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a b s t r a c t

In order to deal with the generalized uncertainty of the process variable, under the framework
of Dempster–Shafer theory of evidence (DST), a data-driven approach without any probabilistic
assumption is presented via the dynamic form of the evidence reasoning (ER) rule. Firstly, the process
variable is transformed into the corresponding alarm evidence according to referential evidential
matrix constructed by casting historical samples. Secondly, the ER rule is proposed to recursively
combine the current and historical alarm evidence to generate the global alarm evidence for alarm
decision. In the process of recursive fusion, the forgetting strategy is introduced to calculate the
reliability factors of the current and historical alarm evidence; the genetic algorithm is designed to
optimize the importance weights of evidence. Finally, numerical experiment and industrial case are
given to show that the proposed method has a better performance than the classical methods and the
initial conditional evidence updating method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In the design of industrial alarm systems, benefiting from
he application of many technologies such as feature extraction,
attern classification and information fusion in fault diagnosis,
he main process variables in industrial production lines or large
quipment can be effectively monitored and processed [1,2]. By
etecting the abnormal conditions of these process variables,
perators or maintenance engineers then adopt measures such as
egraded operation or emergency shutdown to troubleshoot the
ccidents, prevent the abnormal condition from spreading widely
nd even eliminate failures [3,4]. Hence the alarm system is an
mportant means to ensure the safety of industrial production
nd maintain the safe and stable operation of equipment. In the
nivariate alarm design problem, one of the most common design
ethods is to compare the sample values of the process vari-
ble with a designed alarm threshold [5,6]. If the sample values
xceed alarm threshold, an alarm will be activated. However,
ue to the increasing complexity of industrial systems, this most
ommon alarm design method has high false alarms, frequent
larm overload, therefore there is still a huge possibility for
mprovement [7].

∗ Corresponding author.
E-mail address: xuxiaobin1980@163.com (X. Xu).
ttps://doi.org/10.1016/j.jprocont.2021.07.006
959-1524/© 2021 Elsevier Ltd. All rights reserved.
In recent years, the scholars have proposed some alarm op-
timization design methods based on dead band, time delay and
filtering to improve the performance of univariate alarm [8–10]. A
general idea of these methods is to do data preprocessing before
comparing the sample values of the process variable with alarm
threshold. At the same time, with the continuous development
of research in the field of alarm management, some authorita-
tive industry standards have proposed three main performance
evaluation indices of alarms: false alarm rate (FAR), missed alarm
rate (MAR), and average alarm delay (AAD) [11,12]. Here, the false
alarm rate and the missed alarm rate measure the accuracy of
alarm, and the average alarm delay measures the sensitivity of
alarm. Accuracy and sensitivity together constitute the core of the
alarm performance evaluation, becoming an important factor that
should be considered at the beginning of alarm system design.
By using FAR/MAR/AAD and the receiver operating characteristic
curve (ROC), the relevant parameters (alarm threshold, filtering
order, delay steps, etc.) of the above alarm design methods are
optimized so as to further improve the performance of univariate
alarm [13].

Essentially, these univariate alarm design methods provide
different types of classifiers to distinguish the normal state and
abnormal state of the process variable with generalized uncer-
tainty. The generalized uncertainty is a unified description of the

aleatory uncertainty [14], the epistemic uncertainty [15] and the

https://doi.org/10.1016/j.jprocont.2021.07.006
http://www.elsevier.com/locate/jprocont
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2021.07.006&domain=pdf
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X. Weng, X. Xu, Y. Bai et al. Journal of Process Control 105 (2021) 15–26

m
d
t
a
p
f
f
v
e
m
m
d
A
r
i
r
d
a
i

a
f
p
p
o
p
m
t
h
o
h
T
t
p
a
b
e
i
a
b
d
a

m
s
r
p
c
p
i
p
m

2

s
m
i

a
p
f

F

M

B
a
t
c
I
t

ixtures of these two uncertainties. In the process of classifier
esign, the probability distributions of the process variables need
o be first obtained through statistical analysis of historical data,
nd then the parameters of the classifiers are optimized by using
robabilistic methods. However, in real industrial production,
acing various uncertain factors such as power frequency inter-
erence, electromagnetic interference and irregular mechanical
ibration, and the limited understanding for the complex op-
rating processes of industrial systems, it becomes more and
ore difficult to obtain precise probability distributions of the
ain process variables. Hence, it seems no longer appropriate to
esign alarm system only depending on the probability theory.
t the same time, other different theories are used to accu-
ately describe the generalized uncertainty and comprehensively
mprove the performance of the industrial alarm. Our earliest
esearch work studied linear recursive updating rules of the con-
itional evidence via Dempster–Shafer theory of evidence (DST)
nd explored the effectiveness of evidence updating tactics on
mproving the accuracy of industrial alarm [16].

Moreover, in order to explore alternatives to handle the gener-
lized uncertainty of the process variables, based on the dynamic
orm of evidence reasoning (ER) rule in DST, this paper pro-
oses a pure data-driven alarm design method regardless of any
robability hypothesis. To be more specific, the monitoring value
f the process variable is transformed into the corresponding
iece of alarm evidence according to the referential evidential
atrix (REM) constructed by casting historical samples. Here,

he alarm evidence is a belief distribution about propositions or
ypotheses ‘‘Alarm (A)’’ and ‘‘Non-Alarm (NA)’’. The dynamic form
f ER rule is presented to recursively combine the current and
istorical alarm evidence to generate the global alarm evidence.
he recursive fusion process can integrate more alarm informa-
ion to effectively reduce generalized uncertainty in the original
rocess variable. Hence, the alarm decision based on the global
larm evidence will be more objective and reliable than those
ased on the original variable or the single current/historical
vidence. In addition, the forgetting strategy in CBR methodology
s introduced to calculate the reliability factors of the current
nd historical alarm evidence according to the similarity measure
etween two pieces of evidence. And the genetic algorithm is
esigned to optimize the importance weights of corresponding
larm evidence.
This paper is organized as follows: Section 2 introduces the

ain performance indicators of industrial alarm and alarm deci-
ion; Section 3 gives the theoretical basis of DST and evidence
easoning rule; Section 4 presents the proposed alarm design
rocess based on the dynamic ER rule; in Section 5, a numeri-
al experiment and a real industrial case are given to illustrate
erformance of the proposed ER-based data-driven method and
ts advantages over the traditional alarm design method based on
robability theory and the initial conditional evidence updating
ethod. And conclusion is made in Section 6.

. Performance indices and alarm decision

Let x(t) be a discrete sample of the process variable x with a
ampling period h. x(t) has two states: ‘‘normal state’’ and ‘‘abnor-
al state’’. By comparing with the alarm threshold (trip point) xtp,

f x (t) ≥ xtp, an alarm is generated, if x (t) < xtp, there is no alarm.
In this process, there are two undesired situations, namely, a false
alarm in the normal state and a missed alarm in the abnormal
state. As shown in Table 1, the two main performance indices
of the alarm system: the false alarm rate (FAR) and the missed
alarm rate (MAR), are derived from the corresponding relations
between the false (missed) alarms of the alarm system and the
normal (abnormal) states of the process variables [17].
16
Table 1
Confusion matrix in alarm system.

True classes

Normal Abnormal

Hypothesized
classes

Non-alarm True Non-alarms (TN) Missed Alarms (MA)
Alarm False Alarms (FA) True Alarms (TA)

Obviously, as xtp changes, the entries (TN, MA, FA and TA)
ll change, and their sum is equal to the length of the sam-
le sequence (x(1h), x(2h), . . . ). FAR and MAR are defined as
ollows [18]

AR = (FA/(FA + TN))× 100% (1)

AR = (MA/(TA + MA))× 100% (2)

y plotting receiver operating characteristic curve (ROC), FAR
nd MAR will change with the values of xtp. The optimal alarm
hreshold xotp usually refers to that corresponding to the point
losest to the origin (FAR = 0%, MAR = 0%) on the ROC curve.
f the time when the abnormality occurs is t0 and the time when
he corresponding alarm occurs is ta, the alarm delay time Td can
be calculated as

Td = ta − t0 (3)

If there are N sequences of samples, then N delay times Td1, Td2,
. . . , TdN can be obtained. Then the average alarm delay (AAD) can
be defined as [19]

AAD = (Td1 + Td2 + · · · TdN )/N (4)

3. Theoretical basis

3.1. The basic concepts in DST

A frame of discernment Θ = {H1,H2, . . . ,HN} is a collection
of mutually exclusive hypotheses. Θ and all of its subsets are
together called a power set denoted as P (Θ) or 2Θ .

Definition 3.1 ([20]). A mapping operation m: 2Θ → [0, 1] is a
basic belief assignment function (BBA) on Θ and satisfies m(∅) =

0 and
∑

θ⊆2Θ m(θ ) = 1.
m (θ) represents the belief assignment of the proposition θ ,

and a basic belief assignment function obtained from certain
information source is called a body of evidence or a piece of
evidence abbreviate to evidence. For the design of the alarm
system, the proposition θ = {A,NA,Θ}, here Θ = {A (Alarm) ,
NA (Non-Alarm)}.

Definition 3.2 ([21]). Evidence distance between the two pieces
of evidence m1 and m2 is defined by Jousselme as follows

dJ (m1,m2) =

√
1
2
(
⇀
m1 −

⇀
m2)TD(

⇀
m1 −

⇀
m2) (5)

here D is a n × n matrix, where n is the number of non-empty
set elements in the power set P(Θ), its elements D (A, B) =

|A ∩ B |/|A ∪ B|, A, B ∈ 2Θ , called the Jaccard coefficient. In the
context of alarm system design, a piece of alarm evidence (BBA)
can be modeled by m = (m(A),m(NA),m(Θ)), where the order of
D is n = 3, that is

D =

⎡⎢⎣ 1 0 1/2

0 1 1/2

⎤⎥⎦ (6)
1/2 1/2 1
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hen dJ (m1, m2) = 0, it means that m1 and m2 are exactly same,
nd dJ (m1, m2) = 1 means that both of them are completely
pposite. The similarity between m1 and m2 can be defined as

im(m1,m2) = 1 − dJ (m1,m2) (7)

Obviously, the larger dJ (m1, m2), the smaller Sim(m1, m2), and the
value range of the similarity is [0,1].

3.2. Evidence reasoning (ER) rule

The newly proposed evidence reasoning (ER) rule based on the
orthogonal sum theorem follows a strict probabilistic reasoning
process and clearly distinguishes the conceptions of evidence
reliability and importance [22]. A piece of evidence in the ER rule
can be expressed as follows

e = {(θ,m(θ ))|∀θ ⊆ Θ,
∑
θ⊆Θ

m(θ ) = 1} (8)

Wherein the element (θ , m(θ )) of evidence e indicates that the
degree of support for the proposition θ is m(θ ), the proposition θ
can take any element other than the empty set in 2Θ , here m(θ )
is representation of the BBA function in Definition 3.1. If m(θ )>0,
then θ is called the focal element of e. Obviously, here the BBA
function m reflecting the relationship between the proposition
and its belief is expressed as evidence e with the form of number
pairs.

In ER rule, e is associated with a reliability factor r and an
importance weight w. The r objectively characterizes the ability
of evidence e that provide an accurate assessment or answer to a
given question. The r is an intrinsic property of evidence, and will
not be affected by other evidence; the w subjectively focuses on
the corresponding importance of e relative to other evidence. The
belief distribution function with reliability factor and importance
weight is defined as follows

ẽ = {(θ, m̃(θ ))|∀θ ⊆ Θ; (P(Θ), m̃(P(Θ)))} (9)

Wherein, m̃(θ ) considering r and w represents the degree of
support for θ

m̃(θ ) =

⎧⎪⎨⎪⎩
0
⌣c⌣m(θ )
⌣c (1 − r)

θ = ∅

θ ⊆ Θ, θ ̸= ∅

θ = P(Θ)

(10)

here, ⌣m (θ) = wm (θ) is a normalization factor so that
∑

θ⊆Θ

m̃(θ ) + m̃(P(Θ)) = 1.
For two independent evidence e1 and e2, the corresponding

reliability factors and importance weights are (r1, r2) and (w1, w2)
espectively, and they can be fused by ER rule, as shown below

(θ )e(2) =

⎧⎨⎩
0 θ = ∅

m̂(θ )e(2)∑
D⊆Θ m̂(D)e(2)

θ ⊆ Θ, θ ̸= ∅ (11)

ˆ (θ )e(2) = [(1 − r2)⌣m(θ )1 + (1 − r1)⌣m(θ )2]

+

∑
B∩C=θ

⌣m(B)1⌣m(C)2 ∀θ ⊆ Θ (12)

It can be used recursively for combining multiple pieces of evi-
dence in any order.

4. Alarm design method based on ER rule and forgetting strat-
egy

Here, Section 4.1 will detail how to transform x(t) into the
alarm evidence mt = (mt (A), mt (NA), mt (Θ)) by referential evi-

dential matrix (REM) constructed by casting historical samples.
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In Section 4.2, the current alarm evidence mt and the historical
global alarm evidence m1:t−1 containing all previous information
are recursively combined by ER rule to obtain the current global
alarm evidence m1:t for alarm decision. In addition, considering
that the relationship between the new alarm evidence and the
historical alarm evidence should not be given or static, the relia-
bility factor r and the importance weight w of the corresponding
evidence may change with the sampling time. Therefore, when
using ER rule for recursive iterative fusion, the selection of two
parameters {r, w} should satisfy this dynamic situation. So in
Section 4.3, a method of using the forgetting strategy to dynam-
ically calculate the reliability factors of current and historical
alarm evidence is proposed. And Section 4.4 shows how to use
historical samples to construct genetic algorithm to obtain the
optimal importance weights of historical global alarm evidence
and current alarm evidence. At the end of Section 4.4, a flowchart
is exhibited to illustrate the process of parameter selection and
dynamic alarm evidence updating, and clarify the assumptions of
the proposed alarm design method.

4.1. Alarm evidence generation method based on historical samples

In the classical alarm generation mechanism, it is generally
decided whether to alarm directly by judging whether process
variable x(t) absolutely exceeds alarm threshold xtp, this design
idea lacks a more general expression and flexible description of
generalized uncertainty of the process variable. This section pro-
poses an alarm evidence generation method through statistical
analysis of historical samples to construct a referential evidential
matrix, so as to the sample values of x(t) are converted into the
corresponding alarm evidence.

Let the historical samples set be Z = [x(t), y(t)], wherein
x(t) and y(t) represent the input and output of the designed
larm respectively. The reference values set of input x(t) is R =

{Ri|i = 1, 2 . . . , I}, I is the number of reference values, and analo-
gously the reference values set of output y(t) is Y =

{
Yj|j = 1, 2

}
,

where Y1 = NA = 0 and Y2 = A = 1. The reference values of the
input x(t) can be given according to expert knowledge, and the
reference values 0 and 1 of the output y(t) respectively represents
two states, namely, non-alarm state ‘‘NA’’ and alarm state ‘‘A’’.
Thus, the relationship between the input x(t) and output y(t) is
approximately converted into the relationship between the input
reference values and the output reference values. For the input
x(t) of the historical samples set Z = [x(t), y(t)], its similarity
distribution about the reference values set R can be obtained by
the following information conversion technique.

Va(x(t)) = {(Ri, αi)|i = 1, 2 . . . , I} (13)

among them

αi = (Ri+1 − x(t))/(Ri+1 − Ri) (14)

αi+1 = (x(t) − Ri)/(Ri+1 − Ri) (15)

i represents the similarity of the input x(t) matching the ref-
rence value Ri, αi+1 represents the similarity of the input x(t)
atching the reference value Ri+1, obviously, αi + αi+1 = 1.
The similarity distribution of the output y(t) matching refer-

nce values Yj is

c(y(t)) = {(Yj, λj)|j = 1, 2} (16)

mong them

j =

{
1, y(t) = NA

0, y(t) = A
(17)

= 1 − λ (18)
j+1 j
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ample reference value cast point table.
y(t) x(t)

R1 R2 R3 . . . RI Total

Y1 δ1,1 δ1,2 δ1,3 . . . δ1,I ψ1
Y2 δ2,1 δ2,2 δ2,3 . . . δ2,I ψ2
Total o1 o2 o3 . . . oI K

Table 3
Referential evidential matrix table.
y(t) x(t)

e1 e2 e3 . . . eI
R1 R2 R3 . . . RI

Y1 ξ1,1 ξ1,2 ξ1,3 . . . ξ1,I
Y2 ξ2,1 ξ2,2 ξ2,3 . . . ξ2,I

λj represents the similarity of the output y(t) matching the refer-
nce values Yj.
Thus, each group of samples in the historical samples set Z

= [x(t), y(t)] is transformed into the form of the comprehen-
sive similarity distribution (αiλj, αi+1λj, αiλj+1, αi+1λj+1), obvi-
usly, αiλj+αi+1λj+αiλj+1+αi+1λj+1 = 1. Where αiλj represents

the comprehensive similarity of the input x(t) matching the ref-
erence value Ri, and the output y(t) matching the reference value
Yj. The cast points of all samples in the historical samples set Z
are calculated, and then a sample reference value cast point table
that characterizes the relationship between the input reference
value Ri and the output reference value Y j are established, as
shown in Table 2. Where δi,j represents the sum of the similarity
of the samples [x(t), y(t)] whose input x(t) matches the reference
value Ri and the output y(t) matches the reference value Yj,
ψj =

∑I
i=1 δi,j represents the sum of the overall similarity of y(t)

matching Yj in all samples, oi =
∑2

j=1 δi,j represents the sum of
the overall similarity of x(t) matching Ri in all samples, and there
is

∑2
j=1 ψj =

∑I
i=1 oi = K .

According to Table 2, when the input x(t) takes the reference
value Ri, the belief that the output y(t) takes the reference value
Yj is

ξi,j = δi,j/ψj/
∑2

j=1(δi,j/ψj) (19)

and there is
∑2

j=1 ξi,j = 1, then the alarm evidence corresponding
to the reference value Ri can be defined as ei

ei = {(NA, ξi,1), (A, ξi,2)} (20)

ei with the form of number pairs is another representation of
the alarm evidence as the analysis in Section 3.2. Therefore, a
referential evidential matrix table as shown in Table 3 can be
constructed to precisely describe the relationship between the
input x(t) and the output y(t).

For the newly measured value x(t), t = 1, 2, 3, . . . , it must fall
into the interval [Ri, Ri+1] composed of the two reference values
Ri and Ri+1, and the alarm evidence ei and ei+1 corresponding
to the two reference values Ri and Ri+1 are activated, then the
alarm evidence mt corresponding to the measured value x(t) can
be obtained in the form of a weighted sum of the ei and ei+1

mt (NA) = αiξ1,i + αi+1ξ1,i+1 (21)

mt (A) = αiξ2,i + αi+1ξ2,i+1 (22)

Thus, for each newly measured value x(t), an alarm evidence
mt = (mt (A), mt (NA), mt (Θ)) can be obtained, where mt (Θ)
= 0, mt (NA) and mt (A) are given by formulas (21) and (22)
respectively. According to this conversion mechanism, all x(t)
containing the original information are converted into the cor-
responding alarm evidence m = (m (A), m (NA), m (Θ)). Note
t t t t s
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that the proposed conversion mechanism is a purely data-driven
method that does not require assumption and modeling of the
relationship between ‘‘Alarm (A)’’ and ‘‘Non-Alarm (NA)’’, and this
non-destructive conversion process from original information to
alarm evidence is critical for the subsequent fusion of alarm
evidence.

4.2. Recursive fusion of alarm evidence based on ER rule

According to Section 4.1, the current alarm evidence mt about
the process variable x(t) can be obtained. Then, the ER rule
(formula (11)) in Section 3.2 is extended to the designed alarm
to realize the iterative fusion of corresponding alarm evidence.
That is, the current alarm evidence mt is fused with the historical
global alarm evidence m1:t−1, and the current global alarm evi-
dence m1:t is recursively obtained. Combining expert knowledge,
the initial values of importance weight w1 of m1:t−1 and w2 of
mt , the initial values of reliability factor r1:t−1 of m1:t−1 and rt of
mt are preliminary subjective given respectively, and the fusion
formula is as follows:

m1:t = m(θ )e(2)1:t , θ ⊆ Θ, θ ̸= ∅ (23)

among them

m(θ )e(2)1:t =
m̂(θ )e(2)1:t∑

C⊆Θ m̂(C)e(2)1:t

(24)

ˆ (θ )e(2)1:t = [(1 − rt )⌣m(θ )1:t−1 + (1 − r1:t−1)⌣m(θ )t ]
⌣m(θ )1:t−1

⌣m(θ )t +
⌣m(θ )1:t−1

⌣m(Θ)t +
⌣m(Θ)1:t−1

⌣m(θ )t

θ = Θ, θ ̸= ∅

(25)

(θ )1:t−1 = w1(m1:t−1(θ ))

(θ )t = w2(mt (θ ))
(26)

So far, the current global alarm evidence m1:t = (m1:t (A),
1:t (NA), m1:t (Θ)) is obtained, and the alarm criterion is given: if
1:t (NA) ≥ m1:t (A), then output y(t) = 0, no alarm; if m1:t (NA) <
1:t (A), then output y(t) = 1, alarm. Furthermore, m1:t−1 reflects
he change trend of previous alarm evidence and contains the rich
egular change information of process variable, and mt represents
he latest change of process variable. The m1:t obtained by the
ynamic fusion of these two alarm evidence is closer to the true
tate of the process variable, the alarm decision made based on
1:t is more objective and complete than the decision made based
n a single current/historical alarm evidence.
Note that the fusion parameters {r, w} of current alarm ev-

dence mt and historical global alarm evidence m1:t−1 are fixed
n each recursive fusion of alarm evidence. The contingency of
he fusion parameters selected by expert knowledge is relatively
arge, and in most case it is difficult to ensure that the perfor-
ance of the designed alarm is optimal. In fact, the relationship
etween new and historical evidence should not be given or
tatic, the reliability factor r of the corresponding evidence may
hange with the sampling time, and the importance weight w
lso needs to be optimized to fully characterize the dynamic
elationship between historical global alarm evidence and current
larm evidence. The next two sections are presented to achieve
hese dynamic change of {r, w} to improve the accuracy of the
larm.

.3. The calculation of the reliability factors of alarm evidence based
n forgetting strategy

In the process of dynamic fusion of corresponding evidence
n Section 4.2, the fusion parameters {r, w} are determined ac-
ording to expert knowledge. In addition, since the alarm de-
ign method based on ER rule adopts the incremental learning
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ethod, as the time t increases, the global alarm evidence m1:t
btained after the process of recursive fusion will tend to a cer-
ain result without restriction, which has been make the ‘‘Alarm
A)’’ or ‘‘Non-Alarm (NA)’’ decision falsely. The excessive iterative
usion of the historical alarm evidence m1:t−1 at the redundant
ime and the current alarm evidencemt will also cause the overall
ensitivity of the alarm to decrease. Therefore, it is also necessary
o realize the rational selection of the fusion parameters {r, w},
hen subjectively given fusion parameters result in poor perfor-
ance of the designed alarm, more options are provided for the
perator so as to obtain better alarm performance.
This section first introduces a calculation method for the re-

iability factor of the new and historical alarm evidence. The
eliability factor r is the inherent nature of the alarm evidence
tself and will not be affected by other alarm evidence. Hence,
ased on the forgetting strategy (FS) in case-based reasoning
CBR) [23,24], the idea of intentional forgetting is introduced
nto the iterative process of alarm evidence fusion. That is, the
eliability factor of current and historical alarm evidence is cal-
ulated according to the similarity measure between the two
ieces of evidence. This adjustment of reliability factor achieves
ynamic realtime changes in the relationship between the new
nd historical alarm evidence.
Therefore, the reliability factor rt of the current alarm evidence

t is calculated by the following formula:

t = r + τ ∗ φ ∗ r0 rt ∈ [0, 1] (27)

mong them, r is the average value of the reliability factor of the
alarm evidence at the fast l time, the value of l can be determined
ccording to the sample size. And the reliability factor of the
istorical global alarm evidence m1:t−1 is also given by r .

1:t−1 = r =

t−1∑
t=t−l

rt

/
l r1:t−1 ∈ [0, 1] (28)

r0 is the initial value of reliability factor with adjustable parame-
ters, generally r0 is set to 0.5;
τ is the reward and punishment factor, by comparing the cur-

rent alarm evidence mt with the historical global alarm evidence
m1:t−1, if the two alarm evidence points to the same proposition,
the value is set to 1, otherwise, the value is set to −1, which can
be calculated by

τ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, (mt (NA) > mt (A)|m0:t−1(NA) > m0:t−1(A))

&(mt (NA) ≤ mt (A)|m0:t−1(NA) ≤ m0:t−1(A))

−1, (mt (NA) > mt (A)|m0:t−1(NA) ≤ m0:t−1(A))

&(mt (NA) ≤ mt (A)|m0:t−1(NA) > m0:t−1(A))

(29)

φ is a reliability enhancement factor based on the similarity
measure between the two pieces of evidence, calculated by

φ =
1 − d2

(1 − d1) + (1 − d2)
(30)

Among them, d1 and d2 are the historical global alarm evidence
m1:t−1 and the current alarm evidence mt , which are respectively
combined with the standardized evidence {eNA = (1,0,0), eA =

0,1,0)} to calculate the evidence distance by using Definition 3.2,
iven by the following formula:

1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(m1:t−1 − eNA) ∗ D ∗ (m1:t−1 − eNA)T

2
,

m1:t−1(NA) > m1:t−1(A)√
(m1:t−1 − eA) ∗ D ∗ (m1:t−1 − eA)T

2
,

(31)
m1:t−1(NA) ≤ m1:t−1(A)
19
d2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(mt − eNA) ∗ D ∗ (mt − eNA)T

2
, mt (NA) > mt (A)√

(mt − eA) ∗ D ∗ (mt − eA)T

2
, mt (NA) ≤ mt (A)

(32)

Through the above dynamic adjustment of the reliability factor
f current and historical alarm evidence, the relationship of cor-
esponding evidence during the recursive iterative fusion process
s guaranteed to be updated in real time, and the efficiency of
ynamic fusion of evidence is also improved. Compared to fixed
eliability factors that is subjectively given by expert knowledge,
his calculation of the reliability factors can play a positive role in
educing the FAR and MAR of the designed alarm obviously.

.4. The optimization of the importance weight of alarm evidence

In the previous section, the dynamic adjustment of the re-
iability factor improves the performance of the alarm. In this
ection, the importance weight w is adjusted. Compared with
he reliability factor r, which needs to be updated in real time
uring each fusion process, the importance weights w1 and w2

of the historical global alarm evidence m1:t−1 and the current
alarm evidence mt subjectively define the relative importance
of the alarm evidence compared to other alarm evidence. It is
determined by what kind of evidence participates in the dynamic
fusion, the users of the evidence, and the specific use cases of
the evidence. Therefore, based on the calculation of the reliability
factor r, the sample set W is used to train the importance weight

in order to improve the performance of the model. Under the
ondition that the model is reasonable, the evidence distance
etween the dynamic fusion result m1:t and the standardized

evidence {eNA = (1,0,0), eA = (0,1,0)} is used as the objective
function, and the optimization model based on genetic algorithm
is constructed as follows

min
G

ξ̃ (G) =

Ĩ∑
ĩ=1

dE(m1:t , eĩ)

s.t. 0 ≤ wi ≤ 1, i = 1, 2

(33)

here ξ (G) represents the optimization objective function, G =

wi| i = 1, 2} represents the parameter set to be optimized,
nd the value range of wi is [0,1]. The dE indicates the fusion

result, that is, the evidence distance between the global alarm
evidence m1:t and the standardized evidence {eNA = (1,0,0), eA =

0,1,0)}. This optimization process can be done through the global
ptimization toolbox in Matlab. Finally, the performance of the
odel is gradually optimized due to the change of the optimized
arameter set G.
To summarize, Fig. 1 shows the process of parameter selection

and dynamic alarm evidence updating. Note that the optimal
importance weights w1 and w2 of historical global alarm evidence
m1:t−1 and current alarm evidence mt need to be obtained based
on historical data, which is the training process of the ER-based
industrial alarm system. The reliability factors of current and
historical alarm evidence are obtained by dynamic calculation. All
of the selection of these two parameters are ultimately used to
obtain the optimal ER-based industrial alarm system and make
appropriate alarm decision. In addition, it is necessary to summa-
rize the assumptions of the proposed alarm design method: (1)
design of univariate alarm systems; (2) the types of uncertainty
in process variable x(t) include the random uncertainty, the epis-
temic uncertainty and the mixtures of these two uncertainties;
(3) the x(t) obeys the independent and identically distributed
(IID) or non-IID; (4) focus on such process variables whose mean
values are different for the normal status and the abnormal status,
and it does not matter whether the variance of the process
variables have changed in these two states.
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Fig. 1. The procedure of parameter selection and dynamic alarm evidence updating.
. Comparative analysis of experiments

In this section, the effectiveness of the proposed alarm design
ethod will be verified through a numerical experiment (Exper-

ment 1) and a real industrial case (Experiment 2). Experiment 1
ssumes that the probability distribution of the process variable
(t) is partially unknown, two situations of dynamic alarm evi-
dence updating are considered in this experiment: the relevant
fusion parameters are given subjectively by expert knowledge,
or the calculation of the reliability factor and optimization of
the importance weight are adopted respectively when the fusion
parameters are not properly selected. Besides, Experiment 2 is
a real case of oil pipeline leakage, the process variable x(t) is
he difference between the outlet fluid quality and the inlet fluid
uality of the pipeline. Due to the lack of understanding of the
omplex fluid motion principle and unknown interference in the
bservation environment, the probability distribution of x(t) is
lmost unknown.
In addition, in numerical experiment and real industrial case,

he proposed method in this paper is compared with the tradi-
ional alarm methods such as combined on and off-delay timer
ethod under various delay steps (ADT) and moving average

ilter method in different filtering orders (MAF), and the initial
onditional evidence updating method (CEU) in [16]. The experi-
ental results show that the proposed method has a better effect

han the traditional methods and the CEU method in reducing
AR and MAR. At the same time, it also shows that when the
elevant fusion parameters given by expert knowledge are not
uitable, the performance of the proposed alarm design method
an be further improved by adjusting these fusion parameters.
20
5.1. Experiment 1

In order to construct a sample with a partially unknown prob-
ability distribution, this experiment assumes that the process
variable x(t) follows a piecewise white Gaussian stochastic pro-
cess: x(t) ∼ N(µ1, σ

2
1 ), µ1 ∈ [0.2, 0.3], σ1 ∈ [1.5, 1.6] in

the normal state and x(t) ∼ N(µ2, σ
2
2 ), µ2 ∈ [1.2, 1.5], σ2 ∈

[1.5, 1.6] in the abnormal state. The data characteristics of normal
data and abnormal data of the sampling sequence of the process
variable x(t) is shown in Fig. 2, x(t) changed state at t0 = 1000h. It
can be seen from Fig. 2 that the partial unknown of the probability
distribution of process variable x(t) is specifically manifested in
that the sampled data at each moment has a large variation
range, and at the same time, the sampled data at the preceding
and following moments has a high degree of coincidence. There
will be great uncertainty in the classical alarm design method
by judging whether the process variable x(t) exceeds the alarm
threshold xtp.

The information of process variable is converted into alarm
evidence by the method in Section 4.1. That is, the 2000 sets of
data generated by piecewise white Gaussian stochastic process
are used as training samples, the reference values set of input x(t)
is set to {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}, and the refer-
ence values set of output y(t) is set to {0, 1} according to expert
knowledge. Based on these training samples, the comprehensive
similarity distribution is used to statistically construct a sample
reference value cast point table as shown in Table 4, and then
a referential evidential matrix table is constructed, as shown in
Table 5.

Continue to use these 2000 sets of data, according to the
contents in Section 4.1, the sample reference value cast point
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Fig. 2. Sampling sequence of process variable x(t).
Table 4
Sample reference value cast point table.
y(t) x(t)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 Total

Y1 2.53 8.51 33.83 91.98 183.37 255.23 211.00 139.43 58.09 12.86 2.16 0.7 0.31 1000
Y2 0 0.92 6.64 27.23 86.38 175.43 246.04 236.59 136.64 66.31 11.69 4.2 1.94 1000
Total 2.53 9.43 40.47 119.21 269.75 430.66 457.04 376.02 194.73 79.17 13.85 4.9 2.25 2000
2
s
t

b

r
F
v

o
F
d

Table 5
Referential evidential matrix table.
y(t) x(t)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Y1 1 0.90 0.84 0.77 0.68 0.59 0.46 0.37 0.30 0.16 0.16 0.14 0.08
Y2 0 0.10 0.16 0.23 0.32 0.41 0.54 0.63 0.70 0.84 0.84 0.86 0.92

Table 6
Optimized partial values of two reliability factors.
r t

377 378 379 380 381 . . . 1566 1567 1568

rt 0.9504 0.7895 0.7774 0.8296 0.8063 . . . 0.7275 0.7800 0.6866
r1:t−1 0.7081 0.6728 0.8916 0.7061 0.5173 . . . 0.8252 0.5083 0.9651

table in Table 4 and the referential evidential matrix table in
Table 5 are constructed respectively. According to Section 4.3,
the reliability factors {r1:t−1, rt} of the historical global alarm evi-
dence and the current alarm evidence are calculated respectively.
Specifically, the size of l is determined according to the amount
of sample data. Here, l = 10, and the initial reliability factor r1
t time t = 1 is set to 1. Then formulas (27)∼(32) are used
o calculate the relevant reliability factors r1:t−1 and rt . Table 6
hows the partial values of these two reliability factors. It can
e seen that after calculation, the reliability factors of these two
larm evidence are not fixed in the dynamic fusion process, but
re changed according to the similarity measure between alarm
vidence over time, so as to the dynamic realtime change of the
elationship between current alarm evidence and historical global
larm evidence is realized. Then combined with the calculation
f reliability factors, according to Section 4.4, the training sam-
les are used to build an optimization model based on genetic
lgorithm, and the optimized importance weight w1 = 0.4412
nd w2 = 0.1471 of historical global alarm evidence m1:t−1 and
urrent alarm evidence mt are obtained respectively.
Next, a test experiment is carried out on the proposed univari-
te alarm design method based on ER rule (UER). Still generating

21
000 sets of data as test samples through piecewise white Gaus-
ian stochastic process, formulas (21) and (22) are used to obtain
he current alarm evidence mt based on the referential evidential
matrix table; Then combining with optimized importance weight
w1 = 0.4412 and w2 = 0.1471, formulas (27)∼(32) are used
to calculate the relevant reliability factors rt and r1:t−1. On this
asis, the global alarm evidence m1:t at each moment is obtained

according to formula (23), Fig. 3 showsm1:t (NA) and m1:t (A) of the
global alarm evidence m1:t . Finally, the alarm decision is made
according to the alarm criterion, and the FAR and the MAR are
2.7% and 1.6% respectively. As a contrast, another experiment is
carried out on the proposed method without dynamic change of
the fusion parameters {r, w}. Repeating the above experimental
steps, when using formula (23) to obtain the global alarm ev-
idence m1:t , the importance weight and the reliability factor of
relevant alarm evidence are set to w1 = w2 = 1 and r1:t−1 =

t = 0.9 respectively according to expert knowledge, as shown in
ig. 4, and the FAR and the MAR are 12.7% and 13.6% respectively
ia the alarm criterion.
At the same time, it can be clearly seen from the comparison

f Figs. 3 and 4, the overlap between m1:t (NA) and m1:t (A) in
ig. 3 is less than the overlap in Fig. 4. Obviously, through the
ynamic adjustment of parameters (r, w), the fusion result m1:t

more strongly supports the true state of the process variable
x(t). Therefore, the FAR and MAR of the proposed method under
dynamic changes of the fusion parameters must be lower than the
fusion parameters are fixed, and the final experimental results
also prove this point. So when the relevant fusion parameters
given by expert knowledge are not suitable, the performance of
the proposed method can be further improved by adjusting these
fusion parameters.

To fully demonstrate the effectiveness of the proposed method,
using the piecewise white Gaussian stochastic process to generate
200 sets of test samples, performing 200 test experiments on
x(t), and calculating the mean values of FAR, MAR and AAD
of the proposed UER method, the alarm delay timer method
under various delay steps (ADT), moving average filter method
in different filtering orders (MAF), and the initial conditional

evidence updating method (CEU) in [16] under the optimal alarm
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Fig. 3(a). m1:t (NA).
Fig. 3(b). m1:t (A).
Fig. 4(a). m1:t (NA).
threshold xotp respectively, Tables 7 and 8 show the statistical
results of the m(FAR), m(MAR) and AAD, Fig. 5 visually draws
the line graphs about the synthesis g = (m(FAR)2 + m(MAR)2)0.5

about the m(FAR) and m(MAR) and AAD under those different
methods. In addition, since the UER and CEU methods do not need
22
to consider the delay steps or filtering orders, those two methods
are represented by a smooth straight line in Fig. 5 respectively.

It can be seen from Fig. 5, Tables 7 and 8 that the FAR and
MAR of the proposed UER method are the lowest when the
probability distribution of process variables is partially unknown.
On the one hand, there is no information loss in the process of
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Fig. 4(b). m1:t (A).
Table 7
Comparison of performance evaluation indicators of UER/CEU/ADT.

UER CEU ADT

order = 3 order = 4 order = 5 order = 6 order = 7 order = 8 . . . order = 14

xotp \ 0.79 0.84 0.83 0.92 0.64 0.64 0.72 . . . 0.31
m(FAR) 1.23% 5.63% 18.12% 12.11% 5.03% 11.30% 7.44% 1.28% . . . 1.08%
m(MAR) 2.65% 4.26% 21.88% 15.10% 15.45% 4.45% 5.15% 11.13% . . . 20.53%
AAD 19.03 13.7 6.26 12.31 24.66 27.52 42.25 98.73 . . . 198.17
Table 8
Comparison of performance evaluation indicators of UER/CEU/MAF.

UER CEU MAF

step = 3 step = 4 step = 5 step = 6 step = 7 step = 8 . . . step = 14

xotp \ 0.79 0.82 0.86 0.84 0.79 0.80 0.77 . . . 0.77
m(FAR) 1.23% 5.63% 26.43% 21.32% 19.73% 19.91% 17.12% 16.97% . . . 10.28%
m(MAR) 2.65% 4.26% 27.89% 26.22% 23.31% 18.68% 17.20% 14.96% . . . 8.46%
AAD 19.03 13.7 3.40 4.16 5.18 5.28 6.12 7.84 . . . 19.24
Fig. 5(a). g = (m(FAR)2+m(MAR)2)0.5 under MAF/ADT/CEU/UER methods.
s
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onverting the process variable into alarm evidence through the
eferential evidential matrix table, which lays a good foundation
or the subsequent fusion of corresponding alarm evidence. On
he other hand, in the process of dynamic fusion of alarm evi-
ence, the ER rule and the optimal design of the relevant fusion
arameters are used to comprehensively consider the historical
nd current alarm evidence, so that the obtained current global
larm evidence is the most true and exhaustive response to
rocess variable. Correspondingly, due to the limitation of the
iltering orders and delay steps used in the data preprocessing
23
tage of the classical alarm design methods such as ADT and MAF
ethods, the original information loss of the process variable is

oo large, eventually the FAR and MAR are too high; similarly, the
nformation loss during the alarm evidence conversion process is
arge because the fuzzy membership function is a non-continuous
unction, which ultimately leads to the poor effect of the CEU
ethod.
Note that as the filtering orders of the MAF method increases

rom step = 3 to step = 14, the AAD increases from 3.4 to 19.24.
hen step = 14, the AAD = 19.24 is equivalent to the UER
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Fig. 5(b). AAD under MAF/ADT/CEU/UER methods.
Fig. 6. Sampled data f0(t) and f1(t) during the leak test.
method, but m(FAR) = 10.28% and m(MAR) = 8.46% of the former
are much higher than them(FAR) = 1.23% andm(MAR) = 2.65% of
the latter. Similarly, the m(FAR) = 1.28% of the ADT method when
order = 8 is the closest to the proposed method in this paper,
but AAD = 98.73, which is almost impossible to receive in actual
industrial scenarios. It can be seen that the proposed UER method
greatly reduces the FAR and MAR of the designed alarm without
making the AAD higher, and finally achieves a comprehensive
tradeoff between the sensitivity and accuracy.

5.2. Experiment 2

In this actual case, the length of the liquefied petroleum
gas (LPG) pipeline detected reached 100 kilometers [25]. Mass
flowmeters were set at the inlet and outlet of the pipeline re-
spectively to collect flow data, and the sampling period were h
= 10 s. Opened the valve for a typical leak test lasting 23.62 h,
the outlet flow and inlet flow during the whole test period were
expressed as f1(t) and f0(t) (unit: kg) respectively. With a total
f 8505 sampling points, the leakage time period was t = 122h

to t = 2209h, which lasted 5.8 h in total as shown in Fig. 6.
Theoretically, f1(t)- f0(t) = 0 indicates the normal state, and f1(t)-
0(t)<0 indicates the abnormal state (that is, the pipeline leaks),
ere x(t) = f1(t)- f0(t) is used as the process variable in the

designed alarm.
However, there is usually an inevitable deviation between the-

oretical calculation and engineering practice as shown in Fig. 7,
when the pipeline does not leak, x(t) may be less than 0, so
24
it is unreasonable to set the alarm threshold to xtp = 0. The
reasons for this deviation are difficult to quantify, such as fluid
fluctuations, temperature and pressure changes, and turbulence,
which all may cause this phenomenon randomly and accidentally.
In addition, the sampled data is also contaminated by various un-
known noise and interference. In short, due to these various pos-
sible reasons, the mean values and variance of x(t) under normal
and abnormal status have changed and it is impossible to model
statistical characteristics only through sampled data. Therefore,
the probability distribution of x(t) here is almost completely
unknown.

Using the historical data in Fig. 6 as a training sample, re-
peating the steps of Experiment 1 in Section 5.1 to obtain the
optimal alarm threshold xotp of the ADT, MAF and the CEU meth-
ods, the importance weights w1 = 0.6837 and w2 = 0.1560
of the proposed UER methods. In addition, because the cost of
conducting an oil pipeline leak test is too high, when verifying
the effectiveness of the proposed method, the inlet flow f0(t) and
the outlet flow f1(t) are added with 3% random disturbances as
the test samples, namely f ′

0 (t) = f0(t)(1+ϑ) and f ′

1(t) = f1(t)(1+

ϑ), the random variables ϑ satisfies the uniform distribution
U(−0.03, 0.03). Based on this, 200 test sequences are generated,
denoted as x′(t)8505t=1 , and the corresponding process variable is
x′(t) = f ′

1(t)− f ′

0(t). Then calculating the mean values of FAR, MAR
and AAD of the proposed UER method, the ADT, MAF and CEU
methods under the optimal alarm threshold xotp respectively, the
comparison results are shown in Tables 9 and 10.

It can be seen from Tables 9 and 10, due to the low coincidence
of the sampled data in the normal state and the abnormal state,
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Fig. 7. The training data x(t) = f1(t)- f0(t) calculated by Fig. 6.
Table 9
Comparison of performance evaluation indicators of UER/CEU/ADT.

UER CEU ADT

order = 3 order = 4 order = 5 order = 6 order = 7 order = 8 . . . order = 14

xotp \ −0.72 −0.70 −0.70 −0.70 −0.70 −0.79 −0.79 . . . −0.84
m(FAR) 1.83% 3.63% 7.39% 5.95% 5.62% 5.32% 3.63% 3.48% . . . 2.39%
m(MAR) 1.20% 1.26% 4.11% 1.94% 1.35% 1.01% 2.38% 1.60% . . . 4.73%
AAD 0.16 1.17 3.38 4.69 5.70 6.53 19.65 37.96 . . . 115.11
Table 10
Comparison of performance evaluation indicators of UER/CEU/MAF.

UER CEU MAF

step = 3 step = 4 step = 5 step = 6 step = 7 step = 8 . . . step = 14

xotp \ −0.72 −0.70 −0.70 −0.70 −0.70 −0.70 −0.70 . . . −0.70
m(FAR) 1.83% 3.63% 9.77% 9.64% 9.69% 9.78% 9.83% 9.73% . . . 9.98%
m(MAR) 1.20% 1.26% 7.07% 6.92% 7.12% 7.15% 7.18% 7.11% . . . 7.11%
AAD 0.16 1.17 0.98 1.15 1.16 1.16 1.01 1.18 . . . 1.15
the FAR, MAR and AAD of these four alarm design methods under
this actual case are relatively low through compared with the
numerical experiment in Section 5.1. In the horizontal compar-
ison, compared with traditional ADT/MAF methods and the CEU
method, the proposed UER method still have the lowest FAR,
MAR and AAD. The advantages of ER rule in dealing with process
variables whose probability distribution is partially unknown or
completely unknown have been discussed in detail in the preface
and will not be repeated here.

6. Conclusion

In order to deal with the generalized uncertainty of the pro-
ess variable, this paper presents a purely data-driven approach
ithout any probabilistic assumption based on the dynamic form
f the evidence reasoning (ER) rule under the framework of
empster–Shafer evidence theory (DST). Its main contributions
re as follows: (1) constructs the referential evidential matrix to
ransform the raw information of process variable to the corre-
ponding piece of alarm evidence and proposes the dynamic form
f ER rule to combine the current and historical alarm evidence
o generate the global alarm evidence for alarm decision; (2)
ntroduces the forgetting strategy to realize the calculation of
he reliability factors and uses genetic algorithm to realize the
ptimization of the importance weights respectively, so as to
urther improve the performance of the designed alarm system.
inally, numerical and real industrial case are given to show that
he proposed method in this paper has a better performance
25
than the classical optimization design methods and the initial
conditional evidence updating method.

Assuredly, there are still some issues worth exploring in depth.
For instance, this paper only considers the accuracy of the alarm
by the FAR and the MAR to evaluate the alarm performance, and
the sensitivity of the alarm is rarely considered. At the same time,
the AAD also needs to be used as an evaluation indicator, because
in actual engineering applications, AAD represents the degree of
reaction of the designed alarm to changes in equipment status.
Therefore, the FAR/MAR/AAD need to be comprehensively consid-
ered in order to achieve the best balance between the accuracy
and sensitivity of the alarm in the future. Furthermore, this paper
proposes the dynamic form of ER rule to recursively combine the
current and historical alarm evidence. It is possible to consider
using ER rule to fuse the alarm decision results obtained by
multiple univariate alarms in some proper way, that is, to extend
the design idea of univariate alarms to multivariate alarms, so
as to give more precise judgment to the operating state of the
equipment.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



X. Weng, X. Xu, Y. Bai et al. Journal of Process Control 105 (2021) 15–26

A

s
Z
f
p
j
P
L
h

A

o

R

cknowledgments

We acknowledge financial support from the Zhejiang out-
tanding youth fund project, China (R21F030005), the NSFC-
hejiang Joint Fund for the Integration of Industrialization and In-
ormatization, China (U1709215), the Zhejiang Province Key R&D
rojects, China (No. 2019C03104, 2021C03015, 2018C01031), Zhe-
iang Province Public Welfare Technology Application Research
roject, China [http://dx.doi.org/10.13039/501100010248] (No.
GF20H270004), Key project of Zhejiang Provincial Medical and
ealth Science and Technology Plan, China (WKJ-ZJ-2038).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jprocont.2021.07.006.

eferences

[1] G. Chen, G. Lu, J. Liu, P. Yan, An integrated framework for statistical
change detection in running status of industrial machinery under transient
conditions, ISA Trans. 94 (2019) 294–306.

[2] S. Choi, E. Pazouki, J. Baek, H.R. Bahrami, Iterative condition monitoring and
fault diagnosis scheme of electric motor for harsh industrial application,
IEEE Trans. Ind. Electron. 62 (3) (2015) 1760–1769.

[3] S. Cheng, B. Lin, B. Hsu, M. Shu, Fault-tree analysis for liquefied natural
gas terminal emergency shutdown system, Expert Syst. Appl. 36 (9) (2009)
11918–11924.

[4] M.H. Roohi, T. Chen, Generalized moving variance filters for industrial
alarm systems, J. Process. Control 95 (2020) 75–85.

[5] M.R. Heidari, I. Izadi, Comment on performance assessment for generalized
delay-timers in alarm configuration, J. Process. Control 84 (2019) 168–170.

[6] J. Taheri-Kalani, G. Latif-Shabgahi, S.M. Alyari, On the use of penalty
approach for design and analysis of univariate alarm systems, J. Process.
Control 69 (2018) 103–113.

[7] M. Hravnak, T. Pellathy, L. Chen, et al., A call to alarms: Current state and
future directions in the battle against alarm fatigue, J. Electrocardiol. 51
(6) (2018) S44–S48.

[8] S. Lai, F. Yang, T. Chen, et al., Accelerated multiple alarm flood sequence
alignment for abnormality pattern mining, J. Process. Control 82 (2019)
44–57.
26
[9] W. Tan, Y. Sun, I.I. Azad, T. Chen, Design of univariate alarm systems via
rank order filters, Control Eng. Pract. 59 (2017) 55–63.

[10] W. Hu, J. Wang, T. Chen, A new method to detect and quantify correlated
alarms with occurrence delays, Control Eng. Pract. 80 (2015) 189–198.

[11] EEMUA-191, Alarm Systems a Guide To Design, Management and Procure-
ment, Engineering Equipment and Materials Users Association, London,
2007.

[12] ANSI/ISA-18.2, Management of Alarm Systems for the Process Industries,
International Society of Automation, North Carolina, 2009.

[13] J. Xu, J. Wang, I. Izadi, T. Chen, Performance assessment and design for
univariate alarm systems based on FAR, MAR, and AAD, IEEE Trans. Autom.
Sci. Eng. 9 (2) (2012) 296–307.

[14] J. Liu, L.X. Cao, C. Jiang, et al., Parallelotope-formed evidence theory model
for quantifying uncertainties with correlation, Appl. Math. Model. 77 (1)
(2020) 32–48.

[15] W.L. Oberkampf, J.C. Helton, C.A. Joslyn, et al., Challenge problems: uncer-
tainty in system response given uncertain parameters, Reliab. Eng. Syst.
Safe 85 (1–3) (2004) 11–19.

[16] X.B. Xu, S.B. Li, X.J. Song, C.L. Wen, D.L. Xu, The optimal design of industrial
alarm systems based on evidence theory, Control. Eng. Pract. 46 (JAN.)
(2016) 142–156.

[17] Z. Wang, J. Wang, Data classification and performance evaluation for
the most commonly-used univariate alarm systems, J. Loss Prevent. Proc.
(2020) 104208.

[18] I. Izadi, An Introduction to Alarm Analysis and Design, Fault Detection,
Supervision and Safety of Technical Processes, 2009.

[19] I. Izadi, S.L. Shah, D.S. Shook, et al., A framework for optimal design of
alarm systems, IFAC Proc. Vol. 42 (8) (2009) 651–656.

[20] G. Shafer, A mathematical theory of evidence turns 40, Int. J. Approx.
Reason. 79 (2016) 7–25.

[21] A.L. Jousselme, P. Maupin, Distances in evidence theory: Comprehensive
survey and generalizations, Int. J. Approx. Reason. 53 (2) (2012) 118–145.

[22] J.B. Yang, D.L. Xu, Evidential reasoning rule for evidence combination, Artif.
Intell. 205 (2013) 1–29.

[23] M. Relich, P. Pawlewski, A case-based reasoning approach to cost es-
timation of new product development, Neurocomputing 272 (2018)
40–45.

[24] M.M. Abed, A.G.M. Khanapi, N. Arunkumar, et al., Genetic case-based
reasoning for improved mobile phone faults diagnosis, Comput. Electr. Eng.
71 (2018) 212–222.

[25] D.L. Xu, J. Liu, J.B. Yang, et al., Inference and learning methodology of
belief-rule-based expert system for pipeline leak detection, Expert Syst.
Appl. 32 (1) (2007) 103–113.

https://doi.org/10.1016/j.jprocont.2021.07.006
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb1
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb1
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb1
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb1
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb1
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb2
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb2
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb2
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb2
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb2
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb3
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb3
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb3
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb3
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb3
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb4
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb4
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb4
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb5
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb5
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb5
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb6
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb6
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb6
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb6
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb6
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb7
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb7
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb7
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb7
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb7
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb8
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb8
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb8
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb8
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb8
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb9
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb9
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb9
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb10
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb10
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb10
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb11
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb11
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb11
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb11
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb11
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb12
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb12
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb12
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb13
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb13
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb13
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb13
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb13
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb14
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb14
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb14
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb14
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb14
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb15
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb15
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb15
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb15
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb15
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb16
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb16
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb16
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb16
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb16
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb17
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb17
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb17
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb17
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb17
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb18
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb18
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb18
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb19
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb19
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb19
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb20
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb20
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb20
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb21
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb21
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb21
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb22
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb22
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb22
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb23
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb23
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb23
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb23
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb23
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb24
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb24
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb24
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb24
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb24
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb25
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb25
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb25
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb25
http://refhub.elsevier.com/S0959-1524(21)00107-4/sb25

	A data-driven industrial alarm decision method via evidence reasoning rule
	Introduction
	Performance indices and alarm decision
	Theoretical basis
	The basic concepts in DST
	Evidence reasoning (ER) rule

	Alarm design method based on ER rule and forgetting strategy
	Alarm evidence generation method based on historical samples
	Recursive fusion of alarm evidence based on ER rule
	The calculation of the reliability factors of alarm evidence based on forgetting strategy
	The optimization of the importance weight of alarm evidence

	Comparative analysis of experiments
	Experiment 1
	Experiment 2

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


