
7288 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

EdgeBooster: Edge-Assisted Real-Time Image
Segmentation for the Mobile Web in WoT

Yakun Huang , Xiuquan Qiao , Pei Ren , Schahram Dustdar , Fellow, IEEE,
and Junliang Chen, Senior Member, IEEE

Abstract—Combining image segmentation with Web technol-
ogy lays a good foundation for lightweight, cross-platform, and
pervasive Web artificial intelligence applications, and further
improves the capability of Web-of-Things (WoT) applications.
However, no matter whether we use a Web real-time communi-
cation media server for advanced processing that views camera
inputs as a video stream, or transfer continuous camera frames
to the remote cloud for processing, we are unable to obtain a sat-
isfactory real-time experience due to high resource consumption
and unacceptable latency. In this article, we present EdgeBooster,
a computational-efficient architecture that leverages a common
edge server to minimize the communication costs, accelerates
the camera frame segmentation, and guarantees an acceptable
segmentation accuracy with the prior knowledge. EdgeBooster
provides real-time segmentation by developing parallel technol-
ogy that enables segmentation on slices of a camera frame
and using presegmentation based on superpixels to accelerate
the graph-based segmentation. It also introduces recent DNN-
based segmentation results as the prior knowledge to improve
the performance of the graph-based segmentation, especially in
nonideal scenes, such as dark light and weak contrast. Finally,
it creates a pure frontend segmentation that can provide contin-
uous and stable services for mobile users in unstable networks,
such as a weak network or with an unstable edge server. The
experimental results show that EdgeBooster is able to achieve a
considerable accuracy for the mobile Web, running at no less
than 30 frames per second in real scenes.

Index Terms—Edge computing, image segmentation, mobile
Web, Web-of-Things (WoT) applications.

I. INTRODUCTION

THE WEB of Things (WoT) is a refinement of the
Internet of Things (IoT) to enable interoperability and

Manuscript received June 16, 2020; revised September 5, 2020; accepted
November 12, 2020. Date of publication November 17, 2020; date of cur-
rent version April 23, 2021. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 61671081; in part
by the National Key Research and Development Program of China under
Grant 2018YFE0205503; in part by the Funds for International Cooperation
and Exchange of NSFC under Grant 61720106007; in part by the 111
Project under Grant B18008; in part by the Fundamental Research Funds
for the Central Universities under Grant 2018XKJC01; and in part by
the BUPT Excellent Ph.D. Students Foundation under Grant CX2019135.
(Corresponding author: Xiuquan Qiao.)

Yakun Huang, Xiuquan Qiao, Pei Ren, and Junliang Chen are with
the State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China
(e-mail: ykhuang@bupt.edu.cn; qiaoxq@bupt.edu.cn; renpei@bupt.edu.cn;
chjl@bupt.edu.cn).

Schahram Dustdar is with the Distributed Systems Group, Technische
Universität Wien, 1040 Vienna, Austria (e-mail: dustdar@dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/JIOT.2020.3038689

Fig. 1. Typical scenario of image segmentation and the advantage of
employing cross-platform Web technology in WoT applications (i.e., using
HTTP/WebSocket protocols to unify and manage ubiquitous end devices).

usability across heterogeneous IoT platforms and applica-
tion domains, which has been a W3C international standard
proposal recently [1]–[3]. Meanwhile, cross-platform Web
artificial intelligence (AI) improves the capability for WoT
applications, expands application fields of WoT [4], [5], and
is becoming a promising research topic [6], [7]. Thus, it is nec-
essary and significant to develop AI-enabled WoT applications
and provide “Write Once, Run Anywhere” portability for var-
ious IoT devices, rather than developing different applications
for each IoT platform. This also indicates that IoT applica-
tions can be further enhanced by integrating smart things not
only into the network, but into the Web architecture. However,
limited by the weak computing capability of the Web and the
constrained resources of IoT devices, it is difficult to complete
the computationally intensive AI-enabled WoT applications.
Fortunately, mobile edge computing (MEC), as a basic infras-
tructure in the 5G era, can provide low-latency and powerful
services for computationally intensive WoT applications. As
shown in Fig. 1, we describe a typical scenario of employ-
ing cross-platform Web technology and MEC into IoT, which
lays a good foundation for lightweight, cross-platform, and
pervasive Web AI applications. For example, traditional use
cases, such as augmented reality [8], [9], medical image analy-
sis [10], unmanned vehicles [11], security monitoring [12], can
be further enhanced by offloading heavy computations to the
edge server. In this article, we take real-time image segmen-
tation, which provides indispensable sensing capability and
is the most core technology involved in scene analysis [13],
object detection [14], 3-D reconstruction [15] etc., as a typical

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4051-0200
https://orcid.org/0000-0002-0140-0650
https://orcid.org/0000-0002-2371-9515
https://orcid.org/0000-0001-6872-8821

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7289

illustration. We explore an edge-assisted real-time system and
expand the WoT application fields and influence for ubiquitous
end devices, also including IoT devices.

To fluently execute real-time image segmentation on the
mobile Web, which means that average frame processing rate
cannot be less than 30 frames per second (FPS). However,
most of existing approaches to image segmentation on the
mobile Web take one of the following two approaches that
give an unsatisfactory experience. The first approach is to
obtain the video stream by leveraging the Web real-time com-
munication, (WebRTC) API [16], and transfer it to a remote
media server for decoding, the video frame segmentation, fus-
ing segmentation information, re-encoding and returning the
processed video stream back to the mobile Web for render-
ing. A typical scenario is employing Kurento [17], which is
a WebRTC media server and a set of client APIs for making
the development of advanced video applications for WWW
simple, and providing advanced media processing capabilities,
such as computer vision, or augmented reality. However, this
approach is limited by the network bandwidth and the com-
puting capability of the media server. Intensive video stream
computing increases the resource consumption of the media
server dramatically in a short period of time, which results
in the inability of the media server to handle large scale
requests from multiple users and even makes the media server
unavailable. In addition, although the mobile Web achieves a
fluent video stream that fuses the segmentation results from the
media server, high network delay results in a drift phenomenon
between the received video stream and the real scene during
the rendering. The second approach directly obtains continu-
ous camera frames from the mobile Web and executes image
segmentation either on the mobile Web or transfers the cam-
era frames to the remote cloud for image segmentation, named
pure frontend method and cloud-assisted method, respectively.
Limited by weak computing capability of the mobile Web,
the pure frontend method can execute lightweight image seg-
mentation, such as the threshold-based algorithm [18] at no
less than 30 FPS on the mobile Web. However, since this
method only considers the grayscale feature of images and
ignores the spatial features, it is sensitive to noise and not
robust enough to achieve an acceptable accuracy in the real
scene. The cloud-assisted method can achieve acceptable accu-
racy by transferring the camera frames to the remote cloud
for executing image segmentation algorithms, such as tra-
ditional computer vision algorithms [19], [20], DNN-based
algorithms [21] and semantic segmentation algorithms [22],
and then returning the segmentation result to the mobile Web
for rendering. However, high transmission delay with a round-
trip time (RTT) about 120 ms indicates that it is far from
meeting the real-time experience of no less than 30 FPS. In
addition, intensive computing of the graph-based algorithm
requires about 230 ms for image segmentation on a common
server with a six-core Intel processor of 2.9 GHz and 16-GB
RAM, let alone DNN-based algorithms that require dedicated
devices, such as powerful GPUs.

With the rapid development of 5G network to address
these shortcomings, it is promising to consider the use of an

edge-assisted approach that has the benefit of low communica-
tion costs compared to offloading computations to the remote
cloud, and relieves the burdens of the core network [23], [24].
Compared to those app-based applications that can offload
partial computations to the edge server to enable continuous
vision analytics on mobile devices and dedicated devices, the
mobile Web application has to offload the entire computations
to the edge server due to the limited computing capability of
the mobile Web [25], [26]. In addition, both app-based and
Web applications require high performance edge server with
special hardware, such as GPUs for accelerating DNN algo-
rithms. Although we can deploy expensive GPU servers in a
special scene (e.g., an indoor stadium for holding activities),
it is not realistic for network service operators, such as China
Mobile and AT&T, to deploy high performance edge servers
for widely use when MEC is used as the basic infrastructure
in 5G. Thus, employing this kind of edge-assisted approach
to offload real-time image segmentation tasks from the mobile
Web to common edge servers is still challenging for a number
of reasons, including the following.

1) No Edge-Assisted Framework Is Computational-Efficient
for Image Segmentation Between the Mobile Web and
Common Edge Servers: JavaScript is the main way for
implementing mobile Web applications, which provide
weaker computing capacity than app-based applications
that are directly executed on the mobile device. Thus,
intensive segmentation computation needs to be entirely
offloaded from the mobile Web to the edge server.
However, to the best of our knowledge, there is no
computational-efficient framework and implementation
for executing at least 30 FPS that is assisted with a
common edge server.

2) A Common and Economic Edge Server Fails to Provide
Real-Time Segmentation of No Less Than 30 FPS for
Continuous Camera Frames With Existing Approaches:
Since traditional graph-based segmentation requires
about 230 ms on a common edge server, it is far from
meeting the real-time segmentation requirement of the
mobile Web. And a common edge server without GPUs
cannot support the DNN-based segmentation, requiring
about 400 ms for a camera frame. Additionally, the
edge server executes segmentation task on a complete
image that consumes much time waiting for the com-
puting resource. This indicates that it is necessary to
design an efficient segmentation algorithm and advanced
technology to accelerate the segmentation and meet the
real-time requirement of no less than 30 FPS on a
common edge server.

3) Traditional Image Segmentation of the Graph-Based
Algorithm Performs Poorly in Nonideal Scenes, Such as
Dark Light and Weak Contrast: Even if we can design
efficient algorithms and advanced technologies for the
graph-based segmentation, it generally performs worse
than the DNN-based algorithm, especially in nonideal
environments [21], [27]. In addition, there is no existing
and available method to dynamically adjust appropriate
parameters for the graph-based algorithm in real time.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7290 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Although we are unable to leverage DNN-based algo-
rithms directly on a common edge server for real-time
segmentation, it is a good choice to leverage recent
DNN-based segmentation results as the prior knowl-
edge to provide appropriate parameters and improve
the performance of the graph-based segmentation on a
common edge server.

4) How to Provide Continuous and Stable Services in
Unstable Environments, Such as a Weak Network or an
Unavailable Edge Server: Offloading computing tasks
from the mobile Web to the edge server completely relies
on the high performance and reliability of the network
and the edge server. An unstable edge server will intro-
duce a short service failure when performing a service
migration or switching between edge servers, resulting
in an uncontinuous service and unsatisfactory experi-
ence. In addition, this approach is also affected by the
network status. This indicates that existing edge-assisted
offloading requires highly reliable edge server and the
network bandwidth. Thus, it is significant to enhance the
robustness and QoS with a low bandwidth requirement
approach for real-time segmentation.

To address these concerns, we present EdgeBooster, an
edge-assisted architecture that leverages a common edge
server to minimize the communication costs, accelerates the
frame processing rate, and guarantees an acceptable segmen-
tation with prior knowledge of DNN-based segmentation.
Comparing with existing real-time image segmentation algo-
rithms that mainly directly utilize the underlying hardware,
such as GPUs on end devices, and require a stable network
environment, this article is the first to implement computa-
tionally heavy image segmentation for resource-constrained
and cross-platform mobile Web applications. Also, it aims to
provide better frame processing rate than traditional graph-
based methods with a real-time experience of no less than
30 FPS. Toward this goal, we propose an acceleration tech-
nology by dividing the frame into slices and developing
parallel technology to execute segmentation on these slices.
To further accelerate the segmentation of frame slices, we
propose the presegmentation based on superpixels to signifi-
cantly reduce the complexity of the graph-based segmentation.
Second, we propose the use of the most recent results of
DNN-based segmentation to provide appropriate parameters
for improving the efficiency of graph-based segmentation.
More importantly, this DNN-based prior knowledge can be
used to correct the results at the frame slices edge for paral-
lel graph-based segmentation. Thus, we can dynamically set
reasonable parameters and improve the performance for the
parallel graph-based segmentation, especially in a nonideal
environment. Finally, we create a lightweight pure frontend
segmentation based on a marker-based watershed algorithm,
which uses the recent frame segmentation cache as the marker
information to set appropriate parameters for improving the
segmentation performance. This pure frontend segmentation
also contributes to providing continuous and stable services
for mobile users in a weak network or an unstable edge
server. The contributions of this work can be summarized
as follows.

Fig. 2. Latency and boundary recall performance of watershed segmentation
and DNN-based segmentation.

1) Proposing a computational-efficient framework and
implementing a real-time segmentation for continuous
camera frames between the mobile Web and a common
edge server for the first time to meet the requirement of
no less than 30 FPS.

2) Developing a parallel technology that enables segmen-
tation on slices of a camera frame and designing
an efficient graph-based segmentation algorithm using
superpixel presegmentation to further accelerate the
processing.

3) Introducing recent DNN-based segmentation results as
the prior knowledge to improve the performance of
graph-based segmentation in a nonideal environment.

4) Creating a lightweight pure frontend segmentation to
provide continuous and stable services in unstable envi-
ronments, such as a weak network or an unstable edge
server.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the background of
image segmentation on the mobile Web, present our obser-
vations from preliminary measurements, and discuss edge-
assisted computing offloading technology that motivates us.

A. Image Segmentation on the Mobile Web

The cross-platform mobile Web brings advantages to the
user’s perception of the environment and the real world.
We conduct experiments for indoor scenes to measure the
latency and boundary recall to illustrate the current problem
of image segmentation on the mobile Web with the same
deployment in Section IV. Fig. 2 presents the latency and
boundary recall performance of watershed segmentation and
DNN-based segmentation, which are executed on the mobile
Web and remote cloud, respectively. According to the results
in the figure, we observe that the watershed algorithm [28]
which is executed by OpenCV.js [29] on the mobile Web
has high efficiency, while the segmentation performance is
poor, being seriously affected by the dynamic environment.
Executing PlaneRCNN [21], which is a DNN-based algorithm,
on the mobile Web introduces high latency, including model
transmission and inference. Thus, it is natural to offload the
computation to the cloud for efficient image segmentation due
to the unacceptable latency. However, transmission latency and

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7291

Fig. 3. Typical scenarios and comparisons between cloud computing and
edge computing.

inference latency are still too high to be acceptable when faced
with continuous frames.

B. Edge-Assisted Computing Offloading

We present typical scenarios and comparisons between
cloud computing and edge computing in Fig. 3. Our goal is
to achieve real-time image segmentation for the mobile Web
while maintaining a satisfactory accuracy. Delay performance
in the bottom left of Fig. 3 shows that it is better to offload
the computation from the mobile Web to the edge server due
to low communication costs. In this article, we mainly focus
on providing a real-time image segmentation for the mobile
Web by means of edge computing. We believe that a carefully
designed edge-assisted image segmentation will provide not
only a high accuracy but also a better response time.

III. DESIGN

EdgeBooster proposes a computational-efficient architecture
that leverages a common edge server to minimize the com-
munication costs, accelerate the segmentation, and maintain
an acceptable accuracy. EdgeBooster consists of three major
components as shown in Fig. 4.

1) The booster is located at the edge server and uses a par-
allel technology for the graph-based algorithm which
enables segmentation on slices of a frame, so that
the camera frame streaming and segmentation can be
effectively pipelined and computed in parallel.

2) The booster leverages the results of recent DNN-based
segmentation results as the prior knowledge to guide
real-time segmentation of a graph-based algorithm. This
prior experience can not only improve the segmentation
accuracy in nonideal environments, such as dark light
and weak contrast, but also accelerate the efficiency of
the graph-based segmentation by providing reasonable
parameters.

3) The controller that executes at the mobile Web runs a
camera frame scheduling algorithm, deciding whether
to request the edge server for boosting segmentation
processing according to the network condition and the
computing pressure of the edge server. A pure frontend
segmentation based on marker-based watershed algo-
rithm in JavaScript provides a real-time segmentation

when confronted with a weak network or an unstable
edge server.

To further improve the performance of segmentation for
the mobile Web, we perform preprocessing, such as encod-
ing, and image denoising on the camera frame obtained by
the WebRTC API. Furthermore, the frontend Result Receiver
module caches the recent segmentation record from the
booster, thus providing a wealth of knowledge for correc-
tions to achieve more accurate results from the pure frontend
segmentation.

Design Goals and Scope: The primary goal of EdgeBooster
is to minimize the processing latency of camera frames and
provide real-time segmentation while maintaining acceptable
accuracy under various complex environments between the
mobile Web and a common edge server. We also limit the
scope of our design, noting the following nongoals.

1) Each image segmentation algorithm has a certain accu-
racy and performance on a specified device. This article
is devoted to providing an acceptable image segmenta-
tion on the mobile Web in real time. Thus, improving
the accuracy of segmentation to be better than the state-
of-the-art segmentation is outside this work’s scope.

2) EdgeBooster is mainly used for real-time computation
using common edge servers deployed close to the mobile
Web users, so the deployment and resource allocation of
mobile edge servers is beyond the scope of this article.

3) In EdgeBooster deployment, we mainly consider
Chrome, Safari and other mainstream browsers that
support WebAssembly [30] and other common technolo-
gies. Due to compatibility issues, we do not consider the
application of EdgeBooster in embedded mobile Web
browsers such as WeChat.

In the following, we describe EdgeBooster in detail, fol-
lowed by a description of how the pure frontend controller
makes decisions on processing a camera frame (Section III-A),
parallel processing for accelerating (Section III-B), and a
real-time graph-based segmentation algorithm that lever-
ages the prior knowledge from DNN-based segmentation
(Section III-C).

A. Controller and Pure Frontend Segmentation

Generally, the network status and the state of the edge server
which mobile Web users are using are usually complex and
unstable, resulting in unsatisfactory service with low QoS. We
provide a controller and a pure frontend segmentation that
execute on the mobile Web to ensure a real-time image seg-
mentation even in a weak network or with an unstable edge
server.

1) Controller: On the premise of meeting the minimum
camera frame rate, the controller schedules a camera frame that
is segmented by the pure frontend segmentation or the power-
ful backend segmentation, according to the current network
status and the computation status of the edge server. We
define F = {f1, f2, . . . , fn} as the sequence of camera frames
obtained via the WebRTC API. When the mobile Web user
requests the Web server for services, the controller and the
pure frontend segmentation that are implemented in JavaScript

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7292 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Fig. 4. Overall workflow of EdgeBooster. We also show the segmentation pipeline in the right of the figure. The sequence in gray scale represents the camera
frames that are transferred to the edge server for segmentation. The sequence below in color denotes the processing of the DNN-based algorithm, where D
is the processing frame, and S is the results, and C is the unprocessed frames. The bottom sequence denotes the processing of the graph-based algorithm,
where G is the processing frame and R is a result frame.

Fig. 5. Four situations of the controller. The green and red dotted lines
indicate whether the network condition is available, respectively. Similarly,
green and red edge servers indicate whether the current service is available,
respectively. The controller sets the pure frontend segmentation by default
and transfers camera frames to the edge server for segmentation in unstable
environments. (a) Available network and edge server. (b) Available network.
(c) Available edge server. (d) Unavailable network and edge server.

are loaded to the mobile Web. The current network status
N = {3G, 4G, WiFi} and computing status of the backend
server p = max{pcpu, pIO} are also acquired in requests from
the mobile Web, where pcpu and pIO represent the current
CPU consumption and the IO consumption of the edge server,
respectively.

Generally, the pure frontend should provide at least 30 FPS
to ensure a fluent experience for mobile Web users, thus as
our controller threshold to make the decision for each camera
frame.

We describe the detailed scheduling process of the controller
in Algorithm 1 and present four situations in Fig. 5 to further
explain the function of the controller. Fig. 5 shows that when
there are problems in the network conditions or services of
the edge server, the edge server cannot be used to provide
services to users. Especially in Fig. 5(c), although the edge
server can provide available service, the network bandwidth is
too low or the network failure occurs, the network conditions
at this time are far from being able to support real-time frame
transmission, which also causes a surge in latency.

2) Pure Frontend Segmentation: The computing capability
of the mobile Web browser is weaker than mobile devices
or dedicated devices, because it mainly computes the task
through JavaScript and is hard to use the underlying hard-
ware, such as GPU for acceleration. OpenCV.js [29] uses
the WebAssembly [30] to optimize and compile the OpenCV
library from the traditional C + + platform to run smoothly
on the mobile Web browser, which also provides a favorable

Algorithm 1: Controller Algorithm
Input: Network bandwidth B, parallel channels C, frame

size T , minimum FPS threshold fthresh, sever load
pressure pcur, maximum overload of the server IO
pmax_io, maximum overload of the CPU pmax_cpu,
processing and response latencies tserver, tresponse.

Output: Optimal execution result.
1 OptResult ⇐ Front-end; // Default setting
2 pmax ⇐ max{pmax_io, pmax_cpu} ;
3 if pcur ≤ pmax then
4 tsend ⇐ T/(C · B);
5 te ⇐ tsend + tserver + tresponse;
6 if te ≤ 1

fthresh
then

7 OptResult ⇐ Booster;

8 return OptResult;

Fig. 6. Pure frontend segmentation.

basis for solving the pure frontend segmentation algorithm.
Although traditional algorithms that are based on the region,
the threshold or the edge have fast segmentation efficiency,
they are not robust to ensure a satisfactory experience in a
complex environment, such as dark light and weak contrast.
To achieve stable segmentation in a weak network or when the
edge server is not available, we propose a prior marker-based
watershed algorithm as the pure frontend segmentation for the
mobile Web browser.

We describe in detail the complete process of lightweight
pure frontend segmentation, which mainly includes
preprocessing, prior-marker generation, and real-time
segmentation in Fig. 6. OpenCV.js provides tools and tutorials

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7293

Fig. 7. Parallel processing technology for segmentation.

to compile our lightweight pure frontend algorithm from
an efficient C + + script to JavaScript that executes on the
mobile Web browser in real time.

B. Parallel Technology for Segmentation

We leverage robust booster segmentation at the edge server
and return the results to the mobile Web. This process requires
camera frames to be transmitted from the mobile Web to the
edge server frequently, such as at 30 FPS. Our test results
show that the implementation of the graph-based algorithm of
the booster on a common edge server takes about 230 ms with
preprocessing, encoding, transmission, decoding, and segmen-
tation, and returns the results to the mobile Web. However,
the DNN-based algorithm, such as PlaneRCNN, takes about
400 ms to process a camera frame. Therefore, it is difficult to
meet the latency requirement by serially calculating a camera
frame.

To improve the processing speed of camera frames and meet
the latency requirement, we consider the use of a parallel pro-
cessing technology which enables graph-based segmentation
on slices of a camera frame in Fig. 7. The principle of graph-
based segmentation is based on the similarity between pixels,
which have no computational dependency when dividing the
frame into slices and executing graph-based segmentation
independently. This makes it possible to apply parallel pro-
cessing to accelerate the entire segmentation. However, when
we merge these slices, the lack of computation of pixels to
slice edges may introduce the loss of the accuracy. We propose
the use of the prior knowledge of DNN-based segmentation
to correct these pixels at slice edges to maintain the accuracy.
We do not adopt the parallel processing for the DNN-based
segmentation for the following reasons.

1) The network structure of PlaneRCNN for segmentation
is different from traditional CNNs, which is also difficult
to be parallelized.

2) DNN-based segmentation mainly provides prior knowl-
edge for graph-based segmentation instead of providing
real-time processing.

The booster segmentation deployed on the edge server
mainly uses a graph-based algorithm that uses prior knowledge
of the DNN-based segmentation. For the graph-based segmen-
tation, we can easily accelerate the segmentation by a parallel
processing in Fig. 7. We use multiple processes to process the
task flow, such as the frame decoding thread, the graph-based
segmentation thread, and the integration processing thread.
These processes cooperate with the frontend parallel stream

to form the completed parallel stream and accelerate the seg-
mentation. For the DNN-based segmentation, it receives the
task stream from the mobile Web and combines the camera
frames slices into a completed frame via the slice number as
the input of the DNN-based segmentation. To better under-
stand the details of the parallel processing, we first describe
how to divide each frame into slices and number them. In each
frame of the mobile Web, we divide it evenly into N small
pieces, where N is the number of parallel processing pipeline
(e.g., N = 4 in Fig. 7). Therefore, each frame slice can be
processed by an independent thread, which means the way of
the frame dividing, such as horizontal or vertical dividing has
no effects on the independent processing. Then, once all of
processing threads have been completed the segmentation of
frame slice, the merging process mainly involves stitching the
frames together to form a complete camera frame based on
the frame number. However, the pixels at the slice edges of
the camera frame results in a loss of accuracy due to the loss
of computation with adjacent slices when compared with pro-
cessing the whole camera frame. Although we can perform
graph-based segmentation again for stitching edge, it obvi-
ously increases the delay of frame processing. To ensure the
accuracy and avoid increasing the latency, we next describe
the use of the prior knowledge of DNN-based segmentation
to correct these pixels at slice edges.

C. Real-Time Booster for Segmentation

A large number of existing DNN-based algorithms can
achieve high precision, and real-time segmentation can be
provided even in complex scenarios. However, these algo-
rithms typically need to be deployed on dedicated devices for
accelerating computations so that they can achieve accurate
and real-time segmentation. We propose a real-time booster
deployed on common servers that aims at faster segmentation
and acceptable accuracy in a real environment. The booster
combines the advantages of the graph-based algorithm, such
as high efficiency, easy deployment, and no requirement for
special hardware computing resources, which also leverages
the prior knowledge of the DNN-based algorithm to further
improve the segmentation accuracy. We simply iterate through
the pixels at the edge of the slices stitching, which will be
corrected to the partitioned area that the pixels at the same
location as the pixels of DNN-based segmentation belong to.
The main reason is that the DNN-based segmentation of the
previous frame considers the global pixel information, and the
accuracy is better than graph-based segmentation.

Traditional graph-based algorithms treat each pixel in the
camera frame as a vertex of the graph, and the relationship
between pixels (e.g., grayscale and the distance) is regarded
as the edge of the graph. The minimum spanning tree (MST)
method in [19] is used to iteratively calculate the similarity
between pixels and gradually merge them to form segmented
regions. Because the algorithm iteratively calculates pixel
points, it is hard to achieve real-time segmentation for a high-
resolution camera frame. For example, it takes about 250 ms
to calculate a frame of 480*680 on a common edge server. To

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7294 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Fig. 8. Booster segmentation at the edge server.

further improve the efficiency and meet the real-time require-
ment, we also propose in Fig. 8 a booster algorithm based
on superpixels for presegmentation consisting of superpixel
presegmentation, graph-based segmentation and merging the
results of the frame slices.

First, we use the slice segmentation result of the latest his-
torical frame as the prior knowledge to provide appropriate
parameter for SEEDS [31], which is a fast superpixel segmen-
tation algorithm. Then, the current superpixel edge is gradually
moved to find the same uniform color feature of pixels inside
the superpixel as possible so that the segmentation can be
executed quickly. Thus, we can perform the graph-based seg-
mentation on these superpixels instead of the initial pixels so
that the complexity of the segmentation algorithm is signifi-
cantly reduced. SEEDS chooses the energy objective function
E(s) to measure the value of the superpixel

E(s) = H(s) + γ G(s) (1)

where H(s) denotes the color of the superpixels and G(s)
is the shape of the superpixel boundaries. γ weighs the
influence of each term, and it is determined by the prior
knowledge of history frame segmentation. The detailed pro-
cess of SEEDS can be found in [31]. Finally, to acquire
further robust segmentation, we leverage the DNN-based seg-
mentation as the high-level prior knowledge to guide the
graph-based segmentation once the camera frame has been
segmented into superpixels [i.e., acquire appropriate parameter
from DNN-based segmentation on (i − 29th) frame].

Let G = (V, E) be an undirected graph with vertices vi ∈ V
representing superpixels, and edges (vi, vj) ∈ E are the pairs
of neighboring vertices. Each edge has a weight w(vi,vj) that
measures the dissimilarity between the two superpixels (e.g.,
the difference in intensity, color or other attributes). Based on
the definition of the above superpixel map G and the simplified
MST of G, we define the internal difference of the segmen-
tation region (SR) as Int(C), which means the weight of the
largest edge in the SR as follows:

Int(C) = max
e∈MST(SR,E)

w(e). (2)

For example, the difference between the maximum luminance
mean of different superpixels in the SR can be used as the

edge of the most dissimilar superpixel in the MST. We also
define the difference between two SRs SR1, SR2 ∈ V as
Dif(SR1, SR2) to represent the minimum edge connecting the
two superpixel regions as follows:

Dif(SR1, SR2) = min
vi∈SR1,vj∈SR2,(vi,vj)∈E

w
((

vi, vj
))

(3)

D(SR1, SR2) =
{

true if Dif(SR1, SR2) > MInt(SR1, SR2)

false otherwise
(4)

where Dif(SR1, SR2) = ∞ denotes that there is no edge
between SR1 and SR2. To determine if there is a boundary
between superpixel regions, we use a threshold function τ to
control the difference between two superpixel regions. MInt
denotes the minimum internal difference. The threshold func-
tion is defined as τ(SR) = k/|SR|, where |SR| denotes the
size of SR, and the parameter k is mainly based on the size
of the frame and the prior knowledge of the DNN-based seg-
mentation, which is a dynamic adjustment without any manual
adjustment

MInt(SR1, SR2) = min(Int(SR1) + τ(SR1), Int(SR2) + τ(SR2)).

(5)

The workflow of the complete graph-based segmentation
method is as follows.

1) Step 1: Calculate the dissimilarity between each super-
pixel region and the adjacent region in order from left
to right, and from top to bottom.

2) Step 2: Sort the edges connected by different superpixel
regions in the order of dissimilarity to obtain Eorder =
{e1, e2, . . . , eN} and select e1 as the initial edge.

3) Step 3: Merge the currently selected edge en ∈ Eorder
with e1. If the connected vertex (vi, vj) satisfies that
vi and vj do not belong to the same superpixel region,
and that the dissimilarity is not greater than the internal
dissimilarity, then turns to step 4, otherwise turns to
step 5.

4) Step 4: Update the threshold and the number of super-
pixel regions.

5) Step 5: If n ≤ N, the loop selects the next edge and goes
to step 3.

We present the detailed booster segmentation in
Algorithm 2, mainly, including superpixels segmenta-
tion, graph-based segmentation and merging the segmentation
results according to the DNN-based prior knowledge.

IV. IMPLEMENTATION

In this section, we describe our implementation of
EdgeBooster, which is entirely based on the commom hard-
ware and customizd software.

A. Hardware Setup

This section describes the hardware platform we used to
deploy the EdgeBooster on the edge server. We use a regular
IBM server with a six-core Intel processor of 2.9 GHz and
16-GB RAM running Ubuntu 16.04 LTS that is deployed near
the base station. For the mobile device, we use a HUAWEI

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7295

Algorithm 2: Booster Segmentation Algorithm
Input: Current frame slices FS = {s1, s2, ..., sN}, recent

segmentation result MatrixMaskc−1, recent prior
knowledge of DNN-based segmentation pk.

Output: MatirxMaskc of the segmentation result.
1 for i from 1 to N do

/* executing seeds in parallel */
2 superpixels ⇐ parallelSEEDS(si, MatrixMaskc−1);

/* executing Graph-basd segmentation
in parallel */

3 segSlic ⇐ parallelGraphSeg(superpixels, pk);
4 segSlicArray ⇐ segSlicArray.add(segSlic);

5 MatirxMaskc ⇐ frameSlicMerge(segSlic, pk);
6 return MatirxMaskc;

Mate 9 smart phone that runs Android 8.0 executing Firefox
browser, which is equipped with an eight-core CPU (four cores
at 2.4 GHz and four cores at 1.8 GHz) and 4-GB RAM.
We also test EdgeBooster on other smart phones, such as the
Samsung Galaxy S5 and 360 N7 Pro, and Web browsers, such
as Chrome and Opera. Our system can work on any mobile
device equipped with a Web browser. To acquire the prior
knowledge of the robust DNN-based segmentation, we train
the DNN network on the cloud server, which is equipped with
a fourteen-core Intel Xeon processor running at 2.0 GHz with
128 GB of RAM and dual GTX TITAN Xp GPU cards with
12 GB of RAM on each card.

B. Software Implementation

This section describes the software implementation of the
EdgeBooster across the mobile Web to the edge server. The
entire software codebase consists of about 3000 lines of
Python code that implements Booster processing for the edge
server, along with about 1000 lines of JavaScript code for the
mobile Web.

Mobile Web Side: Our implementation follows the design
in Fig. 4. We obtain camera frames by using getUserMedia()
of WebRTC API running at 60 FPS, and preprocessing the
frame using resize() and GaussianBlur() of OpenCV.js API.
We realize a JavaScript controller on the mobile Web with the
parameters of the network state and the edge server state using
Network Information API and a packaged API that monitors
the available computing resources of the edge server. To imple-
ment the parallel processing, we realize a frameSlice() function
to slice the camera frame and then we leverage WebSocket API
to create stable communication pipelines between the mobile
Web browser and the edge server. The Request Receiver mod-
ule of the edge server can receive the slices of camera frames
and prepare the slices for the parallel processing. For the pure
frontend segmentation thread, we realize our marker-based
watershed algorithm API in C + + and compile a lightweight
OpenCV.js version that has the same API of cv2.watershed().
For the Content Render module, we color different regions
according to the segmentation edge data provided by the pure

frontend segmentation or the Booster segmentation, which is
also implemented in JavaScript.

Edge Server Side The edge server side implementation con-
tains three main modules: 1) request receiver; 2) booster;
and 3) result sender. In the Request Receiver thread, the
system establishes the Socket connection with the mobile
Web, receives the frame slices, decodes the fame slices and
then merges the slices into a complete frame. We use Flask
as the Web server framework that easily connects with the
mobile Web using Socket API. Booster is the core mod-
ule on the edge server and provides a robust segmentation
in real time. It contains a parallel graph-based segmentation
and a DNN-based segmentation that provides prior knowl-
edge for the booster. The training and inference phase of the
DNN-based segmentation is implemented in PyTorch 0.4.0.
For easy deployment and use, we realize the graph-based seg-
mentation in Python with an opencv-python library. Note that
our graph-based segmentation includes a superpixel segmen-
tation named SEEDS and is guided by the prior knowledge
of the segmentation of the history camera frame. The Result
Sender module mainly returns segmentation results to the
mobile Web in a JSON formation which is implemented
in Python.

V. EVALUATION

In this section, we describe our experiments to serve two
purposes. First, we want to evaluate the segmentation accu-
racy of EdgeBooster in complex environments compared with
benchmark methods. To the best of our knowledge, we are
the first to explore real-time image segmentation for the
mobile Web with common edge severs. We benchmark the
EdgeBooster against the pure frontend segmentation that exe-
cutes on the mobile Web and PlaneRCNN, a state-of-the-art
DNN-based segmentation algorithm, to indicate its advan-
tages. Second, we seek to understand the behavior of our
EdgeBooster as it affects the latency and resource consump-
tion. Note that we did not make an evaluation on using edge
compared to running the same application on the cloud or
a remote media server. This is because we have compared
the latency performance between the edge and the cloud
in Section II, and the results indicate that is impossible to
use the cloud to achieve the requirement of no less than
30 FPS for mobile Web applications. Our evaluations show
that EdgeBooster achieves a stable and acceptable performance
in various environments.

A. Experiment Setup

We follow the setup and implementation described in
Section IV to conduct experiments. We use two types of data
sets, including the outdoor scene and the indoor scene for
evaluating EdgeBooster. KITTI [32] is a data set for computer
vision algorithm evaluation in autopilot scenarios. In addition,
we also evaluate the EdgeBooster in real indoor scenes with
various conditions, such as dark light, weak contrast, strong
texture etc.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7296 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Fig. 9. Topology of the network deployment.

In Fig. 9, we present the core network topology with
an average downlink bandwidth of 300 Mb/s and an aver-
age uplink bandwidth of 80 Mb/s, which is in a real-
world 5G network at Beijing University of Posts and
Telecommunications. A common server with a six-core Inter
processor of 2.9 GHz and 16-GB RAM is deployed near base
station. The remote cloud is responsible for providing train-
ing DNN models and the management of the edge servers.
To acquire stable network conditions, such as for 3G, 4G,
and WiFi, we use Wonder Shaper [33], which is a script that
allows the user to limit the bandwidth of network adapters,
to control the network conditions on the edge server. Besides,
since EdgeBooster’s performance is mainly affected by the
downlink bandwidth, we set average downlink bandwidth of
3G, 4G and WiFi as 1.5 Mb/s, 12 Mb/s and 25 Mb/s, respec-
tively, aiming to simulate the network in various scenarios.
We set the relevant parameters involved in EdgeBooster as
following fthresh = 30, C = 4 denotes the number of paral-
lel channels, pmax_io = 60% and pmax_cpu = 80%. We also
extract raw camera frames at 480 ∗ 320 resolution from the
camera of the mobile phone for repeatable experiments. Then
we can repeat the same camera frames for multiple evaluation
to acquire an average value. All of the experiments strictly
follow the same workflow without any preprocessing and pro-
filing on each frame to ensure that they run in real time as
shown in Fig. 4.

B. Qualitative Evaluations

In this section, we perform qualitative evaluations on the
pure frontend segmentation, our booster segmentation and the
state-of-the-art segmentation algorithm PlaneRCNN in outdoor
and indoor scenes. We sample four camera frames from KITTI
to evaluate the performance of the outdoor scene shown in
Fig. 10. For the evaluation of the indoor scene, we also use the
same sampling rule to collect four camera frames via WebRTC
from the real scene, as shown in Fig. 11.

We can make three key observations based on these results
in Fig. 10. First, Booster’s segmentation is better than that of
the pure frontend algorithm, especially in the outdoor scene
with lots of small surfaces, such as leaves of the tree. Although
booster is less effective than PlaneRCNN, the entire processing
latency cannot meet the real-time requirements of the mobile
Web application. Second, we also analyze the segmentation
performance of the booster under various conditions in indoor
scenes, shown in Fig. 11. Compared to the outdoor scene, the
light and contrast of the indoor scene is generally weaker. The
results show that booster enables a considerable segmentation
while the pure frontend algorithm cannot provide an accept-
able segmentation when dealing with lots of small surfaces.

Fig. 10. Segmentation of the outdoor scene.

Fig. 11. Segmentation of the indoor scene.

In addition, PlaneRCNN has the best performance so that we
use its recent segmentation results as the prior knowledge to
improve the performance of booster. We also use this prior
knowledge to correct the results of the graph-based segmenta-
tion of booster. In summary, our booster segmentation not only
provides better performance than the pure frontend segmen-
tation, but also realizes real-time segmentation on the mobile
Web.

C. Image Segmentation Accuracy

To further evaluate the accuracy performance of the
EdgeBooster’s segmentation in a real scene, we set the seg-
mentation results of PlaneRCNN of a DNN-based method as
the benchmark, the segmentation accuracy can be measured by
the degree of coincidence of the segmentation results among
PlaneRCNN and EdgeBooster. We conduct experiments on the
performance of the accuracy of various methods, also, includ-
ing graph-based segmentation and pure frontend segmentation.
As shown in Fig. 12(a), we continuously test EdgeBooster for
20 min in the indoor scene, and we measure the accuracy of
the current time by taking the average camera frames segmen-
tation accuracy in one second. We also illustrate the effect

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7297

Fig. 12. Performance of image segmentation in accuracy. (a) Accuracy in
various networks. (b) Comparisons with various methods.

of prior knowledge to improve segmentation by comparing
the EdgeBooster with the method that does not use the prior
knowledge [i.e., Nonprior in Fig. 12(a)]. Note that we ran-
domly change the network status every 3–5 min to simulate
the unstable network status.

As shown in Fig. 12(a), the left y-axis represents
EdgeBooster’s segmentation accuracy, as expressed by the per-
centage of the degree of coincidence between EdgeBooster
and PlaneRCNN. The right y-axis represents the real-time
frame rate of EdgeBooster’s segmentation. We observe that
EdgeBooster significantly achieves real-time performance
when the average frame rate is not less than 30 FPS, and
it shows an accuracy similar to that of PlaneRCNN. For the
poor network condition, the pure frontend algorithm can still
provide an average segmentation accuracy for the mobile Web
user with no less than 33%. Although it is difficult to achieve
a similar segmentation accuracy to that of PlaneRCNN and
Booster, the segmentation result is still acceptable, as shown
in Section V-A. Note that the frame rate of such the pure fron-
tend segmentation has reached 50 FPS or higher. This indicates
that EdgeBooster for the first time provides mobile Web users
with a real-time and stable image segmentation, even in an
unstable condition. Note that pure frontend segmentation is to
provide smooth and continuous services for a short period of
time under unstable conditions. Therefore, although the accu-
racy is not considerable, it is significant to provide continuous
segmentation rather than immediately stopping segmentation
when it encounters a weak network.

In addition, we also compare the EdgeBooster, Graph-
based and pure frontend method with benchmark method
of DNN-based in the segmentation accuracy by randomly
collecting 1000 camera frames of indoor and outdoor sce-
narios in Fig. 12(b). We can see that when neglecting the
network condition and the complexity of segmentation algo-
rithm, EdgeBooster’s performance is closer to the DNN-based
method, and it also performs better than the Graph-based
and pure frontend methods. Although the average segmen-
tation accuracy of the EdgeBooster on 1000 random frames
is not better than the DNN-based method, we can see
that EdgeBooster’s segmentation is close to the DNN-based
method and has been effective from the previous qualitative
evaluations. Even the segmentation of EdgeBooster on some
frames is better than the DNN-based method, thereby being
able to support the applications in reality. Besides, since our

EdgeBooster’s motivation is to provide the real-time segmen-
tation for the resource-constrained and cross-platform mobile
Web applications, it is more focused on how to efficiently and
stably provide continuous services for the mobile Web on the
basis of ensuring the availability of segmentation accuracy.

D. Latency Performance

1) Latency Performance in Various Networks: We describe
the latency performance from capturing the camera frame to
completing the entire process of segmentation in Fig. 13. We
can make two key observations based on these results. First,
the results show that EdgeBooster provides a real-time image
segmentation for the mobile Web with an average latency
of 35 ms. Concretely, under the network condition of 3G
in Fig. 13(b), EdgeBooster achieves an average processing
latency of 16 ms using the pure frontend segmentation, thereby
achieving the same frame processing speed as the mobile Web
frame sampling frequency, and the points are more densely
displayed. However, for 4G and WiFi in Fig. 13(c) and (d),
EdgeBooster leverages the edge-assisted Booster to process the
camera frame flow with an average latency, including trans-
mission latency of 32 ms. Thus, it can handle 33 FPS which
is less than the sampling frequency of the mobile Web. We
recommend that it is better to set the sampling frequency
of the mobile Web as about 30 frames, which guarantees
that EdgeBooster can provide a stable real-time segmenta-
tion algorithm of not less than 30 FPS. This also indicates
that our Booster algorithm, using edge-assisted and paral-
lel stream processing technology, can effectively improve the
performance of offloading computation from the mobile Web
to a common edge server. Second, when the network changes,
EdgeBooster’s controller can adjust the computation offload-
ing mode according to the state of the network. Since the
frame processing rate of the pure frontend segmentation in
3G is higher than that in 4G and WiFi, the frame processing
hysteresis is not felt back when the network is changed from
3G to 4G/WiFi. Hence, we only show the result that changes
the network from WiFi/4G to 3G in Fig. 13(e) and (f). We
find that the controller fails to sense the network and com-
plete the computation offloading when the network changes
to the low frame processing rate from a high frame process-
ing rate. This is because the controller has a lag period to
change the segmentation from the robust booster to the pure
frontend segmentation.

Since the network bandwidth varies in reality,
EdgeBooster’s controller, which perceives dynamic changes
of the network in real time and dynamically adjusts the
currently offloading strategy based on the algorithm 1,
requires providing efficient perception and decision-making
computing to reduce the lag period as much as possible.
We use the same testing platform and network settings in
Section V-A and develop a controlled script to automatically
change the network bandwidth for Wonder Shaper to simulate
a dynamic network environment. When we use the controller
script to change the network bandwidth, it does not take effect
immediately. Thus, according to the testing results, we set the
minimum network change frequency, which means how often

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7298 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Fig. 13. Latency performance. The x-axis is the number of the frame, and the y-axis is the entire latency required to process the current frame. We sample
the camera frames of 5 min in chronological order, where sampling frequency of the mobile Web is 60 FPS. We also randomly change the network condition
to simulate an unstable environment. (a) Latency performance. (b) 3G network. (c) 4G network. (d) WiFi network. (f) From 4G to 3G.

Fig. 14. Behavior of EdgeBooster’s controller with different change
frequencies of network bandwidth. (a) Increase the network bandwidth from
1.5 to 25 Mb/s. (b) Decrease the network bandwidth from 25 to 1.5 Mb/s.

the network bandwidth changes effectively, as 50 s ranging
from 1.5 to 25 Mb/s. We conduct experiments to explore
the latency, accuracy and offloading rate of EdgeBooster
under dynamic network bandwidths in Fig. 14. Specifically,
Fig. 14(a) and (b) shows the performance of EdgeBooster in
different change frequencies when, respectively, increasing
or decreasing the network bandwidth between 1.5 Mb/s and
25 Mb/s with a variation range of 1 Mb/s. We do not explore
the performance under randomly increasing or decreasing
the bandwidth, because other situations can be obtained by
combining situations in Fig. 14(a) and (b).

We observe that: 1) when the network change frequency
is setting as 30 s, which is less than the minimum network
change frequency, we find that EdgeBooster’s controller
always perceives the initial bandwidth and does not change
the offloading strategy. This is because although the network
is constantly changing, Wonder Shaper has not yet taken
effect and has changed again, controlled script of the network
bandwidth has fallen into a loop, resulting in no changes
of EdgeBooster’s controller and 2) once the network change
frequency exceeds the minimum change frequency, we can see
that EdgeBooster’s controller can perceive network changes
as the bandwidth increases and make offloading decisions in
time. Especially when the bandwidth increases to 5.5 Mb/s,
the controller starts to offload calculations to the edge server

Fig. 15. Latency comparisons between parallel Booster and nonparallel
Booster in (a) and (b), the latency improvement of parallel Booster with
various networks in (c), and EdgeBooster’s performance compared with
reference [34] in (d).

to obtain more accurate service. However, when we increase
the bandwidth to about 20 Mb/s, EdgeBooster performs a
small climbing and in a stable state. A similar conclusion can
also be obtained in Fig. 14(b) when we gradually reduce the
network bandwidth from 25 to 1.5 Mb/s. Although we do
not further verify more complex scenarios, such as simulta-
neously increasing or decreasing the network bandwidth, the
change boundary in these scenarios is similar to a certain
stage in Fig. 14(a) or (b). Therefore, experimental results in
Fig. 14 illustrate that EdgeBooster’s controller can provide sta-
ble services through continuous testing under different network
changing frequencies.

2) Latency Comparisons: EdgeBooster provides a pure
frontend segmentation locally for a weak network condition
or with an unavailable edge server without offloading com-
putations to the edge server. Thus, we present the latency
comparisons between parallel Booster and nonparallel Booster
under 4G and WiFi in Fig. 15(a) and (b). We observe that our
parallel Booster can improve the frame processing by 42% and
36% in 4G and WiFi, respectively, compared with nonparal-
lel frame processing. This acceleration of the parallel Booster
can effectively improve the frame processing for the mobile
Web on a common edge server, which also makes it possible
to meet a real-time requirement on the mobile Web. In sum-
mary, performing a parallel technology on the edge server is
significant in making it possible to process continuous vision
tasks for the mobile Web. It is a good choice to design parallel
technology for accelerating image segmentation on a common
edge server based on the above comparisons.

Then, we conduct experiments on the parallel Booster in dif-
ferent network bandwidths range from 5 Mb/s to 25 Mb/s in

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7299

Fig. 15(c). We use the same experimental settings and methods
as described in the above experiments. When the bandwidth
is lower than 3 Mb/s, which is in the range of 3G network
or in a weak network condition, EdgeBooster’s controller will
automatically choose the pure frontend segmentation rather
than using the parallel Booster for real-time services. Hence,
we are not necessary to explore the latency performance
of parallel Booster in a weak network in Fig. 15(c). The
results show that the average frame processing latency of
parallel Booster has gradually decreased with the increase
of network bandwidth, performing a significant improvement.
This illustrates that a stable and high bandwidth can effec-
tively improve the latency performance when using parallel
technology of Booster. Moreover, we can see that when the
bandwidth increases to 20 Mb/s, the parallel Booster has a
slight increase as the bandwidth continues to increase. This
is because the network bandwidth is no longer the bottle-
neck, and parallel technology of Booster will provide more
improvements as the network bandwidth increases. Once the
network bandwidth increases to 20 Mb/s, the edge server
receives enough frames to give full play to the parallel process-
ing of Booster, improving throughput and reducing average
processing latency.

To further illustrate the novelty and advantage compared
with edge-asssited framework for object detection in [34], we
conduct the experiments in various network conditions. We
deploy PlaneRCNN to the same edge server and perform the
same segmentation task according to the parallel inference
method in [34]. Note that PlaneRCNN has different network
structure with typical CNNs which used in [34], thus we only
parallel the part of PlaneRCNN that can be parallelized. y-axis
of Fig. 15(d) represents the average processing latency to
complete 100 camera frames. We can see that EdgeBooster
has lower and better latency performance than that of refer-
ence [34], which means that on a common edge server without
GPU, the DNN parallel inference technology in [34] cannot
provide real-time frame segmentation. In particular, we can
only acquire an average frame processing rate of about 11 FPS
in WiFi by the method in [34]. For EdgeBooster, it achieves
a better performance by applying the parallel technology to
the graph-based segmentation, and guarantees the accuracy of
graph-based segmentation by leveraging the DNN-based prior
knowledge which has been illustrated in the above analysis.
Besides, we observe that the method of [34] is significantly
influenced by the network bandwidth, for instance, it performs
an unacceptable frame processing rate in 3G. EdgeBooster
exhibits better latency in 3G than that in 4G and WiFi. This
is mainly because we provide a pure frontend segmentation
on the mobile Web to improve the continuity and stability of
the system in unstable networks, which better illustrates the
novelty and superiority of EdgeBooster compared with [34].

E. Bandwidth Consumption

We conduct experiments to measure the bandwidth con-
sumption of three approaches (the pure frontend, parallel
Booster, nonparallel booster) for image segmentation. We ana-
lyze the average segmentation latency and the bandwidth

Fig. 16. Bandwidth consumption.

Fig. 17. Resource consumption.

consumption of three approaches. To show how the aver-
age latency changes with the bandwidth consumption, Fig. 16
compares three approaches. For the same bandwidth con-
sumption, our parallel Booster approach can achieve a lower
segmentation latency than the nonparallel approach. Though
the pure frontend approach can achieve the lowest latency
without any bandwidth consumption, its accuracy is worse
than other methods. Compared with the nonparallel method,
our system reduces the bandwidth consumption by 53% while
keeping the accuracy unchanged.

F. Resource Consumption

Since the pure frontend segmentation is a lightweight algo-
rithm that requires a small amount of computation, our system
only consumes few of the computation resources of the mobile
device when the network status is not good or the server load is
too high. Thus, we mainly consider the resource consumption
of EdgeBooster when it offloads the entire computations from
the mobile Web to the edge server in good conditions. To mon-
itor the continuous resource consumption, such as the CPU
usage, we use the mpstat [35], which is command line software
used in Linux to collect CPU statistics (e.g., usage, user time,
and idle time). Fig. 17 shows the raw resource usage traces
for 15 min. The results show that our system requires 17% of
the CPU resource, which is higher than the nonparallel pro-
cessing value of about 13% with four parallel channels. Thus,
it is acceptable for EdgeBooster to consume few resources
for parallel processing to acquire a real-time continuous frame
process for the mobile Web. We also explore the impact of the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7300 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

Fig. 18. Analysis of parallel channels.

number of parallel channels (the number of slices of the cam-
era frame) on the resource consumption of the edge server in
Fig. 18. The results show that although we increase the parallel
channels, there is no linear improvement for the image seg-
mentation of the mobile Web due to the system overhead. Our
experimental results show that three to five parallel channels
can satisfy the real-time image segmentation for the mobile
Web.

VI. RELATED WORKS

Image Segmentation: Traditional image segmentation
approaches can be classified into those based on the thresh-
old [18], the edge detection [36], the region [37], etc. They
all use the low-level semantic information, including the color,
the texture and the shape of the image pixel, which are not
good enough when encountering complex scenes. In addition,
graph-based methods view the image segmentation as a vertex
partition problem [19]. The spectral clustering methods con-
struct a Laplacian matrix of the original image to solve the
prebackground separation of the image [38], [39]. Although
these approaches achieve a better segmentation than tradi-
tional methods, they have a high cost in time complexity which
cannot be real time for the mobile Web.

Deep Learning: In recent years, with the great success
of deep learning technology in image classification, its abil-
ity to extract high-level semantic information largely solves
the problem of missing semantic information in traditional
image segmentation methods. fully convolutional network
(FCN) [40] is the first work that leverages deep learning into
image segmentation and designs an end-to-end fullly convolu-
tional network for pixel-by-pixel classification. DeepLab[41]
adds fully connected CRFs at the end of the FCN frame
to make segmentation more accurate. Besides, U-Net [42],
SegNet [43], SSD [44], Faster R-CNN [45], [46], and Mask
R-CNN [47] provide the image segmentation with abundant
semantic information and a faster segmentation speed. In this
article, we use PlaneRCNN as our edge-assisted DNN-based
segmentation method, which provides prior knowledge for our
Booster segmentation.

Mobile Computing Offloading: Offloading computa-
tion from the mobile Web to the cloud or the edge
server is a considerable way to enable continuous vision
tasks [25], [26], [34], [48]–[50]. Reference [34] designs
a system that employs low-latency offloading techniques

and uses a fast object tracking method to maintain detec-
tion accuracy for an AR/MR system running at 60 FPS.
DeepDecision [25] provides a dynamic offloading based on
the network conditions and decides whether to offload the
task to the edge. Lavea [26] designs an intelligent framework
that provides low-latency video stream analytics leveraging
the edge computing platform. Most of these works aim at the
mobile device that is more powerful than the mobile Web,
which focus more on improving the latency and accuracy
performance between the mobile Web and common edge
server.

VII. DISCUSSION

With the maturity of the W3C’s WoT standard, the Web
will become an important cross-platform application pro-
viding platform for the IoT. To this end, we discuss the
impacts of EdgeBooster on the mobile Web, the generalizabil-
ity, and some limitations. First, to the best of our knowledge,
EdgeBooster is the first framework that leverages the edge
server to provide real-time image segmentation with no less
than 30 FPS on the mobile Web in complex scenes. This
has the advantage of low communication costs compared to
offloading computations to the remote cloud and providing
parallel technology for Booster to accelerate segmentation.
Second, in this work, we mainly implement real-time image
segmentation in leveraging our edge-assisted framework. Since
the core contribution of the edge-assisted framework is to pro-
vide the mobile Web with a real-time processing capacity for
dealing with continuous camera frames, this real-time frame-
work can be applied into other continuous vision tasks, such
as tracking or object detection for the mobile Web. Third,
EdgeBooster mainly performs traditional image segmentation
based on the pixel information of a single camera frame,
without considering the semantic information and other useful
sensor data, such as IMU data. Thus, our segmentation results
lack an understanding of the semantic information, especially
for the outdoor scenario, which needs to be considered. In
future research, we plan to find ways to consider the use of
the semantic information of the camera frame and IMU data
to achieve a real-time semantic segmentation based on our
edge-assisted framework.

VIII. CONCLUSION

In this work, we proposed EdgeBooster, a practical frame-
work that leverages common edge servers to minimize the
communication costs, accelerates the camera frame segmen-
tation, and guarantees an acceptable segmentation accuracy.
For the purpose of obtaining fluently real-time segmentation
on the mobile Web, EdgeBooster provides a real-time booster
for segmentation developing a parallel technology that enables
booster segmentation on slices of a camera frame and using
a superpixel presegmentation to further accelerate the pro-
cessing. It also introduces robust DNN-based segmentation
results as the prior knowledge to improve the performance of
the graph-based algorithm, especially in nonideal scenes, such
as dark light and weak contrast. It also creates a pure fron-
tend segmentation algorithm to provide continuous and stable

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: EdgeBooster: EDGE-ASSISTED REAL-TIME IMAGE SEGMENTATION FOR MOBILE WEB IN WoT 7301

services for mobile users in unstable environments. Our evalu-
ation indicates that EdgeBooster is able to achieve acceptable
segmentation accuracy for the mobile Web, running at no less
than 30 FPS in various scenes.

REFERENCES

[1] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the Web of Things,” in Proc. IEEE Internet Things (IoT), Tokyo,
Japan, 2010, pp. 1–8.

[2] (2019). Web of Things (WoT) Architecture. [Online]. Available:
https://www.w3.org/TR/wot-architecture/

[3] F. Antoniazzi and F. Viola, “Building the semantic web of things
through a dynamic ontology,” IEEE Internet Things J., vol. 6, no. 6,
pp. 10560–10579, Dec. 2019.

[4] (2019). Web of Things (WoT). [Online]. Available: https://www.w3.
org/WoT

[5] M. Noura, A. Gyrard, S. Heil, and M. Gaedke, “Automatic knowledge
extraction to build semantic web of things applications,” IEEE Internet
Things J., vol. 6, no. 5, pp. 8447–8454, Oct. 2019.

[6] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A
lightweight collaborative recognition system with binary convolutional
neural network for mobile web augmented reality,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Dallas, TX, USA, 2019,
pp. 1497–1506.

[7] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for Web AR
with mobile edge computing,” IEEE Internet Comput., vol. 22, no. 4,
pp. 46–55, Jul./Aug. 2018.

[8] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A promising future for mobile augmented reality—State of the art,
challenges, and insights,” Proc. IEEE, vol. 107, no. 4, pp. 651–666,
Apr. 2019.

[9] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, and J. Chen, “Mobile
web augmented reality in 5G and beyond: Challenges, opportunities,
and future directions,” China Commun., vol. 16, no. 9, pp. 141–154,
Sep. 2019.

[10] A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca,
“Data augmentation using learned transformations for one-shot med-
ical image segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Long Beach, CA, USA, 2019, pp. 8543–8553.

[11] Y. Li, B. Peng, L. He, K. Fan, and L. Tong, “Road segmentation
of unmanned aerial vehicle remote sensing images using adversarial
network with multiscale context aggregation,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2279–2287, Jul. 2019.

[12] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, “Reinforcement
cutting-agent learning for video object segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, 2018,
pp. 9080–9089.

[13] G. Tsai, C. Xu, J. Liu, and B. Kuipers, “Real-time indoor scene under-
standing using Bayesian filtering with motion cues,” in Proc. Int. Conf.
Comput. Vis. (ICCV), Barcelona, Spain, 2011, pp. 121–128.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH,
USA, 2014, pp. 580–587.

[15] A.-L. Chauve, P. Labatut, and J.-P. Pons, “Robust piecewise-planar 3D
reconstruction and completion from large-scale unstructured point data,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., San
Francisco, CA, USA, 2010, pp. 1261–1268.

[16] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC technol-
ogy overview and signaling solution design and implementation,”
in Proc. 38th Int. Convention Inf. Commun. Technol. Electron.
Microelectron., Opatija, Croatia, 2015, pp. 1006–1009.

[17] L. López et al., “Kurento: The webRTC modular media server,” in
Proc. 24th ACM Int. Conf. Multimedia, 2016, pp. 1187–1191.

[18] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[19] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[20] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-D image
segmentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131, 2006.

[21] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “PlaneRCNN: 3D
plane detection and reconstruction from a single image,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Long Beach, CA, USA, 2019,
pp. 4450–4459.

[22] Y. Xian, S. Choudhury, Y. He, B. Schiele, and Z. Akata, “Semantic
projection network for zero- and few-label semantic segmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Long Beach, CA,
USA, 2019, pp. 8256–8265.

[23] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[24] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[25] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A
mobile deep learning framework for edge video analytics,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Honolulu, HI, USA, 2018,
pp. 1421–1429.

[26] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA:
Latency-aware video analytics on edge computing platform,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA, USA,
2017, pp. 1–13.

[27] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa, “PlaneNet:
Piece-wise planar reconstruction from a single RGB image,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA,
2018, pp. 2579–2588.

[28] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[29] S. Taheri, A. Vedienbaum, A. Nicolau, N. Hu, and M. R. Haghighat,
“OpenCV.js: Computer vision processing for the open Web platform,”
in Proc. 9th ACM Multimedia Syst. Conf., 2018, pp. 478–483.

[30] A. Haas et al., “Bringing the Web up to speed with webassembly,” ACM
SIGPLAN Notices, vol. 52, no. 6, pp. 185–200, 2017.

[31] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “SEEDS:
Superpixels extracted via energy-driven sampling,” Int. J. Comput. Vis.,
vol. 111, no. 3, pp. 298–314, 2015.

[32] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in Proc. 16th Int.
IEEE Conf. Intell. Transp. Syst. (ITSC), Hague, The Netherlands, 2013,
pp. 1693–1700.

[33] (2017). Wonder Shaper. [Online]. Available: https://github.com/
magnific0/wondershaper

[34] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile
Comput. Netw., 2019, pp. 1–16.

[35] X. Song, H. Chen, B. Zang, X. Song, H. Chen, and B. Zang,
“Characterizing the performance and scalability of many-core applica-
tions on virtualized platforms,” Dept. Parallel Process. Inst., Fudan Univ.,
Shanghai, China, Rep. FDUPPITR-2010, vol. 2, 2010.

[36] S. Lakshmi and D. V. Sankaranarayanan, “A study of edge detec-
tion techniques for segmentation computing approaches,” IJCA Spec.
Issue Comput.-Aided Soft Comput. Techn. Imag. Biomed. Appl. (CASCT),
no. 1, pp. 35–41, 2010.

[37] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, no. 6, pp. 641–647, Jun. 1994.

[38] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clus-
tering: Theory and its application to image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1101–1113, Nov. 1993.

[39] Z. Li and J. Chen, “Superpixel segmentation using linear spectral clus-
tering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Boston,
MA, USA, 2015, pp. 1356–1363.

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Boston, MA, USA, 2015, pp. 3431–3440.

[41] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” 2017. [Online].
Available: arXiv:1706.05587.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervention 2015, pp. 234–241.

[43] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” 2015. [Online]. Available: arXiv:1511.02680.

[44] W. Liu et al., “SSD: Single shot MultiBox detector,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37.

[45] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
Santiago, Chile, 2015, pp. 1440–1448.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 91–99.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

7302 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 9, MAY 1, 2021

[47] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask R-CNN,”
2017. [Online]. Available: https://arxiv.org/abs/1703.06870.

[48] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed DNN collaborative computing approach for mobile
web augmented reality in 5G networks,” IEEE Netw., vol. 34, no. 2,
pp. 254–261, Mar./Apr. 2020.

[49] Y. Huang et al., “DeepAdapter: A collaborative deep learning framework
for the mobile web using context-aware network pruning,” in Proc. IEEE
Conf. Comput. Commun., Toronto, ON, Canada, 2020, pp. 834–843.

[50] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. Conf.
ACM Spec. Interest Group Data Commun., 2018, pp. 253–266.

Yakun Huang is currently pursuing the Ph.D.
degree with the Network Service Foundation
Research Center, State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
Beijing, China.

His current research interests include mobile
computing, distributed systems, machine learning,
augmented reality, edge computing, and 5G
networks.

Xiuquan Qiao is currently a Full Professor
with the Beijing University of Posts and
Telecommunications, Beijing, China, where he is
also the Deputy Director of the Network Service
Foundation Research Center, State Key Laboratory
of Networking and Switching Technology. He
has authored or coauthored over 60 technical
papers in international journals and at con-
ferences, including the IEEE Communications
Magazine, PROCEEDINGS OF IEEE, Computer
Networks, IEEE INTERNET COMPUTING, the IEEE

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, and ACM
SIGCOMM Computer Communication Review. His current research interests
include the future Internet, services computing, computer vision, distributed
deep learning, augmented reality, virtual reality, and 5G networks.

Prof. Qiao was a recipient of the Beijing Nova Program in 2008 and the
First Prize of the 13th Beijing Youth Outstanding Science and Technology
Paper Award in 2016. He served as an Associate Editor for Computing
(Springer) and the editor board of China Communications Magazine.

Pei Ren is currently pursuing the Ph.D. degree
with the Network Service Foundation Research
Center, State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications, Beijing, China.

His current research interests include the future
Internet architecture, services computing, computer
vision, distributed deep learning, machine learn-
ing, augmented reality, edge computing, and 5G
networks.

Schahram Dustdar (Fellow, IEEE) was an
Honorary Professor of Information Systems with the
Department of Computing Science, University of
Groningen, Groningen, The Netherlands, from 2004
to 2010. From 2016 to 2017, he was a Visiting
Professor with the University of Sevilla, Sevilla,
Spain. In 2017, he was a Visiting Professor with
the University of California at Berkeley, Berkeley,
CA, USA. He is currently a Professor of Computer
Science with the Distributed Systems Group,
Technische Universität Wien, Vienna, Austria.

Prof. Dustdar was a recipient of the ACM Distinguished Scientist Award
in 2009, the IBM Faculty Award in 2012, and the IEEE TCSVC Outstanding
Leadership Award for outstanding leadership in services computing in 2018.
He is the Co-Editor-in-Chief of the ACM Transactions on Internet of Things
and the Editor-in-Chief of Computing (Springer). He is also an Associate
Editor of the IEEE TRANSACTIONS ON SERVICES COMPUTING, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, the ACM Transactions on the Web,
and the ACM Transactions on Internet Technology. He serves on the Editorial
Board of IEEE INTERNET COMPUTING and the IEEE Computer Magazine.
He was an Elected Member of the Academy of Europe, where he is the
Chairman of the Informatics Section.

Junliang Chen (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 1955, and
the Ph.D. degree in electrical engineering from the
Moscow Institute of Radio Engineering, Moscow,
Russia, in 1961.

He has been with the Beijing University of
Posts and Telecommunications, Beijing, China, since
1955, where he is currently the Chairman and a
Professor with the Research Institute of Networking
and Switching Technology. His current research

interests include communication networks and next-generation service cre-
ation technology.

Dr. Chen received the First, Second, and Third prizes of the National
Scientific and Technological Progress Award in 1988, 2004, and 1999, respec-
tively. He was elected as a member of the Chinese Academy of Sciences in
1991 and the Chinese Academy of Engineering in 1994 for his contributions
to fault diagnosis in stored program control exchange.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 28,2021 at 07:37:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

