
Burst Load Evacuation Based on Dispatching
and Scheduling In Distributed Edge Networks

Shuiguang Deng , Senior Member, IEEE, Cheng Zhang, Chang Li, Jianwei Yin,

Schahram Dustdar, Fellow, IEEE, and Albert Y. Zomaya, Fellow, IEEE

Abstract—Edge computing, a fast evolving computing paradigm, has spawned a variety of new system architectures and computing

methods discussed in both academia and industry. Edge servers are directly deployed near users’ equipment or devices owned by

telecommunications companies. This allows for offloading computing tasks of various devices nearby to edge servers. Due to the

shortage of computing resources in edge computing networks, they are often not as sufficient as the computing resources in a cloud

computing center. This leads to the problem of service load imbalance once the load in the edge computing network increases suddenly.

To solve the problem of “load evacuation” in edge environments, we introduce a strategy when the number of service requests for mobile

devices or IoT devices increases rapidly within a short period of time. Therefore, to prevent poor QoS in edge computing, service load

should bemigrated to other edge servers to reduce the overall delay of these service requests. In this article, we have introduced a

strategy with two stages during the burst load evacuation. Based on an optimal routing search at the dispatching stage, taskswill be

migrated from the server in which the burst load occurs to other servers as soon as possible. Subsequently, with the assistance of the

remote server and edge servers, these tasks are processed with the highest efficiency through the proposed parallel structure at the

scheduling stage. Finally, we conduct numerical experiments to clarify the superiority of our algorithm in an edge environment simulation.

Index Terms—Edge computing, routing search, online scheduling

Ç

1 INTRODUCTION

IN COMPARISON to cloud computing, edge computing has
numerous extensions to today’s network architectures.

Edge computing refers to a framework that facilitates low
latency of edge servers deployed close to the sources of data
or applications that deployed on users’ devices [1], [2]. Edge
computing is defined as a computing pattern along the path
with any resources of computing and network between users
and remote cloud center[3]. The edge network can be any
functional part from users’ side to the center of the cloud
server. These parts consist of different entities playing an
important role to integrate traditional networks. They provide
computing, storage, cache, and transmission to support dif-
ferent services of application in real-time, dynamic and intelli-
gent service for clients in the edge network [4]. Unlike
traditional cloud computing (centralized servers), algorithms
and strategy selection in edge computing pushes the comput-
ing and intelligence closer to actual activity generated by
users. It requires services computing of central servers
moving to the edge. Thus, there are differences related to

multi-heterogeneous processing, bandwidth capacity, resour-
ces utilization, and privacy protection[5], [6], [7].

Emerging patterns of service utilization require increas-
ingly more computing capabilities provided by end users.
Offloading addresses problems of users’ devices regarding
storage resources, computing performance, and energy effi-
ciency. Recent studies have introduced this technique con-
sisting of the offloading algorithm, strategy for offloading
and the offloading system [1].

Offloading educes to the new problem in edge environ-
ments with the number of end users increase continuously.
As the rapid growth in IoT and mobile devices, limited com-
putation andnetwork resources among endusers in a specific
edge network will become more and more common. Due to
the heterogeneous of edge networks, the traffic load in the
networkwill endure nonuniform and dynamic burst load. all
the time[8]. Some recently published researches introduce
that the bursty traffic in radio access network (C-RAN) archi-
tecture is an important problem anddifficult to solve[9], how-
ever, edge network combining edge servers and remote
cloud center is proposed as a popular technique nowadays in
C-RAN for 5G [10]. It’s a challenge to tackle the problem
when burst load occurs at the edge environment. To reduce
the latency and to maintain an acceptable QoS of edge net-
works, we focus on the problem of the burst load evacuation
when offloading isworking in an edge environment.

There are a number of occasions where load burst may
occur. Some examples include sudden shopping crowds in
shopping malls, crowds on festival streets, traffic roads dur-
ing rush hour, and crowds in touristic areas. Such scenes
have obvious regional characteristics or special temporal
characteristics. For example, in vehicle edge computing net-
work infrastructure, it’s a fact that edge servers deployed

� Shuiguang Deng, Cheng Zhang, Chang Li, and Jianwei Yin are with the
College of Computer Science, Zhejiang University, Hangzhou 310027, PR
China. E-mail: {dengsg, coolzc, 21921187, zjuyjw}@zju.edu.cn.

� Schahram Dustdar is with the Distributed Systems Group, TU Wien,
Vienna 1040, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

� Albert Y. Zomaya is with the School of Computer Science, The University
of Sydney, Sydney 2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 9 June 2020; revised 10 Jan. 2021; accepted 13 Jan. 2021.
Date of publication 18 Jan. 2021; date of current version 19 Feb. 2021.
(Corresponding author: Shuiguang Deng.)
Recommended for acceptance by F. Wolf.
Digital Object Identifier no. 10.1109/TPDS.2021.3052236

1918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4687-8858
https://orcid.org/0000-0003-4687-8858
https://orcid.org/0000-0003-4687-8858
https://orcid.org/0000-0003-4687-8858
https://orcid.org/0000-0003-4687-8858
mailto:dengsg@zju.edu.cn
mailto:coolzc@zju.edu.cn
mailto:21921187@zju.edu.cn
mailto:zjuyjw@zju.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au

with small-cell BS close to a vehicle may not be enough to
satisfy the computation demands burst of each user end
(vehicles)[11].

Besides, lots of IoT/mobile devices with ability to connect
to Internet are deployed in these areas. A variety of applica-
tions such as intelligent sensors, healthcare systems and
smart home/city devices are widely running constantly.
Numerous devices could generate bursty traffic if edge serv-
ers are supporting to process services from IoT/mobile devi-
ces[12]. For instance, a large number of mobile users would
cause the sudden influx of requests for their services in
crowded sports events, concerts or other scenes. However,
with the popularity of the Internet of things, protocols which
are applied in IoT or mobile devices only focus on the infor-
mation transmission[13]. These protocols such as HTTP,
MQTT, AMQP, etc, have no ability to achieve an optimal
solution to solve the bursty traffic problem caused by a huge
amount of requests from clients. It’s necessary to adopt a
propermechanism to tackle the evacuation of burst load.

For the distributed mobile edge system, a key lesson from
studies of solving load balance is that the scheduling of the
tasks in the network should follow the proposed algorithm
of optimization under constraints of the resources of network
links and edge servers[1]. The network equipments like
routers and switches are fixed assets in edge environment, in
other words, the network links are typically assumed to have
a fixed rate. Similarly, the computational resource of each
edge server is fixed too. As more and more users are added
to the edge network, these limited resources can easily
become a performance bottleneck as users attempt to race
against each other. It is of great importance to design an effi-
cient evacuation and scheduling mechanism when burst
load occurs at the edge server under limited resources.

To cope with bursty data arrivals of multiuser application
offloading in an edge environment, scholars designed an
algorithm for the objective of minimized overall users’ queue
latency[14]. Authors in[15] propose an orchestrator formobile
augmented reality for edge computing, the major challenge is
the difficulty of what extent the latency can be reduced. Data-
intensive services in edge computing will face that load bal-
ancing conditions change constantly between edge servers
[16], based on the limited resource of edge servers, the author
proposed a scheme based on a genetic algorithm. Under
resource constrained distributed edges environment, authors
in [5] focus on the edge provisioning of computational resour-
ces to ensure stable latency of complex tasks for each mobile.
Therefore, in order to get an optimal solution of the evacua-
tion policy, network latency and computational latency are
mostly considered inmost of edge network systems.

In addition, edge networks do not exclude the cloud cen-
ter networks, instead, recent studies have shown a promis-
ing trend that edge computing and traditional cloud
computing come together to form a new architecture, and
this heterogeneous edge computing system will consist of
multiple layers[17]. Nevertheless, edge servers require the
support of the remote server. For one thing, it solves the
problem of lack of computing resources on the users’ devi-
ces, and for another, with the help of edge servers for pre-
process of computing tasks, it also reduces the latency due
to reducing the computing cost at the remote server. For
example, in the field of security cameras for road traffic

control or indoor monitoring, before recording and sending
the video, edge servers need to compress the data before
transmission. This ensures maximum efficiency of migrated
the data in a limited capacity of links to the remote server
for future processing. Particularly, in face recognition, edge
servers may need to access the portrait data from the data-
base of the remote server, or some intelligence prediction
computing algorithms need to be updated in real time for
the model, framework and parameters[18]. Application of
intelligent computing can make good use of the edge com-
puting mode[19]. To mitigate the latency of mobile aug-
mented reality(AR) applications, a hierarchical computation
architecture consisting of several layers such as edge layer
and cloud layer is widely adopted[15].

But the computation workload of each task is not easy to
observe, those heavy computation workloads are hard to
know before their completions. For instance, the latency
caused by the computation of object recognizer and ren-
derer components is difficult to evaluate in advance for
mobile augmented reality(AR)[15]. Besides, tasks from the
users in the edge environment can be an arbitrary sequence
when arriving servers. Strategies without any assumption
on the distribution of task arrivals are appropriate for the
real situations. From the perspective of the deployment of
edge servers, idle edge servers can often be used as supple-
ments, and the edge servers can join other edge servers
when a burst load of tasks occurs, thereby helping to evacu-
ate and process these tasks. But computational resource pro-
visioning problem in multi-layers is a particular challenge
for burst load, because different factors can affect the perfor-
mance of the provisioning policy such as workload of edge
server, transmission latency between different layers, etc.

Through analysis, three factors that affect the overall
latency of the burst load while implementing the evacuation
are the link capacity, the network transmission speed, and
the computational latency. Load balancing in a multi-layer
edge network is of paramount importance in edge environ-
ments. Actually, the evacuation of the burst load is a partic-
ular case of load balancing, moreover, the main challenges
of this technique can be considered include:

� limitation of the link bandwidth in the edge network
� limited edge network transmission speed
� efficiency in an online policy-based distributed edge

network
In this paper, we address the aforementioned challenges

and propose an efficient algorithm to minimize evacuation
latency. To solve the burst load evacuation problem, there-
fore, we focus on the three layers architecture of the edge
environment, namely the collaborated migration layer, the
computing sharing layer and the remote assisted layer
shown in Fig. 1. We denote the dispatching as the process
that tasks migration from the edge server which burst load
occurs to other edge servers, and scheduling as the sequence
processing of tasks at each edge server and the remote server.
Considering the limitations of link capacity and transmission
speed, we have proposed an optimal algorithm to deal with
the tasks in burst load among edge servers and the remote
server. Thus, we aim to minimize the delay of all tasks after
the dispatching and scheduling stages in this paper. Our con-
tributions can be summarized as follows.

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1919

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

1) We propose an efficient strategy to address burst
loads in edge environments. In this paper, we divide
an edge computing network into three layers,
namely the migration collaboration layer, the com-
puting layer and the remote assisted layer. We pres-
ent a fast evacuation strategy dealing with load
evacuation. This provides a substantial extension for
edge computing frameworks allowing them to deal
with heavy traffic load in time.

2) We address the problem of how to evacuate the burst
load to other servers for load balancing reasons. This
will be done in minimal time once the burst load
occurs in an edge server, offering a solution to
migrate the burst load when the resources of the
edge network are limited.

3) Within the computing sharing layer of edge servers,
we offer a scheduling algorithm to make tasks paral-
lel process in edge environments. The formulated
problem is solved by re-entrant line scheduling with-
out looking at all the task processing time in advance.

4) We have proposed our algorithm based online proc-
essing without knowledge of the task state in
advance at the scheduling stage. It will enable in-situ
processing of the latency-sensitive task. With the
computing capability of edge servers in an edge net-
work, tasks are processed in parallel under free com-
puting resources in the network.

2 RELATED WORK

Many taskmigration solutions are based on the limitations of
links to achieve an optimal solution. In [20], the author con-
siders a vehicle control system in a multi-layered edge net-
work, and design a policy that switches edge server when
burst load happens. Stability and dynamic control are intro-
duced in the edge environment too, a centralized joint flow
scheduling algorithm is proposed[21]. Besides, some schol-
ars [22] also consider the disaster incident occurring at the
edge environment and design strategies to handle the data
deluge. The connection of links in the edge network is very
complicated, making it extremely difficult to find an optimal
path among the network links. These works above consider
links capacity and transmission rate of tasks, but the edge
environment cannot migrate tasks to other edge servers with

the assistance of the remote server in the target of the optimi-
zation for the whole network to release the burst load.

Some scholars in [23] adopt method that asymptotically
schedule the tasks based history knowledge of network. For
achieving an optimal routing, a parallel invocation protocol
toward multiple edge servers is designed in [24], which will
both reduce the end-to-end latency and make latency more
predictable. [25] focuses the optimization of network on
bandwidth allocation to minimize the average file transmis-
sion delay, which can match radio resource with the traffic
load distribution caused by content placement. Limited
resources of IoT nodes and the shortage of coverage bring
great challenges to the quality of service (QoS) of IoT, the
author in [26] proposed an energy-balanced and obstacle-
adaptive mobile edge node dispatch algorithm to solve this
the traffic load problem based on breadth first search (BFS).
In [27], the authors proposed a temporal task scheduling
algorithm to efficiently dispatch tasks while meeting the
delay bounds in Hybrid Clouds. But the proposed algo-
rithms in the studies above has not consider the online
scheduling when tasks are processed among edge servers
and the remote server. Most of the task scheduling methods
make assumptions on the knowledge of tasks before they
are released to each edge server.

The burst load needs to be evacuated immediately. The
author in [28], adopts game theory to formulate the distrib-
uted computation offloading algorithm, but each device
involves redundant decision updates to achieve an optimal
offloading solution, it might not be appropriate for tasks evac-
uation in a short time. Some works of edge computing have
investigated computation peer offloading taking into account
the transmission delay between links[29], a strategy of joint
edge servers is proposed to solve the tasks offloading prob-
lem[30], similar to edge computing, some researcher has
investigated cooperation between some nearby cloudlets to
improve application performance[31] considering dispatch-
ing for tasks, but all of these studies implement the proposed
algorithms by Lyapunov optimization which is based on a
long term average technique and can not ensure to get an
immediate decision to evacuate the burst load of finite tasks
as soon as possible.

In this paper, to find an optimal routing for each task we
adopt a routing search method to allocate each task in
sequence, then, we propose an online algorithm for schedul-
ing once the tasks are migrated to each edge server, we
don’t need the knowledge of tasks in advance to optimize
the makespan of all tasks in the scheduling stage.

3 SYSTEM MODEL

Our edge network system consists of multiple edge servers,
as shown in Fig. 1. Denote the index set of tasks as
N , f1; 2; . . . ; Ng and the index set of edge servers by
M , f1; 2; . . . ;Mg. All edge servers are linked in the form of
a certain topology. Each edge server is operating to receive
tasks from other edge servers, this kind of task migration
starts from a heavy load edge server to another with less
load. The workload of edge servers will drastically rise
when a huge amount of requests initiated by the users flood
into them, under this condition, a burst load occurs. Assume
each edge server can offer computing resources for tasks

Fig. 1. The edge environment.

1920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

during the burst load happens in the computing sharing
layer [32], and connects to the remote server directly. Each
task will consume this resource at different levels. Here, in
the migration collaboration layer, we assume there are N
tasks at one specific edge network which need to be evacu-
ated as soon as possible, with a total of M edge servers
deployed in this network, which could be allocated to exe-
cute tasks for this workload evacuation [1]. After allocating
all of the tasks in the burst load, we can decide each task to
wait in the burst load or migrate into another edge server
immediately. Furthermore, the evacuation will be finished
until the last task is completed. We aim to minimize the
makespan of the tasks evacuation.

The different stages of tasks in the edge network are
shown in Fig. 2. For example, some tasks might be suspended
after a burst load happens at an edge server from t0 to t1
because of the limited capacity of links. Then these tasks will
be migrated from the original edge server to another under
the dispatching algorithm with latency from t1 to t2. At the
following stage, these tasks will be prepared in an edge server
to be scheduled by our scheduling algorithm, and finally,
these tasks will be completed at t3. Moreover, from the above
analysis, it is shown that the migration of tasks only occurs at
the migration collaboration layer. The computing layer and
remote assisted layer are responsible for the computation of
tasks in burst load cooperatively. For ease of reference, we list
the key notations of our systemmodel in Table 1.

3.1 Task Latency in Burst Load

When a burst load occurs at an edge server, it will accumulate
a large number of tasks in a short period. These tasks from
users’ requests are waiting at the edge server to be dispatched
formigration to another edge server. Our proposed evacuation
policy starts at the moment when tasks in the burst load accu-
mulated to some extent which can be preset according to the

systemmanager. Thus, our designed mechanism only focuses
on how to deal with all tasks involved at once after the burst
load has formed. Tasks are cached in the task pool, the caching
phase takes up a period until they can start the migration. We
denote the indicator of a task latency in burst load as
Iyi ðtÞ,where Iyi ðtÞ 2 f0; 1g: Iy1ðtÞ ¼ 1means the ith task is wait-
ing in the task pool of the edge server at the tth time slot, other-
wise Iyi ðtÞ ¼ 0. Once a burst load occurs in the edge network,
all of the tasks are caching in the edge server until they can be
allowed tomigrate. The latency time of the ith task denoted as:

T i
1 ¼

X
t> 0

Iyi ðtÞ; (1)

where T represents the time when evacuation finishes.

3.2 Task Migration Latency Between Edge Servers

As comparedwith traditional networks, several edge servers
that are close to each other might be linked and constructed
as a local area network. We assume that each edge server is
linked by several servers to form a migration collaboration
layer. After the burst load occurs, tasks can be migrated
through these links according to our optimal strategy. The
system of an edge network can monitor the information of
links status aswell as available resources of each edge server.
Under our evacuation scheme, a task can migrate along with
its optimal routing from one edge server to another in order
to reduce theworkload on the original server shown in Fig. 3.

Denote the index set of links as K ¼ f1; . . . ; Kg, and the
index set of available routing in the edge network as R ¼
f1; . . . ; Rg. Before a task is migrated to some server, the
migration cost is known in this edge server network. An
available routing in the edge environment consists of sev-
eral links, each link latency is denoted as lk; k 2 K[33].

Each link allows to pass a limited number of tasks in a
time slot t during migration, denote the number as ckðtÞ and
the maximum number as cmax

k , thus satisfying

ckðtÞ ¼
X
i2N

taskikðtÞ � cmax
k ; t > 0; k 2 K; (2)

where taskikðtÞ ¼ 1 means the ith task is migrated through
the kth link, otherwise taskikðtÞ ¼ 0.

The task migration should be working on the available
links in our edge network between edge servers. In other
words, each task after waiting in the burst load should start
the migration. We denote the ith task’s migration state as
Izi;kðtÞ ¼ 1 which means the ith task is being migrated on the
kth link at the tth time slot, otherwise Izi;kðtÞ ¼ 0. Furthermore,

Fig. 2. The flowchart of tasks when evacuation.

TABLE 1
Summary of Key Notations

Notation Description

N The index set of tasks in a burst load
M The index set of edge servers
~tsi;j;

~Xi;j; ~t
c
i;j Start time, computation delay and completion time of

the ith task for the pre-process at the jth server
t̂si;j; X̂i;j; t̂

c
i;j Start time, computation delay and completion time of

the ith task for remote-assistance at the
remote server corresponds to the jth edge server

�tsi;j;
�Xi;j; �t

c
i;j Start time, computation delay and completion time of

the ith task the final-process at the jth server
Iyi ðtÞ The indicator for the ith task whether waitting

in the burst load at the tth time slot
Izi;kðtÞ The indicator for the ith task whether

being migrated on the kth link at the tth time slot
I
x
i;jðtÞ The indicator for the ith task whether

being executed on the j edge server at the tth time slot
T i
1 The latency of the ith task waitting in the burst load

T i
2 The latency of migration of each task i

T i
3 The latency of task i at a specific edge server

and the remote server for processing
~ei The CPU cycles needed in pre-process
�ei The CPU cycles needed in final-process
fj The frequency of CPU at each server j
lk The latency of migration due to link k
ck The capacity of link k

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1921

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

denote a vector as

Izi tð Þ ¼ Izi;1ðtÞ . . . Izi; Kj jðtÞ
h iT

; (3)

where

Izi;k tð Þ 2 f0; 1g; i 2 N ; k 2 K; t > 0: (4)

Since a task at a time slot is only migrating through one
specific link or not. It can not be duplicated or split, and
should satisfy the following constraint:X

k2K
Izi;kðtÞ 2 f0; 1g; k 2 K (5)

Because temporary congestion may occur at the nodes of
some links, we can estimate the latency of migration of each
task as:

T i
2 � l1 þ l2 þ . . .þ lk; k 2 K (6)

3.3 Task Processing Latency at the Edge Server and
Remote Server

Once the task arrives at an edge server, after our dispatching
strategy, the edge network system will arrange the task’s
processing to achieve a minimization of the makespan for all
tasks. In general, the latency in this stage includes three parts
as pre-process latency, remote-assistance latency, and final-
execution latency as shown in Fig. 4.

Denote the indicator of the task execution by

I
x
i;jðtÞ 2 f0; 1g; i 2 N ; j 2 M; (7)

which means the ith task is being executed on the j edge

server for the tth time slot if I
x
i;jðtÞ ¼ 1, otherwise I

x
i;jðtÞ ¼ 0.

We denote the start time of the ith task after arrived the jth

edge server as ~tsi;j, the final completion time of the ith task at

the jth server as �tci;j. The computation delays of the ith task

are denoted as ~Xi;j; X̂i;j; �Xi;j at the steps of pre-process,

remote-assistance and final-process respectively. Denote the
CPU cycles needed in pre-process and final-process part of

the ith task as ~ei and �ei respectively[30]. In our scheduling

stage, we have tasks that are processed in sequence for each

task as shown in Fig. 5. Denote the frequency of CPU at each

edge server is fj where j 2 M. The latency of ith task gener-

ated by remote-assistance is denoted as X̂i;j, where j is the

edge serverwhich processed the task i. The latency for buffer-

ing a task at servers is defined as �i. Therefore, we can calcu-
late the execution time of a task through the formulation by

processing the task at a single edge server:

T i
3 ¼

~ei
fj

þ X̂i;j þ
�ei
fj

þ �i; (8)

where i 2 N ; j 2 M, Computing work of each phase of a

task on a certain edge server should never stop until the
work is finished. However, recall that a server can only pro-

cess one job at most at a specific time point. The task execu-

tion should satisfy the constraints as follows:

X
j2M

I
x
i;jðtÞ � 1; i 2 N ; t > 0; (9)

I
x
i ðtÞ ¼ ½Ixi;1ðtÞ; I

x
i;2ðtÞ; . . . ; I

x
i;MðtÞ� (10)

rank
Xt00
t¼t0

I
x
i ðtÞ

 !
¼ 1; t > 0; (11)

t0 2 f~tsi;j; �tsi;j; t̂si;jg; t00 2 f~tci;j; �tci;j; t̂ci;jg; (12)

the rank of the matrix should be 1 which means that the ith

task is executed only on one specific edge server, neither

allows being separated nor executed in several edge servers

during the same step. Because the system in both dispatch-

ing and scheduling stages are dynamic, once the task is
migrated to the edge server the edge server will start its

processing if there exists free computation resource that is

not occupied by any other task. Therefore, the task process-

ing time should satisfy the constraints in phases of pre-

process, remote-assistance, and final-process as:

t̂si;j � ~tci;j
�tsi;j � t̂ci;j;

(13)

where i 2 N .Fig. 4. Task scheduling for executing and requesting data.

Fig. 3. The migration of the burst load. Fig. 5. Task processing sequence.

1922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

4 PROBLEM ANALYSIS

Tasks will evacuate from the burst load along optimal
routes to get a minimal makespan. Our proposed strategy is
based on the knowledge of connections about links in the
edge environment. In the edge network, there may be a
large number of tasks that require cloud-edge cooperation,
such as the machine learning model of cloud-edge collabo-
ration mentioned in 1, the processing time of the model
itself may be uncertain, and the data transmission latency
between the edge network and the cloud center server is
also uncertain. Affected by the transmission latency of the
edge-cloud, it is difficult to determine its transmission
delay. Therefore, due to the uncertainty in task processing,
it is difficult for us to know in advance how much time the
task needs to spend while during the processing [34].

For simplicity, the uncertainty consists of transmission
latency between the edge server and the remote server, the
latency due to the processing at the edge server and
the remote server. As shown in Fig. 5, the latency caused by
the remote-assistance begins from the moment the task’s
pre-process completes and stops at the moment the task
arrives back to the edge server to which the task belongs.

We define the latency of the ith task from the burst load
starts to its completion as ai; i 2 M. There are three stages
throughout a task’s lifetime T i

1; T
i
2; T

i
3 corresponding to the

task latency in the burst load, the task migration latency
among edge servers, and the total processing latency of the
task respectively. We need to arrange the strategy of each
task in the burst caching phase, migration phase, and proc-
essing phase.

Since a task might be migrated from the original edge
server to another edge server, we should decide which link
is scheduled for each task to migrate at each time slot, and
which edge server is scheduled to execute each task. Denote
the total latency of a task as:

ai ¼ T i
1 þ T i

2 þ T i
3; i 2 N : (14)

Our target is to minimize the maximum task duration in all
tasks. Thus, to satisfy the evacuation requirements, we are
making the whole workload of users’ tasks complete as soon
as possible. To minimize the makespan of all tasks in a burst
load, we define the formulation of the problem as follows:

P1 : min

I
y
i
ðtÞ;Iz

i
ðtÞIx

i
ðtÞ

maxða1; . . . ; aNÞ

s:t: ð2Þ; ð5Þ; ð6Þ; ð9Þ; ð11Þ; ð13Þ
~tsi;j � T i

1ðtÞ þ T i
2ðtÞ

t > 0; i 2 N ; j 2 M;

(15)

wheremaxða1; . . . ; aNÞmeans the most time-consuming task
in the edge computing network.

We can divide the task evacuation problem P1 into two
parts. Furthermore, in this article, our two stages are
regarded as two independent stages. At the dispatching
stage, the task is continuously migrated from the server
where the burst load occurs to the rest of the edge server
through the link of the edge network. Then, at the schedul-
ing part, these tasks through the edge server pre-process,
the remote central server cooperates with the processing

(remote-assistance), and finally completes the last step of
processing(final-process) on the edge server, and the task
evacuation process is finally completed. Therefore, we break
down the problem into two subproblems as P2 and P3.

The collaborated migration layer is composed of topological
connection links of edge servers in the edge network. They
form a network with a limited number of nodes and links,
and each server shares these links as a possible task evacua-
tion path. Tasks from the burst load will accumulate at the
specific edge server, we propose the OPTD4.1 algorithm to
get an optimal decision to evacuate tasks from the server to
others in the collaborated migration layer with constraints of
capacity and migration rate. The computing sharing layer con-
sists of each node in the collaborated migration layer at the
dispatching stage. In general, each node in the collaborated
migration layer represents one edge server in the computing
sharing layer. Edge servers in the computing sharing layer
receive tasks that are migrated from the collaborated migra-
tion layer. Edge servers share their computation resources to
process these tasks from the burst load evacuation. The
remote assisted layer is used to assist edge servers to process
tasks so that to cooperate with the edge servers and expand
more functions of the edge computing. We propose the 4.2 to
schedule the tasks between edge servers and a remote server
to get an optimized latency at the scheduling stage.

4.1 Dispatching With Routing Search

Suppose the connection of links in a specific edge environ-
ment is known. We denote R ¼ f1; 2; . . . ; Rg as a set of the
available evacuation routings. We let each task of the burst
load correspond to a evacuation routing to form a dispatch-
ing solution set as x ¼ fr1; r2; . . . ; rNg where ri represents
the index of a routing which the ith task chooses, i 2 N ; ri 2
R. A feasible x represents the solution of our algorithm for
optimal routing in the task dispatching stage as shown in 4.1.

Furthermore, based on the analysis of the original prob-
lem, we can come up with the basic problem of the optimal
routing for tasks dispatching stage. Denote P2 as

P2 :min
x2X

maxðr1; . . . ; rNÞ

s:t:ð5Þ; ð6Þ; ð9Þ; ð11Þ; ð2Þ:
(16)

To find the optimal routing, we investigate the total evac-
uation time of all tasks with the makespan criterion. Denote
y as the makespan among all tasks during the dispatching
stage in the evacuation. The optimal routing search for task
dispatching is presented in the algorithm of OPTD4.1. We
apply a method called derivative-free optimization[35], [36]
based on computational learning theory[37] to search the
routing for each task. An optimization method is proposed
to search for a promising solution in our algorithm with a
sampling model. Under a particular hypothesis, this algo-
rithm is to discriminate good solutions from bad ones. In
each iteration in T , applying the updated hypothesis, a new
optimal solution might be generated from this space.ted
hypothesis, a new optimal solution might be generated
from this space.

Denote those hypothesis are function mappings as a set
H ¼ fh : X ! Qg, where Q is the optimal solutions. We aim
to find a suitable hypothesis h, h 2 H which can construct

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1923

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

an optimal solution space to sample the a feasible solution
of routings allocation for each task. Denote y ¼ cðxÞ as the
makespan of the tasks after the dispatching stage. Assume
an initial solution set as S0 ¼ fðx0; y0Þ; . . . ; ðxU ; yUÞg with a
size of U, and R as a set of the available routings which is
sorted in ascending order of latency while a task migrates
through. The value of xi means the routing which the ith
task chooses, where xi 2 R.

The sliding window moves to the right every W tasks in
the solution space of the task, where W � N . We randomly
generate a number � for each iteration t. If � is less than a

which is the parameter, we first traverse the tasks in the win-
dow, and we proceed in a heuristic strategy to allocate a
smaller latency routing for the task, otherwise, a random
routing is allocated to the task. Once the evacuation routing
is selected for the task, we fix the evacuation routing under
the task index on I, where I is denoted as the set of indexes
of tasks in the burst load. Allocate the task index iwith a fea-
sible evacuation routing, then all allocated tasks are denoted
as the set If , and Iv represents the remaining task index.

After all the tasks in the window are traversed, we com-
pare the newly constructed solution ~x and ~y with the mini-
mum value of the solution in the previous iteration. If ~x is
better(~y is smaller) then the accepted search space repre-
sented by the hypothesis ht(the updated If and Iv) gener-
ated by this iteration. Space is used as the sampling space
for the next round of solutions. Otherwise, according to the
16th line in the algorithm, a global search is introduced to
reconstruct ht. Finally, we sample by hypothesis space to
get yh, then compare with yt, ~y to get ymin, and then start the
next round of sampling.

Algorithm 1. Optimal Routing for Task Dispatching
(OPTD)

1: Generate the window sizeW , the initial solution size U ,the
parameter of routing selection g

2: Initial S0 ¼ fðx0; y0Þ; . . . ; ðxU ; yUÞg; Vt ¼ ;
3: for t ¼ 1 to T do
4: ðxt; ytÞ ¼ ðxmin; yminÞ; Iv ¼ I; If ¼ ;
5: for i ¼ ðt� 1Þ �W to t �W do
6: if � < a then
7: ~xit ¼ dxi

t=ge, Iv ¼ Iv n fig; If ¼ If [fig
8: else
9: ~xit ¼ randð1; jRjÞ
10: end if
11: end for
12: ~yt ¼ cð ~xtÞ
13: if ~yt < yt then
14: construct ht from the updated Iv and If
15: else
16: randomly choose iwith the size of jIf j to replace the

elements in If , Iv ¼ I n If , construct ht

17: end if
18: for t ¼ 1 to U do
19: Sample xh from ht, yh ¼ cðxhÞ; Vt ¼ Vt [ðxh; yhÞ
20: end for
21: ymin ¼ minfyh; yt; ~ytg; ðxh; yhÞ 2 Vt

22: end for
23: return ðxmin; yminÞ

Every iteration after search the possible region constructed
by the ht, then sampling an optimal solution is a high proba-
bility event.Wedefine a as a threshold to choose a low latency
routing for a task i. Themakespan of each routing to select the
lesser routing heuristically, after modified a and T to get a
better optimal solution. In the beginning of the algorithm, we
initial feasible solution that each task randomly choose an
edge server to evacuate and an fast routing with probability

as P ¼
P

lk2ri
lkP

r2Rm

P
lk2r

lk
, where ri 2 R, Rm is the set of routings

for evacuations to themth edge server. Denotewsz is a param-
eter to control the window size in each iteration, we set
window size W ¼ d N

wsze in each iteration t. We set iteration
number as T ¼ N

iter , where iter is a parameter to control the
iterations. Assuming the solution of tasks dispatching with
size ofN , after a simple analysis of 4.1, the overall complexity
of the algorithm is thereforeOðNT Þ

Lemma 1. Given � > 0 and 0 < d < 1, suppose after sampling
from ht we get x̂; ŷ s:t: Phððŷ� y�Þ > �Þ < d, where y� is
optimized solution. Inspired by[35], the complexity of algo-
rithm’s upper bound4.1 holds as:

O 1
~Ph

� ln 1

d

� �
: (17)

Proof.

Phððŷ� y�Þ > �Þ ¼ ð1� PxÞU
YT
t¼1

ð1� PhtÞ
U

� expð�ð1� PxÞUÞ
YT
t¼1

expð�ð1� PhtÞ
UÞ

¼ exp
�
� ð1� PxÞU � ð1� ~PhÞUT

�
� exp

�
� ~PhUT

�
� d;

(18)

where Px represents the the 19th line in OPTD algorithm
that samples from the routes spaceR. Denote the average

probability of ht as ~Ph ¼ 1
T
PT

t¼1 Pht . And with the help of

the formulation 1� x � expð�xÞ, thus, we get UT 2
Oð 1

~Ph
ln 1

d
Þ, thus we proves the lemma. tu

Lemma 2. Given � > 0 and 0 < d < 1, denote jDj as the total
sample size of algorithm4.1, we use the form from [38], we set a
tolerance t, if ðŷ� y�Þ < t, if we accept this value ŷ, denote
IðŷÞ ¼ 1 otherwise, reject and IðŷÞ ¼ 0. For any hypothesis ht:
if the number of sample x returns yt, where x 2 Ds:t: empiri-
cally ÎðŷÞ ¼ 1, hence the number of feasible solutions is nopt,
then there are jDj � nopt samples s:t: ÎðŷÞ ¼ 0. Therefore, the
probability Pr

�
ð1� nopt

jDj�nopt
Þ < �

�
� 1� d holds if

jDj > 1

�

�
lnjHj þ ln

�
1

d

��
; (19)

where H ¼ fh1; . . . ; hT g; ht 2 H. It concludes that the lower
bound of the samples is 1

� ðlnjHj þ lnð1
d
ÞÞ.

Proof. Under a hypothesis ht, after T iterations we will get
the probability, we will get nopt optimal solutions, the
rejected solutions’ size is jDj � nopt. Suppose there is no
rejected solution under the hypothesis ht, then the

1924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

probability is Prhtð1�
nopt

jDj�nopt
¼ 0Þ � ð1� �ÞjDj. For any

hypothesis ht where ht 2 H s:t: under ht Prhtð1�
nopt

jDj�nopt
¼

0Þ, define the event that the number of nt
opt at tth iteration

is 0 as eventðhtÞ. With the help of formulation 1� x �
expð�xÞ and uniion bound rule, we can get

Pr

�
evnetðh1Þ [evnetðh2Þ[; . . . ;[eventðhtÞ

�
�
X
ht2H

Phtðnt
opt ¼ 0Þ �

X
ht2H

ð1� �ÞjDj

� jHjð1� �ÞjDj � jHjexpð�jDj�Þ � d;

(20)

thus

lnjHjexpð�jDj�Þ � lnd; (21)

thus we prove the lemma. tu

4.2 Scheduling With Online Policy

The online scheduling algorithm in this paper considers
how to arrange the order of distributed execution of tasks
on edge servers. We adopt distributed edge servers in the
edge network to realize a parallel strategy in scheduling.
After pre-process a task by the edge server, this task is
migrated to the remote server for remote-assistance. Mean-
while, other edge servers may migrate their task to the
remote server too. Our target is to optimize the strategy to
achieve a minimization makespan of all tasks from the burst
evacuation load. Thus, we adopt a method to make the
scheduling of tasks as a re-entrant scheduling problem [39].
as shown in Fig. 6. All edge servers can be seen as a whole
pipeline structure. This will greatly save time and increase
the overall efficiency of the system, so that the time to pro-
cess all tasks is relatively short. Furthermore, we don’t need
the knowledge of the tasks, which means we don’t need the
latency that the tasks will generate under the computation
resources.

Under the re-entrant line scheduling problem. Every edge
server needs to deliver tasks with the remote server which
needs to process tasks from all the edge servers as shown in
Fig. 6. In general, the total consuming time of the remote
server will be much greater than any edge server in the edge
environments. Thus, we simply assume the remote server as
the bottleneck phase of the edge system denote as btn[39].

As shown in Fig. 6, to construct a re-entrant line schedul-
ing, we denote step1; step2; . . . ; step9 correspond to each
step in edge servers and remote server. For example,
step1; step3 represent the pre-process and final-process in

the 1st edge server and the steps of step2; step5; step8 repre-
sent btn1; btn2; btn3 of the remote server. We regard all the
steps as a cycle start from a task starting at step1 to a task
completion at step9, if there are 3 edge servers and one
remote server. As shown in Fig. 6, dotted lines connect each
edge server with the remote server, the sequence constructs
the virtual processing of tasks representing a cycle of re-
entrant line scheduling. When some task completes at the
final processing step of each edge server, one cycle in Algo-
rithm 4.2 finishes. For example if there are only 3 edge serv-
ers with a btn server, the 4th task in step1, the 3th task in
step2 and the 2nd task in step3 is one cycle in our algorithm
shown in 7. Thus, we denote the set of tasks’ index dis-
patched to the jth edge server asN j, where

N ¼ N 1 [N 2; . . . ;[NM: (22)

The pipeline structure has good parallel efficiency, and
the distributed edge system can maximize the utilization of
the limited computation resources. Tini is denoted later. In a
parallel structure the start times of the task execution should
satisfy the constraints as follows:

~ts1;j ¼ Tini; (23)

~tsi;j � �tci�1;j (24)

t̂si;j � ~tci;j; (25)

�tsi;j � t̂ci;j; i 2 N j n f1g; j 2 M: (26)

The task execution in each edge server in our parallel strat-
egy is followed by the btn server(remote server). Each cycle
starts at the start time of the first task executed by the btn
server, edge servers are not allowed to start ahead of the
cycle. As shown in Fig. 7, step2 and step5 represent the steps
in btn server, the btn server always executes tasks without
any delay. Suppose the step3 and step1 represent the ith
server, if the 3th task at the step3 completes, the ith server
can’t start the task 6 at step immediately, because the btn
server has not started a new cycle in which the 4th task has
not started yet. Therefore the btn server pace all edge serv-
ers in the computing sharing layer. Hereafter, i is denoted
the unique sequence number of tasks in all servers, which
means the ith task stands for the task arrived each server
that is indexed by i by this server. The start time of the task
in each edge server should satisfy the constraint as follows:

~tsi;1 ¼ maxf�tci�1;M; t̂si;jg: (27)

Fig. 6. Task scheduling for executing and requesting data.

Fig. 7. Task scheduling for in pipeline.

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1925

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

Wemust make sure to execute a task at the edge server at
a certain step after its migration to this edge server has been
done. In the same view of the task migration stage on any
link, the task is only allowed to start its migration after it
has migrated at the previous hop of routing it belonged. We
call this special buffer safety stock. Safety stock is a term
used by logistics[40], it is used in case of mitigating risk of
stockouts of the tasks. Safety stocks are used in our system
to make each step of the edge server could be feasible and
efficient at the scheduling stage, denote index of tasks as
~Fj ¼ f1; 2; . . . ; jN jjg for pre-process, F̂j; �Fj for remote-assis-
tance and final-process, as the safety stock at step d of the
jth edge server as the part in the left of red dotted line
shown in Fig. 7. Each step in edge servers now has an offset
before the edge server starts to process the task. To get a fea-
sible schedule, those safety stocks in each step should be set
up before the step starts work. It is similar to the have some
delay in each step when the pipeline structure begins as
shown in 6. We denote the initialization delay for this kind
of delay at the beginning in the pipeline organization as Tini.

Proposition 1. The initialization latency in the scheduling stage
is lower bounded by

max
j2M

(X
i2 ~Fj

~tci;j;
X
i2 �Fj

�tci;j

)
: (28)

Proof. Each task in ~Fj or �Fj should be processed in
advance at the j edge server. However, after the task
arrive at each edge server or remote server, it may not be
processed immediately because the execution of a previ-
ous task does not complete or the cycle of the btn server
does not start. Furthermore, tci;j ¼ tsi;j þXi;j and tsi;j �
tci�1;j, the arrive time of task i at each step of thej edge
server may not be exactly the start time of tsi;j due to dis-
patching stage, where tsi;j2f~tsi;j; t̂si;j; �tsi;jg; tcij2f~tci;j; t̂ci;j; �tci;jg;
Xi;j 2 f ~Xi;j; X̂i;j; �Xi;jg. We can conclude that the maxi-

mum value maxj2M
�P

i2 ~Fj
~tci;j;
P

i2 �Fj
�tci;j
�

of each edge

server shold be the start time of the algorithm4.2 in

our the system as Tini.

Tini is the cost time of processing in the algorithm4.2.
After initialization of the scheduling, the task starts time at
each step should be given by Tini at the scheduling stage.
Then, the start time of all the first steps to work at each edge
server is the same. As stated above, all edge servers parallel
start their work according to the algorithm of Initialization
Scheduling4.2. Denote ~bj and �bj as sets to cache the task
from previous step for pre-process and final-process, where
j 2 M. And b̂j is denoted the task pool at a remote server
that cache the tasks from the jth edge server, particularly, b̂j
represents the task pool at the jth server in order to receive
the arrived tasks from the collaborated migration layer.
Processing each task in the edge server should follow the
First-Come-First-Served(FCFS) rule in the task pool.

Suppose tasks left in the step of final-process at the edge
server after the initialization scheduling is N j. Thus, based
on the analysis of the original problem P1 and P2, after tasks
arrive at the edge server by arranging each task to a routing,
we can get the problem of optimal parallel scheduling for
tasks as P3 which is the same problem of P1 as

P3 :min
j2M

max
�
�tcjN jj;j

�
s:t:ð23Þ; ð24Þ; ð25Þ; ð26Þ; ð27Þ;

(29)

where max
�
�tcjN jj;j

�
means the maximum value in the set of

task completion time at each step of all edge servers. In gen-
eral, after we solve the problem of P2, we can get the routing
arrangement for each task. Then based on the solution of P2,
it’s easy to solve the problem of P3 to achieve the makespan
of tasks’ evacuation.

Algorithm 2. Initialization Scheduling

1: while the ith task arrive at jth edge server
or jb̂jj 6¼ 0 orj�bjj 6¼ 0 do

2: start the arrived task followed FCFS rule at the first step
of each edge server

3: push the task to b̂j
4: if the ðjF̂jj � 1Þth task has completed at step of

pro-processing and the btn remote server is not busy then
5: start the arrived task followed FCFS rule
6: push the task to b̂j
7: end if
8: if the ðj �Fjj � 1Þth has task completed at step of

final-process and the jth edge server is not busy then
9: break the while loop, calculate the stop time �tcj �Fjj;j
10: end if
11: end while
12: when all the edge servers stop the initialization,

Tj
ini ¼ maxð�tcj �Fjj;j; t̂

c
jF̂jj;j

Þ.
13: Tini ¼ maxðT 1

ini; T
2
ini; . . . ; T

jMj
ini Þ

To solve the problem of P3, we have designed a mecha-
nism that event-driven scheduling is provided, as shown in
the right part of the red dotted line. In the algorithm of
OPST, we design a heuristically online strategy that makes
btn server as busy as possible, we don’t use any processing
value in advance to make any favorable permutation of
tasks. Edge servers may process some tasks at time t when
some previous task completes or the remote server starts a
new cycle. We denote the indicator set sjðtÞ ¼ f0; 1g; t >
0; j 2 M[fbtng as these edge servers and the remote server.
If sjðtÞ ¼ 1 means the jth edge server is busy processing
some task, otherwise sjðtÞ ¼ 0. Denote the cycles started by
the remote server as dj0 , the edge server as dj; j 2 M.
startCycleEn is set of the indicator where startCycleEnj ¼ 1
represent the j edge server is allowed to process the task, oth-
erwise startCycleEnj ¼ 0, j 2 M. Actually, the scheduling
algorithm is distributed parallel implemented by each edge
server and the remote server. The algorithm is a kind of
event-driven mechanism, thus we can deduce that the over-
all complexity of the algorithm is, therefore,Oð1Þ.

Denote the index of set of running edge servers at time
slot t as RS,where t > 0. ~pj, p̂j, ~pj represent the step at edge
server j for pre-process, remote-assistance and final-process
respectively, where j 2 M, j0 stands for the remote server.

Lemma 3. The lower bound of P3 is the maximum processing
time of edge servers. Denote the lower bound as

LB1 ¼ max
j2M

(
~ts1;j þ

X
i2N j

ð ~Xi;j þ �Xi;j þ X̂i;j

�)
: (30)

1926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

Proof: The makespan of the task evacuation includes the
execution time of the task at the edge server and the
latency generated by the remote assistance. If some task is
in the buffers of steps, the latency of those tasks in buffer
certainly is delayed. Therefore the lower bound must be
greater than or equal to the overall latency of tasks
arrived at any edge servers and the remote server. tu

Lemma 4. Considering the average time of the task’s completion
at each edge server[41], we can get the lower bound of P3 as

LB2 ¼ QM þ GM: (31)

Proof. From the perspective of each edge server, the make-
span of all tasks can be denoted as the time when the last
task in the edge server is finished processing.

It’s obvious to conclude that the average completion
time of each edge server must be less or equal to the make-

span of all tasks. Thus maxðAÞ �
P

j2M
~ts
1;j

jMj þ
P

j2M
P

i2N j
~Xi;jþ �Xi;jþX̂i;j

jMj . Denote QM ¼
P

j2M
~ts
1;j

jMj where j 2 M. Denote

GM ¼
P

i

P
j

�
~Xi;jþ �Xi;jþX̂i;j

�
jMj , Therefore, QM þ GM is one of

the lower bound in our algorithm. tu

Lemma 5. In lemma.4, we assume each edge server has tasks allo-
cated, inspired by[41], it’s interesting to discuss if our algo-
rithm has not allocated tasks to some edge server for optimal
scheduling. We can get the lower bound as

LB3 ¼ max
�
m; t

�
; (32)

where t ¼ ~ts1;j0 þ
P

i2N j0
~Xi;j0 þ �Xi;j0 þ X̂i;j; and suppose that

the edge server j’ will perform at least jN j0 j ¼ 1
jMj � jN j tasks,

t is the latency generated by tasks at the j0th edge server.

m ¼
QMnj þ GMnj if jN j � jN jj � jMj � 1
�QNnN j

þ GMnj if jN j � jN jj < jMj � 1

�
:

(33)

Proof. Under the result of our optimal scheduling algo-
rithm, if the jth edge server carries out N j tasks that
jN j � jN jj < jMj, the number of tasks executed on a
server may be 0. As mentioned in lemma.4, GMnj ¼P

i2NnN j

P
j2Mnj

�
~Xi;jþ �Xi;jþX̂i;j

�
jMj�1 Denote �QNnN j

¼
P

j2Mnj
~ts
1;j

jN j�jN jj
we can easily know the lower bound is m, Therefore, the

lower bound value must be one of the maximum in the

set of completion times of edge servers, we denote the set
as fm; tg. Thus it concludes the lemma. tu

5 EXPERIMENTS

In this section, we implement a small prototype system to
prove the efficiency of our proposed algorithm and frame-
work to perform an empirical evaluation. In contrast to
other algorithms, the optimal path search algorithm we pro-
posed can always meet the shortest global migration and
execution time. The parallel pipeline algorithm that we pro-
pose to execute tasks can always execute all tasks in the
most efficient way between the remote server and the edge
server so that the overall evacuation latency of the task is
minimized.

5.1 Experiment Settings

In this section, we will verify the effectiveness of our pro-
posed algorithms. We will first introduce a baseline method
for comparison. Then show the impact of our parameters by
varying certain variables in the experiments. The experi-
ment was run on a machine with Intel Xeon E5-2620
v4@2.10GHz2 CPU and 64G of memory and python3.8 is
applied. We conduct our simulation as follows. We assume
that the burst load occurs at one of all edge server, whereby
the freq of each edge server is uniformly distributed with a
mean of 2. We randomly sampled 5000 tasks from google
cluster data to conduct the simulation [42]. Cycles needed
in the pre-process, remote-assistance, and final-process of
each task is generated by tasks in the google cluster. The
cycles of each task is a result of a linear combination of
resource request for CPU cores, resource request for RAM,
and resource request for local disk space from the data sets.
We set the maximum number of task allowed to migrate in
each link as cmax

k ¼ 8, thus, suppose the link capacity is uni-
formly distributed as Uð1; 8Þ with the mean of 4, the task
migration latency in each link lk is uniformly distributed as
Uð40; 150Þ with the mean of 95. We set alpha ¼ 0:9, iter ¼ 4,
wsz ¼ 3, g ¼ 3, jVtj ¼ 20 in dispatching stage.

Algorithm 3.Optimal Parallel Scheduling for Task (OPST)

1: For every distributed edge server, the event driven
algorithm is implemented parallel

2: Initial dj0 ¼ 0; dj ¼ 0; startCycleEn ¼~0Monitor valuse of
b̂jðtÞ, �bjðtÞ, j 2 M, t � 0

3: while ðt ¼ t̂si;1 or t ¼ �tci;j or t ¼ ~tci;j) do
4: if t ¼ t̂si;1 then
5: dj0 ¼ jj0 þ 1
6: Start the task from ~bjðtÞ in FIFO order at the first step of

the j server, j inMnRS
7: if sjðtÞ ¼ 1 then
8: startCycleEn½j� ¼ 1
9: end if
10: end if
11: if t ¼ t̂ci;j then

12: Start the task at the p̂jþ1 step of the remote server in FIFO
order from b̂jþ1ðtÞ

13: end if
14: if t ¼ ~tci;j then

15: Start the task at step fi of the jth server in FIFO order
from �bjðtÞ

16: end if
17: if t ¼ �tci;j and startCycleEn½j� ¼ 1 and dj0 > dj then

18: Start the task from ~bjðtÞ in FIFO order at first setp of jth
server, increase dj as dj þ 1

19: if dj0 ¼ dj then
20: startCycleEn½j� ¼ 0
21: end if
22: end if
23: end while

5.2 Baseline Policies

In addition to the optimal algorithm we proposed, we also
performed three comparison algorithms for comparison,
called “speed priority” and “capacity priority” at the dis-
patching stage, “server greedy” at the scheduling stage.

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1927

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

– Random Selection(RS): In the migration collaboration
layer, the tasks in the burst load that need to be
migrated uniformly select the link to an edge server.
For example, assign routing r to taski, where i 2
N ; r 2 R, r is randomly selected fromR.

– Speed Priority(SP) : In the migration collaboration
layer, the tasks in the burst load that need to be
transferred always select the link with less migration
time as the transfer path with a certain probability.
For example,assign r to taski, where i 2 N ; r 2 R, r,
is selected from R with probability of Pr ¼ vkP

z2jRj vz
,

where vz ¼ 1P
k2f1;2;���;jrz jg

lk

– Capacity Priority(CP) : In the migration collaboration
layer, the task in the burst load that needs to be
transferred always selects the link with the larger
capacity as the transfer path with a certain probabil-
ity. For example,assign rz to taski, where i 2 N ; rz 2
R, rz, is selected from R with probability of Pr ¼

czP
z2jRj cz

, where cz ¼
P

k2f1;2;���;jrzjg ck.

– Server Greedy(SG): In the computing sharing layer, a
number of edge servers always choose to occupy the
resource in the remote assisted layer until the task is
completed.

– OnDisc: It is an online algorithm dealing with the
dispatching and scheduling of tasks among edge
servers and the remote server efficiently [43]. It can
be easily implemented in distributed systems espe-
cially edge environments.

5.3 Simulation Results

The analysis above has led the conclusion of algorithm effi-
ciency that outperform the baselines

Optimal Search Routing in Dispatching. We demonstrate
the performance with benchmark algorithms of RS, SP, CP,

and our proposed algorithm respectively, when the number
of tasks increases from 500 to 2500 in Fig. 8. Different tasks
represent the levels of the burst load under the same condi-
tion of the network and servers. The total length of each bar
indicates the makespan after the tasks evacuation during
both dispatch and scheduling simultaneously, and the
shaded part indicates the dispatching latency.

Obviously, as the number of tasks increases under the
same condition of the network and servers, the total evacua-
tion time required also increases, especially the time of all
tasks in finding the routing to evacuate increases signifi-
cantly. Due to the limited link bandwidth and the network
transmission speed, the migration time of tasks plays an
important role in total latency. It can be easily understood
that the time of task migration in the routing may often
occupy a large part, because each network link migrates a
limited number of tasks per unit time, and the migration
speed of tasks in the routing is limited. However, in con-
trast, under the proposed algorithm, we show that the
latency of task migration is significantly less than the com-
parison algorithm because these tasks evacuated earlier are
already executed by the edge server and the remote server.
After the execution is completed, the computing resources
are released could be used by the tasks which arrive later,
and the subsequent tasks can be executed at a faster speed
under our pipeline strategy without delay too much time.
Besides, it can be observed from Fig. 12 that our algorithm
has good convergence performance in different levels of
burst loads. The total number of tasks divided by iter.
When the number of tasks is increased from 500 to 2500, the
proposed algorithm can always achieve good results after
about 100 iterations. The experimental result demonstrates
the effectiveness of our proposed method when the number
of servers increases shown in Fig. 9 in the case of 100 tasks.

Distributed Parallel Strategy for Scheduling. In the schedul-
ing stage of tasks, we first constructed the initialization of
pipeline 7. The purpose of initialization is to build a buffer

Fig. 8. Latency under different number of tasks.

Fig. 9. Latency of tasks under different number of edge servers.

Fig. 10. Performence under different size of safety stock pairs.

Fig. 11. Latency of tasks under SG algorithm.

1928 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

for each step in the pipeline network to boost efficiency. If
some edge servers in the pipeline structure adopt a greedy
strategy and continue which means it will occupy the assis-
tance resources of the remote server until they complete all
tasks allocated to them. As shown in the Fig. 11, assuming
that there are 11 edge servers in the edge network, the num-
ber of greedy strategy server increases from 2 to 7 under the
same 2000 tasks. Obviously, the total execution time shows a
downward trend (dotted line) whether under the OPTD
algorithm or other comparison algorithms at dispatching as
shown in this figure. The value of the right-most of the red
dot is 36.2 percent lower than the left-most red dot which the
dot is the average of all value of the four algorithms under
the same greedy strategy of edge servers. The result reveals
that no matter the number of how many edge servers that
apply to greedily occupy the computational resource of the
remote server, our proposed algorithm always achieves the
best performance.

Besides, the migration time of all tasks in the network
and the final execution completion time are getting closer
and closer. It can be shown that these tasks can always be
executed quickly after reaching the server, which reduces
both migration and waiting latency. When the number of
servers in the greedy strategy is close to the total number of
servers, it is close to the pipeline optimal strategy. Because
this conclusion is consistent with the total latency of these
tasks that decrease while increasing the number of greedy
servers in the edge environment.

Fig. 10 demonstrates the total task evacuation time will
show an approximately linear relationship as the total num-
ber of evacuation tasks changes under different pipeline
buffer strategies are adopted in the edge environment. In
the Fig. 10, the normalization of Min-Max Normalization is
implemented as

znum ¼ latency� latencymin

latencymax � latencymin
; (34)

we can easily konw that when the number of tasks 900, as the
safety stock strategy to make ð �Fj; ~FjÞ select from (15,1) to
ð1; 1Þ, is used to stand for the improvedpercentage znum under
different task numbers where num 2 f500; 600; . . . ; 1000g the
buffer strategy reduces the overall task evacuation time by
about 4.5 percentage points, which is the best among all the
different number of task evacuation. Moreover, under the
same number of task, the larger the size of the buffer, the
smaller the task evacuation latency

Impact of Parameters in the Edge Environment. Inspired by
[44], we choose the most important parameters to design
and implement the simulation below. First of all, the link
capacity and the speed of task migration are key factors in
our proposed algorithm. Obviously, different parameters of
an edge network will affect the evacuation of tasks, but we
want to explore how these parameters impact the latency of
all tasks. The simulation results are mainly shown in
Figs. 13, 14 and 15.

As the capacity of links in the migration collaboration
layer increases, the total latency required for all tasks in this
edge network to evacuation always converges to a stable
time. As shown in the Fig. 13, we can observe that under dif-
ferent number of tasks, the time required for task evacua-
tion will first decrease rapidly as the link capacity increases.
But when the link capacity increases to a certain value, they
have little effect on the total time for task evacuation. The
total time of task evacuation tends to converge to a stable
value.

Therefore, when a sudden burst load occurs in an edge
network, appropriately increasing the network capacity
helps to improve the task evacuation latency, but it should
also be noted that increasing the network capacity does not
always reduce the total time for evacuation. As shown in
the Fig. 14, the migration cost in the edge network is used as
an independent variable. When we increase the migration

Fig. 12. Iterative process of routing search.

Fig. 13. Latency under different capacity of links.

Fig. 14. Latency under different migration cost of links.

Fig. 15. Latency under different capacity versus migration delay of links.

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1929

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

cost of the link, the time required for the evacuation will
always maintain a stable change within a large range.

Considering that there are two stages of tasks in the
edge environment, namely, dispatching and scheduling,
tasks at the two stages of tasks are executed simulta-
neously, then each task migration and execution processes
overlap in time. Therefore, we observe that the task evacu-
ation time will not change significantly with an appropri-
ately increased migration cost, but once the migration cost
reaches a certain value, the task evacuation time will rise
significantly.

The time for the evacuated tasks to be migrated to other
servers generates a large latency, which often exceeds the
pipeline execution time required for task scheduling and
execution. It leads to the inefficiency of the pipeline struc-
ture. Edge servers need to wait for the task to arrive and
then execute, under these circumstances the pipeline struc-
ture of edge servers are always idle. Therefore, in the edge
network, once we can first ensure all the tasks can be effi-
ciently executed parallel on servers, even if the task migra-
tion cost in the network is not small, the total evacuation
time can be maintained at a relatively small value.

As shown in the Fig. 15, we keep the number of tasks
unchanged but change the network parameters of the task
during evacuation. When we also use the migration cost as
the horizontal axis, we can observe that under different link
capacities in the range with a relatively small rate, the total
time for the task evacuation increases slowly, but once a cer-
tain threshold is reached, the rate of the curve growth
increases significantly.

We can conclude that if the migration cost and capacity of
an edge network are limited, we can also achieve a stable
evacuation latency. The total evacuation delay is composed
of two parts, dispatching and scheduling. Once we can guar-
antee the efficiency of scheduling, we can get a little inspira-
tion is that the infrastructure investment of the edge network
does not necessarily need to select large-capacity and high-
speed equipment. Once a burst load happens at the edge

environment, as long as the implementation of the dispatch
and scheduling strategies are reasonably guaranteed, the
total time of the task evacuation can always be maintained
within a reasonable range.

Fariness. In the evacuation of all tasks, we can observe
from the experimental results that under our optimal rout-
ing search algorithm, the average and variance of the delay
of each task in the burst phase and migration phase are the
smallest compared with the benchmark algorithms, as
shown in Fig. 16. Experimental results also show that vari-
ance values of latency in stages of pre-process, remote-assis-
tance and final-process are the smallest compared with the
benchmark algorithms as shown in Fig. 17.

Our proposed algorithm can give an optimal routing for
each task, it will reduce tasks congestion to a great extent in
the migration collaboration layer, the time variance of each
task is small means that each task can share the resources of
links in the migration collaboration more fairly. Similarly,
the smaller variance of the execution time of each task in
every phase means that they can get computation resources
relatively more equal in the computing sharing layer and
remote assisted layer. Therefore, both network and compu-
tation resources are distributed fairly to each task after the
burst load occurs.

6 CONCLUSION

In this paper, we propose a framework for an edge environ-
ment that consists of three layers: the migration collabora-
tion layer, the computing sharing layer, and the remote
assisted layer. We divide the evacuation of the burst load
into two stages: dispatching and scheduling. While an opti-
mal method to migrate the burst load is given when the
resources of the edge network are limited, based on the
online algorithm, a strategy dealing with task processing is
proposed without knowledge of the task state in advance at
the scheduling stage. Applying our proposed algorithm
OPTD4.1 and POTS4.2, burst load evacuation can be

Fig. 16. Dispatching performance.

Fig. 17. Scheduling performance.

1930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

efficiently processed throughout these three layers. The
experimental results prove that these algorithms incorpo-
rate both efficiency and equity for tasks generated by users.
Our proposed algorithms can be easily integrated into dis-
tributed systems in edge environments. In future work, we
are interested in a more complex system if there is a compli-
cated processing flow of tasks. In practice, the value of dif-
ferent types of latency of a task may be estimated
inaccurately, with other uncertainties not related to this
paper, we need to design more effective strategies to solve
the evacuation problem.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation of China under Grant U20A20173 and Grant
61772461, and in part by the Natural Science Foundation of
Zhejiang Province under Grant LR18F020003.

REFERENCES

[1] Y. Mao et al., “A survey on mobile edge computing: The com-
munication perspective,” IEEE Commun. Surv. Tut., vol. 19, no.
4, pp. 2322–2358, 2017.

[2] F. Lyu et al., “LEAD: Large-scale edge cache deployment based on
spatio-temporal wifi traffic statistics,” IEEE Trans. Mobile Comput.,
2020.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[4] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, cach-
ing and communications,” IEEEAccess, vol. 5, pp. 6757–6779, 2017.

[5] S. Deng et al., “Optimal application deployment in resource con-
strained distributed edges,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2020.2970698.

[6] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed
redundancy scheduling for microservice-based applications at the
edge,” IEEE Trans. Serv. Comput., to be published, doi: 10.1109/
TSC.2020.3013600.

[7] S. Deng et al., “Dynamical resource allocation in edge for trustable
Internet-of-Things systems: A reinforcement learning method,”
IEEE Trans. Ind. Inform., vol. 16, no. 9, pp. 6103–6113, Sep. 2020.

[8] S. Wang, X. Zhang, Z. Yan, andW.Wenbo, “Cooperative edge com-
puting with sleep control under nonuniform traffic in mobile edge
networks,” IEEE Internet Things J., vol. 6, no. 3, pp. 4295–4306,
Jun. 2019.

[9] I.-A. Chousainov, I. Moscholios, P. Sarigiannidis, A. Kaloxylos, and
M. Logothetis, “An analytical framework of a C-RAN supporting
bursty traffic,” inProc. IEEE Int. Conf. Commun., 2020, pp. 1–6.

[10] W.-C. Chien, C.-F. Lai, and H.-C. Chao, “Dynamic resource pre-
diction and allocation in C-RAN with edge artificial intelligence,”
IEEE Trans. Ind. Inform., vol. 15, no. 7, pp. 4306–4314, Jul. 2019.

[11] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11 168,
Nov. 2019.

[12] S. H. Rastegar, A. Abbasfar, and V. Shah-Mansouri , “Rule caching
in SDN-enabled base stations supporting massive IoT devices with
bursty traffic,” IEEE Internet Things J., vol. 7, no. 9, pp. 8917 –8931,
Sep. 2020.

[13] C. G€undo�gran, P. Kietzmann, M. Lenders, H. Petersen,
T. C. Schmidt, andM.W€ahlisch, “NDN, COAP, andMQTT: A com-
parative measurement study in the IoT,” in Proc. 5th ACMConf. Inf.-
Centric Netw., 2018, pp. 159–171.

[14] M. Molina, O. Mu~noz, A. Pascual-Iserte , and J. Vidal, “Joint
scheduling of communication and computation resources in mul-
tiuser wireless application offloading,” in Proc. IEEE 25th Annu.
Int. Symp. Pers. Indoor Mobile Radio Commun. , 2014, pp. 1093–1098.

[15] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-
computing based architecture for mobile augmented reality,”
IEEE Netw., vol. 33, no. 4, pp. 162–169, Jul./Aug. 2019.

[16] Y. Chen, S. Deng, H. Ma, and J. Yin, “Deploying data-intensive
applications with multiple services components on edge,” Mobile
Netw. and Appl., vol. 25, pp. 426–441, 2019.

[17] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Trans-
parent computing, mobile edge computing, fog computing, and
cloudlet,” ACM Comput. Surv., vol. 52, no. 6, pp. 1–36, 2019.

[18] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proc.
WorkshopMobile Edge Commun., 2018, pp. 31–36.

[19] S. Deng et al., “Toward mobile service computing: Opportunities
and challenges,” IEEE Cloud Comput., vol. 3, no. 4, pp. 32–41, Jul./
Aug. 2016.

[20] K. Sasaki, S. Makido, and A. Nakao, “Vehicle control system for
cooperative driving coordinated multi-layered edge servers,” in
Proc. IEEE 7th Int. Conf. Cloud Netw., 2018, pp. 1–7.

[21] Y. Sarikaya, H. Inaltekin, T. Alpcan, and J. S. Evans, “Stability and
dynamic control of underlay mobile edge networks,” IEEE Trans.
Mobile Comput., vol. 17, no. 9, pp. 2195–2208, Sep. 2018.

[22] H. Trinh et al., “Energy-aware mobile edge computing and rout-
ing for low-latency visual data processing,” IEEE Trans. Multime-
dia, vol. 20, no. 10, pp. 2562–2577, Oct. 2018.

[23] X. Lyu et al., “Optimal schedule of mobile edge computing for
internet of things using partial information,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2606–2615, Nov. 2017.

[24] P. Romano and F. Quaglia, “Design and evaluation of a parallel
invocation protocol for transactional applications over the Web,”
IEEE Trans. Comput., vol. 63, no. 2, pp. 317–334, Feb. 2014.

[25] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint compu-
tation offloading and interference management in wireless cellu-
lar networks with mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 66, no. 8, pp. 7432–7445, Aug. 2017.

[26] X. Deng,M. Xu, L. T. Yang,M. Lin, L. Yi, andM.Wang, “Energy bal-
anced dispatch of mobile edge nodes for confident information
coverage hole repairing in IoT,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4782–4790, Jun. 2019.

[27] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An effec-
tive scheduling approach for delay bounded tasks in hybrid clouds,”
IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[28] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[29] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1619–1632,
Aug. 2018.

[30] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, and J. Yin, “A mobility-
aware cross-edge computation offloading framework for parti-
tionable applications,” in Proc. IEEE Int. Conf. Web Serv., 2019,
pp. 193–200.

[31] W. Fang, X. Yao, X. Zhao, J. Yin, and N. Xiong, “A stochastic con-
trol approach to maximize profit on service provisioning for
mobile cloudlet platforms,” IEEE Trans. Syst., Man, Cybern.: Syst.,
vol. 48, no. 4, pp. 522–534, Apr. 2018.

[32] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3317–3329,
Dec. 2015.

[33] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge comput-
ing in latency-constrained fog networks,” in Proc. Eur. Conf. Netw.
Commun., 2017, pp. 1–6.

[34] J. Liu et al., “Online multi-workflow scheduling under uncertain
task execution time in iaas clouds,” IEEE Trans. Cloud Comput., to
be published, doi: 10.1109/TCC.2019.2906300.

[35] Y. Yu, H. Qian, and Y.-Q. Hu, “Derivative-free optimization via clas-
sification,” in Proc. 30th AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1.

[36] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang,
“Dendritic neuron model with effective learning algorithms for
classification, approximation, and prediction,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019.

[37] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An Introduction to
Computational Learning Theory. Cambridge, MA, USA: MIT press,
1994.

[38] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of
Machine Learning. Cambridge, MA, USA: MIT Press, 2012.

[39] J. Dai and G. Weiss, “A fluid heuristic for minimizing makespan
in job shops,”Operations Res., vol. 50, no. 4, pp. 692–707, 2002.

DENG ETAL.: BURST LOAD EVACUATION BASED ON DISPATCHING AND SCHEDULING IN DISTRIBUTED EDGE NETWORKS 1931

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.2970698
http://dx.doi.org/10.1109/TSC.2020.3013600
http://dx.doi.org/10.1109/TSC.2020.3013600
http://dx.doi.org/10.1109/TCC.2019.2906300

[40] E. Gebennini, R. Gamberini, and R. Manzini, “An integrated
production–distribution model for the dynamic location and
allocation problem with safety stock optimization,” Int. J. Prod.
Econ., vol. 122, no. 1, pp. 286–304, 2009.

[41] I. Kacem, S. Hammadi, and P. Borne, “Lower bounds for evaluat-
ing schedule performance in flexible job shops,” Perform. Metrics
for Intell. Syst. Workshop, pp. 347–363, 2002.

[42] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format+ schema,” Google Inc., White Paper, pp. 1–14,
2011.

[43] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE Conf. Comput. Com-
mun., 2017, pp. 1–9.

[44] J. Wang and T. Kumbasar, “Parameter optimization of interval
type-2 fuzzy neural networks based on PSO and BBBC methods,”
IEEE/CAA J. Automatica Sinica, vol. 6, no. 1, pp. 247–257, Jan. 2019.

Shuiguang Deng (Senior Member, IEEE) received
the BS and PhD degrees in computer science, in
2002 and 2007, respectively. He is currently a full
professor with the College of Computer Science
and Technology in Zhejiang University, China. He
previously worked at the Massachusetts Institute of
Technology, in 2014, and at Stanford University, in
2015 as a visiting scholar. His research interests
include edge computing, service computing,mobile
computing, and business process management.
He serves as an associate editor for the journal

Computing, Knowledge and Information Systems, IEEE Access, and IET
Cyber-Physical Systems: Theory Applications. During the past ten years,
he has published more than 100 papers in journals and refereed conferen-
ces. In 2018, he was granted the Rising Star Award by IEEE TCSVC. He is
a fellowof IET.

Cheng Zhang received theMS degree in electrical
engineering from Zhejiang University, China, in
2013, Currently, he is working toward the PhD
degree in computer science and technologyat Zhe-
jiangUniversity. His research interests include edge
computing and edge intelligence.

Chang Li is currently working toward the post-
graduate degree in computer technology. His
research interests includ edge computing, distrib-
uted system, and middleware software.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU), in 2001.
He was a visiting scholar with the Georgia Institute
of Technology. He is currently a full professor with
the College of Computer Science, ZJU. Up to now,
he has published more than 100 papers in top
international journals and conferences. His cur-
rent research interests include service computing
and business process management. He is an
associate editor of the IEEE Transactions on
Services Computing.

Schahram Dustdar (Fellow, IEEE) is a full pro-
fessor of computer science (informatics) with a
focus on Internet Technologies heading the Dis-
tributed Systems Group at the TU Wien. He is
chairman of the Informatics Section of the Acade-
mia Europaea (since December 9, 2016). From
2004–2010 he was honorary professor of Infor-
mation Systems at the Department of Computing
Science, the University of Groningen (RuG), The
Netherlands. From December 2016 until January
2017 he was a visiting professor at the University

of Sevilla, Spain, and from January until June 2017 he was a visiting pro-
fessor at UC Berkeley, USA. He is a member of the IEEE Conference
Activities Committee (CAC) (since 2016), the Section Committee of
Informatics of the Academia Europaea (since 2015), a member of the
Academia Europaea: The Academy of Europe, Informatics Section
(since 2013). He is the recipient of the ACM Distinguished Scientist
Award (2009) and the IBM Faculty Award (2012). He is an associate edi-
tor of IEEE Transactions on Services Computing, ACM Transactions on
the Web, and ACM Transactions on Internet Technology, and on the edi-
torial board of IEEE Internet Computing. He is the editor-in-chief of Com-
puting (an SCI-ranked journal of Springer).

Albert Y. Zomaya (Fellow, IEEE) is currently the
chair professor of high performance computing &
networking at the School of Computer Science,
University of Sydney. He is also the director of the
Centre for Distributed and High Performance
Computing.He published more than 600 scientific
papers and articles and is a author, co-author, or
editor of more than 20 books. He served as the
editor-in-chief of the IEEE Transactions on Com-
puters(2011–2014). Currently, he is the editor-in-
chief of ACM Computing Surveys and serves as

associate editor for several leading journals. He delivered more than 190
keynote addresses, invited seminars, and media briefings and has been
actively involved, in a variety of capacities,in the organization of more
than 700 national and international conferences. He received the IEEE
Technical Committee on Parallel Processing Outstanding Service Award
(2011), the IEEE Technical Committee on Scalable Computing Medal for
Excellence in Scalable Computing (2011), and the IEEE Computer Soci-
ety Technical Achievement Award (2014). He is a chartered engineer, a
fellow of AAAS, IET (United Kingdom), and an elected member of Aca-
demia Europaea. His research interests include the areas of parallel and
distributed computing and complex systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 09,2021 at 10:11:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

