 9.163e−5 3.990e−4 1.172e+0 9.213e−6 4.012e−5 1.125e+0

* We use l and e as subscripts to identify α, β, and γ in DNN
inference latency and energy consumption prediction models, and
α, β, and/or γ are the parameters used by the above prediction
models as detailed in subsection 3.2.

models provide basic insights into how to achieve fine-
grained DNN computation partitioning. These models also
make their predictions based on the configurations without
execution in advance, and therefore can be directly applied
to different DNN architectures as a generalized approach.

4 THE ELASTIC PARTITIONING METHOD

Based on the discussion above, the DNN computation par-
titioning method should be responsible for: (1) adaptive
decision-making in accordance with the different capabili-
ties of the computing platforms and mobile network perfor-
mance; and (2) striking a balance between user experience
and system deployment cost.

4.1 Problem Formulation

In this part, we consider the two typical computing scenar-
ios in the 5G era as mentioned before (see subsection 2.1).

Our object is a win–win situation, that is, by leveraging
the newly emerged computing and communication tech-
nologies in 5G networks, the demands from the two conflict-
ing parties (i.e., AR service subscribers and provider), viz.
user experience maintenance and deployment cost saving,
are expected to be satisfied simultaneously. The analyses of
the system for these two scenarios are given below.

4.1.1 “Vertical” Computing Scenario
As shown in Figure 5, the overall system processing model
consists of two parts, the performance monitoring module
and the service provisioning module.

SMEC & DNN ModelDNN Model
(.wasm) & SMEC

1. Service request

2. Service response

dT dE

Network
Performance

R
e
m

o
te

 C
lo

u
d

 S
e
rv

e
r Computing

Capability

Energy
Prediction

D
N

N
 M

o
d

e
lsLatency

Prediction

Decision-
making Sys.IoRLO

Web AR Application

Infrastructure

DNN Inference
Processing

DNN Model
Encoding

(WebAssembly)

Docker Engine

N
e
tw

o
rk

 E
d

g
e
 S

e
rv

e
r

M
o

b
ile

 W
e
b

 B
ro

w
se

r

BTE，BTE，LTE BEC，BEC，LEC

Fig. 5. MEC-based collaboration pipeline for mobile Web AR services.

Performance Monitoring Module. An additional thread is
maintained for periodically monitoring the performance
of the network and reporting the computing capability.

Specifically, we denote by B
U/D
TE the uplink and downlink

bandwidths (mbps) between the Terminal and Edge server,
and by BU/D

EC the bandwidths between the Edge and Cloud
servers. Similarly, we denote by L = {LTE, LEC} the end-
to-end latency (ms) between these three computing plat-
forms. Only if the detected data exceeds the pre-defined
thresholds will it be updated to the cloud. The computing
capabilities (GHz) of the mobile terminal device dT and
network edge server dE are also collected during the service
request phase.

Service-oriented Processing Pipeline. After receiving a ser-
vice request, the cloud performs the computation partition-
ing using the proposed IoRLO algorithm based on the col-
lected network performance, capabilities of the computing
platforms (i.e., d = {dT, dE, dC}, here we denote by dC
the computing capability of the cloud server), latency and
energy consumption prediction models, DNN architecture,
and the proposed IoRLO algorithm. Then the target DNN
model and the computation partitioning decision will be
returned to the user and edge server. And we denote by
G = {G1, G2, . . . , Gn} the DNN blocks. For example, the
number of blocks in the branch-based AlexNet, VGGNet-
16, ResNet-32, and MobileNet-V1 architectures is 10, 15,
17, and 6 as shown in Figure 1 (see Supplementary Ma-
terial). The granularity of neural network segmentation is
determined by the service provider during the DNN model
design phase. Moreover, we denote by Gin

i and Gout
i the

size (Kilobyte) of input and output of the i-th block, respec-
tively, and denote by S = {S1, S2, . . . , Sn} the obtained
partitioning decision in the MEC-based computing scenario,
where Si ∈ {1, 2, 3}. Explicitly, Si = 1 indicates that the i-
th DNN block is assigned to execute on the mobile Web
browser, Si = 2 means it will be completed on the edge
server, otherwise, it will be processed on the cloud, that is,
Si = 3. Worth mentioning is that to perform inference on
the mobile Web platform, the DNN models will be encoded
in the WebAssembly2 format on the edge server in advance.

Based on the proposed per-layer characteristics predic-
tion models, we can therefore derive the inference latency
of the i-th DNN block on computing platform X as TXi−cp,
X ∈ {T,E,C}, i ∈ {1, 2, . . . ,n}. Similarly, the per-block
inference energy consumption is defined as ET

i−cp, here we
only focus on the overhead of mobile device.

Considering the layer-by-layer DNN inference mecha-
nism, the i-th neural network block can only be executed
after the computing platform receives its input (i.e., out-
put of the previous block or the raw image for the first
DNN block) completely; and only after the current block
is completed will its output be sent to the next block.
The detailed modeling of the cost of inference latency and
energy consumption in the DNN computation partitioning
is then illustrated in what follows.

Cost of Local Computing. When the i-th neural network
block is assigned to execute on the mobile device, the cost
of latency can be generally divided into two parts, the part
for receiving the input TT

i−cmr and the part for inference

2. WebAssembly [25] is designed as a computational acceleration
approach by encoding procedures (e.g., C, C++) into a size- and load-
time-efficient binary format, which can be executed on the Web directly.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 7

processing TT
i−cp. For a given partitioning decision, the total

cost of latency for inference on the mobile device is

TT
total =

n∑
i=1,Si=1

(TT
i−cp + TT

i−cmr). (1)

Specifically, only the previous result needs to be obtained
from other computing platforms, then it will cause the
transmission overhead. Moreover, we assume that the raw
image has already been obtained, and thus the transmission
latency will also be neglected in the case S1 = 1.

In addition to the energy consumed by carrying out
DNN inference on the mobile Web browser, the data trans-
mission will also consume mobile energy ET

i−cm, which
includes not only receiving input but also sending the
output to other platforms. Specifically, if the input comes
from edge server, the TT

i−cmr will be Gin
i /B

D
TE +LTE, and if

it is from remote cloud, the data receiving latency needs to
increase Gin

i /B
D
EC +LEC; similarly, the data sending latency

to the edge server and remote cloud is Gout
i /BU

TE+LTE and
Gout
i /BU

TE +Gout
i /BU

EC + LTE + LEC, respectively.
Here we only consider the energy consumption of mo-

bile terminal device ET
total, with

ET
total =

n∑
i=1,Si=1

(ET
i−cp + ET

i−cm). (2)

Moreover, we denote by r5G the available data rate, and by
P

U/D
5G = α

U/D
5G · rU/D5G + β5G (the parameters αU

5G and αD
5G

are set to be 65 mW/Mbps and 6.5 mW/Mbps, respectively;
and β5G is set to be 11475.97 mW) the uplink and downlink
transmit power in 5G networks [26]. Therefore the mobile
energy consumed during the data transmission is

ET
i−cm = TT

i−cmr · PD
5G + TT

i−cmt · PU
5G

Cost of On-Edge Computing. Similarly, when the i-th DNN
block is assigned to execute on the edge server, the cost of
processing latency is given by

TE
total =

n∑
i=1,Si=2

(TE
i−cp + TE

i−cmr). (3)

Also, the input (i.e., the output of the previous block)
source of the i-th DNN block can be classified into three
categories, that is, mobile device, network edge, and cloud
server. When the data need to be transfered from mobile
device, then the transmission latency is Gin

i /B
U
TE + LTE;

and the data receiving latency from the remote cloud is thus
Gin
i /B

D
EC + LEC.

When the first DNN block is specified to be executed by
the edge server, the raw image needs to be transmitted from
the mobile device as the input to this block. Therefore, the
mobile energy consumption caused by image transmission
is given by

EE = EE
1−cmr = (

Gin
1

BU
TE

+ LTE) · PU
5G. (4)

Cost of On-Cloud Computing. In the case where the com-
puting task is assigned to the cloud for execution, we define
the cost of inference latency as follows:

TC
total =

n∑
i=1,Si=3

(TC
i−cp + TC

i−cmr). (5)

Similarly, the per-block input transmission latency
TC
i−cmr from the mobile device and edge server is
Gin
i /B

U
TE + Gin

i /B
U
EC + LTE + LEC and Gin

i /B
U
EC + LEC,

respectively.
If S1 = 3, the raw image needs to be transmitted

from the mobile device to the remote cloud, therefore the
energy consumption of the mobile device caused by the data
transmission is EC = EC

1−cmr, with

EC
1−cmr = EE

1−cmr + (
Gin

1

BU
EC

+
LEC

2
) · PU

5G. (6)

Cost of Result Receiving. In addition, the inference result
needs to be finally returned to the user; and the result trans-
mission latency Tresult depends on where the n-th DNN
block is performed. In detail, the latency of result transmis-
sion from edge server and remote cloud is Gout

n /BD
TE +LTE

and Gout
n /BD

TE +Gout
n /BD

EC +LTE +LEC, respectively. Sim-
ilarly, the energy consumption of mobile device for service
result receiving is defined as Eresult = Tresult · PD

5G.
In summary, for a given DNN computation partitioning

decision, the total cost of the inference latency T and mobile
energy consumption E is defined as the sum of the above
four types of costs. It is worth noting that the object of
our partitioning mechanism is a win–win situation, besides
the aforementioned user experience-related requirements,
we also considered the deployment overhead, especially,
computing cost, from the service provider’s perspective. For
simplicity, we take the percentage of computations com-
pleted at the network edge and the remote cloud platforms
as the mobile Web AR service deployment overhead, that
is, Dcp =

∑n
i=1,Si 6=1 Si

/
n. More detailed deployment over-

head optimization problems will be discussed in our future
works, for example, taking into account the computing
capability and rental differences between the network edge
and the remote cloud servers.

Based on the above discussion, we formulate the op-
timization problem that aims at minimizing the DNN in-
ference latency, mobile energy consumption, and service
deployment overhead by optimizing the computation parti-
tioning decision. Specifically, our formulated DNN compu-
tation partitioning problem is given by:

P : min (T + ηMEC
1 · E︸ ︷︷ ︸

Mobile Web User

+ ηMEC
2 ·Dcp︸ ︷︷ ︸

Service Provider

).

Note that the above weighted objective function is able to
balance the DNN inference latency and mobile energy con-
sumption (for service subscriber) and deployment overhead
(for service provider) dynamically by adjusting the pre-
defined weighting factor ηMEC

1 and ηMEC
2 .

4.1.2 “Horizontal” Computing Scenario
The system processing model for D2D-based computing
scenario is illustrated in Figure 6, which significantly differs
from the aforementioned “vertical” computing scenario but
also includes two parts.

Device Monitoring Module. This part is responsible for
the monitoring of (1) the availability of all candidate col-
laborators H = {H1, H2, . . . ,Hm}; (2) the computing ca-
pability of both end-user device dU and other collabora-
tors dH = {dH1

, dH2
, . . . , dHm

}; and (3) the communication

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 8

C
an

d
id

at
e
s

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Pro cessing

Operating System

DNN Inference
Processing

Operating System

DNN Inference
Processing

OS (Android)

Web Browser

DNN Inference
Processing

Web AR App.

E
n

d
-u

se
r

D
e
vi

ce

C
a
n

d
id

a
te

 S
e
le

ct
io

n

C
o

m
p

u
ta

ti
o

n
 P

a
rt

it
io

n
in

g

C
o

n
tr

o
lle

r

2. Collaborative Computing

1. Contextual Analysis (CD, BDD, and LDD)

Fig. 6. D2D-based collaboration pipeline for mobile Web AR services.

characteristics, that is, the end-to-end data transmission
bandwidth BH = {BH1

, BH2
, . . . , BHm

} and the network
latency LH = {LH1

, LH2
, . . . , LHm

} between the end-user
and other collaborators. Here we denote by m the number
of available collaborators in a D2D network. Considering
the fluctuations in the network performance and load on
the computing platform, the local controller which is de-
ployed over the access point will periodically select the
“best” collaborator, that is, Hx = arg max(dHi/max(dH) +
BHi/max(BH)+1/LHi), based on the previously monitored
context information.

Generally, the block-based DNN computations are par-
titioned among two platforms (i.e., the user device and a
specific collaborator with computing capability dHx). But
other “candidates” may be involved in the following cases:
• Overload of the collaborator degrades the service per-

formance and thus needs to be replaced by others.
• The collaborator leaves the current D2D communica-

tion network proactively.
• The collaborator disconnects from the controller or user

device due to an unstable connection.
Service-oriented Processing Pipeline. The local controller

will perform the DNN computation partitioning based on
the collected network performance and the computing ca-
pabilities of the devices after deciding on the collaborator.
The specified neural network model and the partitioning
decision S, Si ∈ {0, 1}, will be transmitted to the end-user
device and the collaborator, simultaneously. Specifically,
Si = 0 means that the i-th DNN block is assigned to execute
on the end-user device, otherwise, it will be completed on
the selected collaborator.

Based on the discussion above, we can therefore derive
the DNN inference latency of the i-th neural network block
on end-user device and collaborator as TU

i−cp and TH
i−cp,

i ∈ {1, 2, . . . ,n}, respectively. Also we only focus on the
user’s energy consumption, which is denoted by EU

i−cp. The
service overhead is described in detail below.

Cost of Local Computing. Similarly, the processing latency
consists of input receiving TU

i−cmr and inference processing.
For a given partitioning decision , the total cost of the
latency on the end-user device is given by

TU
total =

n∑
i=1,Si=0

(TU
i−cp + TU

i−cmr). (7)

Specifically, input transmission only occurs if the previous
DNN block is executed on the collaborator platform. The
transmission latency, especially for data receiving, is there-
fore given by TU

i−cmr = Gin
i

/
BHx + LHx . For the first DNN

block or the previous block that is completed locally, there
will be no data transfer. Also, when the next DNN block
is assigned to the collaborator, that is, Si+1 = 1, then the
output sending will be activated, and thus, the data trans-
mission latency is defined as TU

i−cmt = Gout
i

/
BHx + LHx .

Similarly, the mobile energy consumption of the end-
user device consists of three parts, that is, DNN inference,
input receiving EU

i−cmr and output sending EU
i−cmt.

EU
total =

n∑
i=1,Si=0

(EU
i−cp + EU

i−cmr + EU
i−cmt) (8)

Specifically, the mobile energy overhead of communication
depends on the transmit power and the transmission dura-
tion, with EU

i−cmr/t = TU
i−cmr/t · PD2D. Here, we denote by

rD2D the available data rate between the two devices and
by PD2D = αD2D · rD2D + βD2D the transmit power in a
D2D network using Wi-Fi Direct link. The parameters αD2D

and βD2D are set to be 283.17 mW/Mbps and 132.86 mW,
respectively [26].

Cost of Collaborator Computing. When the i-th DNN block
is assigned to execute on the selected collaborator, the pro-
cessing latency is given by

TH
total =

n∑
i=1,Si=1

(TH
i−cp + TH

i−cmr). (9)

The input source of the current DNN block may be end-user
device (including the raw image and the output of previous
block) or collaborator itself. Only for the first case, the input
data needs to be transmitted to the current collaborator
before continuing the DNN inference. The data transmis-
sion latency for the input receiving is therefore defined as
TH
i−cmr = Gin

i

/
BHx + LHx . Note that when the first DNN

block is assigned to be executed by the collaborator, the raw
image needs to be transmitted to the collaborator, which will
also cause the mobile energy consumption:

EH = EH
1−cmr = (

Gin
1

BHx

+ LHx) · PD2D. (10)

Additionally, the transmission of the inference result from
collaborator to the end-user device will also incur a latency
cost Tresult = Gout

n

/
BHx + LHx and mobile energy con-

sumption Eresult = Tresult · PD2D. In summary, the total
cost of the inference latency and energy consumption in
this collaborative computing scenario is the sum of the costs
incurred by the mobile user and the collaborator.

Based on the above discussion, our formulated compu-
tation partitioning problem can be defined as follows:

P : min (T + ηD2D · E).

4.2 Intent-oriented Offloading Algorithm (IoRLO)

Considering the above discussion, what we focused on
are two different collaborative computing scenarios in 5G
networks. But in essence, what they discussed is to rea-
sonably allocate DNN computations to different comput-
ing platforms with the help of a partition system to meet
multiple requirements. The object of this partitioning sys-
tem is to reduce the service deployment overhead while
simultaneously satisfying the user experience requirement.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 9

In general, assuming the number of computing platforms
is a and the number of DNN blocks is n′, the number of
potential partitioning decisions therefore will be an

′
. And

as the DNN architecture continues to deepen, the decision-
making process will become more complex. To this end, an
offloading decision-making approach based on deep rein-
forcement learning is proposed, which leverages the DDPG
for addressing the challenges of this “dimension disaster”.

In this part, we analyze the proposed IoRLO algorithm,
which is designed as a computation partitioning solution for
distributed DNN in the 5G era. This decision maker includes
the following three key features:
• Efficiency. The experience replay mechanism makes it

easy to use the existing “experience” to accelerate
the training process. Also, using the online learning
method enables the decision maker to cope with chang-
ing environments, and improves the decision-making
ability attributed to the “rich” learning experiences.

• Flexibility. Various factors, such as custom requirements
from service provider, network performance, and com-
puting capability, are all considered for the decision
making, so the IoRLO contributes to the elasticity of
the DNN partitioning in practical application.

• Reusability. Although the IoRLO is designed for mobile
Web AR service, the core mechanism also motivates the
investigations of partitioning problems in other fields.

The core phases of IoRLO are detailed below.

4.2.1 Overview of the IoRLO Algorithm

The goal of IoRLO is to devise a computation partitioning
policy π that can generate an optimal partitioning decision
(i.e., action, which indicates the computing platform each
DNN block will be assigned to) at = {at,1, at,2, . . . , at,n},
at ∈ A, based on the received agent state information
st = {st,1, st,2, . . . , st,n}, st ∈ S at the t-th time frame,
which represents the DNN inference cost, including the
DNN block inference latency, energy consumption, and
service deployment overhead (in the MEC-based “vertical”
collaborative computing scenario), here n is the number of
blocks in the DNN model.

As illustrated in Figure 7, the IoRLO algorithm mainly
consists of two components, Actor and Critic. The par-
titioning action is generated by the Actor after receiv-
ing the state information st. When the action acts on
the environment (here the environment refers to the 5G
communication networks), the reward rt will be fed back
and then the agent enters the state st+1. Based on the
previous discussion, the reward rt can be represented as
−(TMEC + ηMEC

1 · EMEC + ηMEC
2 · Dcp) in the “vertical”

computing scenario; and −(TD2D + ηD2D · ED2D) in the
“horizontal” scenario. Because the two scenarios discussed
in Section 4.1 are all designed to reduce the DNN inference
cost, therefore in the IoRLO algorithm, the reward needs to
be set to the opposite of the cost value as the agent always
tends to the actions with higher reward in reinforcement
learning. The tuple (st, at, rt, st+1) will be stored in memory
for the learning of Actor and Critic, that is, θµ and θQ,
respectively. Then it comes to the partitioning policy πθµt+1

.
It should be noted that rt (i.e., rass′) refers to the immedi-

ate environment reward for performing the action a to state

at

In
te

n
t-

o
ri

e
n

te
d

 a
ct

io
n

O
U

 n
o

is
e

Env.

mini-batch

(st , rt , st+1)
(st , at , rt , st+1)

(si, ai, ri, si+1)(si, ai, ri, si+1)(si, ai, ri, si+1)(si , ai , ri , si+1)

Actor

optimizer

Online Network

Target Network

Critic

optimizer

Online Network

Target Network

Fig. 7. Processing pipeline for DDPG-based IoRLO.

s′ under the state s, which is defined as rass′ = −costt. Ac-
cording to the Markov Decision Process (MDP), the cumu-
lative reward at state st is given by Rt =

∑∞
k=0 γ

krt+k+1,
where γ ∈ [0, 1] is the discount factor. Obviously, our goal
is to maximize the expected cumulative reward through
the learned DNN computation partitioning policy π(a|s) =
arg maxE(Rt).

4.2.2 Intent-oriented Action Generation
The action space noise is introduced to the output of the
Actor network which adopts the Sigmoid function, that
is, a = Sigmoid(za), as the activation function to balance
exploration and exploitation. Note that in our computing
scenarios, the value of each sub-action at,i is discrete, that is,
where the specific DNN block will be performed. Therefore,
we introduced a piecewise function in the original DDPG
model before the action acts on the environment as shown in
Figure 7, thus realizing the discretization of the continuous
actions in DDPG. Specifically, it is generated as follows:

aMEC
t,i =

1 0 < a < ε (mobile Web browser)

2 ε ≤ a < ϕ (network edge server)

3 ϕ ≤ a < 1 (remote cloud server)

.

The pre-defined thresholds ε and ϕ here refer to the intent
of the actions distribution from service provider. The greater
the value of ε, the more computations are intended to be
completed on the mobile Web browser (i.e., the savings in
deployment overhead are more important). Otherwise, the
service provider is more focused on the user service expe-
rience (i.e., places more DNN computations on the network
edge or remote cloud servers), which will in contrast result
in an increase in the deployment cost. The value of ϕ refers
to the intent to assign the DNN computation to either edge
or cloud servers.

Similarly, based on the intention of actions distribution,
the value of each sub-action at,i in the D2D-based comput-
ing scenario is given by

aD2D
t,i =

{
1 0 < a < ζ (service subscriber)

0 ζ ≤ a < 1 (specified collaborator)
.

Based on the existing experience, the Actor and Critic
update the network parameters during each learning phase.
The experience replay mechanism significantly reduces the
correlation in the training samples and thus quickens the
convergence. Specifically, DDPG leverages neural networks
as the function approximator; and here we only use one
hidden layer with 50 and 30 neurons for Actor and Critic

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 10

networks. Overall, the IoRLO uses the same structure and
training method as DDPG [27], but introduces an intent-
oriented action generation module for DNN block assign-
ment according to the specific service requirements. In the
practical applications, we can also directly use the pre-
trained Actor network to generate corresponding actions
(that is, partitioning strategies). However, it is necessary to
design and train the Actor and Critic networks in DDPG
according to different DNN models in advance.

5 PERFORMANCE EVALUATION

In this section, we first detail the method and settings (see
subsection 5.1), followed by the evaluation of the proposed
intent-oriented DNN computation partitioning algorithm
IoRLO (see Section 1 in Supplementary Material), then
analyze the results for a collaborative mobile Web AR
application in an actually deployed 5G trial network (see
subsection 5.2), which has been supported by China Mo-
bile Communications Group Beijing Co., Ltd. and Huawei
Technologies Co., Ltd. What we considered in the experi-
ments are the response latency, energy consumption, and
throughput of the system, the factors most valued by service
subscribers and providers.

5.1 Method and Settings
For the sake of clarity, in this part, we detail the benchmark
of the computation offloading approaches, the DNN archi-
tectures, as well as the datasets, and also the performance of
the 5G trial network in our experiment.

5.1.1 Experimental Environment
We illustrate the experimental communication network en-
vironment in Figure 8. End devices connect to the Internet
via Customer Premise Equipment (CPE), and edge servers
are deployed at the 5G base station to provide AR services.

Client

Client

Candidates

Collaborator

Application
Service Provider

Customer Premise
Equipment (CPE) 5G Base Station

Edge
Servers

Core
Networks

HTTP / WebSocket

RESTful Web API (POST)

Request HTTP / WebSocket

RESTful Web API (POST)

Request

ResponseResponse

Fig. 8. Experimental 5G network environment.

In practice, the container setting of edge and remote
clouds and the service provisioning in our system are simi-
lar to traditional Web application services. Specifically, both
the edge server and cloud server can use Flask or Apache
Tomcat technology to provide collaborative service APIs (in-
cluding the Get and Post requests) for service collaboration
and data transmission over the cloud, the edge, and end
devices. For the convenience of DNN inference, we adopt
the Flask (which has better support for the DNN models)
to provide computing and data request services. Note that
considering the stability and continuity requirements of the
data transmission, we can also adopt WebSocket/Socket in
the testbed as the transmission protocol between different

devices to verify the effectiveness of the proposed fine-
grained elastic partitioning algorithm.

In addition, we present the specification of the 5G trial
network performance and the details of the devices used
in the experiment (see Table 2). Since the network is still
in the experimental stage, the performance is occasionally
unstable, but it performs well on average. Moreover, the
CPU frequency of all Android devices can be artificially
controlled by obtaining root permission.

TABLE 2
Specification of 5G Trial Network and Details of the Devices

Bandwidth (mbps)
Uplink / Downlink

Min. Max. Avg. Loss Tolerance

Device – to – Network Edge 74.4 / 332.5 77.9 / 440.3 76.1 / 382.4 0
Network Edge – to – Cloud 72.2 / 466.3 73.9 / 600.7 73.3 / 542.3 0.045%

Device – to – Device 71.1 97.3 87.6 0.012%

End-to-End Latency (ms) Min. Max. Avg. Jitter
Device – to – Network Edge 1.61 104.25 8.76 102.64
Network Edge – to – Cloud 15.37 905.16 27.04 889.79

Device – to – Device 2.72 304.16 23.14 301.44
1 Cloud: Ubuntu 16.04, Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.0 GHz, 128 GB RAM.
2 Network Edge: Ubuntu 16.04, Intel Xeon E5-2600 v2 @ 2.0 GHz, 64 GB RAM.
3 End Device: Huawei Mate 10, Android 8.0, HiSilicon Kirin 970, 4 GB RAM (Chrome).
4 Collaborator: Xiaomi Mi 8, Android 8.1, Qualcomm Snapdragon 845, 6 GB RAM (Chrome).

5.1.2 Benchmark of DNN Architectures
For demonstration purposes, we chose four representative
neural network architectures (i.e., AlexNet, VGGNet-16,
ResNet-32, and MobileNet-V1) with different computational
complexity. These DNN architectures not only perform well
in the field of object recognition but also serve as the
backbones for other computer vision solutions such as object
detection (Faster R-CNN, Mask R-CNN, YOLO, and SSD)
and semantic segmentation (FCNs and DeepLab).

As discussed in subsection 3.1, all the aforementioned
neural network architectures have been re-designed with
multiple early exit branches and then re-trained on the
datasets CIFAR-10 and CIFAR-100. Re-training large DNN
architectures (e.g., ResNet-152) with dense side branches
or using a complex dataset (e.g., ImageNet) is obviously
time-consuming, especially with limited GPU resources.
Therefore, for this research, we only adopted simple DNN
architectures and datasets for demonstration purposes.

5.1.3 Benchmark of Offloading Approaches
The proposed partitioning algorithm IoRLO is designed
to offload DNN computations among the heterogeneous
platforms so as to balance multiple interests. For compar-
ison, we also adopted another two status quo computation
offloading approaches in our experiment. Neurosurgeon [8]
is a data-centric approach, which provides an automatic
DNN partitioning solution between the user and cloud
based on the neural network architecture characteristics for
the best response latency or energy savings, denoted by
Neuro-L and Neuro-E, respectively. In contrast, MAUI [20]
is a control-centric offloading approach proposed in 2010
but still famous for its function granularity (i.e., code level)
offloading decision making.

5.2 Application Performance Analysis
We implemented an AR-based instance retrieval and rec-
ommendation application (see Figure 9) on a mobile Web

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 11

MEC-based Collaboration

Client

Collaborator

5G Base
Station

Cloud

D2D-based Collaboration
Client

Fig. 9. Mobile Web AR application.

TABLE 3
DNN Computation Distributions in Two Collaborative Scenarios

DNN architectures

DNN Computation Distribution (%)
(MEC-based Collaboration)

Web Browser / Network Edge / Cloud

DNN Computation Distribution (%)
(D2D-based Collaboration)

Client / Collaborator
Neuro MAUI Ours Self Co-H Ours Co-L

AlexNet 0 / 0 / 100 0 / 0 / 100 9.08 / 16.68 / 74.24 100 / 0 0 / 100 15.07 / 84.93 0 / 100
VGGNet-16 0 / 0 / 100 0 / 0 / 100 2.41 / 84.30 / 13.29 100 / 0 0 / 100 3.49 / 96.51 0 / 100
ResNet-32 0 / 0 / 100 0 / 0 / 100 30.85 / 31.98 / 37.17 100 / 0 0 / 100 23.51 / 76.49 0 / 100

MobileNet-V1 0 / 0 / 100 0 / 0 / 100 47.25 / 35.22 / 17.53 100 / 0 0 / 100 47.26 / 52.74 0 / 100

* Collaboration with low-performance devices cannot improve inference latency and energy consumption in the
D2D-based scenario, therefore, our approach only considers collaboration with Co-H.

browser for advertising, as an example. To mitigate the
impact of annotation rendering on the performance of the
mobile Web AR system, we only selected simple 2D virtual
contents to present to users, which will not consume too
much additional resources. Users can access this mobile Web
AR service via a pre-defined URL, the specific DNN model
will then be downloaded asynchronously. When the user
targets an instance, such as apples in our experiment, the
relevant “augmented” virtual information will be displayed
on the user’s equipment. Moreover, this link can also be
embedded in many places to provide pervasive AR service,
such as Facebook, Twitter, and WeChat.

The theme of this paper is to provide the DNN-based
mobile Web AR services with multiple requirements from
subscribers and providers by leveraging the collaborative
mechanism in the 5G era. Here we first present the per-
formance of Neurosurgeon and MAUI for comparison.
Specifically, Neuro-L and Neuro-E aim to provide the best
service response latency and mobile energy savings. As data
transmission will only have a weak impact on application
performance, all the DNN computations will be assigned to
the cloud or collaborator for accelerating the DNN inference
and saving energy in 5G networks. When the collaborator
cannot provide sufficient computing capability, the self-
contained approach will be better but will still offload
computations to the collaborator for energy saving. MAUI
chooses to send time-consuming functions to the cloud, but
it also degenerates into Neuro-L. Therefore, we will consider
the cloud-only (Cloud), edge-only (Edge), self-contained
(Self), and collaboration (Co) in the experiment.

In contrast, our offloading algorithm IoRLO works well
in 5G networks. Specifically, computation-intensive parts
are more likely to be offloaded to the cloud or network edge
to accelerate the inference. The others, which will not cause
a great impact on the overall service latency, in contrast, will
be placed on the mobile Web browser, which therefore can
benefit to the service deployment overhead.

In experiments, the specific offloading decision is se-
lected randomly from the potential partitioning decisions
(i.e., the colored space) based on the specific requirements,
either DNN inference latency, mobile energy consumption,
and/or deployment overhead, and the DNN computation
distributions in the two collaborative scenarios are illus-
trated in Table 3. The “actor” in IoRLO consists of one
hidden layer with 50 neurons, which only needs 0.49 ms on
average to generate an action. Moreover, the experiments
were conducted 100 times, and all the experimental results
in the papers are the average values. Note that for a practical
application, the users’ experience can be fed back to the

cloud for further learning.

5.2.1 Service Response Latency
In this part, we present the performance of IoRLO against
the other three offloading approaches in term of response
latency. Specifically, the introduction of cloud and network
edge computing resources in the MEC-based collabora-
tive scenario significantly improves the service response
latency by about 72.17% on average (i.e., 86.77%, 88.64%,
64.68%, and 48.60% for AlexNet, VGGNet-16, ResNet-32,
and MobileNet-V1, respectively) compared with the self-
contained approaches as illustrated in Figure 10.

2 5 9 0 . 3

2 6 1 . 3 6
8 5 . 9 2

3 4 2 . 6 5

3 5 1 1 8 . 3 5

3 5 4 3 . 3 3
1 1 6 4 . 2 8

3 9 8 8 . 7 6

1 9 9 2 . 7 1

2 0 1 . 0 6
6 6 . 1

7 0 3 . 8 2

2 9 6 6 . 6 6

2 9 9 . 3 3
9 8 . 3 9

1 5 2 4 . 8 5

Sel
f

Ed
ge

Clo
ud Co

0

5 6 0

1 1 2 0

1 6 8 0

2 2 4 0

2 8 0 0 A l e x N e t

Inf
ere

nce
 La

ten
cy

(m
s)

Sel
f

Ed
ge

Clo
ud Co

0

7 6 0 0

1 5 2 0 0

2 2 8 0 0

3 0 4 0 0

3 8 0 0 0 V G G N e t - 1 6

 C o m p u t i n g L a t e n c y C o m m u n i c a t i o n L a t e n c y

Sel
f

Ed
ge

Clo
ud Co

0

4 4 0

8 8 0

1 3 2 0

1 7 6 0

2 2 0 0 R e s N e t - 3 2

Sel
f

Ed
ge

Clo
ud Co

0

6 6 0

1 3 2 0

1 9 8 0

2 6 4 0

3 3 0 0 M o b i l e N e t - V 1

Fig. 10. DNN inference latency in MEC-based collaborative scenario.

Although there is still a performance (latency) gap with
the edge-only or cloud-only approach (e.g., 261.36 ms, 85.92
ms, and 342.65 ms for AlexNet with edge-only, cloud-only,
and our collaborative solutions, respectively), by assigning
part of computations to the user side, it can also improve the
system throughput (i.e., reduce the computational pressure
of the server), compared with the other two approaches,
but these results are directly related to the DNN computa-
tion partitioning decision. The improvement in throughput
indicates that service providers can process more requests
using the same computing resources, thereby reducing the
service deployment overhead. Considering that the edge
server undertakes a large number of computations, from
the entire system perspective, the remote cloud can there-
fore serve more requests, but the system performance has
not been improved as this partitioning decision causes the
throughput bottleneck of this edge domain. But overall,
under the premise that QoS is satisfied, this collaborative
approach obviously reduces the deployment overhead, thus
striking a balance between various requirements.

Remarkably, the process throughput on the network
edge and remote cloud are different, and the system over-
all throughput is bounded by the smallest one for the
collaborative scenario. The edge and cloud servers adopt
buffer queues to cache the intermediate results of DNN for
processing the accumulated service queries.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 12

2 5 9 0 . 3

1 3 7 4 . 4 4 1 5 9 4 . 1 8

4 2 7 8 . 9 3

3 5 1 1 8 . 3 5

1 8 4 8 8 . 8 9 1 9 1 0 5 . 8

5 7 8 6 6 . 9 4

1 9 9 2 . 7 1

1 0 6 0 . 0 2
1 3 1 6 . 7 6

3 2 9 4 . 4 5

2 9 6 6 . 6 6

1 5 7 2 . 4 6
2 2 4 8 . 4 6

4 8 9 8 . 9 6

Sel
f H

Ou
rs L0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0 A l e x N e t
Inf

ere
nce

 La
ten

cy
(m

s)

Sel
f H

Ou
rs L0

1 3 0 0 0

2 6 0 0 0

3 9 0 0 0

5 2 0 0 0

6 5 0 0 0 V G G N e t - 1 6

 C o m p u t i n g L a t e n c y C o m m u n i c a t i o n L a t e n c y

Sel
f H

Ou
rs L0

8 0 0

1 6 0 0

2 4 0 0

3 2 0 0

4 0 0 0 R e s N e t - 3 2

Sel
f H

Ou
rs L0

1 1 0 0

2 2 0 0

3 3 0 0

4 4 0 0

5 5 0 0 M o b i l e N e t - V 1

Fig. 11. DNN inference latency in D2D-based collaborative scenario.

But for the D2D-based collaborative scenario, in which
all the computations are completed on the mobile devices,
viz. the service subscriber and collaborator, the computing
capability of the collaborator is set to 100% (Co-H) and 60%
(Co-L) available respectively; the capability of the collab-
orator will exert a great influence on the service experi-
ence. When the computing capability of the collaborator is
limited, this will apparently result in service response la-
tency degradation. As illustrated in Figure 11, the powerful
collaborator brings about 47.02% service response latency
improvement on average (46.94%, 47.35%, 46.81%, 47.00%
for the AlexNet, VGGNet-16, ResNet-32, and MobileNet-V1)
compared with the self-contained approach. Similarly, by
placing part of computations to more powerful collaborator,
our proposed approach can also achieve 38.46%, 45.60%,
33.92%, 24.21% latency improvement.

Obviously, the computing capability of different devices
is different. Assigning part of DNN inference computations
to devices with weaker computing capability will undoubt-
edly increase the processing time, which will affect the
subsequent DNN computations on other devices, and thus
increases the overall waiting delay. Fundamentally, both our
proposed DNN fine-grained partitioning-inference scheme
and DDNN [28] are designed for collaborative serial DNN
inference among multiple devices, which will inevitably
cause the problem of synchronization between different
devices. But in our DNN partitioning solution, we have
considered the impact of the waiting delay that may be
caused by the different devices on the service performance.
In this part, the user device, edge server, cloud server, and
nearby collaborator devices all have different computing ca-
pabilities, but as we discussed above, the DNN partitioning
decisions have been able to distribute complex DNN com-
putations to high-performance devices, and simple compu-
tations that are assigned to low-performance devices will
not have a serious impact on the system.

5.2.2 Mobile Energy Saving

For the purpose of energy saving, the status quo approach
Neuro-E will offload all the DNN computations to the cloud
or collaborator, as discussed earlier, the end-user equipment
therefore only needs to shoulder the energy consumption
required for communication (i.e., input transmission and re-
sult receiving), that is, 0.06 Joule and 0.26 Joule for edge-only
and cloud-only approaches, respectively. The mobile energy
consumption in MEC-based and D2D-based collaborative
scenarios are illustrated in Figure 12 and Figure 13.

In contrast, with our proposed offloading algorithm,
users need to pay some energy for DNN inference on the

1 6 . 1 4

0 . 0 6 0 . 2 6

6 . 0 2

6 3 . 0 8

0 . 0 6 0 . 2 6
8 . 5 5

4 3 . 5 5

0 . 0 6 0 . 2 6

1 5 . 4 5

1 5 8 . 2 1

0 . 0 6 0 . 2 6

7 2 . 8 2

Sel
f

Ed
ge

Clo
ud Co

0

4

8

1 2

1 6

2 0 A l e x N e t

En
erg

y C
ons

um
pti

on
(J)

Sel
f

Ed
ge

Clo
ud Co

0

1 4

2 8

4 2

5 6

7 0 V G G N e t - 1 6

 C o m p u t i n g E n e r g y C o n s u m p t i o n C o m m u n i c a t i o n E n e r g y C o n s u m p t i o n

Sel
f

Ed
ge

Clo
ud Co

0

1 0

2 0

3 0

4 0

5 0 R e s N e t - 3 2

Sel
f

Ed
ge

Clo
ud Co

0

3 4

6 8

1 0 2

1 3 6

1 7 0 M o b i l e N e t - V 1

Fig. 12. Energy consumption in MEC-based collaborative scenario.

1 6 . 1 4

2 8 8 . 5 4

1 1 5 9 . 8 5

2 8 8 . 5 4

6 3 . 0 8

2 8 8 . 5 4

1 1 5 8 . 4 9

2 8 8 . 5 4

4 3 . 5 5

2 8 8 . 5 4

1 1 6 6 . 0 2

2 8 8 . 5 4
1 5 8 . 2 1

2 8 8 . 5 4

6 4 9 . 3 6

2 8 8 . 5 4

Sel
f H

Ou
rs L0

2 6 0

5 2 0

7 8 0

1 0 4 0

1 3 0 0 A l e x N e t

En
erg

y C
ons

um
pti

on
(J)

Sel
f H

Ou
rs L0

2 6 0

5 2 0

7 8 0

1 0 4 0

1 3 0 0 V G G N e t - 1 6

 C o m p u t i n g E n e r g y C o n s u m p t i o n C o m m u n i c a t i o n E n e r g y C o n s u m p t i o n

Sel
f H

Ou
rs L0

2 6 0

5 2 0

7 8 0

1 0 4 0

1 3 0 0 R e s N e t - 3 2

Sel
f H

Ou
rs L0

2 6 0

5 2 0

7 8 0

1 0 4 0

1 3 0 0 M o b i l e N e t - V 1

Fig. 13. Energy consumption in D2D-based collaborative scenario.

mobile Web browser. But it can still bring considerable en-
ergy savings, about 66.91% on average compared to the self-
contained approach for MEC-based scenario (i.e., 62.70%,
86.45%, 64.52%, and 53.97% energy savings, for the AlexNet,
VGGNet-16, ResNet-32, and MobileNet-V1, respectively).

However, for service provision in the D2D-based sce-
nario, our proposed approach will consume more energy,
which is used for data transmission between mobile devices.
Why does it still need collaboration for DNN inference? It
depends on the specific purpose of the user, such as DNN
inference acceleration or mobile energy saving.

Another observation is that the more frequent the data
(intermediate computing results) transmission, the higher
the energy consumption, and vice versa. In general, the
Co-H method, that is, offloading all DNN computations to
the collaborator device with higher computing capability,
can obviously achieve less inference latency and energy
consumption, which is more of an ideal situation. Because
the performance of mobile devices is continuous dynami-
cally changing, collaborators with high performance do not
always exist. If all computations are offloaded to the col-
laborator with lower computing capabilities, that is, the Co-
L method, it will lead to unacceptable service response la-
tency. While our proposed collaborative computing solution
can reasonably orchestrate the computing resources of local
and collaborator devices to achieve better DNN inference
latency, but at the same time user device needs to pay addi-
tional communication energy consumption. Therefore, the
choice of computing mode in the D2D-based collaboration
scenario depends on which service performance metric the
user pays more attention to. For example, when the user
device has sufficient energy, our approach can thus achieve
better service response latency; however, when the user is
more concerned about the energy consumption (or the user
device faces the energy shortage problem), adopting the Co-
L method can effectively extend the service time, but the
QoS will be compromised.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 13

6 RELATED WORK

Many efforts have focused on the acceleration of DNN
inference, (1) model compression; (2) architecture optimiza-
tion; and (3) dedicated accelerator development (e.g., GPU,
FPGA, ASIC); However, adopting cloud-centric approaches
undoubtedly incur a high response latency in dynamic and
noisy mobile networks, and thus result in user experience
degradation. To eliminate the negative effects of data trans-
mission, the DNN computations can also be placed on
mobile devices to achieve off-line inference benefiting from
the design of lightweight DNN architectures [29], [30], [31],
but this approach cannot strike a balance between accu-
racy and efficiency. The computation offloading mechanism,
therefore, attracted our attention.

However, current cloud-based offloading solutions still
face challenges, (1) coarse-grained partitioning [20], [32],
which cannot fully explore the DNN structural charac-
teristics and balance the accuracy and efficiency (e.g.,
BranchyNet [10]). Terminating the inference process too
early will cause insufficient accuracy, but terminating too
late will introduce additional redundant computations; (2)
lack of comprehensive consideration of user experience and
service deployment overhead (e.g., Neurosurgeon [8] and
Edgent [33]); (3) static and aptotic scheduling [21], [28], [34]
cannot cope with the dynamically changing environment.

Fundamentally, both the DNN computation offloading
discussed in this paper and the service offloading on mobile
computing environment are aimed at optimizing service
performance by orchestrating distributed resources. How-
ever, the current service offloading mechanisms are mainly
focused on the collaboration between the mobile device
and network edge/remote cloud [35], [36], [37]; Because of
network performance limitations, these offloading collabo-
rative scenarios are relatively simple. While in 5G networks,
the MEC and D2D technologies make the computing envi-
ronment more complex, but there is still a lack of research on
collaborative computing optimization for latency-sensitive
DNN-based services.

The emerging 5G networks together with a variety of
promising features provide us with opportunities for the
collaborative computing of distributed DNNs. But all the
current approaches will degenerate into the cloud-based
mode [8], [20], therefore, although the user experience is
satisfied, the service provider will undoubtedly have to
pay a heavy expenses. Unlike previous efforts, we have
investigated the collaboration of the cloud, network edge,
and mobile devices, thus bringing about a distributed DNN,
(1) the collaborative mode satisfies the application perfor-
mance requirement and saves the deployment overhead as
well; (2) layer granularity offloading supports fine-grained
computation partitioning for distributed collaboration; and
(3) by considering multiple factors, it therefore achieves
adaptive computation scheduling.

7 CONCLUSION

In this paper, we have presented the fine-grained elastic
computation partitioning mechanism for distributed DNN
in 5G networks. This collaborative solution provides a
promising approach to balance the interests of both service
subscribers and provider. We elaborated two collaborative

computing scenarios for the 5G era by leveraging the MEC
and D2D technologies, then presented the computing sys-
tem. Aimed at layer granularity computation scheduling,
we investigated per-layer inference latency and energy con-
sumption prediction models for DNN, followed by the
DNN partitioning scheme, which provides a generalized
approach. The experiments were conducted in an actually
deployed 5G trial network based on our developed Web-
based mobile AR application, and the results show the
superiority of this collaborative approach.

ACKNOWLEDGMENTS

This work was supported in part by the Funds for Inter-
national Cooperation and Exchange of NSFC under Grant
61720106007, in part by the National Key R&D Program of
China under Grant 2018YFE0205503, and in part by the 111
Project under Grant B18008.

REFERENCES

[1] M. Billinghurst, A. Clark, and G. Lee, “A Survey of Augmented
Reality,” Foundations and Trends in Human–Computer Interaction.

[2] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A New Era for Web AR
with Mobile Edge Computing,” IEEE Internet Computing, 2018.

[3] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A Promising Future for Mobile Augmented Reality–State of the
Art, Challenges, and Insights,” Proceedings of the IEEE, 2019.

[4] Y. Ma, D. Xiang, S. Zheng, D. Tian, and X. Liu, “Moving Deep
Learning into Web Browser: How Far Can We Go?” in ACM 2019
The World Wide Web Conference.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing:
Vision and Challenges,” IEEE Internet Things J., 2016.

[6] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collabora-
tive Mobile Edge Computing in 5G Networks: New Paradigms,
Scenarios, and Challenges,” IEEE Commun Mag, 2017.

[7] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-
Device Communication in 5G Cellular Networks: Challenges,
Solutions, and Future Directions,” IEEE Commun Mag, 2014.

[8] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” SIGARCH Comput. Archit. News, 2017.

[9] P. Panda, A. Sengupta, and K. Roy, “Conditional Deep Learning
for Energy-Efficient and Enhanced Pattern Recognition,” in IEEE
2016 DATE.

[10] S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet: Fast
Inference via Early Exiting from Deep Neural Networks,” in IEEE
2016 ICPR.

[11] D. G. Lowe, “Distinctive Image Features from Scale-invariant
Keypoints,” Springer 2004 IJCV.

[12] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust
Features,” in Springer 2006 ECCV.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in IEEE 2011 ICCV.

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
Retrieval with Large Vocabularies and Fast Spatial Matching,” in
IEEE 2007 CVPR.

[15] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, and J. Chen, “Mobile
Web Augmented Reality in 5G and Beyond: Challenges, Opportu-
nities, and Future Directions,” China Communications, 2019.

[16] P. Ren, X. Qiao, J. Chen, and S. Dustdar, “Mobile Edge Computing–
a Booster for the Practical Provisioning Approach of Web-Based
Augmented Reality,” in IEEE/ACM 2018 SEC.

[17] B. L. R. Stojkoska and K. V. Trivodaliev, “A Review of Internet
of Things for Smart Home: Challenges and Solutions,” Journal of
Cleaner Production, 2017.

[18] M. Jia and W. Liang, “Delay-Sensitive Multiplayer Augmented
Reality Game Planning in Mobile Edge Computing,” in ACM 2018
MSWiM.

[19] N. Gavish, T. Gutiérrez, S. Webel, J. Rodrı́guez, M. Peveri, U. Bock-
holt, and F. Tecchia, “Evaluating Virtual Reality and Augmented
Reality Training for Industrial Maintenance and Assembly Tasks,”
Interactive Learning Environments, 2015.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098816, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XX 2021 14

[20] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last
Longer with Code Offload,” in ACM 2010 MobiSys.

[21] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic Execution between Mobile Device and
Cloud,” in ACM 2011 EuroSys.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with
Convolutions,” in IEEE 2015 CVPR.

[23] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler,
V. Sze, and H. Adam, “NetAdapt: Platform-Aware Neural Net-
work Adaptation for Mobile Applications,” in IEEE 2018 ECCV.

[24] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
Assisted Distributed DNN Collaborative Computing Approach
for Mobile Web Augmented Reality in 5G Networks,” IEEE Net-
work, 2020.

[25] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
Web up to Speed with WebAssembly,” in ACM 2017 PLDI.

[26] S. Kitanov, B. Popovski, and T. Janevski, “Quality Evaluation of
Cloud and Fog Computing Services in 5G Networks,” in Enabling
Technologies and Architectures for Next-Generation Networking Capa-
bilities.

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous Control with Deep Rein-
forcement Learning,” arXiv preprint arXiv:1509.02971, 2015.

[28] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed Deep
Neural Networks Over the Cloud, the Edge and End Devices,” in
IEEE 2017 ICDCS.

[29] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized
Convolutional Neural Networks for Mobile Devices,” in IEEE 2016
CVPR.

[30] N. Lane, S. Bhattacharya, A. Mathur, C. Forlivesi, and F. Kawsar,
“DXTK: Enabling Resource-efficient Deep Learning on Mobile and
Embedded Devices with the DeepX Toolkit,” in Springer 2016
MobiCASE.

[31] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded Bina-
rized Neural Networks,” in ACM 2017 EWSN.

[32] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and
X. Chen, “COMET: Code Offload by Migrating Execution Trans-
parently,” in USENIX 2012 OSDI.

[33] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-Demand Ac-
celerating Deep Neural Network Inference via Edge Computing,”
IEEE Trans. Wirel. Commun., 2019.

[34] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: Enabling Interactive Perception Applica-
tions on Mobile Devices,” in ACM 2011 MobiSys.

[35] A. Samanta and Z. Chang, “Adaptive Service Offloading for
Revenue Maximization in Mobile Edge Computing with Delay-
Constraint,” IEEE Internet Things J., 2019.

[36] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A Cloud-
MEC Collaborative Task Offloading Scheme with Service Orches-
tration,” IEEE Internet Things J., 2019.

[37] D. Van Le and C.-K. Tham, “Quality of Service Aware Compu-
tation Offloading in an Ad-Hoc Mobile Cloud,” IEEE Trans. Veh.
Technol., 2018.

Pei Ren is currently working toward the Ph.D.
degree at the State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications, China. He is
currently a Visiting Scholar with the School of
Computer Science, Georgia Institute of Tech-
nology, USA, funded by the China Scholarship
Council. His current research interests include
the machine learning, augmented reality, edge
computing, and 5G networks.

Xiuquan Qiao is currently a Professor with the
Beijing University of Posts and Telecommunica-
tions, China, where he is also the Deputy Di-
rector of the State Key Laboratory of Network-
ing and Switching Technology, Network Service
Foundation Research Center of State. His cur-
rent research interests include the services com-
puting, computer vision, augmented reality, and
5G networks. Dr. Qiao was a recipient of the
Beijing Nova Program in 2008 and the First Prize
of the 13th Beijing Youth Outstanding Science

and Technology Paper Award in 2016.

Yakun Huang is currently working toward the
Ph.D. degree at the State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Bei-
jing, China. His current research interests in-
clude computer vision, distributed deep learning,
machine learning, augmented reality, edge com-
puting.

Ling Liu (Fellow, IEEE) is currently a Professor
at the School of Computer Science, Georgia
Institute of Technology, USA. She directs the
research programs at the Distributed Data In-
tensive Systems Lab, examining various aspects
of large-scale big data systems and analytics,
including performance, availability, security, pri-
vacy, and trust. Dr. Liu was a recipient of the
IEEE Computer Society Technical Achievement
Award in 2012. She served as the Editor-in-Chief
for the IEEE Transactions on Service Computing

from 2013 to 2016. She is currently the Editor-in-Chief of the ACM
Transactions on Internet Technology.

Calton Pu (Fellow, IEEE) received the Ph.D. de-
gree from the University of Washington, in 1986
and served on the faculty of Columbia Univer-
sity and Oregon Graduate Institute. Currently,
he is holding the position of professor and John
P. Imlay, Jr. Chair in Software in the College
of Computing, Georgia Institute of Technology
His recent research has focused on big data in
Internet of things, automated N-tier application
deployment and denial of information.

Schahram Dustdar (Fellow, IEEE) is currently
a Professor of Computer Science with the Dis-
tributed Systems Group, TU Wien, Vienna, Aus-
tria. Dr. Dustdar was an elected member of the
Academy of Europe, where he is the Chairman
of the Informatics Section. He was a recipient of
the ACM Distinguished Scientist Award in 2009,
the IBM Faculty Award in 2012. He is also an
Associate Editor of the IEEE Transactions on
Services Computing, the IEEE Transactions on
Cloud Computing, the ACM Transactions on the

Web, and the ACM Transactions on Internet Technology.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 12:57:56 UTC from IEEE Xplore. Restrictions apply.

