
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 1

Enabling DNN Acceleration with Data and Model
Parallelization over Ubiquitous End Devices

Yakun Huang, Xiuquan Qiao, Wenhai Lai, Schahram Dustdar, Fellow, IEEE, Jianwei Zhang and Jiulin Li

Abstract—Deep neural network (DNN) shows great promise in
providing more intelligence to ubiquitous end devices. However,
the existing partition-offloading schemes adopt data-parallel or
model-parallel collaboration between devices and the cloud,
which does not make full use of the resources of end devices for
deep-level parallel execution. This paper proposes eDDNN (i.e.
enabling Distributed DNN), a collaborative inference scheme over
heterogeneous end devices using cross-platform web technology,
moving the computation close to ubiquitous end devices, improv-
ing resource utilization, and reducing the computing pressure
of data centers. eDDNN implements D2D communication and
collaborative inference among heterogeneous end devices with
WebRTC protocol, divides the data and corresponding DNN
model into pieces simultaneously, and then executes inference
almost independently by establishing a layer dependency table.
Besides, eDDNN provides a dynamic allocation algorithm based
on deep reinforcement learning to minimize latency. We conduct
experiments on various datasets and DNNs and further employ
eDDNN into a mobile web AR application to illustrate the
effectiveness. The results show that eDDNN can achieve the
latency decrease by 2.98x, reduce mobile energy by 1.8x, and
relieve the computing pressure of the edge server by 2.57x, against
a typical partition-offloading approach.

Index Terms—Deep learning, ubiquitous end devices, cross-
platform, distributed DNN, collaborative inference.

I. INTRODUCTION

DEEP learning (e.g., Deep neural networks, DNNs) is
currently a representative way of achieving Artificial In-

telligence (AI) in numerous applications [1], [2], [3]. With the
maturity of AI technology and the reduction of AI hardware
costs, more and more smart end devices such as smartphones,
AR/VR glasses, smart cameras, etc., also including Internet of
Things (IoT) devices, have emerged in daily life [4], [5], [6].
Smart end devices are increasing, scenarios and services that
require AI capabilities are constantly enriching [7]. However,
the limited computing capability of end devices is hard to
support executing computationally intensive DNNs for AI ser-
vices independently. Thus, the need for collaborative inference
among multiple end devices is increasing. Also, it causes a
demand for integrating these scattered ubiquitous end devices
and finding the best combination to provide collaborative AI
services in different scenarios [8], [9]. For instance, Huawei
has developed the HiAI 3.0, an open platform for AI devices,

Y. Huang, X. Qiao and W. Lai are with State Key Laboratory of Network-
ing and Switching Technology, Beijing University of Posts and Telecom-
munications, Beijing 100876, China. E-mail:{ykhuang, qiaoxq, laiwenhai
}@bupt.edu.cn. (X. Qiao is the corresponding author.)

S. Dustdar is with the Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria. E-mail:dustdar@dsg.tuwien.ac.at.

J. Zhang is with the Capinfo Company Limited, Beijing 100161, China.
E-mail:zhangjw@capinfo.com.cn.

J. Li is with the Beijing National Speed Staking Oval Operation Company
Limited, Beijing 100092, China. E-mail:lijiulin@bjucd.com.

which makes contributions on establishing the connection
among end devices and enabling distributed AI capability [10].

However, the majority of existing attempts of DNNs on
ubiquitous end devices leave an unsatisfactory experience with
the following two execution schemes in Fig. 1. The first
execution scheme is the non-collaborative execution, including
mobile-only and cloud-only, which executes the entire DNN
on the end device or transmits tasks to the remote cloud
for offloading DNN computations. The mobile-only approach
performs a high DNN execution latency as conventional end
devices lack computing capability. With the cloud-only ap-
proach, large amounts of data (e.g., image, audio, and video)
are sent to the cloud via the wireless network, which results
in high transmission latency and mobile energy consumption.
Moreover, offloading all computations to the remote cloud
will significantly increase the computing pressure and cost
of the remote cloud, which also raises new privacy con-
cerns for users (e.g., home security cameras) [11]. The

(a) Non-collaborative execution.

Mobile-only Cloud-only

(b) Collaborative execution.

Lightweight branch

Datacenter Datacenter

Datacenter Datacenter

Partition-offloading

Fig. 1. Non-collaborative and collaborative execution schemes
of the DNN on end devices.

second execution scheme is collaborative execution, including
partition-offloading and adding a lightweight branch. Partition-
offloading dynamically distributes the computations between
the end device and the remote cloud [12], [13], [14], protecting
data privacy and reducing the computing pressure of the
remote cloud. The lightweight branch approach adds efficient
branches to the initial DNN for executing inference on the
end device independently. It also provides a collaborative
mechanism for accuracy compensation [15], [16], [17], [18].
Obviously, these collaborative solutions mainly optimize DNN
computations between the end device and the backend server.
They ignore the use of idle computing resources of ubiquitous
end devices for collaboration. Thus, how can we move com-
putations further close to the edge by using ubiquitous end
devices while providing an acceptable performance, reducing
latency and the pressure of the backend server, and improving
the resource utilization of end devices?

With the advent of the 5G era, mobile edge computing
(MEC) and Device-to-Device (D2D) communication technol-

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 2

ogy have gradually been deployed and applied in different
scenarios. MEC has the benefit of low communication costs
compared with offloading computations to the remote cloud
and relieves the burdens of the core network. Also, it is
expected to use D2D communication over ubiquitous end
devices to achieve distributed DNN inference, making full use
of computing resources of ubiquitous end devices. However,
implementing distributed DNN inference over ubiquitous end
devices still faces three major challenges:

• How to execute distributed DNN over heterogeneous
end devices with different computing architectures and
inference frameworks? Ubiquitous end devices have a
large difference in the brand, the computing system (e.g.,
iOS, Android, and embedded OS), the inference framework,
and the computing capability. This requires configuring and
deploying different DNNs according to the characteristics
of devices, thus providing distributed DNN inference across
heterogeneous end devices. Besides, various communication
protocols among heterogeneous end devices also hinder the
implementation.

• Layer dependency of DNN inference seriously hinders
the implementation of distributed DNN inference on
ubiquitous end devices in parallel. DNN inference pro-
cess inputs a task and acquires the different features layer
by layer until obtaining the result. This shows a strong
layer dependency (i.e. the input of the next layer is the
output of the previous layer). Although partition-offloading
approaches divide the DNN into multiple pieces by layers
and distribute them to ubiquitous end devices for execution,
it is hard to execute them in parallel due to such serial
inference characteristic.

• How to provide a dynamic allocation for end devices with
different computing capabilities that can execute efficient
DNN with optimal latency and resource utilization? Note
that end devices have different computing capabilities. The
available computing resource of end devices is dynamic
with the change of running applications. Thus, the key to
achieving distributed DNN across ubiquitous end devices
is to design an effective subtask allocation algorithm to
match and execute appropriate computation. Additionally,
allocating DNN tasks to end devices with a reliable and
efficient inference is also significant for optimizing latency
and resource utilization.

To address these concerns and enable distributed DNN
inference, we implement D2D communication and collabo-
ration over heterogeneous end devices with the help of cross-
platform web technology and Web Real-Time Communication
(WebRTC) protocol. We develop a distributed DNN inference
scheme on a web platform, named eDDNN, that efficiently
reduces layer dependency and accelerates the whole process.
Unlike traditional approaches that partition DNN by layers
(i.e. vertical partition), eDDNN divides the task and the
corresponding DNN model into pieces in Fig. 2 (i.e. horizontal
partition whose submodel has all DNN layers and the size of
each layer becomes smaller). Therefore, we can acquire almost
independently DNN inference on submodels and reduce the

(a) Traditional partitioning (b) eDDNN partitioning

Device_1 Device_2
Device_1

Device_2

Fig. 2. Traditional partitioning and eDDNN dividing.

layer dependency of inputs at dividing edges. Besides, we
establish an inference dependency table with the help of the
edge server and broadcast it over end devices to load required
dependency information from each other. Then, we propose
a dynamic allocation algorithm named DecisionMaker, based
on deep reinforcement learning for optimizing the overall
processing latency. With these efforts, an end device can
share other devices resources for acceleration and a better
experience. The contributions can be summarized as follows:

• Developing a distributed DNN inference scheme over het-
erogeneous end devices leveraging the cross-platform web,
which horizontally divides the task and DNN model into
pieces and executes them on each end device almost inde-
pendently by sharing a DNN dependency table.

• Proposing a dynamic allocation algorithm to reduce com-
plexity, which adaptively matches and executes subtasks on
end devices, reduce overall execution latency, and optimize
resource utilization of end devices.

• Evaluating the proposed eDDNN on various DNNs and
datasets, and implementing a collaborative recognition for
mobile Web AR, showing the satisfactory performance
against a typical partition-offloading approach.

II. BACKGROUND AND MOTIVATION

Cooperative D2D communication technology is widely
studied and applied for data transmission across various end
devices, which uses the end device as the relay for communica-
tion [19], [20]. This work intends to explore data transmission
and collaborative DNN inference based on cross-platform
web technology over heterogeneous end devices. Therefore, to
achieve D2D communication on the web and collaborate with
each other, we establish a web-oriented D2D communication
for multiple end devices based on the WebRTC [21] protocol
in Fig. 3. Each end device establishes a device-to-device
connection with others. Note that the MEC server plays a
vital role in registering the connections and managing the
connections of end devices that join or leave. Besides, data
may be transmitted through the MEC server viewed as a relay
rather than that only transmits data among devices. We can
also view the MEC server as an application provider, such
as providing DNN models for recognition and rendering 3D
models in a mobile Web AR application.

Considering that if we put all intensive calculations on
the MEC server, this may generate many data transmission
and computing pressure. Meanwhile, most ubiquitous end
devices are in idle states, which reminds us to use these idle
computing resources to reduce the computing pressure, avoid
large amounts of data transmission, and improve resource

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 3

WebRTC
Protocol

Edge server

Device-to-Device Connection

Fig. 3. Illustration of D2D communication technology for
ubiquitous end devices based on WebRTC.

utilization. Thus, the task can be processed by the collabo-
ration without transmitting tasks to the MEC server. Hence,
moving computations close to the edge by using end devices,
improving resource utilization, and reducing the MEC server’s
computing pressure is the primary motivation.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORK

Slice_2
Smart Glasses

Slice_3
Slice_4

Slice_1

Smart watch

Resul
t_2

Result_3
Result_4

R
esult_1 Smart phones

wristband

Headphones

Edge server

5G CPE

Smart
Shoes

Smart
Watch

Smart
Glasses

Smart
wristband

Smart
phones

Smart
Headphnoes

Smart
Necklace

 Collaborative & Wearable Computing

Fig. 4. A typical application scenario of eDDNN.

We present a typical application of eDDNN in wearable
computing in Fig. 4. When a user is experiencing AR ap-
plications using smart glass, with eDDNN, we can offload
intensive DNN recognition computations to other wearable
devices, such as smartphones, smart wristbands, and smart-
watches. eDDNN can greatly reduce the computing pressure
of the glass, thereby enabling the glass to be thinner and
lighter and the user experience to be better. Besides, eDDNN
offloads the DNN computation to other end devices as much
as possible. It is necessary that the wireless customer premise
equipment (CPE) and the edge server can also perform part
of the computation, thereby avoiding the data transmission
between the end device and the edge server. Considering
that the wearable end devices have different brands, different
systems, and computing architectures, which make it difficult
to perform communication and collaborative DNN inference.
To this end, eDDNN implements distributed DNN inference
over heterogeneous end devices based on cross-platform web
technology and WebRTC protocol. The main process includes
task pre-processing, distributed inference, and merging results.

A. Distributed and parallelizing inference of eDDNN

In Fig. 5, we describe how to perform distributed DNN
inference among ubiquitous end devices in parallel, consisting
of establishing the connection, dividing the task and DNN
models, distributed inference, verifying and merging the re-
sults. The detailed eDDNN process is as follows:

STEP 1. Establishing D2D connections among end devices
and updating connections with the help of the edge server.

Generally, the edge server selects end devices that have avail-
able and idle resources as much as possible for participation.
In the event of an end device failure or loss of connection, the
edge server updates the connections among end devices.

STEP 2. The task requestor (i.e. Glass in Fig. 4) sends a
request signal to the edge server, consisting of the task size,
required DNN model, and available resource of the current
end device that can provide.

STEP 3. Once the edge server receives the request from
the requestor, and it divides the task and DNN models into
Num pieces by DecisionMaker, which provides dynamic
allocation according to the current status. Also, it establishes
an inference dependency table based on the allocation, which
mainly supports the inference of the convolutional layer at
the split edge of pieces and then broadcasts the dependency
table, subtasks, and submodels. Note that Num is generally
determined according to the size of the input and DNN models.

STEP 4. End devices execute sub-inference according to the
dependency table and send response results to the requestor
immediately. There may occur some abnormalities during
distributed execution such as the connection loss or insufficient
computing resource, making the collaborative device offline
and unavailable Besides, the end device with low computing
capability consumes much time on DNN inference, triggering
the failure. Thus, we set a response latency for each end device
to monitor the status by the edge server. Once an end device is
found to be offline, it immediately forwards its corresponding
computations to other available end devices and updates the
dependency table to keep consistency.

STEP 5. When the requestor collects the results returned
by all collaborative devices, it immediately merges sub results
to output the final results. The requestor verifies that all
distributed calculation results have been received; otherwise it
will execute or request the edge server for the rest inference.

We present distributed DNN inference on the convolutional
layer and dense layer in detail. We first illustrate the de-
pendency table of three end devices in Table I. We divide
the input evenly into three pieces for a given input and
generate a dependency table according to pieces. For example,
Table I shows the dependency relations of piece 1, piece 2,
and piece 3 of the sample image on device 1, device 3, and
device 2, respectively. Contents of the dependency column in
the table indicate that the current piece relies on some edge
information on other pieces.

TABLE I: Dependency table for distributed inference

Num=3 Device Dependency piece Dependency device
device 1 piece 1 device 2 device 3
device 2 piece 3 device 1 device 2
device 3 piece 2 device 3 device 1

For instance, piece 1 and piece 2 have a specific depen-
dency relationship at the dividing edge of the initial image.
This is because computational calculation requires partial edge
inputs of two pieces. Thus, with the dependency table, it is
possible to execute partial DNN execution almost indepen-
dently and reduce the amount of data dependency compared

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 4

Pre-processing Distributed inference Merging results

Device1

Establishing
connection

Device2

Device3

1

2 Request for
collaboration

M2

M1

M3

M2
M1

M3
DNN models

Edge Server AlexNet VGG16 ResNet50 ShuffleNet��������

3 Distributing
subtasks

Dependency table

DecisionMaker
Allocation

Conv_1 FC_1Conv_nConv_2 FC_m

Conv_1 FC_1Conv_nConv_2 FC_m

Conv_1 FC_1Conv_nConv_2 FC_m

Result_1

Result_2

Result_3

Output

4 Distributed DNN execution

Redundant edge
data

Redundant edge
data

5 Merging results

Monitoring end devices & updating
dependency table

4

Fig. 5. eDDNN inference procedure.

with traditional DNN inference In also can directly obtain
dependency data from other end devices. Besides, we use this
dependency table to monitor and update offline end devices in
time, and forward tasks to other available devices, increasing
the robustness.

j

j+2p

o

fFilter

Output size

o

Stride s = 1
<latexit sha1_base64="pUX5teJkc1TbsE1N0su7HVulHyw=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhELbrqsaB9QiyTTaQ1NkzAzUWoR/AG3+kP+g7h0p3/hnTEFtYhOSHLm3HvOzL3XT8JAKsd5yVkzs3PzC/nFwtLyyupacX2jIeNUMF5ncRiLlu9JHgYRr6tAhbyVCO4N/ZA3/cGxjjevuJBBHJ2pUcI7Q68fBb2AeYqoU3noXhRLTtkxy54GbgZKR083rxUAtbj4jHN0EYMhxRAcERThEB4kPW24cJAQ18GYOEEoMHGOWxRIm1IWpwyP2AF9+7RrZ2xEe+0pjZrRKSG9gpQ2dkgTU54grE+zTTw1zpr9zXtsPPXdRvT3M68hsQqXxP6lm2T+V6drUejhwNQQUE2JYXR1LHNJTVf0ze0vVSlySIjTuEtxQZgZ5aTPttFIU7vurWfibyZTs3rPstwU7/qWNGD35zinQWOv7Dpl98QtVfSY9cpjC9vYpXnuo4IqaqiTdx/3eMCjVbUiK7WuP1OtXKbZxLdl3X0AeTWSkw==</latexit><latexit sha1_base64="SzclXQnWvCgyGFQ+Bp5YN+vrEh8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmFmopQi+ANu9dPEP9C/8M6YglpEJyQ5c+49Z+beG6aRUNrzXgvOwuLS8kpxtbS2vrG5Vd7eaakkk4w3WRIlshMGikci5k0tdMQ7qeTBOIx4OxydmXj7lkslkvhST1LeGwfDWAwECzRRF+rUvy5XvKpnlzsP/BxUkK9GUn7BFfpIwJBhDI4YmnCEAIqeLnx4SInrYUqcJCRsnOMeJdJmlMUpIyB2RN8h7bo5G9PeeCqrZnRKRK8kpYsD0iSUJwmb01wbz6yzYX/znlpPc7cJ/cPca0ysxg2xf+lmmf/VmVo0BjixNQiqKbWMqY7lLpntirm5+6UqTQ4pcQb3KS4JM6uc9dm1GmVrN70NbPzNZhrW7Fmem+Hd3JIG7P8c5zxoHVV9r+qf+5VaLR91EXvYxyHN8xg11NFAk7yHeMQTnp26EzuZc/eZ6hRyzS6+LefhA6+mj/U=</latexit>

s = 1
<latexit sha1_base64="pUX5teJkc1TbsE1N0su7HVulHyw=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhELbrqsaB9QiyTTaQ1NkzAzUWoR/AG3+kP+g7h0p3/hnTEFtYhOSHLm3HvOzL3XT8JAKsd5yVkzs3PzC/nFwtLyyupacX2jIeNUMF5ncRiLlu9JHgYRr6tAhbyVCO4N/ZA3/cGxjjevuJBBHJ2pUcI7Q68fBb2AeYqoU3noXhRLTtkxy54GbgZKR083rxUAtbj4jHN0EYMhxRAcERThEB4kPW24cJAQ18GYOEEoMHGOWxRIm1IWpwyP2AF9+7RrZ2xEe+0pjZrRKSG9gpQ2dkgTU54grE+zTTw1zpr9zXtsPPXdRvT3M68hsQqXxP6lm2T+V6drUejhwNQQUE2JYXR1LHNJTVf0ze0vVSlySIjTuEtxQZgZ5aTPttFIU7vurWfibyZTs3rPstwU7/qWNGD35zinQWOv7Dpl98QtVfSY9cpjC9vYpXnuo4IqaqiTdx/3eMCjVbUiK7WuP1OtXKbZxLdl3X0AeTWSkw==</latexit><latexit sha1_base64="SzclXQnWvCgyGFQ+Bp5YN+vrEh8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmFmopQi+ANu9dPEP9C/8M6YglpEJyQ5c+49Z+beG6aRUNrzXgvOwuLS8kpxtbS2vrG5Vd7eaakkk4w3WRIlshMGikci5k0tdMQ7qeTBOIx4OxydmXj7lkslkvhST1LeGwfDWAwECzRRF+rUvy5XvKpnlzsP/BxUkK9GUn7BFfpIwJBhDI4YmnCEAIqeLnx4SInrYUqcJCRsnOMeJdJmlMUpIyB2RN8h7bo5G9PeeCqrZnRKRK8kpYsD0iSUJwmb01wbz6yzYX/znlpPc7cJ/cPca0ysxg2xf+lmmf/VmVo0BjixNQiqKbWMqY7lLpntirm5+6UqTQ4pcQb3KS4JM6uc9dm1GmVrN70NbPzNZhrW7Fmem+Hd3JIG7P8c5zxoHVV9r+qf+5VaLR91EXvYxyHN8xg11NFAk7yHeMQTnp26EzuZc/eZ6hRyzS6+LefhA6+mj/U=</latexit>

Padding p = 1
<latexit sha1_base64="FEJbSxUBYNk5pm9DjFE06AT2BnI=">AAACxnicjVHLSsNAFD2Nr1pfVVfiJlgEVyVxoxsh4KbLirYVaqnJdFpD82IyUUoR3Llyq58m/oH+hXemKahFdEKSM+eec2bujJcEfiot661gzM0vLC4Vl0srq2vrG+XNrWYaZ4LxBouDWFx6bsoDP+IN6cuAXyaCu6EX8JY3PFX11i0XqR9HF3KU8E7oDiK/7zNXEnWenNjdcsWqWnqYs8DOQcXZeexeA6jH5VdcoYcYDBlCcESQhAO4SOlpw4aFhLgOxsQJQr6uc9yjRN6MVJwULrFD+g5o1s7ZiOYqM9VuRqsE9ApymtgnT0w6QVitZup6ppMV+1v2WGeqvY3o7+VZIbESN8T+5Zsq/+tTvUj0cax78KmnRDOqO5anZPpU1M7NL11JSkiIU7hHdUGYaef0nE3tSXXv6mxdXX/XSsWqOcu1GT7ULumC7Z/XOQuah1XbqtpndsVxMBlF7GIPB3SfR3BQQx0Nyh7gCc94MWpGZGTG3URqFHLPNr4N4+ETPcCRkQ==</latexit><latexit sha1_base64="g1a65XiMYyypMa/0sK06w2tZAwc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmEyUUoR/AG3+mniH+hfeGecglpEJyQ5c+49Z+beG6aRyJTnvRachcWl5ZXiamltfWNzq7y908qSXDLeZEmUyE4YZDwSMW8qoSLeSSUPxmHE2+HoTMfbt1xmIokv1STlvXEwjMVAsEARdZGe+tflilf1zHLngW9BBXY1kvILrtBHAoYcY3DEUIQjBMjo6cKHh5S4HqbESULCxDnuUSJtTlmcMgJiR/Qd0q5r2Zj22jMzakanRPRKUro4IE1CeZKwPs018dw4a/Y376nx1Heb0D+0XmNiFW6I/Us3y/yvTteiMMCJqUFQTalhdHXMuuSmK/rm7peqFDmkxGncp7gkzIxy1mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znPOgdVT1vap/7ldqNTvqIvawj0Oa5zFqqKOBJnkP8YgnPDt1J3Zy5+4z1SlYzS6+LefhA6iAj/I=</latexit>

p = 1
<latexit sha1_base64="FEJbSxUBYNk5pm9DjFE06AT2BnI=">AAACxnicjVHLSsNAFD2Nr1pfVVfiJlgEVyVxoxsh4KbLirYVaqnJdFpD82IyUUoR3Llyq58m/oH+hXemKahFdEKSM+eec2bujJcEfiot661gzM0vLC4Vl0srq2vrG+XNrWYaZ4LxBouDWFx6bsoDP+IN6cuAXyaCu6EX8JY3PFX11i0XqR9HF3KU8E7oDiK/7zNXEnWenNjdcsWqWnqYs8DOQcXZeexeA6jH5VdcoYcYDBlCcESQhAO4SOlpw4aFhLgOxsQJQr6uc9yjRN6MVJwULrFD+g5o1s7ZiOYqM9VuRqsE9ApymtgnT0w6QVitZup6ppMV+1v2WGeqvY3o7+VZIbESN8T+5Zsq/+tTvUj0cax78KmnRDOqO5anZPpU1M7NL11JSkiIU7hHdUGYaef0nE3tSXXv6mxdXX/XSsWqOcu1GT7ULumC7Z/XOQuah1XbqtpndsVxMBlF7GIPB3SfR3BQQx0Nyh7gCc94MWpGZGTG3URqFHLPNr4N4+ETPcCRkQ==</latexit><latexit sha1_base64="g1a65XiMYyypMa/0sK06w2tZAwc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmEyUUoR/AG3+mniH+hfeGecglpEJyQ5c+49Z+beG6aRyJTnvRachcWl5ZXiamltfWNzq7y908qSXDLeZEmUyE4YZDwSMW8qoSLeSSUPxmHE2+HoTMfbt1xmIokv1STlvXEwjMVAsEARdZGe+tflilf1zHLngW9BBXY1kvILrtBHAoYcY3DEUIQjBMjo6cKHh5S4HqbESULCxDnuUSJtTlmcMgJiR/Qd0q5r2Zj22jMzakanRPRKUro4IE1CeZKwPs018dw4a/Y376nx1Heb0D+0XmNiFW6I/Us3y/yvTteiMMCJqUFQTalhdHXMuuSmK/rm7peqFDmkxGncp7gkzIxy1mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znPOgdVT1vap/7ldqNTvqIvawj0Oa5zFqqKOBJnkP8YgnPDt1J3Zy5+4z1SlYzS6+LefhA6iAj/I=</latexit>

Stride s = 1
<latexit sha1_base64="pUX5teJkc1TbsE1N0su7HVulHyw=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhELbrqsaB9QiyTTaQ1NkzAzUWoR/AG3+kP+g7h0p3/hnTEFtYhOSHLm3HvOzL3XT8JAKsd5yVkzs3PzC/nFwtLyyupacX2jIeNUMF5ncRiLlu9JHgYRr6tAhbyVCO4N/ZA3/cGxjjevuJBBHJ2pUcI7Q68fBb2AeYqoU3noXhRLTtkxy54GbgZKR083rxUAtbj4jHN0EYMhxRAcERThEB4kPW24cJAQ18GYOEEoMHGOWxRIm1IWpwyP2AF9+7RrZ2xEe+0pjZrRKSG9gpQ2dkgTU54grE+zTTw1zpr9zXtsPPXdRvT3M68hsQqXxP6lm2T+V6drUejhwNQQUE2JYXR1LHNJTVf0ze0vVSlySIjTuEtxQZgZ5aTPttFIU7vurWfibyZTs3rPstwU7/qWNGD35zinQWOv7Dpl98QtVfSY9cpjC9vYpXnuo4IqaqiTdx/3eMCjVbUiK7WuP1OtXKbZxLdl3X0AeTWSkw==</latexit><latexit sha1_base64="SzclXQnWvCgyGFQ+Bp5YN+vrEh8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmFmopQi+ANu9dPEP9C/8M6YglpEJyQ5c+49Z+beG6aRUNrzXgvOwuLS8kpxtbS2vrG5Vd7eaakkk4w3WRIlshMGikci5k0tdMQ7qeTBOIx4OxydmXj7lkslkvhST1LeGwfDWAwECzRRF+rUvy5XvKpnlzsP/BxUkK9GUn7BFfpIwJBhDI4YmnCEAIqeLnx4SInrYUqcJCRsnOMeJdJmlMUpIyB2RN8h7bo5G9PeeCqrZnRKRK8kpYsD0iSUJwmb01wbz6yzYX/znlpPc7cJ/cPca0ysxg2xf+lmmf/VmVo0BjixNQiqKbWMqY7lLpntirm5+6UqTQ4pcQb3KS4JM6uc9dm1GmVrN70NbPzNZhrW7Fmem+Hd3JIG7P8c5zxoHVV9r+qf+5VaLR91EXvYxyHN8xg11NFAk7yHeMQTnp26EzuZc/eZ6hRyzS6+LefhA6+mj/U=</latexit>

s = 1
<latexit sha1_base64="pUX5teJkc1TbsE1N0su7HVulHyw=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhELbrqsaB9QiyTTaQ1NkzAzUWoR/AG3+kP+g7h0p3/hnTEFtYhOSHLm3HvOzL3XT8JAKsd5yVkzs3PzC/nFwtLyyupacX2jIeNUMF5ncRiLlu9JHgYRr6tAhbyVCO4N/ZA3/cGxjjevuJBBHJ2pUcI7Q68fBb2AeYqoU3noXhRLTtkxy54GbgZKR083rxUAtbj4jHN0EYMhxRAcERThEB4kPW24cJAQ18GYOEEoMHGOWxRIm1IWpwyP2AF9+7RrZ2xEe+0pjZrRKSG9gpQ2dkgTU54grE+zTTw1zpr9zXtsPPXdRvT3M68hsQqXxP6lm2T+V6drUejhwNQQUE2JYXR1LHNJTVf0ze0vVSlySIjTuEtxQZgZ5aTPttFIU7vurWfibyZTs3rPstwU7/qWNGD35zinQWOv7Dpl98QtVfSY9cpjC9vYpXnuo4IqaqiTdx/3eMCjVbUiK7WuP1OtXKbZxLdl3X0AeTWSkw==</latexit><latexit sha1_base64="SzclXQnWvCgyGFQ+Bp5YN+vrEh8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmFmopQi+ANu9dPEP9C/8M6YglpEJyQ5c+49Z+beG6aRUNrzXgvOwuLS8kpxtbS2vrG5Vd7eaakkk4w3WRIlshMGikci5k0tdMQ7qeTBOIx4OxydmXj7lkslkvhST1LeGwfDWAwECzRRF+rUvy5XvKpnlzsP/BxUkK9GUn7BFfpIwJBhDI4YmnCEAIqeLnx4SInrYUqcJCRsnOMeJdJmlMUpIyB2RN8h7bo5G9PeeCqrZnRKRK8kpYsD0iSUJwmb01wbz6yzYX/znlpPc7cJ/cPca0ysxg2xf+lmmf/VmVo0BjixNQiqKbWMqY7lLpntirm5+6UqTQ4pcQb3KS4JM6uc9dm1GmVrN70NbPzNZhrW7Fmem+Hd3JIG7P8c5zxoHVV9r+qf+5VaLR91EXvYxyHN8xg11NFAk7yHeMQTnp26EzuZc/eZ6hRyzS6+LefhA6+mj/U=</latexit>

Padding p = 0
<latexit sha1_base64="VoM/85AxcvEfB5c7ZnZR1YqJ6KE=">AAACxnicjVHLSsNAFD2Nr1pfVVfiJlgEVyVxoxsh4KbLirYVaqnJdFpD82IyUUoR3Llyq58m/oH+hXemKahFdEKSM+eec2bujJcEfiot661gzM0vLC4Vl0srq2vrG+XNrWYaZ4LxBouDWFx6bsoDP+IN6cuAXyaCu6EX8JY3PFX11i0XqR9HF3KU8E7oDiK/7zNXEnWenFjdcsWqWnqYs8DOQcXZeexeA6jH5VdcoYcYDBlCcESQhAO4SOlpw4aFhLgOxsQJQr6uc9yjRN6MVJwULrFD+g5o1s7ZiOYqM9VuRqsE9ApymtgnT0w6QVitZup6ppMV+1v2WGeqvY3o7+VZIbESN8T+5Zsq/+tTvUj0cax78KmnRDOqO5anZPpU1M7NL11JSkiIU7hHdUGYaef0nE3tSXXv6mxdXX/XSsWqOcu1GT7ULumC7Z/XOQuah1XbqtpndsVxMBlF7GIPB3SfR3BQQx0Nyh7gCc94MWpGZGTG3URqFHLPNr4N4+ETO2CRkA==</latexit><latexit sha1_base64="C997AhxxCMciWq3CYncaF6XUJo0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmEyUUoR/AG3+mniH+hfeGecglpEJyQ5c+49Z+beG6aRyJTnvRachcWl5ZXiamltfWNzq7y908qSXDLeZEmUyE4YZDwSMW8qoSLeSSUPxmHE2+HoTMfbt1xmIokv1STlvXEwjMVAsEARdZGeetflilf1zHLngW9BBXY1kvILrtBHAoYcY3DEUIQjBMjo6cKHh5S4HqbESULCxDnuUSJtTlmcMgJiR/Qd0q5r2Zj22jMzakanRPRKUro4IE1CeZKwPs018dw4a/Y376nx1Heb0D+0XmNiFW6I/Us3y/yvTteiMMCJqUFQTalhdHXMuuSmK/rm7peqFDmkxGncp7gkzIxy1mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znPOgdVT1vap/7ldqNTvqIvawj0Oa5zFqqKOBJnkP8YgnPDt1J3Zy5+4z1SlYzS6+LefhA6Ygj/E=</latexit>

p = 0
<latexit sha1_base64="VoM/85AxcvEfB5c7ZnZR1YqJ6KE=">AAACxnicjVHLSsNAFD2Nr1pfVVfiJlgEVyVxoxsh4KbLirYVaqnJdFpD82IyUUoR3Llyq58m/oH+hXemKahFdEKSM+eec2bujJcEfiot661gzM0vLC4Vl0srq2vrG+XNrWYaZ4LxBouDWFx6bsoDP+IN6cuAXyaCu6EX8JY3PFX11i0XqR9HF3KU8E7oDiK/7zNXEnWenFjdcsWqWnqYs8DOQcXZeexeA6jH5VdcoYcYDBlCcESQhAO4SOlpw4aFhLgOxsQJQr6uc9yjRN6MVJwULrFD+g5o1s7ZiOYqM9VuRqsE9ApymtgnT0w6QVitZup6ppMV+1v2WGeqvY3o7+VZIbESN8T+5Zsq/+tTvUj0cax78KmnRDOqO5anZPpU1M7NL11JSkiIU7hHdUGYaef0nE3tSXXv6mxdXX/XSsWqOcu1GT7ULumC7Z/XOQuah1XbqtpndsVxMBlF7GIPB3SfR3BQQx0Nyh7gCc94MWpGZGTG3URqFHLPNr4N4+ETO2CRkA==</latexit><latexit sha1_base64="C997AhxxCMciWq3CYncaF6XUJo0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRI3uhEKbrqsaB9QiyTTaR2aJmEyUUoR/AG3+mniH+hfeGecglpEJyQ5c+49Z+beG6aRyJTnvRachcWl5ZXiamltfWNzq7y908qSXDLeZEmUyE4YZDwSMW8qoSLeSSUPxmHE2+HoTMfbt1xmIokv1STlvXEwjMVAsEARdZGeetflilf1zHLngW9BBXY1kvILrtBHAoYcY3DEUIQjBMjo6cKHh5S4HqbESULCxDnuUSJtTlmcMgJiR/Qd0q5r2Zj22jMzakanRPRKUro4IE1CeZKwPs018dw4a/Y376nx1Heb0D+0XmNiFW6I/Us3y/yvTteiMMCJqUFQTalhdHXMuuSmK/rm7peqFDmkxGncp7gkzIxy1mfXaDJTu+5tYOJvJlOzes9sbo53fUsasP9znPOgdVT1vap/7ldqNTvqIvawj0Oa5zFqqKOBJnkP8YgnPDt1J3Zy5+4z1SlYzS6+LefhA6Ygj/E=</latexit>

o = [i�f+2p
s + 1]

<latexit sha1_base64="9Jk9FJ0bsaTwrvJCSTV+3DMctQI=">AAAC23icjVHLSsNAFD2Nr/quCm7cBIsgFEvSjW6Egi5cVrBaqEWTcaqDaRImE6HUrtyJW3/ArX6DvyH+gf6DC++MKfhAdEKSM+eec2bujB8HIlGO85yzhoZHRsfy4xOTU9Mzs4W5+f0kSiXjdRYFkWz4XsIDEfK6EirgjVhyr+MH/MA/39L1gwsuExGFe6ob81bHOw1FWzBPEXVUWIw2m4dt6bGeWGuXKnG/l/RLbuuoUHTKjhn2T+BmoFgtvT0eA6hFhScc4gQRGFJ0wBFCEQ7gIaGnCRcOYuJa6BEnCQlT5+hjgrwpqTgpPGLP6XtKs2bGhjTXmYlxM1oloFeS08YKeSLSScJ6NdvUU5Os2d+yeyZT761Lfz/L6hCrcEbsX76B8r8+3YtCGxumB0E9xYbR3bEsJTWnonduf+pKUUJMnMYnVJeEmXEOztk2nsT0rs/WM/UXo9SsnrNMm+JV75Iu2P1+nT/BfqXsOmV31y1Wt/Ex8ljCMlbpPtdRxQ5qqFP2Je5wjwerZV1Z19bNh9TKZZ4FfBnW7TugG5pw</latexit><latexit sha1_base64="ccnGVo9uoP6bDcDs3m5PTbhIah4=">AAAC23icjVHLSsNAFD2Nr1pfVcGNm2ARBLEk3ehGKOjCZQX7gFpKMk51ME3CZCKU2pU7cesPuNX/Ef9A/8I7Ywo+EJ2Q5My595yZe68fByJRjvOSsyYmp6Zn8rOFufmFxaXi8kojiVLJeJ1FQSRbvpfwQIS8roQKeCuW3Ov7AW/6lwc63rziMhFReKIGMe/0vfNQ9ATzFFHd4lq03z7tSY8NxU5vuxKPhslo2+10iyWn7Jhl/wRuBkrIVi0qPuMUZ4jAkKIPjhCKcAAPCT1tuHAQE9fBkDhJSJg4xwgF0qaUxSnDI/aSvue0a2dsSHvtmRg1o1MCeiUpbWySJqI8SVifZpt4apw1+5v30Hjquw3o72defWIVLoj9SzfO/K9O16LQw56pQVBNsWF0dSxzSU1X9M3tT1UpcoiJ0/iM4pIwM8pxn22jSUztureeib+aTM3qPctyU7zpW9KA3e/j/AkalbLrlN1jt1Q9zEadxzo2sEXz3EUVR6ihTt7XeMAjnqyOdWPdWncfqVYu06ziy7Lu3wEOlZfr</latexit>

o = [i�f+2p
s + 1]

<latexit sha1_base64="9Jk9FJ0bsaTwrvJCSTV+3DMctQI=">AAAC23icjVHLSsNAFD2Nr/quCm7cBIsgFEvSjW6Egi5cVrBaqEWTcaqDaRImE6HUrtyJW3/ArX6DvyH+gf6DC++MKfhAdEKSM+eec2bujB8HIlGO85yzhoZHRsfy4xOTU9Mzs4W5+f0kSiXjdRYFkWz4XsIDEfK6EirgjVhyr+MH/MA/39L1gwsuExGFe6ob81bHOw1FWzBPEXVUWIw2m4dt6bGeWGuXKnG/l/RLbuuoUHTKjhn2T+BmoFgtvT0eA6hFhScc4gQRGFJ0wBFCEQ7gIaGnCRcOYuJa6BEnCQlT5+hjgrwpqTgpPGLP6XtKs2bGhjTXmYlxM1oloFeS08YKeSLSScJ6NdvUU5Os2d+yeyZT761Lfz/L6hCrcEbsX76B8r8+3YtCGxumB0E9xYbR3bEsJTWnonduf+pKUUJMnMYnVJeEmXEOztk2nsT0rs/WM/UXo9SsnrNMm+JV75Iu2P1+nT/BfqXsOmV31y1Wt/Ex8ljCMlbpPtdRxQ5qqFP2Je5wjwerZV1Z19bNh9TKZZ4FfBnW7TugG5pw</latexit><latexit sha1_base64="ccnGVo9uoP6bDcDs3m5PTbhIah4=">AAAC23icjVHLSsNAFD2Nr1pfVcGNm2ARBLEk3ehGKOjCZQX7gFpKMk51ME3CZCKU2pU7cesPuNX/Ef9A/8I7Ywo+EJ2Q5My595yZe68fByJRjvOSsyYmp6Zn8rOFufmFxaXi8kojiVLJeJ1FQSRbvpfwQIS8roQKeCuW3Ov7AW/6lwc63rziMhFReKIGMe/0vfNQ9ATzFFHd4lq03z7tSY8NxU5vuxKPhslo2+10iyWn7Jhl/wRuBkrIVi0qPuMUZ4jAkKIPjhCKcAAPCT1tuHAQE9fBkDhJSJg4xwgF0qaUxSnDI/aSvue0a2dsSHvtmRg1o1MCeiUpbWySJqI8SVifZpt4apw1+5v30Hjquw3o72defWIVLoj9SzfO/K9O16LQw56pQVBNsWF0dSxzSU1X9M3tT1UpcoiJ0/iM4pIwM8pxn22jSUztureeib+aTM3qPctyU7zpW9KA3e/j/AkalbLrlN1jt1Q9zEadxzo2sEXz3EUVR6ihTt7XeMAjnqyOdWPdWncfqVYu06ziy7Lu3wEOlZfr</latexit>

(a) General convolutional layer.

Dividing the input Piece1 Piece2
Merging results

Adding redundant edge data

(b) Distributed convolutaional layer.

Fig. 6. Convolutional layer computation.

We discuss how to solve distributed independent DNN infer-
ence in the convolutional layer by adding redundant edge data
based on the dependency table. Fig. 6(a) shows the input size
and output size of general conversational layers. Moreover,
Fig. 6(b) describes distributed inference when the image is
divided into two pieces. To obtain the same inference results
as in Fig. 6(a), we have to add a small portion of redundant
edge data to each image piece for obtaining the correct result
the filter. The redundant input data may result in the error
and be transmitted to the final inference results. Besides, the
dependent inference is only a small part of the input data
involved at the edge of pieces. Thus, in practice, pieces without

dependency data can be performed independently, accelerating
the inference.

Fig. 7 describes how to perform distributed DNN layer
inference in terms of a dense layer or fully connection (FC)
layer. In Fig. 7(a), each activation is calculated from the sum of
inputs and weights for two dense layers. These parameters are
determined during the training phase and remaining constant
in the inference process. We present a computing schematic
diagram of a basic unit composed of 2-layer FC, which divides
it into two parts according to the input size of the first FC
layer and distributes them to different end devices. We only
need to sum the results of two end devices during the merging
phase, which has correct results and has been tested on classic
DNNs and datasets. Additionally, we directly distribute the
last FC layer on the requestor when the end device has
sufficient resources. It can avoid redundant calculations caused
by dividing the last layer. Hence, the requestor receives the
result of the first FC layer calculated by others, merges these
results, and executes the last FC layer.

Inputs

Outputs

Weights
wij

<latexit sha1_base64="piRrsOpzhzPaxS2MCG2ZsrJY170=">AAADBXicjVLBTttAEH2YFlKgkNLeuFhESBwqax2RBG6ReukxlUhACgjZZkkXHNuy161QhNQbV67lH7i1vfY7+gfwAdz7dnEkOKB2V2u/fTNvdmZ2wyxWhRbiz4wz++Ll3Hzt1cLi0uvllfqb1UGRlnkk+1Eap/l+GBQyVonsa6VjuZ/lMhiHsdwLzz4Y+94XmRcqTXb1eSYPx8EoUScqCjSpwdejiTq9OKo3hNdubrVaHVd4wg4Dtts7/o7rV0yj++7+5zcAvbR+jwMcI0WEEmNIJNDEMQIUnEP4EMjIHWJCLidS1i5xgQVqS3pJegRkz/gdcTes2IR7E7Ow6oinxFw5lQePdkOuEULrI+ChjSZaeG+xsHOKt9Gh1sUGz0t5Rk5sMnVttNJmZdjn8prYfExd5/yHVawxWY3PZP+lm3r+r870QeOEeZvaFPuRWcZ0JqqilLajJnP3UVWaETJyBh/TnhNHVjm9I9dqClu7uZfA2m+tp2HNPqp8S9yZLPk4pi/AfR4Mmp4vPP+T3+g28TBqWMM6NvkWOujiI3roM/YprvAd186lc+P8cH49uDozleYtngzn91+OqJ5v</latexit><latexit sha1_base64="I/H7eCsw7xCfsD3ivOGW63o+1as=">AAADBXicjVLLbtNAFD116YO2lFCWbKxGlVggaxyRR3eV2LBsJZJWSqPKdiZhEse27HFRFHXNli38AzvElu/gD8oHsOfM1JHKImpnNPa5Z+65c++dCbNYFVqI32vO+pONza3tpzu7e8/2n9deHPSKtMwj2Y3SOM0vwqCQsUpkVysdy4ssl8EsjOV5OH1n9s+vZV6oNPmg55kczIJxokYqCjSp3qerhZrcXNXqwms13jabbVd4wg4DOq1j/9j1K6aOapymtb+4xBApIpSYQSKBJo4RoODsw4dARm6ABbmcSNl9iRvsUFvSS9IjIDvld0yrX7EJbROzsOqIp8RcOZWX96w+1xih9RHw0EIDTbyxWNi5xB20qXVxxPNSnpETm0xdG620WRl2VV4Lm4+pa85/WMWakdX4SPYh3dLzsTrTB40R8za1KfYjs4zpTFRFKW1HTebuvao0I2TkDB5yPyeOrHJ5R67VFLZ2cy+B3b+1noY1dlT5lvhjsuTjWL4AdzXoNTxfeP6ZXz9pVM9kG69wiNd8C22c4D1O0WXsCb7gK745n53vzg/n552rs1ZpXuK/4fz6B3dTm/E=</latexit>

wij
<latexit sha1_base64="piRrsOpzhzPaxS2MCG2ZsrJY170=">AAADBXicjVLBTttAEH2YFlKgkNLeuFhESBwqax2RBG6ReukxlUhACgjZZkkXHNuy161QhNQbV67lH7i1vfY7+gfwAdz7dnEkOKB2V2u/fTNvdmZ2wyxWhRbiz4wz++Ll3Hzt1cLi0uvllfqb1UGRlnkk+1Eap/l+GBQyVonsa6VjuZ/lMhiHsdwLzz4Y+94XmRcqTXb1eSYPx8EoUScqCjSpwdejiTq9OKo3hNdubrVaHVd4wg4Dtts7/o7rV0yj++7+5zcAvbR+jwMcI0WEEmNIJNDEMQIUnEP4EMjIHWJCLidS1i5xgQVqS3pJegRkz/gdcTes2IR7E7Ow6oinxFw5lQePdkOuEULrI+ChjSZaeG+xsHOKt9Gh1sUGz0t5Rk5sMnVttNJmZdjn8prYfExd5/yHVawxWY3PZP+lm3r+r870QeOEeZvaFPuRWcZ0JqqilLajJnP3UVWaETJyBh/TnhNHVjm9I9dqClu7uZfA2m+tp2HNPqp8S9yZLPk4pi/AfR4Mmp4vPP+T3+g28TBqWMM6NvkWOujiI3roM/YprvAd186lc+P8cH49uDozleYtngzn91+OqJ5v</latexit><latexit sha1_base64="I/H7eCsw7xCfsD3ivOGW63o+1as=">AAADBXicjVLLbtNAFD116YO2lFCWbKxGlVggaxyRR3eV2LBsJZJWSqPKdiZhEse27HFRFHXNli38AzvElu/gD8oHsOfM1JHKImpnNPa5Z+65c++dCbNYFVqI32vO+pONza3tpzu7e8/2n9deHPSKtMwj2Y3SOM0vwqCQsUpkVysdy4ssl8EsjOV5OH1n9s+vZV6oNPmg55kczIJxokYqCjSp3qerhZrcXNXqwms13jabbVd4wg4DOq1j/9j1K6aOapymtb+4xBApIpSYQSKBJo4RoODsw4dARm6ABbmcSNl9iRvsUFvSS9IjIDvld0yrX7EJbROzsOqIp8RcOZWX96w+1xih9RHw0EIDTbyxWNi5xB20qXVxxPNSnpETm0xdG620WRl2VV4Lm4+pa85/WMWakdX4SPYh3dLzsTrTB40R8za1KfYjs4zpTFRFKW1HTebuvao0I2TkDB5yPyeOrHJ5R67VFLZ2cy+B3b+1noY1dlT5lvhjsuTjWL4AdzXoNTxfeP6ZXz9pVM9kG69wiNd8C22c4D1O0WXsCb7gK745n53vzg/n552rs1ZpXuK/4fz6B3dTm/E=</latexit>

xi
<latexit sha1_base64="DDq8rleF9j/97s1gqFBc0dqjMJA=">AAADAnicjVI9T9xAEH0YQghJyAEljcUJKUVkrU/cB91JNClB5ADpQMg2y7HCZ1v2GoEQHS0t/Ae6iJaCv4H4A8kPSJ+3i0+CAsGu1n77Zt7szOyGWawKLcTDmDM+8WHy49Sn6c9fvs58q83ObRZpmUeyF6Vxmm+HQSFjlcieVjqW21kug2EYy63waNXYt45lXqg0+aVPM7k7DAaJOlBRoEltnOypvVpdeK3GcrPZdoUn7DCg01rxV1y/YurdyfXHewBrae0fdrCPFBFKDCGRQBPHCFBw9uFDICO3izNyOZGydolzTFNb0kvSIyB7xO+Au37FJtybmIVVRzwl5sqp3Hm263MNEFofAQ8tNNDED4uFnSPcQZtaF0s8L+UZObHJ1LXRSpuVYV/L68zmY+o65T+sYg3JahySfUs38nyvzvRB44B5m9oU+5FZxnQmqqKUtqMmc/dZVZoRMnIG79OeE0dWOboj12oKW7u5l8Da/1hPw5p9VPmW+Guy5OMYvQD3dbDZ8Hzh+et+vdvA05jCAhbxnW+hjS5+Yg09xh7gEle4di6cG+e3c/vk6oxVmnm8GM7df8OCnKQ=</latexit><latexit sha1_base64="cPtzgj3V+8aVi3ezzAZCkXI2rlM=">AAADAnicjVLLTttAFD2Y9zuUZTdWI6QuKmsckQR2SN10SdUGkAJCtjMJIxzbsscIhLrrli38Q3eILT/SP4APYN8zU0cKiwhmNPa5Z+65c++dCbNYFVqIv1PO9Mzs3PzC4tLyyuraem3jw0GRlnkkO1Eap/lRGBQyVonsaKVjeZTlMhiGsTwMz7+a/cMLmRcqTX7qq0yeDINBovoqCjSpH5en6rRWF16rsd1stl3hCTsM2Gnt+ruuXzF1VGM/rb3gGD2kiFBiCIkEmjhGgIKzCx8CGbkTXJPLiZTdl/iFJWpLekl6BGTP+R3Q6lZsQtvELKw64ikxV07l8ZjV5RogtD4CHlpooIkvFgs7R3gHbWpdbPG8lGfkxCZT10YrbVaGnZTXtc3H1HXFf1jFGpLVOCP7lm7k+V6d6YNGn3mb2hT7kVnGdCaqopS2oyZzd6wqzQgZOYN73M+JI6sc3ZFrNYWt3dxLYPefrKdhjR1VviWeTZZ8HKMX4E4GBw3PF57/3a/vNapnsoCP+ITPfAtt7OEb9tFh7AFucIs757fzx7l3Hv67OlOVZhOvhvP4D2bImnI=</latexit>

xi
<latexit sha1_base64="DDq8rleF9j/97s1gqFBc0dqjMJA=">AAADAnicjVI9T9xAEH0YQghJyAEljcUJKUVkrU/cB91JNClB5ADpQMg2y7HCZ1v2GoEQHS0t/Ae6iJaCv4H4A8kPSJ+3i0+CAsGu1n77Zt7szOyGWawKLcTDmDM+8WHy49Sn6c9fvs58q83ObRZpmUeyF6Vxmm+HQSFjlcieVjqW21kug2EYy63waNXYt45lXqg0+aVPM7k7DAaJOlBRoEltnOypvVpdeK3GcrPZdoUn7DCg01rxV1y/YurdyfXHewBrae0fdrCPFBFKDCGRQBPHCFBw9uFDICO3izNyOZGydolzTFNb0kvSIyB7xO+Au37FJtybmIVVRzwl5sqp3Hm263MNEFofAQ8tNNDED4uFnSPcQZtaF0s8L+UZObHJ1LXRSpuVYV/L68zmY+o65T+sYg3JahySfUs38nyvzvRB44B5m9oU+5FZxnQmqqKUtqMmc/dZVZoRMnIG79OeE0dWOboj12oKW7u5l8Da/1hPw5p9VPmW+Guy5OMYvQD3dbDZ8Hzh+et+vdvA05jCAhbxnW+hjS5+Yg09xh7gEle4di6cG+e3c/vk6oxVmnm8GM7df8OCnKQ=</latexit><latexit sha1_base64="cPtzgj3V+8aVi3ezzAZCkXI2rlM=">AAADAnicjVLLTttAFD2Y9zuUZTdWI6QuKmsckQR2SN10SdUGkAJCtjMJIxzbsscIhLrrli38Q3eILT/SP4APYN8zU0cKiwhmNPa5Z+65c++dCbNYFVqIv1PO9Mzs3PzC4tLyyuraem3jw0GRlnkkO1Eap/lRGBQyVonsaKVjeZTlMhiGsTwMz7+a/cMLmRcqTX7qq0yeDINBovoqCjSpH5en6rRWF16rsd1stl3hCTsM2Gnt+ruuXzF1VGM/rb3gGD2kiFBiCIkEmjhGgIKzCx8CGbkTXJPLiZTdl/iFJWpLekl6BGTP+R3Q6lZsQtvELKw64ikxV07l8ZjV5RogtD4CHlpooIkvFgs7R3gHbWpdbPG8lGfkxCZT10YrbVaGnZTXtc3H1HXFf1jFGpLVOCP7lm7k+V6d6YNGn3mb2hT7kVnGdCaqopS2oyZzd6wqzQgZOYN73M+JI6sc3ZFrNYWt3dxLYPefrKdhjR1VviWeTZZ8HKMX4E4GBw3PF57/3a/vNapnsoCP+ITPfAtt7OEb9tFh7AFucIs757fzx7l3Hv67OlOVZhOvhvP4D2bImnI=</latexit>

zj =
P

i xiwij
<latexit sha1_base64="5mtXrXbUE8zfxRwKn7vlTegehbY=">AAADFnicjVLLThRBFD00KA9fo4aVm44TExemUz1xZmBhMokbl5AwQDJDOt1NMRb0K93VKE74D7Zu9R/cGbZu5QvwA9hzquhJcEG0KtV96tx7bt17q6IiUZUW4vecM79w7/7i0vLKg4ePHj9pPX22XeV1GcthnCd5uRuFlUxUJoda6UTuFqUM0yiRO9HRe2PfOZZlpfJsS58Uci8NJ5k6UHGoSQWt1S/B4btxVaeBcj9zfQqm6vA0aLWF1+u87Xb7rvCEHQas9db9dddvmPZg9epiAGAjb11hjH3kiFEjhUQGTZwgRMU5gg+BgtwepuRKImXtEqdYobaml6RHSPaI3wl3o4bNuDcxK6uOeUrCVVI5vrUbcU0QWR8BDz100MUbi4WdM7yGPrUuXvG8nGeUxCZT10arbVaGvSuvqc3H1HXCf9TESslqfCT7L93M8391pg8aB8zb1KbYj8IypjNxE6W2HTWZu7eq0oxQkDN4n/aSOLbK2R25VlPZ2s29hNZ+aT0Na/Zx41vjj8mSj2P2Aty7wXbH84Xnb/rtQQc3Ywkv8BKv+Rb6GOADNjBk7Cm+4hu+O2fOD+enc37j6sw1muf4azi/rgG3NqSV</latexit><latexit sha1_base64="YUVB52VWqvlBUaPbIyZPCDiH5nk=">AAADFnicjVJNTxRBEH0MCoiIC8aTl4kbEw5m0rNxd+FAQuKFIyYukOySyczQrM3OV2Z6QNzwP7hyxf/gjXj16j/QH+Dd1+1sggei3emZV6/rVVdVd1QkqtJCfJ9z5h88XFhcerT8eOXJ6tPW2vp+lddlLAdxnuTlYRRWMlGZHGilE3lYlDJMo0QeRJO3Zv/gTJaVyrP3+qKQR2k4ztSJikNNKmg9/xScbo+qOg2U+5HrPJiq08ug1RZer/Om2+27whN2GLDZ2/K3XL9h2mjGXt76hRGOkSNGjRQSGTRxghAV5xA+BApyR5iSK4mU3Ze4xDK1Nb0kPUKyE37HtIYNm9E2MSurjnlKwlVSObpjDbnGiKyPgIceOujitcXCzhneRJ9aF694Xs4zSmKTqWuj1TYrw96X19TmY+q64D9qYqVkNT6Q/Zdu5vm/OtMHjRPmbWpT7EdhGdOZuIlS246azN07VWlGKMgZfMz9kji2ytkduVZT2drNvYR2/4f1NKyx48a3xk+TJR/H7AW494P9jucLz3/nt3c6zTNZwgu8xAbfQh872MUeBow9xTVu8Nm5cr44t87XP67OXKN5hr+G8+033xmiMQ==</latexit>

zj =
P

i xiwij
<latexit sha1_base64="5mtXrXbUE8zfxRwKn7vlTegehbY=">AAADFnicjVLLThRBFD00KA9fo4aVm44TExemUz1xZmBhMokbl5AwQDJDOt1NMRb0K93VKE74D7Zu9R/cGbZu5QvwA9hzquhJcEG0KtV96tx7bt17q6IiUZUW4vecM79w7/7i0vLKg4ePHj9pPX22XeV1GcthnCd5uRuFlUxUJoda6UTuFqUM0yiRO9HRe2PfOZZlpfJsS58Uci8NJ5k6UHGoSQWt1S/B4btxVaeBcj9zfQqm6vA0aLWF1+u87Xb7rvCEHQas9db9dddvmPZg9epiAGAjb11hjH3kiFEjhUQGTZwgRMU5gg+BgtwepuRKImXtEqdYobaml6RHSPaI3wl3o4bNuDcxK6uOeUrCVVI5vrUbcU0QWR8BDz100MUbi4WdM7yGPrUuXvG8nGeUxCZT10arbVaGvSuvqc3H1HXCf9TESslqfCT7L93M8391pg8aB8zb1KbYj8IypjNxE6W2HTWZu7eq0oxQkDN4n/aSOLbK2R25VlPZ2s29hNZ+aT0Na/Zx41vjj8mSj2P2Aty7wXbH84Xnb/rtQQc3Ywkv8BKv+Rb6GOADNjBk7Cm+4hu+O2fOD+enc37j6sw1muf4azi/rgG3NqSV</latexit><latexit sha1_base64="YUVB52VWqvlBUaPbIyZPCDiH5nk=">AAADFnicjVJNTxRBEH0MCoiIC8aTl4kbEw5m0rNxd+FAQuKFIyYukOySyczQrM3OV2Z6QNzwP7hyxf/gjXj16j/QH+Dd1+1sggei3emZV6/rVVdVd1QkqtJCfJ9z5h88XFhcerT8eOXJ6tPW2vp+lddlLAdxnuTlYRRWMlGZHGilE3lYlDJMo0QeRJO3Zv/gTJaVyrP3+qKQR2k4ztSJikNNKmg9/xScbo+qOg2U+5HrPJiq08ug1RZer/Om2+27whN2GLDZ2/K3XL9h2mjGXt76hRGOkSNGjRQSGTRxghAV5xA+BApyR5iSK4mU3Ze4xDK1Nb0kPUKyE37HtIYNm9E2MSurjnlKwlVSObpjDbnGiKyPgIceOujitcXCzhneRJ9aF694Xs4zSmKTqWuj1TYrw96X19TmY+q64D9qYqVkNT6Q/Zdu5vm/OtMHjRPmbWpT7EdhGdOZuIlS246azN07VWlGKMgZfMz9kji2ytkduVZT2drNvYR2/4f1NKyx48a3xk+TJR/H7AW494P9jucLz3/nt3c6zTNZwgu8xAbfQh872MUeBow9xTVu8Nm5cr44t87XP67OXKN5hr+G8+033xmiMQ==</latexit>

(a) General fully connection.

FC1 FC2

Device2

Device1

(b) Distributed fully connection.

Fig. 7. Fully connection layer computation.

B. DecisionMaker for online allocating in eDDNN

When a target end device requests the edge server for
allocation, the edge server calculates an optimal allocation
according to the task and available resource status of partic-
ipating end devices. Note that the computing capabilities of

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 5

ubiquitous end devices are various, and the current computing
status of end devices and available resources are dynamically
changing. Therefore, for a DNN task request, the edge server
should provide a comprehensive allocation by considering the
resource status of all end devices and global status. To this
end, we come up with a dynamic allocation algorithm based
on deep reinforcement learning, named DecisionMaker, from
the perspective of reducing complexity.

Let D = {d1, d2, ..., dM} denotes the end device set of
M end devices. We define the task processing capability
of each end device as C = {c1, c2, ..., cM}. The current
available computing resource of each end device at time t
is Rt = {r1t , r2t , ..., rMt }. Each end device can run multiple
DNN subtasks, which can not be further divided at time t. End
device generates a DNN task of H={h1, h2, ..., hN} with the
probability of αi ∈ (0, 1), which obeys poisson distribution.
Let T = {1, 2, .., N} be all DNN subtasks set at a time slot.
hj=<pj , qj>, j∈T denotes jth subtask of all DNN subtasks
that need to be inferenced, where pj and qj are the amounts of
computing resource and data communication required for the
inference, respectively. Since any subtask can be distributed on
any end device, we use βi,j,k, (i ≤ k) define the probability
that di offloads subtask hi,j to dk for collaboration. Besides,
we define the uplink transmission rate between di and dk as:

ri,k = B log2(1 +
gi,kPi

BN0
), (1)

where B denotes D2D communication bandwidth, Pi is the
transmitting power of di, gi is the information gain, and N0

is white Gaussian noise variance. Thus, we can describe the
inference latency of hi,j on di as tinfi,j =

pi,j

ci
. Note that we

ignore the communication cost of the broadcasting dependency
table over the edge server and end devices. When di requires
collaboration from dk for the subtask hi,j , communication
latency can be defined as tcomi,j,k =

qi,j
ri,j

. Based on these
definitions, we describe the task allocation as minimizing the
overall latency of executing all DNN subtasks over distributed
end devices as

min

M∑

i=1

N∑

j=1

M∑

k=1

βi,j,k(t
com
i,j,k+tinfk,j) + (1−βi,j,k)t

inf
i,j . (2)

It is hard to meet the real-time allocation for eDDNN by
using optimization algorithms such as genetic algorithms for
solving the above problem. For a given environment in Fig. 8,
we assume that an agent is interacting with it. During each
time interval t, the agent chooses an action at via observing the
state st. By executing the selected action, the state is changing
from st to st+1. The agent decides its actions according to
the policy, which is a probability distribution π(s, a) and
is performed by a deep neural network. Also, we collect
historical records from the online allocating phase to: (1)
provide more training samples for the offline DRL model, and
(2) more importantly, we use the historical records to train a
reward prediction model based on another DNN model. This
is because using the learning-based rewards can effectively
address our inability to obtain sufficient training samples
[22]. In general, the offline training phase of DecisionMaker

includes the training of the reward model and the DRL-policy
model. We formulate dynamic task allocation as a DRL-based
question and describe DecisionMaker’s design by emphasizing
the state space, the action space, and the reward.

State s

Environment

t1 t2 … tn
Subtask pool

Establishing
 connection

Agent Policy Network
⇡

<latexit sha1_base64="4iNj6+kt5JHMheyri3MQJfw229Q=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4CtOYYrsTunGpaFVoRZJxrEPTJEwmShHBH3Crnyb+gf6Fd8YUdCE6Icmdc885M/feKItlrhl7m3KmZ2bn5isL1cWl5ZXV2tr6aZ4WiosuT+NUnUdhLmKZiK6WOhbnmRLhKIrFWTTsmPzZrVC5TJMTPc7ExSgcJPJa8lATdNzP5GWtzrx2mwVB02Vek/m+36KA7fqtdsNteMyuOsp1mNZe0ccVUnAUGEEggaY4Roicnh4aYMgIu8A9YYoiafMCD6iStiCWIEZI6JC+A9r1SjShvfHMrZrTKTG9ipQutkmTEk9RbE5zbb6wzgb9zfveepq7jekflV4jQjVuCP1LN2H+V2dq0bhGy9YgqabMIqY6XroUtivm5u63qjQ5ZISZ+IryimJulZM+u1aT29pNb0Obf7dMg5o9L7kFPswtacCTKbq/B6e+1wi85lFQ3++Uo65gE1vYoXnuYR8HOESXvAd4wjNenAMncQrn7ovqTJWaDfxYzuMnJFmQoA==</latexit>

Take action
a

t

State st

st+1 rt+1

Reward rt

Online
Allocating

Incoming tasks

DRL
model

Allocation
Results

Allocation
Records

Reward
prediction

Fig. 8. DecisionMaker for online subtasks allocation.

State space. The input state st = {x,Rt,B} includes the
DNN subtasks, available computing resources of devices.
B = M ×M represents the network conditions between M
collaborative devices. Commonly, the number of collaborative
devices and the number of subtasks are dynamically changing.
It increases the obstacles to design and train the policy due to
the fixed input layer. We define a large M for the collaborative
devices. When the number of collaborative devices M ′ is less
than M , we set M−M ′ tasks as ∅. It is impossible to set a max
value effectively for representing dynamic subtasks due to a
large number of subtasks, which may cause training difficulties
in convergence when the actual number of sub-tasks is small.
To this end, we use a trick by defining a subtask pool to store
incoming subtasks for each time interval. (i.e. at each time
interval [23], [18]. L subtasks are scheduled from the subtask
pool where L is the input length of the DNN subtasks in st.
This means that we need to freeze the time and use multiple
allocations to complete all the subtasks in the subtask pool
at each time interval. Also, Fig. 9 gives a clear case of state
space for better understanding by describing each end device’s
currently available computing resource and subtasks waiting
to be allocated. Red blocks denote computing resource, and
blue blocks are the communication cost. When an end device
requests a DNN computing collaboration, it divides the DNN
task into multiple subtasks and adds to the task queue to be
allocated. Note that device2 cannot cooperate to complete any
subtask in the current state; thus, these subtasks are allocated
to other end devices.
Action space. As mentioned in the state space, since we
use a subtask pool to fix the input of the policy network
effectively, this also allows us to reduce the action space from
MN down to linear in L. Thus, the action space is given by
at = {a1, a2, ..., aL}. ai = 0 means the ith subtask will not
be assigned, and ai = dj , j ∈ [1,M] indicates allocating the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 6

Device1 Subtask1 Subtask 2 Subtask 3 Subtask 4Device2

Tim
e

Available resource
Device3 Device4

Subtask
Pool

Fig. 9. An example of state, with four devices and subtasks.

ith subtask to jth device. At each time interval, time is frozen
until completes the assignment of all subtasks in the subtask
pool. By defining such subtask pool and multiple allocating
mechanisms in each time interval, the agent accomplishes the
dynamic assignment and maintains a linear action space in L.
Rewards. Our goal is to minimize the average subtask com-
pletion time by training the DNN policy network. Thus, the
completion time of subtasks can be set as the reward, which
is defined as

∑
l∈N

−1
Tl

. N is all subtasks that are currently
assigned and pending. DecisionMaker is to maximize the long-
term reward; thus, the reward is the negative sum of all latency
at each time step. The agent only receives the reward until
the current subtasks in the pool are allocated entirely, which
means the agent has no rewards of intermediate actions in a
time interval. Thus, we can maximize the cumulative reward
to mimic, minimizing overall complement time when setting
the discount factor as γ = 0.9.
Design and Training of the DNN models. We first introduce
the DNN model used for the policy network in DecisionMaker.
N subtasks and M collaborative devices are connected to a
fully connected layer, and the next two hidden layers have
196 neurons, respectively. Before the output layer, another
hidden layer with 128 neurons are used. Then, since we use
another DNN model to predict the reward given the incoming
subtasks and collaborative device states, we can generate
many samples for training the reward prediction model. We
also use three hidden layers with 128 neurons in the reward
prediction network before the output layer. Then, we introduce
the training of the policy network of DecisionMaker. The
policy network is trained in various episodes, which inputsN
subtasks for each episode for allocating according to the policy
network until all subtasks are allocated. In each training epoch
for each task set that simulates E episodes, we compute the
probabilistic space of actions with the policy and improve the
policy for all subtasks by the inference results. Note that the
state, the action, and the reward of each episode are used to
compute the cumulative reward of vt. Generally, the optimized
objective is to maximize the expected reward, and the gradient
of the objective can be described as:

∆Eθ[
∑

γtrt] = Eπθ
[∆θ log πθ(s, a)Q

πθ (s, a)], (3)

where Eθ[
∑

γtrt] represents the expected cumulative reward.
γ ∈ [0, 1] is to discount reward and we set it as 0.9 in
the experiment. Qπθ (s, a) is the expected reward. Besides,
we use the following gradient-descent method to update the
parameters for the policy network.

θ ⇐ θ + α
∑

t
∆θ log πθ(st, at)vt, (4)

where α denotes the adjustment size. Since our policy gradient

of Eq. (3) has a high variance on gradient estimation, we use
the average value of the return results of the same time step
across all episodes with the same task set. Once we acquire
the trained DRL-based DecisionMaker, eDDNN chooses to top
Num collaborators for executing distributed DNN inference
following the detailed eDDNN process in Fig. 5. Also, we
describe in detail how to train the reward prediction model.
By collecting the history records, we use these samples to train
the reward DNN model by supervised learning. We define the
loss function as:

L(g, g′) =
1

|G|
∑

n∈[N]

|g′n − gn|
g′n

, (5)

where gn and g′n represent predicted inference latency and the
ground truth label [24].

IV. EVALUATION

A. Experiments setup

1) Datasets and Benchmarks: We evaluate the correctness
and effectiveness of eDDNN using typical deep neural net-
works such as AlexNet [25], ResNet-50 [26] and ShuffleNet
[27] on CIFAR-10 [28] and ImageNet-150K [29]. ImageNet-
150K is the subset of ILSVRC ImageNet and contains 183K
training images and 7.5K testing images belonging to the
top 150 most popular object categories. To illustrate the
improvements of our DecisionMaker allocation regarding the
latency, the mobile energy, and resource utilization against
some baseline methods, including two typical methods, Ran-
dom allocation, and Distance-prior respectively. Random al-
location distributes DNN computations to the connected end
devices randomly, and the Distance-prior method prefers to
select nearby end devices for collaboration. We also compare
the DecisionMaker with the two latest DRL-based allocation
methods, including DRLoS[18] and DeepRM [23] to highlight
the strengths and effectiveness. Last, we compare eDDNN
with other non-collaborative DNN inference schemes, mobile-
only and cloud-only, and existing collaborative inference meth-
ods such as Neurosurgeon [12], JointDNN [14], LCRS [16],
and DeepAdapter [17] to demonstrate the improvements.

2) End devices and edge server setup: To establish a real
scenario for mobile Web AR application with three smart-
phones, both installing Chrome browser and running Andriod
8.0, a HUAWEI Mate10 with 4 GB RAM, Samsung Galaxy S5
with 4 GB RAM, and iPhone X with 3 GB RAM, respectively.
We use a common server with a six-core Interprocessor of 2.9
GHz and 16 GB RAM running Ubuntu 18.04 LTS, which is
deployed near the base station. We present the core network
topology with a max uplink bandwidth of 150 Mbps and a
max downlink bandwidth of 600 Mbps. It is a commercial
5G network provided with communication latency between
the mobile device and the edge server of 5-10ms by China
Unicom in Fig. 10. As for the D2D communication links,
mobile devices are interconnected via the D2D (Wi-Fi Direct)
communication technique with a bandwidth of 85-300 Mbps
and a latency of 5-20 ms. We use a HUAWEI 5G CPE to
connect to the base station and use Wonder Shaper [30] to
control the network on the edge server.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 7

5G Base Station with
 Edge Server

Ubiquitous end devices

 5G CPED2D Commnication

Fig. 10. The network topology in a real scenario.

3) Measurements: We introduce tools and methodologies
to measure the latency, mobile energy, and resource utilization
as follows: (a) Latency measurement. the entire latency can
be calculated based on two timestamps before and after a
complete DNN computation request. We repeat the same DNN
task request multiple times and use the average latency as the
final latency performance to reduce random errors. (b) Mobile
energy measurement. We use a hardware power monitor with
a model number of AAA10F [31]. We also use it to provide
a stable voltage of 3.7 V for mobile devices and obtain the
system energy cost, such as the screen brightness cost in the
standby state. (c) Resource utilization measurement. We de-
fine the resource utilization as the computing resource variance
of participated end devices. The resource usage variance of
dt={d1t , d2t , ..., dmt } at time slot t can be calculated as:

RU2
t =

∑m
i=1

(dit − d̄t)

m− 1
, (6)

where d̄t denotes the mean value of the resource usage of end
devices at time slot t.

B. Performance of eDDNN

We simulate deploying a large number of end devices to
verify the effectiveness of eDDNN in Fig. 11, and evaluate a
small number of end devices for a real-world scenario. Mobile
energy consumption is based on the benchmark of the actual
mobile transmission energy and DNN inference energy, mea-
sured by the method in subsection A. The parameters involved
in the experiment are as follows: the downlink bandwidth
is 400 Mbps, and the uplink bandwidth is 100 Mbps. The
amount of end devices is 100. Task sizes of ImageNet and
CIFAR-10 are 127 KB and 3 KB, respectively. Moreover,
DNN model sizes are 221 MB, 76.3 MB of AlexNet, 90.7 MB,
31.6 MB of ResNet-50, and 8.22 MB, 2.4 MB of ShuffleNet
for ImageNet and CIFAR-10, respectively. We simulate a DNN
task requestor that obeys the Bernoulli distribution with a
request frequency range from 10% to 130%, and randomly set
α and β. For three DRL-based methods, we both use Adam
optimizer [32] with a learning rate of 0.0001 and a mini-batch
of 64. The reward discount factor of DecisionMaker, DeepRM,
and DRLoS is set as 0.9, 1.0, and 1.0, respectively. Besides, we
set the task processing batch and the output size of the policy
network L as 100. And the training iteration of all methods is
1500. DRLoS’s reward differs from the other two methods in
that it maximizes resource utilization.

We see that: (1) DecisionMaker performs better than other
allocation methods in all indicators. This is because Deci-
sionMaker considers the system status of all end devices and
leverages them to acquire for the best allocation iteratively.
However, the other two methods only consider allocation on
the part of end devices. (2) When the number reaches 10, we

observe that the latency drops significantly, the mobile energy
also shows a large decrease, while the resource utilization
variance of all end devices increases significantly. Concretely,
when the number of collaborative end devices is set at 3, the
latency decreases, and the probability of acquiring collabora-
tion for the requestor increases. However, when the number
of end devices increases to 20 or more, the latency tends to
be stable without further improvements. As for mobile energy
consumption, with the increase of collaborative end devices,
mobile energy consumption shows a similar trend to latency.
Meanwhile, the mobile energy of data transmission is greater
than that of inference, resulting in that the whole mobile
energy tends to decrease with the collaboration of increasing
end devices. However, the resource utilization variance of all
end devices shows a strong upward trend when the number of
end devices reaches 10. This is because the indicator calculates
the resource utilization variance of all end devices, and the
number of collaborative end devices is definite. End devices
without participating in collaboration have a large increase
and perform a higher resource utilization variance. Besides,
with the continuous increase of the number of end devices,
resource utilization variance of all allocation methods gradu-
ally becomes consistent. (3) Judging from the performance on
different datasets and DNN networks, DecisionMaker shows
a similar curve trend. Whether it is an extensive network or
a small network, in a distributed inference, DecisionMaker is
more beneficial to search for the optimal collaborative end
devices to the requestor.

When we compare DecisionMaker with other advanced
DRL-based allocation methods, we see that (1) DecisionMaker
has lower latency and mobile energy performance than others.
This is because traditional DRL methods are challenging to
learn all the possible samples and influence the convergence of
the policy network with insufficient training samples. The ad-
vantage of our DecisionMaker is that it can automatically learn
the reward from the historical records and avoid using manual
features, thus improving the convergence. When applied to the
eDDNN, it also shows better system latency and mobile energy
performance. (2) Another noteworthy point is that DRLoS
performs better than DecisionMaker and DeepRM in resource
utilization. This is mainly because the optimization goal of
DRLoS is resource utilization, which is directly introducing
its poor performance in the other two indicators. Although
DRLoS has better performance in resource utilization, our
DecisionMaker is outstanding in all indicators than others,
especially in latency and mobile energy.

In Fig. 12, we further discuss the influence of the average
subtask slowdown of various allocation algorithms on the
average load of collaborative devices. Since we can use
the Android debug bridge (ADB) [33] to control the CPU
load of Android devices, we use three Android devices as
collaborative devices in the experiment in Fig. 12. The data of
each point is the average value of 100 experiments, which are
not used to train the DRL model. We see that (1) the increase
of the average load of collaborative devices directly increases
the average slowdown. It also shows that the reward prediction
method has the improvement when the training samples are
not enough. In addition, we notice that when the average load

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 8

0 2 0 4 0 6 0 8 0 1 0 00 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2

0 2 0 4 0 6 0 8 0 1 0 0
6

8

1 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 9

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r R a n d o m
 D i s t a n c e - p r i o r D R L o S
 D e e p R M

En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Re
sou

rce
 ut

iliz
atio

n

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(a) AlexNet on CIFAR-10.

0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 9
0 . 1 2

1 0

2 0

1 5

5

3

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

4

En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Re
sou

rce
 ut

iliz
atio

n

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(b) AlexNet on ImageNet-150K.

0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 9
0 . 1 22 . 0

1 . 5

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

1 . 0 En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

8

5

1 1

Re
sou

rce
 ut

iliz
atio

n
N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(c) ResNet-50 on CIFAR-10.

0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 9
0 . 1 2

5

4

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

3

1 8

6
1 2

2 4

En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Re
sou

rce
 ut

iliz
atio

n

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(d) ResNet-50 on ImageNet-150K.

0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0

0 . 3

0 . 2

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

0 . 1

2 . 0

1 . 5

1 . 0

0 . 5

En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Re
sou

rce
 ut

iliz
atio

n

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(e) ShuffleNet on CIFAR-10.

0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 0 0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 9
0 . 1 2

1 . 5

1 . 0

La
ten

cy
(s)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

0 . 5

7

6

5

4

En
erg

y (
J)

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Re
sou

rce
 ut

iliz
atio

n

N u m b e r o f e n d d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(f) ShuffleNet on ImageNet-150K.

Fig. 11. Performance of eDDNN on various datasets and typical DNNs. We increase the number of end devices, and Y-axis
represents performance of various indicators, such as the latency, mobile energy, and resource utilization variance.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 02

3

4

5

6

Av
era

ge
slo

wd
ow

n

A v e r a g e d e v i c e l o a d (%)

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

Fig. 12. Average slowdown at different device loads.

of collaborative devices is more than 90%, the performance
difference of these DRL-based methods is not apparent. When
the available resources of collaborative devices are insufficient,
the direct factor affecting the performance will be the shortage
of computing resources, while the subtask allocation has a
small impact.

C. Robustness analysis of eDDNN

eDDNN requires the collaborative computing of multiple
end devices, thus depending on a reliable communication
condition and sufficient computing resources. Although we
give priority to those end devices with sufficient computing
resources and good communication conditions during the
DecisionMaker allocation phase, end devices may still be
in trouble, such as disconnecting and cancelling the current
collaboration. To cope with unstable conditions and ensure
reliable inference results, we use the edge server to obtain

the response of end devices in real-time, monitor each end
device’s status, and then set it as 200 ms. We simulate
experiments with collaborative end devices P = 10, which
assumes that the task and DNN model can be divided into
P pieces. We show the latency, mobile energy, and resource
utilization performance when reducing the number of available
collaborative end devices in Fig. 13. The simulation results
show that: (1) with the continuous decrease of available end
devices, the whole processing latency and mobile energy cost
of eDDNN are constantly increasing. This indicates that failed
end devices will cause repeat task distribution and inference,
whose dependency area also affects the whole inference.
Besides, resource utilization of eDDNN is lower than the other
two methods, which show that DecisionMaker is more con-
ducive to optimizing task allocation and improving resource
utilization. (2) We also observe that when the available end
devices decrease, the system’s resource utilization continues
to decrease, and eDDNN performs better than others. This
decrease phenomenon is because all participated end devices
calculate resource utilization variance, and eDDNN enables
other available end devices in collaboration, thus improving
the resource utilization. This also indicates that although lost
end devices increase latency and mobile energy consumption,
other end devices are enabled to participate in collaborative
computing. (3) In Fig. 13(d), we see that different DNN
networks and tasks are affected by the number of abnormal
devices. In a small DNN network, since there is no need for
many end devices for collaboration, few subtasks need to be
forwarded and repeated. Hence, it avoids redundant calcula-
tions and mobile energy consumption caused by the failure of

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 9

0 1 0 2 0 3 0 4 0 5 0

4 . 5

3 . 0

0 . 0

La
ten

cy
(s)

N u m b e r s o f l e a v i n g d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

1 . 5

(a) Latency performance.

0 1 0 2 0 3 0 4 0 5 00
5

1 0
1 5
2 0

En
erg

y (
J)

N u m b e r s o f l e a v i n g d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(b) Mobile energy performance.

0 1 0 2 0 3 0 4 0 5 00 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0

Re
sou

rce
 ut

iliz
atio

n

N u m b e r s o f l e a v i n g d e v i c e s

 D e c i s i o n M a k e r
 R a n d o m
 D i s t a n c e - p r i o r
 D R L o S
 D e e p R M

(c) Resource utilization.

0 1 0 2 0 3 0 4 0 5 0
0 . 1 8
0 . 2 0

1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

La
ten

cy
(s)

N u m b e r s o f l e a v i n g d e v i c e s

 S m a l l - D N N
 L a r g e - D N N

 I n c r e a s i n g

(d) Performance on various DNNs.

Fig. 13. Robustness peformance of eDDNN

end devices. For a large DNN network, the whole inference
needs more end devices to participate in than small DNN, and
then it increases additional calculations and data transmission.
This indicates that it is necessary to ensure a reliable communi-
cation condition, and the number of collaborative end devices
should be appropriate. Otherwise, with an unstable condition,
the latency and mobile energy consumption performance will
be challenging to accept in practical applications. When an
end device participates in another end device’s computation,
it may also have the computing requirement at the same time.
Generally, the end device inclines to stop current collaboration
and turn to a task of its own, denoted as Selfish-Exe.

We describe the performance of latency, mobile energy,
and resource utilization of eDDNN against the Selfish-Exe
method in Fig. 14(a). The parameters are the same as the above
experiments. We see that: (1) eDDNN can use the computing
resources of ubiquitous end devices, whose DecisionMaker
allocation algorithm guarantees the payoff of each end device.
This also says that end devices that share the computing
resource can also get others resources for their tasks. Thus,
eDDNN performs a higher resource utilization than that of
Selfish-Exe. This also indicates that only with more par-
ticipation in collaborative computing can collaboration with
other end devices be obtained. In Fig. 14(b), we study the
latency, mobile energy consumption, and resource utilization
as the increase of collaborative end devices. The results show
that as the number of concurrent tasks participating in the
collaboration device increases, the number of participating
devices continues to increase. Especially, when Num equals
3, the number of participating end devices reaches 8, which
indicates that at least two end devices participating in the task
calculation of other end devices at the same time It shows the
improvement of eDDNN compared with Selfish-Exe.

L a t e n c y E n e r g y R U0
2 0
4 0
6 0
8 0

1 0 0

No
rm

aliz
ed

ind
ica

tor
 (%

)

 e D D N N S e l f i s h - E x e
N = 5

L a t e n c y E n e r g y R U0
2 0
4 0
6 0
8 0

1 0 0

No
rm

aliz
ed

ind
ica

tor
 (%

)

 e D D N N S e l f i s h - E x e
N = 2 0

(a) Peformance with various collaborators (N is the number of collaborators).

1 2 3 4 50 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0

3

6
8

1 1
1 3

3 4 5 6 7

1 2 3 4 50
2
4
6
8

1 0
1 2
1 4

Par
tici

pat
ing

 de
vic

es

C o n c u r r e n t t a s k s

 e D D N N
 S e l f i s h - E x e

Re
sou

rce
 Ut

iliz
atio

n

C o n c u r r e n t t a s k s

 e D D N N
 S e l f i s h - E x e

(b) Peformance with concurrent tasks.

Fig. 14. Comparisons between eDDNN with Selfish-Exe.

D. Application of eDDNN in mobile web AR

We employ eDDNN into a mobile web AR application,
consisting of scanning and recognizing images and then ren-
dering 3D models to the mobile web browser, interacting with
users, and improving the user’s AR experience. We use the
ShuffleNet training on ImageNet as recognition DNN, and
the entire AR application service is deployed on the edge
server, and experimental settings can be found in the above
description. In Fig. 15, we define the Huawei Mate10 as the
requestor and the other two smartphones as the collaborators.
The DNN execution follows the description in Section III.

Edge server Render

Recognize

 5G CPE

D2D Connection with
WebRTC

Huawei
Mate10

iPhone XGalaxy
S5

Fig. 15. A mobile web AR application with three end devices

We present the performance of eDDNN against other ap-
proaches such as mobile-only and edge-only on the latency,
mobile energy, and resource cost of the edge server in Fig.
16. Also, we compare and analyze eDDNN against the tra-
ditional vertical partition-offloading and typical collaborative
schemes, such as Edgent, Neurosurgeon, JointDNN, LCRS,
and DeepAdapter from the latency, mobile energy, and re-
source utilization. The partition-offloading methods include
Edgent, Neurosurgeon, JointDNN, whose main optimization
objective is the latency. The lightweight branch used in LCRS
and DeepAdapter is trained in advance. The network and other
experimental settings are consistent with the above. Note that

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 10

the resource cost mainly refers to the CPU consumption of
the edge server during the AR recognization. We observe
that: (1) eDDNN performs better than that of Neurosurgeon
in terms of latency, mobile energy cost, and resource cost.
This is because eDDNN transmits a small amount of data
among smartphones, such as dependency data. However, Neu-
rosurgeon requires transmitting a large number of intermediate
results between the smartphone and the edge server. Similarly,
Edgent and JointDNN are similar to the partition-offloading
scheme adopted by Neurosurgeon, so they have a similar
performance to Neurosurgeon in performance and are not as
good as eDDNN.

e D D N N m o b i l e - o n l y e d g e - o n l y N e u r o s u r g e o n E d g e n t J o i n t D N N L C R S D e e p A d a p t e r
0
1
2
3
4
5

Mo
bil

e e
ner

gy
cos

t (J
)

(b) M o b i l e e n e r g y c o s t

e D D N N m o b i l e - o n l y e d g e - o n l y N e u r o s u r g e o n E d g e n t J o i n t D N N L C R S D e e p A d a p t e r
0

1 0
2 0
3 0
4 0
5 0

Re
sou

rce
 co

st (
%)

(c) R e s o u r c e c o s t

e D D N N m o b i l e - o n l y e d g e - o n l y N e u r o s u r g e o n E d g e n t J o i n t D N N L C R S D e e p A d a p t e r
0 . 0
0 . 4
0 . 8
1 . 2
1 . 6

La
ten

cy
(s)

(a) L a t e n c y

 e D D N N m o b i l e - o n l y e d g e - o n l y N e u r o s u r g e o n
 E d g e n t J o i n t D N N L C R S D e e p A d a p t e r

Fig. 16. Comparing eDDNN with other inference schemes.

(2) Mobile-only has the worst performance in terms of
mobile energy cost and inference latency. Thus, although this
approach has little resource consumption of the edge server,
it is still difficult to widely use due to poor experience on
the latency and mobile energy cost. Compared with the edge-
only approach, eDDNN does not perform edge-only in terms
of latency and mobile energy consumption, while it dramati-
cally reduces the edge server’s resource cost and computing
pressure. In summary, eDDNN can achieve the goal of using
ubiquitous end devices to reduce 2.98x execution latency and
mobile energy cost by 1.8x, and relieve the computing pressure
of the edge server by 2.57x, against Neurosurgeon.

V. RELATED WORK

Deep learning (DL) with cross-platform web. Implement-
ing DL inference with cross-platform web reduces the deploy-
ment and service cost on ubiquitous end devices. Caffe.js [34]
and Karas.js [35] represent the typical libraries for imple-
menting DNNs using JavaScript on the web. Recently, We-
bAssembly [36] becomes a new standard language of the
web, dramatically accelerates the possibility of performing
efficient DNNs on the web. For instance, TensorFlow.js [37]
is a popular DL framework that provides training and in-
ference on the web using various accelerating technology

(e.g., WebAssembly, WebGPU). Also, WebDNN [38] and
ONNX.js [39] provide a tool that can optimize, compile, and
deploy any DNN models trained with other backend DNN
frameworks onto a web-executable WebAssembly file. Our
work takes full advantage of the cross-platform web to provide
the possibility of implementing more efficient distributed DNN
on heterogeneous end devices.

Distributed deep learning. The distributed DL inference
scheme is mainly categorized into the collaboration between
a single device and the cloud and execution among multi-
ple devices and the cloud. For the first category, Neurosur-
geon [12] and Edgent [13] use a single partition point to
distribute the inference between the device and the cloud
optimally. JointDNN [14] partitions the DNN into multiple
small modules and dynamically assigns these modules to
be executed cooperatively on the device or the edge. Be-
sides, LCRS [16] and LcDNN [18] propose a lightweight
collaborative scheme based on binary neural networks, which
also offloading the computation between the device and the
cloud. Similarly, DeepAdapter [17] provides a dynamic and
adaptive compression model based on the device’s computing
capability. For the second category, DNNs are sliced and
distributed to different devices or clouds (including edge cloud
and remote cloud) using vertical or horizontal partitioning.
DDNN [15] further extends BranchyNet [40] and distributes
DL inference hierarchy over the cloud, the edge, and devices.
Although Musical Chair [41], [42] and [43] distribute the DL
inference over multiple IoT devices using data and model par-
allelism methods, these efforts are still in urgent need of better
solutions for cross-platform collaboration on heterogeneous
devices and scheduling of collaboration. Besides, there is some
work focusing on distributed DL, mainly in discussing how
to provide parallel training. BPT-CNN [44] proposes a two-
layer parallel training architecture for the large-scale CNNs
and addresses the key issues, such as data communication,
synchronization, and workload balancing. Poseidon [45] is
an efficient communication architecture for distributed DL on
GPUs, reducing bursty network communication. In this paper,
our work focuses more on how to provide cross-platform
distributed DL inference services on ubiquitous end devices
and considers how to maximize the resources of devices to
obtain optimal inference latency and mobile energy.

Deep reinforcement learning for scheduling. Online
task and resource scheduling is another important issue of
distributed DL. Deep reinforcement learning has achieved
promising results for online resource scheduling and task as-
signment in recent years. Mao et al. [23] view the task-packing
problem as a learning problem that learns from experience
to manage resources. MORL-BD [46] is a multi-objective
reinforcement learning, which focuses on solving the problem
of scheduling at optimal paths and applying it to the multi-
route bicycle scheduling problem. More similar to our work
are Harmony [24] and DRLoS [18]. However, Harmony pri-
marily addresses machine learning cluster scheduling, aiming
to place training jobs that minimize interference and maximize
performance. DRLoS [18] is more concerned with how to
schedule DL request tasks across multiple edge centers rather
than the more fine-grained distributed collaborative inference

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 11

scheduling faced in this work. Hence, our work addresses
how to maximize resource utilization for optimal inference
experience over ubiquitous end device, rather than average
task completion time, and more fully utilize the computing
resource of end devices.

VI. CONCLUSION

This work proposes the eDDNN aiming at implementing
distributed DNN over heterogeneous end devices by dividing
the task and DNN model and executing them on end devices
almost independently with a shared dependency table. We also
provide a dynamic task allocation algorithm (DecisionMaker)
to make full use of these collaborative end devices, which
show advantages in reducing overall latency and reducing the
computing pressure of the edge server. Experimental results
and actual application have indicated the effectiveness of
eDDNN. We only evaluate eDDNN on image recognition over
heterogeneous end devices, and it can also be generalized to
support other networks and applications. Besides, we plan to
explore more robust and more stable execution to improve
fault tolerance and availability in complex environments.

ACKNOWLEDGMENT

This research was supported in part by the National Key
R&D Program of China under Grant 2019YFF0301500, in
part by the Funds for International Cooperation and Exchange
of NSFC under Grant 61720106007, in part by the 111 Project
under Grant B18008.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review.”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[3] Y. Huang, H. Zhao, X. Qiao, J. Tang, and L. Liu, “Towards video stream-
ing analysis and sharing for multi-device interaction with lightweight
dnns,” in IEEE INFOCOM 2021-IEEE Conference on Computer Com-
munications. IEEE, 2021, pp. 1–10.

[4] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[5] X. Qiao, P. Ren, and e. Dustdar, “Web ar: A promising future for
mobile augmented reality—state of the art, challenges, and insights,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 651–666, 2019.

[6] Y. Huang, X. Qiao, P. Ren, S. Dustdar, and J. Chen, “Edgebooster: Edge-
assisted real-time image segmentation for the mobile web in wot,” IEEE
Internet of Things Journal, vol. 8, no. 9, pp. 7288–7302, 2020.

[7] H. Flores, P. Nurmi, and P. Hui, “Ai on the move: From on-device to on-
multi-device,” in Pervasive Computing and Communications Workshops.
IEEE, 2019, pp. 310–315.

[8] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Collaborative execution
of deep neural networks on internet of things devices,” arXiv preprint
arXiv:1901.02537, 2019.

[9] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Real-
time image recognition using collaborative iot devices,” in Proceed-
ings of the 1st on Reproducible Quality-Efficient Systems Tourna-
ment on Co-designing Pareto-efficient Deep Learning. ACM, 2018,
doi:10.1145/3229762. 3229765.

[10] “Huawei develops hiai 3.0 to create an innovative space for ai develop-
ment.” 2019, https://www.techgenyz.com/2019/11/21/huawei-develops-
hiai-3-0-ai-development/.

[11] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,”
Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[12] Y. Kang, J. Hauswald, and etl., “Neurosurgeon: Collaborative intelli-
gence between the cloud and mobile edge,” in ACM SIGARCH Computer
Architecture News, vol. 45, no. 1. ACM, 2017, pp. 615–629.

[13] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in 2018 Workshop on
Mobile Edge Communications. ACM, 2018, pp. 31–36.

[14] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing., early access, Oct.
16, 2019, doi: 10.1109/TMC.2019.2947893.

[15] S. Teerapittayanon, B. McDanel, and etl., “Distributed deep neural
networks over the cloud, the edge and end devices,” in International
Conference on Distributed Computing Systems, 2017, pp. 328–339.

[16] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A lightweight
collaborative recognition system with binary convolutional neural net-
work for mobile web augmented reality,” in International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 1497–1506.

[17] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen,
“Deepadapter: A collaborative deep learning framework for the mobile
web using context-aware network pruning,” in IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2020, pp. 834–843.

[18] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, S. Dustdar, and J. Chen,
“A lightweight collaborative deep neural network for the mobile web
in edge cloud,” IEEE Transactions on Mobile Computing, early access,
Dec. 08, 2020, doi: 10.1109/TMC.2020.3043051.

[19] Y. Jin, F. Liu, X. Yi, and M. Chen, “Reducing cellular signaling traffic
for heartbeat messages via energy-efficient d2d forwarding,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1301–1311.

[20] F. S. Shaikh and R. Wismüller, “Routing in multi-hop cellular device-
to-device (d2d) networks: A survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2622–2657, 2018.

[21] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology
overview and signaling solution design and implementation,” in Inter-
national Convention on Information and Communication Technology,
Electronics and Microelectronics. IEEE, 2015, pp. 1006–1009.

[22] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 505–513.

[23] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks. ACM, 2016, pp. 50–56.

[24] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM 2019-IEEE
conference on computer communications. IEEE, 2019, pp. 505–513.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[27] X. Zhang, X. Zhou, M. Lin, and etl., “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.

[28] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” 2014,
http://www.cs.toronto.edu/kriz/cifar.html.

[29] H. Liu, R. Wang, S. Shan, and X. Chen, “Learning multifunctional
binary codes for both category and attribute oriented retrieval tasks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3901–3910.

[30] “Wonder shaper,” 2017, https://github.com/magnific0/wondershaper.
[31] “Monsoon solutions,” 2020, https://www.msoon.com.
[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[33] “Android debug bridge,” 2018, https://developer.android.com/studio/com

mand-line/adb.
[34] “Caffe.js framework,” https://chaosmail.github.io/caffejs.
[35] “Keras.js,” 2016, https://github.com/transcranial/keras-js.
[36] “World wide web consortium (w3c) brings a new language to

the web as webassembly becomes a w3c recommendation,” 2019,
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en.

[37] D. Smilkov, N. Thorat, Y. Assogba, and etl., “Tensorflow. js: Machine
learning for the web and beyond,” arXiv:1901.05350, 2019.

[38] M. Hidaka, Y. Kikura, Y. Ushiku, and etl, “Webdnn: Fastest dnn
execution framework on web browser,” in ACM international conference
on Multimedia. ACM, 2017, pp. 1213–1216.

[39] “Onnx.js,” 2018, https://github.com/Microsoft/onnxjs.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3112715, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2021 12

[40] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[41] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Musical
chair: Efficient real-time recognition using collaborative iot devices,”
arXiv:1802.02138, 2018.

[42] Y. Huang, X. Qiao, S. Dustdar, J. Zhang, and J. Li, “Toward decentral-
ized and collaborative deep learning inference for intelligent iot devices,”
IEEE Network, early access, 2021, doi:10.1109/MNET.011.2000639.

[43] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward collaborative
inferencing of deep neural networks on internet-of-things devices,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 4950–4960, 2020.

[44] J. Chen, K. Li, K. Bilal, K. Li, S. Y. Philip et al., “A bi-layered parallel
training architecture for large-scale convolutional neural networks,”
IEEE transactions on parallel and distributed systems, vol. 30, no. 5,
pp. 965–976, 2018.

[45] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication archi-
tecture for distributed deep learning on gpu clusters,” in 2017 USENIX
Annual Technical Conference, 2017, pp. 181–193.

[46] J. Chen, K. Li, K. Li, P. S. Yu, and Z. Zeng, “Dynamic bicycle
dispatching of dockless public bicycle-sharing systems using multi-
objective reinforcement learning,” ACM Transactions on Cyber-Physical
Systems, vol. 9, pp. 1–26, 2021.

Yakun Huang is currently working toward the Ph.D.
degree at the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. He
has authored or co-authored over 10 technical papers
in international journals and at conferences, includ-
ing the IEEE Transactions On Mobile Computing,
the IEEE Transactions on Service Computing, the
IEEE Network, INFOCOM, ICDCS, MM. His cur-
rent research interests include mobile computing,
edge computing, distributed deep learning.

Xiuquan Qiao is currently a Full Professor with
the Beijing University of Posts and Telecommunica-
tions, Beijing, China, where he is also the Deputy
Director of the Key Laboratory of Networking and
Switching Technology, Network Service Foundation
Research Center of State. He has authored or co-
authored over 60 technical papers in international
journals and at conferences, including the IEEE
Communications Magazine, Proceedings of IEEE,
Computer Networks, IEEE Internet Computing, the
IEEE TRANSACTIONS ON AUTOMATION SCI-

ENCE AND ENGINEERING, and the ACM SIGCOMM Computer Com-
munication Review. His current research interests include the future Internet,
services computing, computer vision, distributed deep learning, augmented
reality, virtual reality, and 5G networks. Dr. Qiao was a recipient of the
Beijing Nova Program in 2008 and the First Prize of the 13th Beijing Youth
Outstanding Science and Technology Paper Award in 2016.

Wenhai Lai is currently working toward the B.E.
degree at the School of Information and Communi-
cation Engineering, Beijing University of Posts and
Telecommunications, Beijing, China. His current re-
search interests include mobile computing, machine
learning, edge computing.

Schahram Dustdar (Fellow, IEEE) was an Hon-
orary Professor of Information Systems at the
Department of Computing Science, University of
Groningen, Groningen, The Netherlands, from 2004
to 2010. From 2016 to 2017, he was a Visiting
Professor at the University of Sevilla, Sevilla, Spain.
In 2017, he was a Visiting Professor at the University
of California at Berkeley, Berkeley, CA, USA. He is
currently a Professor of Computer Science with the
Distributed Systems Group, Technische Universität
Wien, Vienna, Austria. Dr. Dustdar was an elected

member of the Academy of Europe, where he is the Chairman of the Infor-
matics Section. He was a recipient of the ACM Distinguished Scientist Award
in 2009, the IBM Faculty Award in 2012, and the IEEE TCSVC Outstanding
Leadership Award for outstanding leadership in services computing in 2018.
He is the Co-Editor-in-Chief of the ACM Transactions on Internet of Things
and the Editor-in-Chief of Computing (Springer). He is also an Associate
Editor of the IEEE TRANSACTIONS ON SERVICES COMPUTING, the
IEEE TRANSACTIONS ON CLOUD COMPUTING, the ACM Transactions
on the Web, and the ACM Transactions on Internet Technology. He serves
on the Editorial Board of IEEE INTERNET COMPUTING and the IEEE
Computer Magazine.

Jian-Wei Zhang is currently the director of Institute of Capinfo

Company Limited. He received his PhD from BeiHang University in

2015, and completed his postdoctoral research in 2018. He

obtained EMBA of Cheung Kong Graduate School of Business in

2019. His research interests include Cloud Computing, big data,

and AI. He has 15years team management experience, and now

he is committing to leading his team’s development in smart city

field.

Jianwei Zhang is currently the director of Institute
of Capinfo Company Limited. He received his PhD
from BeiHang University in 2015, and completed his
postdoctoral research in 2018. He obtained EMBA
of Cheung Kong Graduate School of Business in
2019. His research interests include Cloud Comput-
ing, big data, and AI. He is dedicating himself to
the research of smart stadium of the national speed
skating oval which is funded by National Key R&D
Program of China under grant 2019YFF0301500.

JIU-LIN LI was born in HeBei, China. He received the master's degree

from China University of Geosciences, China, in 1991 and 1992. He is

currently the deputy chief engineer of Beijing Urban Construction

Group Co., Ltd.

His research interests include modern construction technology of

Olympic venues, construction technology of extra large span and

complicated steel structure, and green construction and smart

construction technology.

Jiulin Li was born in HeBei, China. He received
the master’s degree from China University of Geo-
sciences, China, in 1991 and 1992. He is cur-
rently the deputy chief engineer of Beijing Ur-
ban Construction Group Company Limited. His re-
search interests include modern construction tech-
nology of Olympic venues and green construction
and smart construction technology. He is currently
participating the research of smart stadium of the
national speed skating oval which is funded by
National Key R&D Program of China under grant

2019YFF0301500 as a senior consultant.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 14,2021 at 10:24:07 UTC from IEEE Xplore. Restrictions apply.

