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Abstract

When using the belief rule base (BRB) methodology

to deal with the nonlinear causal inference problems,

combinatorial explosion often occurs due to over-

numbered antecedent attributes, resulting in poor

performance. Therefore, this paper proposes a novel

nonlinear causal inference approach based on vector‐
based BRB. In the modeling process of BRB, the

original attributes are ranked by contribution rate

and transformed into attribute vectors. Meanwhile,

combined with the k‐means method, appropriate

referential vectors are obtained. Thereby a vector‐
based BRB can be established. In the inference pro-

cess of BRB, the idea of full activation of vector‐based
rules is presented. By calculating the spatial match-

ing degree of the testing sample and the referential

vectors, activation weights of the rules which are

used in the evidential reasoning algorithm are ac-

quired. Experimental results of a nonlinear function

with four‐dimensional input and the pipeline leakage

detection data show the effectiveness and superiority

of the proposed approach.
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1 | INTRODUCTION

Belief rule base (BRB) is developed on the traditional If–Then rules. When using the BRB
methodology to deal with qualitative and quantitative issues, the uncertainty of information
can be maintained because of the introduction of the belief degree.1,2 Actually, various ap-
proaches can be used to handle the uncertainty of information, such as Dempster–Shafer (DS)
evidence theory,3,4 fuzzy sets,5 rough sets,6 entropy theory,7,8 and so on. These approaches have
been applied in decision making,9 reliability analysis,10 pattern classification,11 and complex
network analysis.12–14 The BRB inference methodology using the evidential reasoning approach
(RIMER) is an important part of the BRB. It effectively combines the advantages of the
DS evidence theory,3,4 fuzzy theory,5 and traditional If–Then rules.15 Therefore, it has been
widely used to establish nonlinear causal inference models in many engineering fields.16–24

The RIMER can be mainly divided into two parts: one is the expression of knowledge and
the other is the inference of knowledge.1,25 The former is to present knowledge through rules in
the BRB and the latter is to integrate the activated rules through the evidential reasoning (ER)
algorithm.26 In practical applications, the number of rules in the BRB has become an important
factor affecting its performance. Actually, the number of rules is determined by the number of
antecedent attributes and the referential values of each attribute. If there are a large number of
antecedent attributes or referential values for the attributes, the number of rules will increase
exponentially, which is prone to the combinatorial explosion.27 For example, if the number of
antecedent attributes is 5 and each attribute has four referential values, a complicated and
large‐scale rule base which contains 1024 (i.e., 45) rules will be generated. As a result, it restricts
the performance of the BRB to deal with multi‐input problems.

Many studies have been undertaken to tackle the aforementioned challenge. These studies
can be categorized into two types.

1. Antecedent attributes/referential values reduction (also called structure learning/parameter
learning) approaches for an established BRB model. In these studies, the most representative
antecedent attributes/referential values were selected and therefore the original BRB model
could be downsized. For example, Chang et al. proposed a BRB structure learning method
by using the multiple dimensionality reduction techniques, including gray target, multi-
dimensional scaling, isomap, and principal component analysis (PCA) to reduce the number
of rules.27 Zhou et al. used the statistical utility to determine which rules were needed to be
retained, and thus to construct more compact BRB systems.28 However, such methods relied
on the expert knowledge or extra information heavily. To solve this problem, Wang et al.
further explored BRB structure learning using techniques from the rough set theory.29 To
improve the performance of attribute selection, Yang et al. constructed an ensemble BRB
system with diverse antecedent attributes selection, in which six different methods (i.e.,
information gain, gain ratio, chi‐squared, ReliefF, OneR classifier, and support vector ma-
chine) were applied.30 Li et al. optimized the referential values by the fuzzy subtractive
clustering algorithm.31 Besides, joint approaches integrating BRB structure learning and
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parameter learning were proposed.32,33 In such approaches, a comprehensive optimization
objective called Akaike Information Criterion (AIC) was introduced.34 However, in these
approaches, the redundant rules were reduced after the rule base had been established.
When reducing the antecedent attributes or referential values, part of the historical in-
formation was also discarded. Consequently, the accuracy of inference results could not be
guaranteed.

2. Disjunctive assumption for BRB modeling. The disjunctive BRB modeling approach was
different from the traditional BRB which was constructed on the assumption of conjunctive.
The disjunctive BRB required far fewer rules in comparison with a conjunctive BRB in the
same belief structure (with the same referential values for the same attribute).35 Chang et al.
presented a new rule activation and weight calculation procedures for the disjunctive BRB
and applied it in the classification problems.36 Yang et al. studied the bridge risk assessment
problem with an extended disjunctive BRB.37 Although the disjunctive BRB could help avoid
the combinatorial explosion problem, it was difficult to directly obtain a disjunctive BRB
from either historical data or experts' knowledge.35,38

In short, the above studies have the following limitations. In the first type of approaches,
loss of information would occur when reducing the rule number. In the second type of ap-
proaches, the interpretability of rules in the disjunctive assumption was needed to be
strengthened. Therefore, the problem of “combinatorial explosion” of rules cannot be solved
completely. In this paper, a novel vector‐based BRB is proposed. It aims to both effectively
reduce the scale of the BRB and improve its performance. In the modeling process of BRB, the
original attributes are transformed into attribute vectors to reduce the rule number. In
the inference process of BRB, the original BRB activation method is extended from
one‐dimensional to multidimensional vectors to improve the accuracy.

The remainder of this paper is structured as follows: Section 2 introduces the basic
knowledge of the BRB inference; Section 3 presents the BRB inference model using attribute
vector activation; Section 4 discusses the experimental analysis and performance comparison
and Section 5 is the conclusion.

2 | THE BRB FOR INFERENCE

The BRB model is designed on the basis of the belief structure. A rule is used to describe causal
relationships as well as uncertainty between antecedent attributes and their associated
consequent attribute.1

2.1 | Representation of the BRB

In the RIMER, the kth rule Rulek is represented as

Rule x A x A x A

D β D β D β

: If is is is

Then {( , ), ( , ), …, ( , )},

k
k k

T T
k

k k N N k

1 1 2 2

1 1, 2 2, ,

k k
∧ ∧ ⋯ ∧

(1)

where xi (i= 1, 2,…, Tk) is the antecedent attribute, Tk is the number of the antecedent attri-
butes; Ai

k is the referential value of the ith antecedent attribute in the kth rule; Ai= {Ai,j;
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j= 1, 2,…, vi}, Ai,j is the jth referential value of the ith antecedent attribute xi, vi is the number of
referential values of the ith antecedent attribute; Dn (n= 1, 2,…,N) is the referential value of
the consequent attribute, N is the number of referential values of the consequent attribute;
βn,k is the belief degree of the referential value of consequent attribute in the kth rule.

2.2 | Inference process of the BRB

BRB inference is mainly divided into two parts: calculation of activation weight and outputs
fusion based on ER algorithm.

2.2.1 | Calculation of activation weight

The activation weight is mainly affected by the antecedent attribute, rule weight, and input
data. Therefore, the activation weight of the kth rule ωk can be calculated as follows:
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(3)

where δi is the weight of the ith antecedent attribute, θk (k= 1, 2,…, RN) is the rule weight, RN
is the number of rules, and αi

k is the matching degree of the referential value of the ith
antecedent attribute in the kth rule which can be calculated as follows:
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α t v t j j= 0, = 1, …, , , + 1,i t
k

i, ≠ (6)

where vi and αi j
k
, are the number of referential values and the matching degree of the jth

referential value of the ith antecedent attribute in the kth rule, respectively.

2.2.2 | Outputs fusion based on ER algorithm

Suppose the weight of each rule is θk, the initial belief degree of corresponding referential level
determined by expert knowledge is βn

k, then the output of the BRB model Ô can be obtained by
the RN rules combined according to the antecedent attributes. The analytical format of the ER
algorithm is as follows:

O D β n Nˆ = {( , ˆ ), = 1, 2, …, },n n (7)
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where β̂n (n= 1, 2,…,N) is the belief degree of the output referential value of Dn after fusion.
Then, the final outcomes can be generated as follows:

y D β= ( × ˆ ).
n

N

n n

=1

∑ (10)

3 | ATTRIBUTE VECTOR ‐BASED BRB INFERENCE
MODEL

For a set of inputs X = (x1, …, xr, …, xTk), where Tk is the number of attributes of each input,
the purpose of BRB modeling is to obtain the antecedent part of the BRB by cross‐
matching the referential values of each antecedent attribute. Therefore, the dimension of
the antecedent attributes and the number of referential values of each attribute will di-
rectly affect the scale of the BRB. If the number of attributes Tk is too large, the scale of the
established BRB will increase. Meanwhile, the number of parameters that need to be
determined and optimized will also increase. The nonlinear causal inference approach
based on vector‐based BRB (as shown in Figure 1) proposed in this paper can effectively
solve the problem.

The proposed approach mainly includes the following parts: (1) Generation of attribute
vectors. Obtaining the importance of the Tk original attributes by calculating the contribution
rate of the principal component, and ranking the attributes according to the results. Then,
dividing the ranked Tk attributes into J attribute vectors. (2) Calculation of attribute vector
referential matrix. Obtaining the referential vectors based on the attribute vectors sample sta-
tistics. (3) Full activation of attribute vector‐based rules. Calculating the spatial matching degree
of the training sample to the referential vectors to get the activation weights of the rules and
using the ER algorithm to obtain the final outcomes. (4) Model optimization. Obtaining the
optimal parameters by training sample data.

3.1 | Generation of attribute vectors

As a multivariate statistical technology, PCA methodology can realize multidimensional or-
thogonal linear transformation based on statistical features.39 It is often used for feature ex-
traction of data and thus has a wide range of applications in the fields of pattern recognition
and image processing. The new variables (principal component variables) obtained by the PCA
methodology are a linear combination of the original variables. Since the principal components
are arranged in the order of contribution rate from largest to smallest, it can retain important
features in high‐dimensional data, remove noise and unimportant features, and thus achieve
the purpose of improving data processing speed. Therefore, in this section, we use the principle
of “ranking by contribution rate” of the principal components in PCA to realize the importance
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ranking of the original attributes, and obtain J attribute subvectors with different importance
according to the ranking results. The specific steps are as follows:

Step 1. For an input data sample set X= (x1,…, xr,…, xTk), xr= [xr(1),…, xr(t),…, xr(T)]T,
where r= 1, 2,…, Tk, xr is a vector composed of T sampling values of the rth attribute variable,
while the superscript “T” represents the transpose of the matrix. Using the following formula to
map the Tk original attributes to the principal component space.

F w x w x w x

F w x w x w x

F w x w x w x

F w x w x w x

= + + + ,
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⋯
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⋯

(11)

For the ith principal component F w x w x w x w x= + + + + +i i i ri r T i T1 1 2 2 k k
⋯ ⋯ , it is a

T‐dimensional vector since xr is T‐dimensional; wri is the weight coefficient of the rth attribute
for the ith principal component. The principal component satisfies the following conditions:
first, Fi and Fr are irrelevant (i≠r; i, r= 1, 2,…, Tk); second, the variance of Fi is greater than that
of Fr (i< r), that is, the variance is ranked in descending order. The transformation matrix W
formed by weight coefficients is as follows:

W

w w w w
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(12)

The principal component can be generated by F= [F1, F2,…, FTk] = XW.

Outputs fusion based on 
ER algorithm

Final output

Original BRB 

SLP op�miza�on algorithm

K - means

PCA

A�ribute vectors

Original data 

Cluster centers 

Referen�al vectors Op�mized BRB 

Full ac�va�on

Tes�ng sample

Vector-based BRB model

A 1 A 2

...

A 3

A n

R 1 ... R J

Rule 1 Rule 2 ... ... Rule RN

Rule 1 ... Rule RN

Modeling process of BRB 

Inference process of BRB 

T1 T2 T3 … ...Tk-1Tk

FIGURE 1 Nonlinear causal inference approach based on vector‐based BRB. BRB, belief rule base; ER,
evidential reasoning; PCA, principal component analysis; RN, rule number; SLP, sequential linear programming
[Color figure can be viewed at wileyonlinelibrary.com]
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Step 2. For the input data set X, it needs to be centralized:

x t x t τ r~ ( ) = ( ) − ( ),r r (13)

τ r
T

x t( ) =
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( ),
t

T

r

=1

∑ (14)

where τ(r) is the mean value of attribute xr.
After the data centralization, a new matrix can be obtained as

X
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Then the correlation coefficient matrix V can be generated by

V
T

X X=
1

− 1

~ ~
.

T (16)

Carrying out eigenvalue decomposition on the matrix V, the eigenvector corresponding to
each eigenvalue λr (r= 1, 2,…, Tk) can be obtained, and then the contribution rate of the rth
principal component Fr can be calculated by

φ
λ

λ
= .r

r

r

T
r=1

k∑
(17)

Step 3. Ranking the Tk original attributes according to contribution rate φr, and resetting the
number as x′1, x′2,…, x′Tk, then dividing the new ranked Tk attributes into J vectors.

R x x x

R x x x
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⋮

⋮

(18)

where J represents the number of obtained attribute vectors, and h represents the number of
original attributes contained in each vector.

3.2 | Calculation of attribute vector referential matrix

The referential values are the most representative points which are usually determined based
on experts' experience. Since the inputs of the BRB become multidimensional vectors, the
original referential values which are numerical type will no longer be applicable. Therefore, the
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referential vector is introduced. However, determining suitable referential vectors manually is a
challenging task. To improve the objectivity and effectiveness of the selected referential vectors,
a new solution based on data analysis method is provided. As a mature data analysis method,
k‐means clustering method is used. For the combined J attribute vectors in the formula (18),
dividing each dimension of sample data in each attribute vector xi= [xi(1),…, xr( j),…, xi(T)] into
Ki clusters C C C{ , …, , …, }i k i K i1, , ,i in ascending order, where Ki is the number of cluster centers
corresponding to the ith group of data. The steps are as follows:

Step 1. Randomly selecting Ki data x x x{ , , …, }i i i
K1 2 i as the centers of clusters

C C C{ , …, , …, }i k i K i1, , ,i .
Step 2. Calculating the distance d i d i d i{ ( ), ( ), …, ( )}K1 2 i

of each data sample (except the
cluster center) and each cluster center, and assigning it to the cluster in which the distance is
smallest.

Step 3. Recalculating the center of each cluster according to formula (19), where n(Ck,i)
represents the number of elements in the cluster Ck,i.

x
x r

n C
=

( )

( )
.i

r i

k i,

∑
(19)

Step 4. Repeating the above steps until the cluster centers no longer change.
It should be noted that the number of cluster centers Ki needs to be determined according to

the elements in the vector Rr (r= 1, 2,…, J) combined in Section 3.1. For example, if R1 = (x1, x2),
then the number of cluster centers K1 and K2 of x1 and x2 should be equal. Then finding the
cluster centers of Rr to determine the corresponding referential vector. To ensure the diversity
of samples, the referential vector must cover the range of all sample data, that is, the interval of
the referential vector should be greater than or equal to the interval of its corresponding
sample. For this reason, the upper and lower bounds of the sample space are used as the upper
and lower bounds of its referential vector. For example, the upper and lower bounds of x1 and
x2 are, respectively, x x x x, , ,1

min
1
max

2
min

2
max , and the cluster centers are x x x, , …, K

1
1

1
2

1
1 and

x x x, , …, K
2
1

2
2

2
2, respectively, where K1 = K2. Then the referential vector of R1 is expressed

as A x x x x x x x x= ( , , …, , )K K
1 1

min
2
min

1
1

2
1

1 2 1
max

2
max1 2 .

Similarly, the referential values of output D= (D1,D2,…,DN) can be obtained, where N is
the number of output data referential values, D1 and DN are the lower and upper bounds,
respectively, {D2,…,DN−1} are the cluster centers obtained by the k‐means clustering method.

3.3 | Full activation of attribute vector‐based rules

According to the formulas (4)–(6), only the matching degree between the input data and its two
closest referential values is calculated. However, the attribute vector cannot be cast into a
specific interval, like, the numerical input. In this case, if only the reference vectors closest to
the attribute vector are considered, it is difficult to ensure the accuracy of the matching degree.
Therefore, the full activation method is introduced to calculate the similarity with all reference
vectors.

Since the input vector Rr and its referential vector Ar are obtained in Section 3.2, the
distance of Rr and Ar can be calculated by

d R A= − ,r
K

r
K

r
Kr r r (20)
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where c is the number of original attributes in the last attribute vector.
Since the distance and belief degree are inversely related, the distance needs to be re-

ciprocated and normalized. After that, the matching degree αr
Kr can be obtained as follows:

g d
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r
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⎩

(23)

3.4 | Optimal training

Then the outputs of the BRB can be obtained according to the formulas (2), (3), and (7)–(10) in
Section 2. Since some parameters of the initial BRB are determined by experts based on their own
experience and professional knowledge, deviations and misjudgments will inevitably occur if the
problem is too complex. It will affect the accuracy of the BRB model. To improve the performance
of the BRB model, historical sample data can be used to train the parameters, that is, to optimize
the antecedent attribute weights, rule weights, and the belief degree of output reference values.

Figure 2 shows the BRB optimization model, where X is the input sample data set, O is the
observation value of the actual sample set, Ô is the actual output value of the BRB model,
P β θ δ n N i M k RN= { , , | = 1, 2, …, ; = 1, 2, …, ; = 1, 2, …, }n

k
k i the parameter set to be

optimized, ξ(P) is the error between O and Ô.

Objective function:

ξ P

ξ P O O

min{ ( )},

( ) = ( − ˆ ) .
n
i

n
1

=1

2

⎧
⎨⎪

⎩⎪ ∑
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(25)

True system

BRB system

-

True output

BRB output O

Input X

Ô

ξ(P)

FIGURE 2 BRB optimization model. BRB, belief rule base
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It is a nonlinear multi‐objective optimization problem. The sequential linear pro-
gramming (SLP) optimization algorithm is used to solve it. The basic idea of SLP is to
transform the nonlinear programming problem into a series of linear programming
problems, then use the simplex method to obtain the solution set of these linear pro-
gramming problems, and finally obtain the solution of the original nonlinear programming
step by step.

The antecedent attribute weights, rule weights, and belief degree of the output referential
value obtained after optimization are the parameters of the final BRB model.

On the basis of the above steps, the rule number as well as the optimized parameter number
can be reduced.

Theorem 1. Let Mp (p= 1, 2,…, J) be the number of the referential vectors of attribute
vector Rp, J be the number of attribute vectors, h be the number of original attributes
contained in each vector, Tk be the number of attributes of each input, RN1 and RN2 be the
rule number in original BRB and vector‐based BRB, respectively, OPN1 and OPN2 be
the optimized parameter number in original BRB and vector‐based BRB, respectively,
N be the number of referential values of the consequent attribute, then the rule number can

be reduced at least M( )
p

J
p
h

=1

‐1 ‐1∏ times, the optimized parameter number can also be

reduced at least M( )
p

J
p
h

=1

−1 ‐1∏ times.

Proof. According to Sections 3.1 and 3.2, the number of the referential values of each

attribute in Rp is equal toMp. Then, the RN1 and RN2 can be expressed as RN M= ( )J
T J h

1
‐ ( ‐1)k ⋅

M( )
p

J
p
h

=1

‐1
∏ and RN M=

p

J
p2 =1

∏ , respectively. Defined C M M= ( ) ( )RN J
T J h

p

J
p
h−( −1) ‐1

=1

‐1 ‐1k ⋅ ∏

as the rule reduction coefficient, then RN RN=
C2
1

1
RN
⋅ . According to formula (18), there

exists J h Jh( − 1) + 1 Tk≤ ≤ , then M C M( ) ( )
p

J
p
h

RN p

J
p
h

=1

‐1 ‐1
=1

‐1∏ ≤ ≤ ∏ . Therefore, the

rule number can be reduced at least M( )
p

J
p
h

=1

‐1 ‐1∏ times.

Since the OPN1 and OPN2 can be expressed asOPN RN N RN T= + + k1 1 1⋅ and OPN =2

RN N RN J+ +2 2⋅ , respectively. Then OPN OPN
C2
1

1
RN

≈ ⋅ . Thus, the optimized

parameter number can also be reduced at least M( )
p

J
p
h

=1

‐1 ‐1∏ times (approximate value). □

4 | EXPERIMENTAL ANALYSIS AND PERFORMANCE
COMPARISON

In this section, the effectiveness and superiority of the proposed approach are verified through
two cases. One is a simulation data case study, and the other is a practical data case study about
pipeline leakage detection. For ease of explanation, the vector‐based BRB approach proposed in
this paper is referred to as V‐BRB; the original BRB, that is, without modification to the inputs
and outputs, is referred to as O‐BRB.

The experimental environment configuration is Dell/windows10/4G memory/Intel i5/
matlab2016a.
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To evaluate the performance of the algorithm, four indicators, namely, the rule number
(RN), optimized parameter number (OPN), mean square error (MSE) between estimated values
and actual values, and AIC are introduced.

1. The RN reflects the scale of the system. The smaller the value, the more concise the model.
2. The smaller the OPN, the better the model performance.
3. The MSE between the estimated values and the actual values reflects the accuracy of the

inference result. The smaller the value, the better the inference result.
4. AIC is an index that comprehensively considers the accuracy and complexity of the model. It

can reflect the degree of similarity between the established model and the real system. The
smaller the AIC, the higher the degree of similarity between the established model and the
real system. Its calculation formula is as follows:

AIC Pln P MSE OPN= ( ) + 2 ,BRB ⋅ (26)

where P represents the number of data in the data set.

4.1 | Case study 1: simulation data

The simulation data are generated by the following nonlinear function:

y x x x x= 8 sin + 0.7 − 0.1 .1 2 3 4
4 (27)

According to the formula (27), the performance of the proposed approach on the mapping
relationship between the input data xi and the output data y needs to be verified where the
value range of the independent variable xi (i= 1, 2, 3, 4) is [0.17, 0.88], [2, 4], [1, 7], and [0, 2].
According to the range of xi, the range of y can be calculated as in References [3,35]. Randomly
selecting 100 groups of data for the xi and the corresponding output y as the sample data set
U= {x1, x2, x3, x4, y}. In the BRB model, the variables x1, x2, x3, and x4 are regarded as the
antecedent attributes and the variable y is regarded as the consequent attribute.

4.1.1 | Numerical study of V‐BRB

Sixty groups in the sample data are selected randomly and set as the training samples, the
remaining 40 groups are set as the testing samples.

First, the PCA methodology is used to obtain the weights of the input xi. The corresponding
values are φ(x1) = 0.13, φ(x2) = 0.32, φ(x3) = 0.43, and φ(x4) = 0.12. Obviously, φ(x3) > φ(x2) > φ
(x1) > φ(x4). Therefore, the inputs x3 and x2 can be combined into a vector R1 = [x3x2], x1 and x4
can be combined into a vector R2 = [x1x4]. Then the four‐dimensional input can be converted to
two‐dimensional. In this case, eight‐dimensional referential values are used in the inputs R1

and R2. The referential values are described by fuzzy semantic format. They are limit small
(LS), very small (VS), positive small (PS), medium (M), positive medium (PM), large (L),
medium large (ML), and very large (VL). Also, the output is described by six fuzzy semantic
values: very small (VS), positive small (PS), medium (M), positive medium (PM), large (L), and
very large (VL).

Second, the k‐means clustering method is used to calculate the input referential values
which are (0.17, 0.37, 0.44, 0.53, 0.60, 0.61, 0.63, 0.88), (2, 2.6, 2.8, 3.0, 3.1, 3.3, 3.6, 4), (1, 1.7, 3.3,
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3.5, 5.3, 5.5, 6.4, 7), and (0, 0.64, 1.0, 1.1, 1.2, 1.3, 1.5, 2). Then the referential vectors can be ob-
tained as A1 = ([1 2]; [1.7 2.6]; [3.3 2.8]; [3.5 3.0]; [5.3 3.1]; [5.5 3.3]; [6.4 3.6]; [7 4]) and
A2 = ([0.17 0]; [0.4 0.64]; [0.44 1.0]; [0.53 1.1]; [0.60 1.2]; [0.61 1.3]; [0.63 1.5]; [0.88 2]), as shown
in Table 1. Similarly, using the k‐means clustering method to calculate the output referential
value D= (3, 6.8, 10.6, 14.4, 19, 22), as shown in Table 2.

It can be seen from Table 1, there are totally 64 (i.e., 8 × 8 = 64) rules that need to be
established. The initial BRB is established based on expert knowledge and historical data, as
shown in Table 3. The initial antecedent attribute weight δi and rule weight θk are both set to 1.

Then, 60 groups of data are input to the initial V‐BRB model. The inference effect is shown
in Figure 3. Obviously, the performance is poor.

Therefore, optimization training is used to obtain optimal rule weights, antecedent attribute
weights, and belief degree. The optimized antecedent attribute weights are 0.8128 and 0.9445,
respectively. The optimized V‐BRB is shown in Table 4.

The optimized V‐BRB model is used to test the 60 groups of training data and 40 groups of test
data, respectively, and the inference effect (i.e., the comparison between the estimated values and
the true values) is shown in Figures 4 and 5. It can be seen that the inference effect is relatively
ideal, indicating that the vector‐based BRB reasoning approach proposed in this paper is effective.

4.1.2 | Further analysis of effectiveness

To further illustrate the effectiveness of the V‐BRB model in processing the casual inference
problem of multidimensional inputs function, the O‐BRB model is used to make comparison. It
should be noted that the O‐BRB model is built on the same 60 groups of data. The experimental
results are shown in Table 5.

As shown in Table 5, the indicator RN of the V‐BRB model is much better than that of the
O‐BRB model. In this case, since the four antecedent attributes are transformed into two
vectors, there are only 64 rules generating in the V‐BRB model. Therefore, 75% of rules can be
reduced. It greatly reduces the size of the rule base. When comparing the indicator MSE,
the result of the O‐BRB model is slightly better than that of the V‐BRB model. This is because

TABLE 1 Referential vectors of inputs

Semantic value

Referential vector LS VS PS M PM L ML VL

A1 [1 2] [1.7 2.6] [3.3 2.8] [3.5 3.0] [5.3 3.1] [5.5 3.3] [6.4 3.6] [7 4]

A2 [0.17 0] [0.4 0.64] [0.44 1.0] [0.53 1.1] [0.60 1.2] [0.61 1.3] [0.63 1.5] [0.88 2]

Abbreviations: L, large; LS, limit small; M, medium; ML, medium large; PM, positive medium; PS, positive small; VL, very
large; VS, very small.

TABLE 2 Referential values of outputs

Semantic value

Referential value VS PS M PM L VL

D 3 6.6 10.4 14.0 18.8 22

Abbreviations: L, large; M, medium; PM, positive medium; PS, positive small; VL, very large; VS, very small.
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the V‐BRB model reduces the rules, which will affect the accuracy of the model to a certain
extent. Nevertheless, it is acceptable. For the indicator AIC, the value of V‐BRB is much smaller
than the value of O‐BRB, which shows that V‐BRB is much closer to the real system. Actually,
in the O‐BRB model, there are 1796 optimization parameters, while in the V‐BRB model only
contains 450 optimization parameters. It significantly reduces the complexity of the optimi-
zation process.

In conclusion, the V‐BRB model proposed in this paper is effective in dealing with the
casual inference problem of multidimensional input nonlinear function. Moreover, compared
with the traditional model, it has obvious advantages.

TABLE 3 Initial V‐BRB

No. θk X1 and X2 Belief structure

1 1 LS and LS {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

2 1 LS and VS {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

3 1 LS and PS {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

4 1 LS and M {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

5 1 LS and PM {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

6 1 LS and L {(D1, 0), (D2, 0.9926), (D3, 0.0074), (D4, 0), (D5, 0), (D6, 0)}

7 1 LS and ML {(D1, 0.0846), (D2, 0.9154), (D3, 0), (D4, 0), (D5, 0), (D6, 0)}

8 1 LS and VL {(D1, 0.0846), (D2, 0.9154), (D3, 0), (D4, 0), (D5, 0), (D6, 0)}

… … … …

36 1 PM and M {(D1, 0), (D2, 0), (D3, 0.5136), (D4, 0.4864), (D5, 4), (D6, 4)}

37 1 PM and PM {(D1, 0), (D2, 0), (D3, 0.3871), (D4, 0.6129), (D5, 0), (D6, 0)}

38 1 PM and L {(D1, 0), (D2, 0), (D3, 0.7314), (D4, 0.6129), (D5, 0), (D6, 0)}

39 1 PM and ML {(D1, 0), (D2, 0), (D3, 0.7314), (D4, 0.6129), (D5, 0), (D6, 0)}

40 1 PM and VL {(D1, 0), (D2, 0), (D3, 0.8589), (D4, 0.1411), (D5, 0), (D6, 0)}

41 1 L and LS {(D1, 0), (D2, 0), (D3, 0.2880), (D4, 0.7120), (D5, 0), (D6, 0)}

42 1 L and VS {(D1, 0), (D2, 0), (D3, 0.2880), (D4, 0.7120), (D5, 0), (D6, 0)}

43 1 L and PS {(D1, 0), (D2, 0), (D3, 0.2880), (D4, 0.7120), (D5, 0), (D6, 0)}

… … … …

58 1 VL and VS {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.2733), (D6, 0.7267)}

59 1 VL and PS {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.2733), (D6, 0.7267)}

60 1 VL and M {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.6290), (D6, 0.3710)}

61 1 VL and PM {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.6290), (D6, 0.3710)}

62 1 VL and L {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.5516), (D6, 0.4484)}

63 1 VL and ML {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.5516), (D6, 0.4484)}

64 1 VL and VL {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.5516), (D6, 0.4484)}

Abbreviations: L, large; LS, limit small; M, medium; ML, medium large; PM, positive medium; PS, positive small; V‐BRB,
vector‐based belief rule base; VL, very large; VS, very small.
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4.2 | Case study 2: pipeline leakage detection data

In this section, a more complex practical application about pipeline leakage detection is studied
to make further analysis of the proposed approach.

4.2.1 | Introduction of the data set

The data set comes from a pipeline more than 100 km in length installed in the UK. The
pipeline is equipped with flow sensors at the inlet and outlet to detect the oil flow value, and 10
pressure sensors are distributed at the inlet and outlet of the pipeline and in the middle of the
pipeline to detect pressure changes. Changes in data reveal the statuses of the pipeline (i.e., leak
condition or normal condition). Under normal operations, when inlet flow is larger (or less)
than outlet flow, the pressure in the pipeline will build up (or decrease) because the total
content in the pipeline is increasing (or decreasing, respectively). However, if the pattern is
violated, for example, if the inlet flow is larger than the outlet flow, yet the pressure in the line
still decreases, then it is highly likely that there is a leak in the pipeline.

The pipeline is mostly operated in normal condition. To achieve the experimental effect, a
valve is used in the middle of the pipeline to control the oil flowing out to achieve the effect of
simulating leakage. Each leak lasts for several hours, and the size of the leak is also controlled by
the valve. The inlet and outlet flow values and pressure values are collected (f 0, f 1; p 0, p1,…, p9,
respectively). During the leak trial (from #07:00:08# to #12:34:27#), 2008 samples which leak size
is 25% were collected at the rate of 10 s per sample, as shown in Figure 6. The 25% mean there
were 10,000 L of oil in the pipeline at a certain moment, and 250 L of oil had leaked.

4.2.2 | Analysis of effectiveness and superiority

To realize pipeline leakage detection and leak size estimation, the difference between the inlet
flow and outlet flow (i.e., f1− f0) and the value of the nonadjacent pressure sensors (i.e., p0, p2,
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FIGURE 3 Inference effect of training data of initial vector‐based belief rule base [Color figure can be
viewed at wileyonlinelibrary.com]
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p4, p6, and p8) are taken as the inputs of the BRB model (i.e., antecedent attributes), as shown
in Figure 7. And the leak size is taken as the output of the BRB model (i.e., consequent
attribute), as shown in Figure 6.

Thereby the V‐BRB model can be constructed and optimized based on the proposed ap-
proach. Then, 510 samples are selected as the training data. It needs to be pointed out that these
samples cover the data before, during, and after the leakage, which ensures the diversity of
training data. Figures 8 and 9 show the inference effect of training data and all of the sample
data, respectively.

It demonstrates that the estimated outcomes match the true values very closely. To further
verify the superiority of the V‐BRB, three classic BRB models using in the pipeline leak de-
tection cases are selected for comparative analysis. The experimental results are shown in
Table 6.

It can be seen from Table 6 that the V‐BRB is better than the classic BRB models. First, the
V‐BRB is the most concise model since the indicator RN is the least. Correspondingly, the

TABLE 4 Optimized V‐BRB

No. θk X1 and X2 Belief structure

1 0.8364 LS and LS {(D1, 0.3278), (D2, 0.6070), (D3, 0), (D4, 0),(D5, 0.0305), (D6, 0.0347)}

2 0.9312 LS and VS {(D1, 0.7682), (D2, 0.2101), (D3, 0), (D4, 0), (D5, 0.0119), (D6, 0.0098)}

3 0.7482 LS and PS {(D1, 0.9902), (D2, 0), (D3, 0), (D4, 0), (D5, 0), (D6, 0.0098)}

4 0.1305 LS and M {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0), (D6, 0)}

… … … …

14 0.1148 VS and L {(D1, 0.9753), (D2, 0.0017), (D3, 0), (D4, 0), (D5, 0), (D6, 0.0230)}

15 0.2419 VS and ML {(D1, 0.8073), (D2, 0.1317), (D3, 0), (D4, 0), (D5, 0.0305), (D6, 0.0305)}

16 0.3346 VS and VL {(D1, 0.9673), (D2, 0.0019), (D3, 0), (D4, 0), (D5, 0.0061), (D6, 0.0247)}

17 0.1358 PS and LS {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.2922), (D6, 0.7078)}

… … … …

52 0.3492 ML and M {(D1, 0.0016), (D2, 0), (D3, 0), (D4, 0), (D5, 0.1031), (D6, 0.8953)}

53 0.6481 ML and PM {(D1, 0.0019), (D2, 0.0019), (D3, 0), (D4, 0), (D5, 0.1339), (D6, 0.8625)}

54 0.3144 ML and L {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0), (D6, 1}

55 0.1654 ML and ML {(D1, 0.0019), (D2, 0.0019), (D3, 0), (D4, 0), (D5, 0.2589), (D6, 0.7373)}

56 0.3144 ML and VL {(D1, 0.0019), (D2,0.0019), (D3, 0), (D4, 0), (D5, 0.3422), (D6, 0.6540)}

57 0.8946 VL and LS {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0.0019), (D6, 0.9981)}

58 0.6879 VL and VS {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 0), (D6, 1)}

… … … …

62 0.8467 VL and L {(D1, 0.0019), (D2, 0.0019), (D3, 0), (D4, 0), (D5, 0.2339), (D6, 0.7623)}

63 0.5873 VL and ML {(D1, 0.0019), (D2, 0.0019), (D3, 0), (D4, 0), (D5, 0.4422), (D6, 0.5540)}

64 0.9478 VL and VL {(D1, 0.0075), (D2, 0.0059), (D3, 0.0062), (D4, 0.0055), (D5, 0.5851), (D6, 0.3898)}

Abbreviations: L, large; LS, limit small; M, medium; ML, medium large; PM, positive medium; PS, positive small; V‐BRB,
vector‐based belief rule base; VL, very large; VS, very small.
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FIGURE 4 Inference effect of training data after optimization [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 5 Inference effect of testing data after optimization [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Experimental results of O‐BRB and V‐BRB

Indicator

MSE

Model RN OPN Training data Testing data AIC

O‐BRB 256 1796 0.1081 0.1662 3624.91

V‐BRB 64 450 0.1142 0.1831 934.59

Note: The bold underline means the value is better.

Abbreviations: AIC, Akaike Information Criterion; MSE, mean square error; O‐BRB, original belief rule base; OPN, optimized
parameter number; RN, rule number; V‐BRB, vector‐based belief rule base.
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reduction of the number of rules reduces the parameters to be optimized, which can greatly
improve the running speed of the model. Second, the MSE of the V‐BRB is 0.3528 which means
the accuracy of the V‐BRB is the best. Third, by comparing AIC, it can be found that the V‐BRB
proposed in this paper improves the accuracy of the model while reducing the complexity of the
model. In short, the V‐BRB is more effective than other BRB models in dealing with the
pipeline leakage detection data.

4.3 | Discussion

On the basis of the above two case studies and experimental results, the effectiveness and su-
periority of vector‐based BRB approach were validated. It can be used to reduce the complexity of
the BRB model without affecting its accuracy. For the inference process of vector‐based BRB, the
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FIGURE 6 The curve of leak size [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Inference effect of the 2008 sample data [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Experimental results of different BRB models

Models Number of training data RN OPN MSE (testing data) AIC

Xu et al.18 500 56 336 0.4069 14137.06

Zhou et al.28 900 56 336 0.7880 15464.21

Chen et al.40 500 56 349 0.3990 14123.69

V‐BRB 510 32 226 0.3528 13630.59

Note: The bold underline means the value is better.

Abbreviations: AIC, Akaike Information Criterion; BRB, belief rule base; MSE, mean square error; OPN, optimized parameter
number; RN, rule number; V‐BRB, vector‐based belief rule base.
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computational time can be ignored. During the modeling process of vector‐based BRB, para-
meters optimization is necessary to achieve good performance. It takes up most of the compu-
tational time. Actually, in the same experimental environment, the optimization time mostly
depends on the number of parameters. The more the number of parameters, the larger the
optimization time. In case study 1, the optimized parameters are 1796 and 450, respectively. As a
result, the optimization time of O‐BRB and V‐BRB is 53,212 and 7525 s, respectively. It indicates
that the V‐BRB is more than seven times faster than O‐BRB. Similarly, in case study 2, our model
outperforms other classical models. For example, the optimization time of the vector‐based BRB
model (i.e., 13,298 s) with 226 parameters is more than two times faster than that of Xu18 (i.e.,
27,054 s) with 336 parameters. In conclusion, our model is much faster in the same experimental
environment.

5 | CONCLUSION

To overcome the shortcomings of the performance degradation caused by overnumbered
antecedent attributes of the BRB model, a novel nonlinear causal inference approach based on
vector‐based BRB is proposed. The approach extends the numerical matching to multi-
dimensional vector matching, which can effectively reduce the number of rules and thus
streamline the scale of the BRB model. Meanwhile, the full activation method is used to
calculate the similarity of the input attribute vector and all referential vectors. It not only
improves the accuracy of the matching degree, but also retains the integrity and uncertainty of
the information. The experimental results show that the proposed approach can greatly reduce
the complexity of the model while ensuring the accuracy of the model.

Further experimental research can be conducted to optimize the V‐BRB model. For ex-
ample, the selection criteria of the model parameter h is worthy of study. In our experiments,
we convert the antecedent attributes into two‐dimensional (h= 2, four antecedent attributes in
the case study 1) and three‐dimensional (h= 3, six antecedent attributes in the case study 2)
space vector, respectively. It is just one of the feasible strategies. Different values of hmay affect
the optimization process of the weight δi. Therefore, it is a complicated problem which needs to
be solved in the future work.

ACKNOWLEDGMENTS
We acknowledge financial support from the NSFC‐Zhejiang Joint Fund for the Integration of
Industrialization and Informatization, China (U1709215), Zhejiang Province Outstanding
Youth Fund (R21F030005), Open Fund of National Engineering Research Centre for Water
Transport Safety, China (A2020002), NSFC (61903108), Zhejiang Province Key R&D projects
(2019C03104, 2018C04020, and 2021C03015), Zhejiang Province Public Welfare Technology
Application Research Project (LGF20H270004 and LGF19H180018), Key project of Zhejiang
Provincial Medical and Health Science and Technology Plan (WKJ‐ZJ‐2038).

ORCID
Zhang Zhenjie https://orcid.org/0000-0001-7011-8889
Xu Xiaobin https://orcid.org/0000-0003-1822-6190
Chen Peng http://orcid.org/0000-0002-7473-4803
Wu Xudong http://orcid.org/0000-0002-5578-7176
Xu Xiaojian http://orcid.org/0000-0003-3179-1864

ZHENJIE ET AL. | 5023

https://orcid.org/0000-0001-7011-8889
https://orcid.org/0000-0003-1822-6190
http://orcid.org/0000-0002-7473-4803
http://orcid.org/0000-0002-5578-7176
http://orcid.org/0000-0003-3179-1864


Wang Guodong http://orcid.org/0000-0003-0251-6257
Dustdar Schahram http://orcid.org/0000-0001-6872-8821

REFERENCES
1. Yang JB, Liu J, Wang J, Sii HS, Wang HW. Belief rule‐base inference methodology using the evidential

reasoning approach—RIMER. IEEE Trans Syst Man Cybern Part A Syst Hum. 2006;36:266‐285.
2. Yang JB, Xu DL. Nonlinear information aggregation via evidential reasoning in multiattribute decision

analysis under uncertainty. IEEE Trans Syst Man Cybern Part A Syst Hum. 2002;32:376‐393.
3. Dempster AP. A generalization of Bayesian inference. J Royal Statist Soc Ser B. 1968;30(2):205‐247.
4. Shafer G. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press; 1976.
5. Zadeh LZ. Fuzzy sets. Inf Control. 1965;8(3):338‐353.
6. Pawlak Z. Rough sets. Int J Comput Inf Sci. 1982;11:341‐356.
7. Deng Y. Uncertainty measure in evidence theory. Sci China—Inf Sci. 2020;63(11):210201.
8. Wen T, Deng Y. The vulnerability of communities in complex networks: An entropy approach.

Reliab Eng Syst Saf. 2020;196:106782.
9. Zhang L, Zhan JM, Alcantud JCR. Novel classes of fuzzy soft‐coverings‐based fuzzy rough sets with

applications to multi‐criteria fuzzy group decision making. Soft Comput. 2019;23(14):5327‐5351.
10. Song YF, Wang XD, Zhu JW, Lei L. Sensor dynamic reliability evaluation based on evidence theory and

intuitionistic fuzzy sets. Appl Intell. 2018;48(11):3950‐3962.
11. Liu ZG, Liu Y, Dezert J, Cuzzolin F. Evidence combination based on credal belief redistribution for pattern

classification. IEEE Trans Fuzzy Syst. 2020;28(4):618‐631.
12. Wen T, Duan SY, Jiang W. Node similarity measuring in complex networks with relative entropy.

Commun Nonlinear Sci Numer Simul. 2019;78:104867.
13. Wen T, Deng Y. Identification of influencers in complex networks by local information dimensionality. Inf

Sci. 2020;512:549‐562.
14. Wen T, Pelusi D, Deng Y. Vital spreaders identification in complex networks with multi‐local dimension.

Knowl‐Based Syst. 2020;195:105717.
15. Sun R. Robust reasoning: Integrating rule‐based and similarity‐based reasoning. Artif Intell. 1995;75:

241‐295.
16. Liu J, Yang JB, Ruan D, Martinez L, Wang J. Self‐tuning of fuzzy belief rule bases for engineering system

safety analysis. Ann Oper Res. 2008;163(1):143‐168.
17. Jiang J, Li X, Zhou ZJ, Xu DL, Chen YW. Weapon system capability assessment under uncertainty based on

the evidential reasoning approach. Expert Syst Appl. 2011;38(11):13773‐13784.
18. Xu DL, Liu J, Yang JB, et al. Inference and learning methodology of belief‐rule‐based expert system for

pipeline leak detection. Expert Syst Appl. 2007;32:103‐113.
19. Yang JB, Wang YM, Xu DL, Chin KS, Chatton L. Belief rule‐based methodology for mapping consumer

preferences and setting product targets. Expert Syst Appl. 2012;39:4749‐4759.
20. Zhou ZJ, Hu CH, Han XX, He HF, Ling XD, Zhang BC. A model for online failure prognosis subject to two

failure modes based on belief rule base and semi‐quantitative information. Knowl‐Based Syst. 2014;70:221‐230.
21. Kong GL, Xu DL, Body R, Yang JB, Kevin MJ, Carley S. A belief rule‐based decision support system for

clinical risk assessment of cardiac chest pain. Eur J Oper Res. 2012;219:564‐573.
22. Sachan S, Yang JB, Xu DL, Benavides DE, Li Y. An explainable AI decision‐support‐system to automate

loan underwriting. Expert Syst Appl. 2019;144:113100.
23. Hossain MS, Rahaman S, Mustafa R, Andersson K. A belief rule‐based expert system to assess suspicion of

acute coronary syndrome (ACS) under uncertainty. Soft Comput. 2018;22:7571‐7586.
24. Calzada A, Liu J, Wang H, Nugent C, Martinez L. Application of a spatial intelligent decision system on

self‐rated health status estimation. J Med Syst. 2015;39(11):1‐18.
25. Abudahab K, Xu DL, Chen YW. A new belief rule base knowledge representation scheme and inference

methodology using the evidential reasoning rule for evidence combination. Expert Syst Appl. 2016;51:
218‐230.

26. Yang JB. Rule and utility based evidential reasoning approach for multiple attribute decision analysis under
uncertainty. Eur J Oper Res. 2001;131(1):31‐61.

5024 | ZHENJIE ET AL.

http://orcid.org/0000-0003-0251-6257
http://orcid.org/0000-0001-6872-8821


27. Chang LL, Zhou Y, Jiang J, Li MJ, Zhang XH. Structure learning for belief rule base expert system:
A comparative study. Knowl‐Based Syst. 2013;39:159‐172.

28. Zhou ZJ, Hu CH, Yang JB, Xu DL, Chen MY, Zhou DH. A sequential learning algorithm for online
constructing belief‐rule‐based systems. Expert Syst Appl. 2010;37(2):1790‐1799.

29. Wang YM, Yang LH, Chang LL, Fu YG. Rough set method for rule reduction in belief rule base. Control
Decis. 2014;29(11):1943‐1950.

30. Yang LH, Ye FF, Wang YM. Ensemble belief rule base modeling with diverse attribute selection and
cautious conjunctive rule for classification problems. Expert Syst Appl. 2020;146:113161.

31. Li GL, Zhou ZJ, Hu CH, Chang LL, Zhou ZG, Zhao FJ. A new safety assessment model for complex system
based on the conditional generalized minimum variance and the belief rule base. Safety Sci. 2017;93:
108‐120.

32. Chang LL, Zhou ZJ, Chen YW, Xu XB, Sun JB, Liao TJ. Akaike information criterion‐based conjunctive
belief rule base learning for complex system modeling. Knowl‐Based Syst. 2018;161:47‐64.

33. Savan EE, Yang JB, Xu DL, Chen YW. A genetic algorithm search heuristic for belief rule‐based model‐
structure validation. In: Proceedings of the International Conference on Systems, Man, and Cybernetics.
Manchester, UK: IEEE; 2013:1373‐1378.

34. Akaike H. Akaike's Information Criterion. Heidelberg, Berlin: Springer; 2011.
35. Chang LL, Chen YW, Hao ZY, Zhou ZJ, Xu XB, Tan X. Indirect disjunctive belief rule base modeling using

limited conjunctive rules: Two possible means. Int J Approx Reasoning. 2019;108:1‐20.
36. Chang LL, Zhou ZJ, You Y, Yang LH, Zhou ZG. Belief rule based expert system for classification problems

with new rule activation and weight calculation procedures. Inf Sci. 2016;336:75‐91.
37. Yang LH, Wang YM, Chang LL, Fu YG. A disjunctive belief rule‐based expert system for bridge risk

assessment with dynamic parameter optimization model. Comput Ind Eng. 2017;113:459‐474.
38. Chang LL, Zhou ZJ, Liao HC, Chen YW, Tan X, Herrera F. Generic disjunctive belief rule base modeling,

inferencing, and optimization. IEEE Trans Fuzzy Syst. 2019;27(9):1866‐1880.
39. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev: Comput Stat. 2010;2(4):433‐459.
40. Chen YW, Yang JB, Xu DL, Zhou ZJ, Tang DW. Inference analysis and adaptive training for belief rule

based systems. Expert Syst Appl. 2011;38(10):12845‐12860.

How to cite this article: Zhenjie Z, Xiaobin X, Peng C, et al. A novel nonlinear causal
inference approach using vector‐based belief rule base. Int J Intell Syst. 2021;36:
5005‐5027. https://doi.org/10.1002/int.22500

ZHENJIE ET AL. | 5025

https://doi.org/10.1002/int.22500


APPENDIX: THE LIST OF NOTATIONS

Notation Introduction

Rulek kth rule

xi Antecedent attribute

Tk Number of the antecedent attributes

θk Rule weight

RN Number of rules

δi Weight of the ith antecedent attribute

Ai
k Referential value of the ith antecedent attribute in the kth rule

Ai,j jth referential value of the ith antecedent attribute

vi Number of referential values of the ith antecedent attribute

Dn Referential value of the consequent attribute

N Number of referential values of the consequent attribute

ωk Activation weight

δi Normalization of antecedent attribute weights

αi
k Matching degree of the referential value of the ith antecedent attribute in the kth rule

αi j
k
, Matching degree of the jth referential value of the ith antecedent attribute in the kth rule

βn
k Initial belief degree of corresponding referential level determined by expert knowledge

β̂n Belief degree of the output referential value of Dn after fusion

μ Intermediate parameters

y Output of BRB

X Input data set (input matrix)

T Sampling values of the rth attribute variable

J Number of attribute subvectors

Fi ith principal component

wri Weight coefficient of the rth attribute for the ith principal component

W Transformation matrix

τ(r) Mean value of attribute xr

X̃ Input matrix after centralization

V Correlation matrix

λr rth eigenvalue

φr Contribution rate of the rth principal component Fr

h Number of original attributes contained in each vector

Ki Number of cluster centers corresponding to the ith group of data

n(Ck,i) Number of elements in the cluster Ck,i

(Continues)
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Notation Introduction

Ar rth referential vector

Rr rth input vector

dr
Kr Distance of Rr and Ar

c Number of original attributes in the last attribute vector

g
r
Kr

Reciprocal of dr
Kr

αr
Kr Normalization of g

r
Kr

O Observation value of the actual sample set

Ô Actual output value of the BRB model

P Parameter set to be optimized

ξ(P) Error between O and Ô

Mp Number of the referential vectors

CRN Rule reduction coefficient

OPN Number of optimized parameters

MSE Mean square error between estimated values and actual values

AIC Akaike Information Criterion
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