
EDITOR: Schahram Dustdar, dustdar@dsg.tuwien.ac.at

DEPARTMENT: INTERNET OF THINGS, PEOPLE, AND PROCESSES

Control Flow Versus Data Flow in Distributed
Systems Integration: Revival of Flow-Based
Programming for the Industrial Internet of
Things
Wilhelm Hasselbring , Kiel University, 24118 Kiel, Germany

Maik Wojcieszak, wobe-systems GmbH, 24145 Kiel, Germany

Schahram Dustdar , TU Wien, 1040 Vienna, Austria

Whenwe consider the application layer1 of networked infrastructures, data and control
floware important concerns in distributed systems integration.Modularity is a
fundamental principle in software design,2 in particular for distributed system
architectures. Modularity emphasizes high cohesion of individualmodules and low
coupling betweenmodules. Microservices are a recentmodularization approachwith
the specific requirements of independent deployability and, in particular, decentralized
datamanagement.3 Cohesiveness ofmicroservices goes hand-in-handwith loose
coupling, making the development, deployment, and evolution ofmicroservice
architectures flexible and scalable.4 However, in our experiencewithmicroservice
architectures, interactions and flowsamongmicroservices are usuallymore complex
than in traditional,monolithic enterprise systems, since services tend to be smaller and
only have one responsibility, causing collaboration needs.We suggest that for loose
coupling amongmicroservices, explicit control-flowmodeling and executionwith
central workflowengines should be avoided on the application integration level. On the
level of integratingmicroservices, data-flowmodeling should be dominant. Control-
flow should be secondary and preferably delegated to themicroservices.We discuss
coupling in distributed systems integration and reflect the history of business process
modelingwith respect to data and controlflow. To illustrate our recommendations, we
present some results for flow-based programming in our Industrial DevOps project
Titan, where we employflow-based programming for the Industrial Internet of Things.

Data flow is concerned about where data are
routed through a program/system and what
transformations are applied during that journey.

Control flow is concerned about the possible order of
operations. These two concepts are somehow linked to
each other: for example, the order of operations executed

in a computer program can influence where the data go.
Similar, specific data values may steer the control flow.
The side box below discusses data versus control flow in
programanalysis as an area related to this article.

DISTRIBUTED SYSTEMS
INTEGRATION

File transfer, shared databases and Web resources,
remote procedure calls, asynchronous messaging, and
data streaming all support different forms of dataflow
and control flow across distributed integrated systems

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3053712
Date of current version 10 August 2021.

July/August 2021 Published by the IEEE Computer Society IEEE Internet Computing 5
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

mailto:Control Flow Versus Data Flow in Distributed Systems Integration: Revival of Flow-Based Programming for the Industrial Internet of Things
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821

with various degrees of coupling introduced in the inte-
grated architecture.5

Service-oriented architecture (SOA) is an approach
to developing enterprise systems by loosely coupling
interoperable services from separate systems across
different business domains. SOA emerged in the early
2000s, offering a way to develop new business serv-
ices by reusing components from existing programs
within the enterprise rather than writing functionally
redundant code from scratch.

A crucial aspect of SOA is service orchestration.
Developers utilize service orchestration to support the
automation of business processes. Service orchestration
is the coordination of multiple services exposed as a sin-
gle aggregate service. In other words, service orchestra-
tion is the combination of service interactions to create
higher level business services. This is usually accom-
plished through the use of a central workflow engine
and/or an enterprise service bus (ESB). However, such a
central orchestration service causes problems in micro-
service architectures.

› A team should have full-stack responsibility for its
microsevices (Conway’s Law). With a central
orchestration service comes a central workflow
team, which has to coordinate with themicroservi-
ces teamswhose services are involved in thework-
flow.Withmicroservice architectures you create at

least one microservice per bounded context,
according to domain-driven design.6 One impor-
tant goal of microservices is to improve scalability
and speed of the software development itself.4

Hence, it is common sense that one microservice
needs to be owned by exactly one development
team (which may own multiple microservices).
Centrally managed ESBs do not fit into a microser-
vices architecture. You may face a situation where
you have to update your microservices in-sync
with the central workflow model in case you make
changes. This introduces a coupling between cen-
tral and local control, which you do not want to
have. However, inside a microservice or if a team
owns multiple microservices, a workflow engine
may be appropriate within this context.

› For independent scalability, microservices should
manage their data themselves; thus,manage their
bounded context. Long running workflows need
to keep persistent state somehow. Thismay imply
coupling between the central orchestration ser-
vice and the individual microservices. With micro-
services, workflows should only live inside service
boundaries, if loose coupling is pursued.

Thus, we observe a conflict between central con-
trol (via orchestration) and independent evolution of
microserives. This is particularly the case in our

DATA VERSUS CONTROL FLOWPROGRAMANALYSIS

I n programming, when calling a function, starting the

function’s execution is control flow while passing the

function’s parameters is data flow. In this context,

control and data flow are tightly linked, thus it is not

straightforward to separate them:

› Control-flow analysis deconstructs the order of

operations in a computer program. This could be,

for example, determining execution paths, but

also precedence constraints between different

operations.

The dominant question is how the locus of control

moves through the program. Data may accompany the

control flow, but is not dominant.

› Data-flow analysis gathers information about the

possible set of values calculated at various loca-

tions in a computer program.

The dominant question is how data moves through

computations. As the data moves, control is activated.

Control flow refers to the path the execution takes in

a program, and sequential programming that focuses on

explicit control flow using control structures like loops

or conditional statements is called imperative

programming. In an imperative model, data may follow

the control flow, but the main question is about the

order of execution.

Dataflow abstracts over explicit control flow by

placing the emphasis on the routing and transformation

of data and is part of the declarative programming

paradigm. In a dataflow model, control follows data and

computations are executed implicitly based on data

availability. Concurrency control refers to the use of

explicit mechanisms like locks to synchronize

interdependent concurrent computations. It is a matter

of emphasis—control flow schedules data movement or

data movement implies transfer of control.

6 IEEE Internet Computing July/August 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

application domain of industrial automation, where for
instance sensors and actuators are managed by third
parties, with highly varying update cycles.

Service choreography is also related to service
orchestration, as both are employed to create com-
posite services and applications in SOAs; however, it
is still worth pointing out the differences. A service
choreography model works without a central orches-
trator while a service orchestration model relies on a
central controller to couple services. The microservice
architectural style has promoted the idea of event-
driven architectures to decouple your services. Smart
endpoints and dumb pipes are preferred even more
now than in previous generations of SOAs. This has
not always been followed in all SOA implementations,
resulting in ESB misuse.7

CONTROL FLOWMODELING
The workflow concept has de-facto become the stan-
dard paradigm for process modeling in business pro-
cess management systems. Workflows are typically
looked from three perspectives: 1) the control perspec-
tive, describing the logical order of tasks; 2) the data
perspective, describing the information exchange
between tasks; and 3) the resource perspective,
describing the originators of tasks. Industry standards
such as UML activity diagrams,8 the Business Process
Model andNotation (BPMN)9 and event-driven process
chains10 offer graphical notations for stepwise pro-
cesses that include choice, iteration, and concurrent
execution. However, data flow and control flow in

business workflows are not independent. The routing
decisions in a workflow are typically based on data. The
emphasis of these workflow modeling approaches is
on control flow.

BPMN,9 for instance, does support data objects
and data stores, so it is possible to use it to represent
data flow, but control-flow modeling dominates BPMN
models. Let us take a look at an illustrative example
from our Industrial DevOps project.11 Figure 1 shows
an example BPMN workflow for temperature control
of engines in a production line.

Timer events in BPMN are events which are trig-
gered by a defined timer, in this example, a tempera-
ture sensor that periodically measures the engine’s
temperature. The engine control checks the tempera-
ture. If the temperature is too high or too low, the
engine receives orders to decrease or increase the
temperature, respectively. The measured tempera-
tures are written to the time series database. Corre-
sponding to the temperature check, appropriate
messages are written to the log database. In case the
temperature is too low or too high, the operator is
alerted. The temperature is measured immediately
after decelerating/accelerating the engine and period-
ically triggered by the timer event.

Check Temperature is a data-based exclusive gate-
way.9 BPMN offers several other gateways, including
inclusive and parallel gateways. If, for instance, the
temperature is too high, the production line receives
the order to decrease the temperature, the corre-
sponding log message is written, and the operator is
alerted, all in parallel.

FIGURE 1. Example BPMN diagram for engine temperature control in a production line.

July/August 2021 IEEE Internet Computing 7

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

The graphical, horizontal notation pools in Figure 1
depict the participants within the collaboration. Each
pool forms a container for some processes. States in
BPMN are linked by sequence, exception or message
flows; sequence flows can be either incoming to or
outgoing from a state. While sequence flows are
restricted to an individual pool, message flows repre-
sent communications between pools. In Figure 1, alert-
ing messages are exchanged between the Production
Line and the Operator, depicted as a dashed arrow. In
this example, no data objects are modeled, the
emphasis is on control flow.

It is not apparent how to map parts of this model
to bounded contexts and microservices. According
to Evans,6 when a significant process or transforma-
tion in the domain is not a natural responsibility of
an entity or value object, you should add an opera-
tion to the model as interface declared as a domain
service. For instance, checking the temperature
could be considered such a domain service. How-
ever, in Figure 1, this decision is modeled as control
flow in the “central” workflow. As discussed in the
previous section, we get a conflict between central
control (via orchestration) and independent evolu-
tion of microservices when modeling this control
flow on the integration level.

Our BPMN engine temperature control example is
dominated by modeling the control flow. As an alter-
native approach, the JOpera Visual Composition Lan-
guage12 originates from the workflow area, but the
JOpera approach emphasizes data flow. From the
JOpera data flow graph, it is possible to derive the pro-
cess’ control flow graph. JOpera includes a separate
graph for modeling the control flow to specify control
flow dependencies that cannot be automatically
derived from the data flow. Before we take a look at
such a combination of data and control flow, let us
take a look at pure data flow modeling in the following
section.

DATA FLOWMODELING
A data flow diagram (DFD) is a modeling technique for
describing and analyzing information flows. It illus-
trates the flow of information based on input and out-
put data. DFDs support structured analysis and
design. They have the purpose of clarifying system
requirements and major data transformations. DFDs
illustrate business processes with the help of external
data stores, the data flowing from one process to
another, and delivering the result data. A DFD is a way
to visualize the flow of data of a process or a system
that aims to be accessible to both software engineers
and domain experts alike. A DFD has no control flow,
there are no decision rules and no loops.

Several DFD notations exist. We employ the Gane
& Sarson notation.13 To facilitate the understanding of
DFDs, the example DFD for engine temperature con-
trol in Figure 2 displays the four basic elements pro-
cess, data store, data flow, and external entity, which
are introduced as follows:

› Processes refer to the activities that operate the
data of the system. A process receives input
data and produces output with a different con-
tent or form. Processes can be as simple as col-
lecting input data, or it can be complex as
producing a report containing monthly sales. A
process is depicted as squares with rounded cor-
ners with a unique name in form of verb or verb
phrase, for example, Check Temperature in
Figure 2. It is optional to indicate the place at
which the process is executed, “Engine Control”
in our example.

› Data stores represent the repository of data
manipulated by processes, which can be data-
bases or files (Time Series Database and Log
Database in Figure 2). A data store is represented
by an open rectangle in a DFD with a name in the
form of noun or noun phrase. A data store is used

FIGURE 2. Example DFD for engine temperature control. Processes are depicted as squares with rounded corners, data store as

open rectangles, external entities as closed rectangles, and data flows as directed lines.

8 IEEE Internet Computing July/August 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

to represent a situation when the system must
retain data because one or more processes need
to use the stored data in a later time.

Note that such data stores could also be modeled
with the BPMN. Our goal here is to explicitly illustrate
the differences between control-flow modeling (with
BPMN in Figure 1) and data-flow modeling (with DFD
in Figure 2).

› Data flows are directed lines indicating the data
flow from or to a process with the information
on the line of a data flow. At least one end of a
data flow is linked to a process. Note that data
cannot move without a process. In other words,
data cannot go to or come from a data store or
an external entity without having a process
pushing it or pulling it. Data stores are passive
while processes and external entities are active.
In Figure 2, the engine sends the measured tem-
perature to the Engine Control to Check the
Temperature.

› External entities are components outside of the
boundaries of the modeled information system.
They represent how the information system
interacts with the outside world. Example exter-
nal entities in Figure 2 are the Engine and the
Operator. An external entity is depicted as a
closed rectangle in DFDs. An external entity is a
person, department, outside organization, or
other information system that provides data to
the system or receives outputs from the system.

Note that the DFD in Figure 2 does not describe
exactly the same information as the control-flow
BPMN diagram in Figure 1. Several (control-flow)
details are left out, such as the logic to check the tem-
perature. This decision is delegated to the appropriate
domain service,6 for which a microservice will be
responsible in a microservice architecture (this could
be a domain service “Check Temperature” for our
engine control example). Such control-flow concerns
are delegated from the integration layer to the individ-
ual microservices, to reduce the coupling. Please note
that just such a simple rule-based decision as in our
illustrative example would be somewhat too fine
grained to constitute a microservice.

TITAN FLOW-BASED
PROGRAMMING

Titan is a software platform for integrating and moni-
toring industrial production environments, following

our Industrial DevOps approach.11 With the Indus-
trial DevOps approach, we intend to introduce
methods and culture of DevOps into industrial pro-
duction environments. The fundamental concept of
this approach is a continuous process of develop-
ment, operation, and observation of the entire pro-
duction environment.

To achieve this, Titan applies the principles of flow-
based programming. Flow-based programming is a
programming paradigm, introduced by Morrison in the
early 1970s.14 Flow- based programming defines appli-
cations as networks of black-box processes, which
communicate via data traveling across predefined
connections. As such, flow-based programming
emphasize data flows, as the previously introduced
DFDs do. Example Titan flows for engine temperature
control are shown in Figure 3. In Titan, a graph of con-
nected bricks is called a flow. There are several types
of bricks15:

› Inlets and outlets are to be found at the edges of
flows and constitute the start and ending points
of data flows (depicted as triangles embedded
within squares). An inlet is a producer brick to a
data flow. An outlet brick will end a data flow. In
Figure 3, Engine is an inlet for temperature meas-
urements. The Time Series Database Writer is an
outlet to store the measurement data. Within
Titan flows, communication among bricks is
standardized, while inlets and outlets connect
our flows to possibly heterogeneous external
components.

› Filter bricks (depicted as triangles, with the tip to
the right) process the incoming data based on
filter conditions. The Temperature Filter in
Figure 3 converts the raw sensor measurements
into corresponding Titan data structures.

› Selector bricks (depicted as triangles, with the tip
to the left) forward incoming data to selected out
ports of this brick depending on the conditions set
in the implementation. In Figure 3, the Check Tem-
perature selector decides whether to handle the
temperature or towrite a logmessage.

› Signals do constitute a special type of flow edge
(depicted as double arrows to the left and right
for signal producers and consumers, respec-
tively). A signal producer starts a flow by receiv-
ing a trigger possibly including a dataset
delivered via the signal. The signal consumer will
end the current flow, optionally triggering some
signal producers with the same name. In Figure 3,
handle temperature is such a signal. With sig-
nals, we may build event-driven architectures.

July/August 2021 IEEE Internet Computing 9

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

› General bricks (depicted as rectangles) contain
logic that cannot be classified into the more spe-
cialized bricks listed above. In Figure 3, Adapt
Temperature and Alert Operator are examples
for such general bricks.

Note that the control flow decisions are encapsu-
lated within the brick implementations. The visual
Titan flows describe only data flow. The essential dif-
ference to the previous DFD model is that we model
event-driven architectures with Titan’s signal mecha-
nism. Event-driven architectures fit to microservice
architectures.16

Titan provides a graphical modeling language,
which is designed to enable the domain experts to
model the integration and, based on this, to configure
the integrated system. Hence, there is no software
engineer required to perform these configurations or
(preconfigured) changes. Instead, domain experts
receive training on the modeling language, to allow for
end-user programming.

The strong encapsulation of the internal func-
tionality of a brick makes it highly modular. Bricks

implemented in different languages can be com-
bined. The brick logic can be described in the form
of a script, for example, with Python. With Titan, we
also intend to combine our flow-based programming
approach with block-based programming,17 such
that the domain experts do not need to learn tex-
tual programming languages to describe the internal
brick logic. In block-based programming, the pro-
gramming constructs like conditionals and loops are
represented via graphical blocks. Popular examples
include MIT Scratch and Google Blockly. Figure 4
depicts a block-based program snippet and corre-
sponding Python code for the Check Temperature
selector brick of Figure 3.

With Titan, graphical flow-based programming for
integrating distributed systems is dominated by data
flows, while control flow is specified within the bricks.
For both, we provide low-code programming to
domain experts. In principle, the Titan approach is sim-
ilar to JOpera,12 where data flow graphs are refined by
control flow graphs. However, with Titan, data flow
graphs are refined via block-based programming to
specify the control flow (see Figure 4).

FIGURE 3. Example Titan flows for engine temperature control.

10 IEEE Internet Computing July/August 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

CONCLUSION
With the production line example, we intend to illustrate
our experience and lessons learned with respect to con-
trol and data flow in distributed systems integration:

1. Our BPMN engine temperature control example
in Figure 1 is a pure control-flow model. The logic
for checking the temperature, for instance, is
explicitly modeled in the (global) workflow.

2. Our DFD engine temperature control example in
Figure 2 is a pure data-flow model. The logic for
checking the temperature is not modeled in the
(global) data flow, it should be implemented in a
domain service.

3. Our Titan engine temperature control example in
Figure 3 is a data-flow model, enriched with
events (called signals in Titan). Such event-
driven architectures fit well to microservice
architectures and domain-driven design.16

Both data and control flow are important concerns
in distributed systems integration. Based on our expe-
rience, we suggest that for loose coupling, explicit
control-flow modeling should be avoided on the inte-
gration level. Modeling control flow is more coupled
because it assumes an exact ordering of service invo-
cations, while data flow abstracts from this ordering
as long as the service interfaces have matching
assumptions regarding the data that needs to be
exchanged. Thus, on the level of integrating micro-
services, data-flow modeling should be dominant.
Control-flow should be secondary and preferably dele-
gated to the microservices in some way. However, be

aware of the resulting tradeoff of loosing an integrated
overview on the control flow. Such an integrated over-
view on the actual system interactions may be recon-
structed via runtime monitoring,18, 19 but the system
design should focus on data flow. We suggest that
researchers investigate more on data-flow oriented
modeling methods, and that professionals reconsider
and revive data-flow modeling and flow-based
programming.

ACKNOWLEDGMENTS
This work was supported by the Federal Ministry of
Education and Research (BMBF, Germany) in the Titan
Project (https://www.industrial-devops.org) under
Grant 01IS17084A/B.

REFERENCES
1. B. Zheng, J. Yin, S. Deng, Z. Wu, and S. Dustdar, “A

service-oriented network infrastructure for crossover

service ecosystems,” IEEE Internet Comput., vol. 24,

no. 1, pp. 48–58, Jan. 2020.

2. D. L. Parnas, “On the criteria to be used in decomposing

systems into modules,” Commun. ACM, vol. 15, no. 12,

pp. 1053–1058, Dec. 1972.

3. J. Lewis and M. Fowler, “Microservices,” 2014. [Online].

Available: https://martinfowler.com/ articles/

microservices.html

4. W. Hasselbring and G. Steinacker, “Microservice

architectures for scalability, agility and reliability in

E-commerce,” in Proc. IEEE Int. Conf. Softw. Archit.

Workshops, Apr. 2017, pp. 243–246.

FIGURE 4. Block-based program snippet (left) and corresponding Python code (right) for the check temperature selector brick

of Figure 3.

July/August 2021 IEEE Internet Computing 11

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

https://www.industrial-devops.org)
https://martinfowler.com/ articles/microservices.html
https://martinfowler.com/ articles/microservices.html

5. C. Pautasso andO. Zimmermann, “Theweb as a software

connector: Integration resting on linked resources,” IEEE

Softw., vol. 35, no. 1, pp. 93–98, Jan. 2018.

6. E. Evans,Domain-DrivenDesign: Tackling Complexity in

theHeart of Software. Reading,MA,USA: Addison-Wesley,

2004.

7. D. Neri, J. Soldani, O. Zimmermann, and A. Brogi,

“Design principles, architectural smells and

refactorings for microservices: A multivocal review,”

SICS Softw.-Intensive Cyber-Phys. Syst., vol. 35, no. 1/2,

pp. 3–15, Aug. 2020.

8. M. Dumas and H. M. Arthur ter Hofstede, “UML

activity diagrams as a workflow specification

language,” in The Unified Modeling Language.

Modeling Languages, Concepts, and Tools, vol. 2185,

pp. 76–90, New York, NY, USA: Springer, 2001,

doi:10.1007/3-540-45441-1_7.

9. M. Chinosi and A. Trombetta, “BPMN: An introduction

to the standard,” Comput. Standards Interfaces, vol. 34,

no. 1, pp. 124–134, Jan. 2012.

10. A.-W. Scheer, O. Thomas, and O. Adam, “Process

modeling using event- driven process chains,”

in Process-Aware Information Systems,

Hoboken, NJ, USA: Wiley, Oct. 2005, pp. 119–145,

doi: 10.1002/0471741442.ch6.

11. W. Hasselbring, S. Henning, B. Latte, A. M€obius,

T. Richter, S. Schalk, and M. Wojcieszak, “Industrial

DevOps,” in Proc. IEEE Int. Conf. Softw. Archit.

Companion, Mar. 2019, pp. 123–126.

12. C. Pautasso and G. Alonso, “The JOpera visual

composition language,” J. Vis. Lang. Comput., vol. 16,

no. 1/2, pp. 119–152, Feb. 2005.

13. C. Gane and T. Sarson, Structured Systems Analysis:

Tools and Techniques. Englewood Cliffs, N.J, USA:

Prentice-Hall, 1979.

14. J. P. Morrison, Flow-Based Programming: A New

Approach to Application Development. Scotts Valley,

CA, USA: CreateSpace, 2nd ed. 2010. [Online]. Avialable:

http://www. jpaulmorrison.com/fbp/.

15. T. Flow, 2020. [Online]. Avialable: https://doc.industrial-

devops.org/titanDocumentation/ titan-flow-toc.html.

16. E. Garofolo, “Practical Microservices: Build Event-

Driven Architectures with Event Sourcing and CQRS,”

The Pragmatic Programmers, LLC, Sebastopol, 2020.

17. D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak,

“Learnable programming: Blocks and beyond,”

Commun. ACM, vol. 60, no. 6, pp. 72–80, May 2017.

18. W. Hasselbring and A. van Hoorn, “Kieker: A monitoring

framework for software engineering research,” Softw.

Impacts, vol. 5, Aug. 2020, Art. no. 100019.

19. W. Hasselbring, A. Krause, and C. Zirkelbach, “ExplorViz:

Research on software visualization, comprehension

and collaboration,” Softw. Impacts, vol. 6, pp. 1–4, Nov.

2020, doi:10.1016/j.simpa.2020.100034.

WILHELM HASSELBRING is a Full Professor of Software Engi-

neering with the Department of Computer Science, Kiel Univer-

sity, Kiel, Germany. Contact him at hasselbring@email.uni-kiel.de.

MAIKWOJCIESZAK is a Co-founder and CTO of wobe-systems

GmbH, Kiel, Germany, providing software solutions for indus-

trial automation. Contact him atmw@wobe-systems.com.

SCHAHRAM DUSTDAR is a Professor of Computer Science

and the Head of the Distributed Systems Group, TU Wien,

Vienna, Austria. He became Fellow of the IEEE in 2016 for con-

tributions to elastic computing for cloud applications. He is

the corresponding author of this article. Contact him at

dustdar@dsg.tuwien.ac.at.

12 IEEE Internet Computing July/August 2021

INTERNET OF THINGS, PEOPLE, AND PROCESSES

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 18,2021 at 11:22:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/3-540-45441-1_7
http://dx.doi.org/10.1002/0471741442.ch6
http://www. jpaulmorrison.com/fbp/
https://doc.industrial-devops.org/titanDocumentation/ titan-flow-toc.html
https://doc.industrial-devops.org/titanDocumentation/ titan-flow-toc.html
http://dx.doi.org/10.1016/j.simpa.2020.100034

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

