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Abstract— Destination prediction plays an important role as
the basis for a variety of location-based services (LBSs). However,
it poses many threats to users’ location privacy. Most related
work ignores privacy preservation in destination prediction. Few
studies focus on specific kinds of privacy-preserving destination
prediction algorithms and thus are not applicable to other
prediction methods. Furthermore, the third party involved in
these studies is a potential privacy threat. Additionally, another
line of related work regarding LBSs neither guarantees the
utility of the predicted results nor provides quantifiable privacy
preservation. To this end, in this paper, we propose a general
framework that can provide quantifiable privacy preservation
and obtain a trade-off between the privacy and the utility of the
predicted results by utilizing differential privacy and a neural
network model. Specifically, it first adopts a specially designed
differential privacy to construct a data-driven privacy-preserving
model that formulates the relationship between injected noise
and privacy preservation. Then, it combines a Recurrent Neural
Network and Multi-hill Climbing to add fine-grained noise to
obtain the trade-off between the privacy preservation and the
utility of the predicted results. Our extensive experiments on
real-world datasets validate that the proposed framework can
be applied to different prediction methods, provide quantifiable
location privacy preservation, and guarantee the utility of the
predicted results simultaneously.

Index Terms— Destination prediction, privacy preservation,
utility awareness, differential privacy, neural network.

I. INTRODUCTION

W ITH the popularity of embedded GPS devices and the
rapid development of positioning technology, we ben-

efit increasingly from various location-based services (LBSs)
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that function in all aspects of our lives, e.g., business, health-
care, and work [1], [2]. In recent years, a technology called
destination prediction, which is a method used to predict
the destinations of mobile users based on their given sub-
trajectories, has gradually matured and now significantly facil-
itates LBSs [3]–[6], as shown in Fig. 1. However, it entails
location privacy disclosure at the same time.

Destination prediction provides LBSs with various appli-
cation scenarios (cf. Fig. 1), e.g., automatically setting des-
tinations before manual operations occur, sending targeted
advertisements based on these destinations, and dispatching
taxi orders based on passengers’ destinations. Specifically,
in 2016, Google Maps was embedded with destination pre-
diction, assisting drivers in setting their destinations without
manual operations [7]. Moreover, in 2017, “Offline Trajecto-
ries“, an application announced by Facebook, was equipped
with destination prediction technology, aiming at targeted
advertisements and site recommendations [8]. In addition,
to optimize the online car-hailing system, Uber and DiDi1

apply destination prediction in their dispatching systems to
raise the order acceptance rates of drivers and reduce the
waiting time of passengers [9], [10].

Destination prediction has achieved high accuracy [10],
and therefore, it poses many privacy threats to mobile users.
Specifically, such destination prediction contributes to new
crime scenes. For example, with background knowledge,
i.e., the partial trajectory of a victim, an adversary can
infer the victim’s destination based on destination predic-
tion frameworks, and this threatens the victim’s privacy and
security [3], [8]. Currently, the prediction accuracy is approxi-
mately 75% with regard to successfully predicting the victim’s
exact destination [10]. Furthermore, in 2016, Google faced a
backlash for an implementation of Google Maps that collected
large amounts of mobile users’ trajectory information to infer
users’ exact destinations [8], [11].

Most related work has focused on predicted desti-
nations (i.e., predicted results) with high accuracy, and
these can be largely classified into three categories:
Markov-based algorithms [3], [4], [12], neural network-based
algorithms [6], [13], [14], and other framework-based algo-
rithms [5], [10], [15]. However, these work ignored privacy
preservation in destination prediction. In addition, only a
few studies [3], [16], [17] concentrated on protecting users’

1DiDi Chuxing (“DiDi”) is a mobile transportation platform that offers a
full range of app-based transportation services, including taxis, buses, and
designated drivers.
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Fig. 1. Illustration of destination prediction services.

location privacy in destination prediction. However, these
methods were designed for specific kinds of destination
prediction algorithms and thus are not applicable to other
prediction methods. Furthermore, the third party adopted in
these studies is a potential privacy threat. Additionally, another
line of related work mainly consists of three categories:
cloaking-based algorithms [2], [18]–[21], dummy-based algo-
rithms [1], [22]–[25] and differential privacy-based algo-
rithms [26]–[29]. However, a fundamental limitation of these
three kinds of techniques is that they definitively reduce the
utility of the predicted results and cannot provide theoretically
quantifiable privacy preservation.

To address the problem mentioned above, we propose a
utility-aware general framework that provides quantifiable pri-
vacy preservation and obtains a trade-off between the privacy
and the utility of the predicted results by utilizing geo-
indistinguishability [26] (a specially designed type of differen-
tial privacy) and a neural network model. Our key observation
is that the existing work concerning privacy preservation in
destination prediction is prediction method-driven framework
and thus is not applicable to other destination prediction
methods. Therefore, we investigate a data-driven framework
that protects users’ location privacy by processing the users’
trajectories, i.e., the inputs of destination prediction methods,
and so it can be applied to multiple kinds of destination
prediction methods. The main idea is that it first adopts a
specially designed type of differential privacy to construct a
data-driven privacy-preserving framework, in which Multiple
Linear Regression is employed to formulate the relationship
between the injected noise and privacy preservation, with
the aim of providing quantifiable privacy preservation. Then,
on this basis, we propose an optimized framework that com-
bines Recurrent Neural Network and Multi-hill Climbing for
adding fine-grained noise to obtain the trade-off between the
privacy preservation and the utility of the predicted results.

Specifically, we first sample via adding noise of various
scales into the trajectories and generate multiple samples
from the trajectory dataset. Then, the raw samples and noisy
samples are fed into the prediction model as inputs to obtain
the multi-group prediction results, which are used to construct
a data-driven model. Thereafter, Mltiple Linear Regression
is used to fit the relationship between the noise scale and
privacy protection. For the sake of the utility of the predicted
results, we optimize the noise scales at each location along the
sub-trajectories to obtain the trade-off between privacy preser-
vation and the utility of the predicted results. Then, to solve
such an optimization, we use Neural Arithmetic Logic Units
(NALUs) [30] to formulate a neural network model and utilize
Multi-hill Climbing to find a sub-optimal setting because of the

huge overhead of fine-density traversal. Finally, we validate the
performances of the proposed framework on two real-world
datasets, i.e., the dataset from the T-Drive project [31] and
a dataset from Kaggle [32], and four different prediction
methods. The extensive results validate that our framework can
be applied to different prediction methods, provide quantifiable
location privacy preservation, and guarantee the utility of the
predicted results at the same time.

In summary, we make the following contributions in this
paper:

• To the best of our knowledge, this is the first work with
proven guarantees for both users’ location privacy and
the utility of the predicted results, and it can be applied
to several destination prediction methods.

• To obtain the trade-off between privacy preservation
and the utility of the predicted results, we construct an
optimization framework by employing NALUs [30] and
Multi-hill Climbing.

• We conduct extensive experiments on the real trajectory
dataset from the T-Drive project [31] and a dataset from
Kaggle [32] with several of the latest prediction methods
to investigate the effectiveness and generalizability of the
proposed framework.

The remainder of the paper is organized as follows.
Section II presents the preliminaries. Section III introduces
the proposed framework for destination prediction. Thereafter,
Section IV evaluates the performance of the proposed frame-
work. Finally, we conclude the paper in Section V.

II. PRELIMINARIES

In this section, we first present the employed trajectory
data model. Then, we describe the attack model. Thereafter,
we explain privacy preservation in destination prediction.
Finally, we demonstrate the Laplacian mechanism.

A. Trajectory Data Model

In destination prediction, to process the given trajectory
data, most related work [3], [4], [6] employs map matching
to divide a trajectory into discrete cell regions in geographic
space, and this is shown in Fig. 2. Motivated by these existing
approaches, we adopt several definitions as follows:

Definition 1 (Movement): A user’s movement is a dense
position sequence composed of latitude and longitude coor-
dinates l1, l2, . . . , lc, recorded by GPS, where lc denotes the
current location.

Definition 2 (Trajectory): Given a user’s movement,
we map the movement onto the grid space to obtain multiple
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Fig. 2. Representing a trajectory with discrete grids. (a) The user’s
movement. (b) The trajectory is denoted by ‘- -’ and a sub-trajectory is
denoted by ‘-’.

adjacent grid cells ns, n2, . . . , nd, which form the trajectory,
where ns and nd are the first and last grid cells, respectively.

As shown in Fig. 2(a), the movement starts from grid cell n5

to cell n16 and goes through several cells n1, n2, n6, n7, n8,
n12. Then, the movement is mapped to the trajectory T = {n5,
n1, n2, n6, n7, n8, n12, n16}, as shown in Fig. 2(b).

Definition 3 (Sub-Trajectory): We define a sub-trajectory
as a partial trajectory in the grid space TP = {n1, n2, . . . , nc},
where ns and nc denote the first and current grid cells,
respectively.

For instance, in Fig. 2(b), the sub-trajectory TP = {n5, n1,
n2, n6, n7} is a part of the trajectory T = {n5, n1, n2, n6,
n7, n8, n12, n16}, where n7 denotes the current cell.

In addition, we divide the trajectory data into three datasets
DP , Dtrain, and Dtest, where DP is used to train the desti-
nation prediction model. The other two datasets are devoted
to training the proposed model and testing its corresponding
performance.

B. Attack Model

The process of destination prediction consists of three steps.
Step 1 involves users sending query information to the predic-
tion server2; Step 2 includes the prediction of destinations in
the prediction server; Step 3 involves returning several of the
most likely destinations with their corresponding probabilities
to the users. In general, a predicted destination with a larger
probability is more likely to be the exact destination of the
user.

The prediction server is considered untrusted, as in the
existing work [33], [34]. Specifically, it receives users’ query
information and predicts users’ destinations thereafter. How-
ever, at the same time, it monitors where users go over
time, and it may disclose users’ destinations to advertisers,
illegal organizations, and so on, for commercial benefit. More-
over, we assume that the untrusted prediction server has the
background knowledge that the predicted destination with the
largest probability among the predicted destinations is most
likely to be the exact destination of the user (hereafter victim).
Note that for ease of presentation, we call the untrusted
prediction server, advertisers, illegal organizations, etc. the
“adversaries” hereafter.

Due to the leakage of destinations, the victim may be
vulnerable to various threats. For instance, in the event of
destination disclosure, sensitive personal information such as
one’s lifestyle, social relationships, and political beliefs can be
easily revealed, thereby exposing the victim to spam or even

2The prediction server is an LBS server that can predict mobile users’
destinations and provide location services based on users’ destinations.

blackmails and physical violence. Therefore, it is essential to
preserve location privacy in destination prediction.

C. Privacy Preservation in Destination Prediction

Given Nt query trajectories (sub-trajectories) and a geo-
graphic space consisting of g×g regions, the destination
prediction model generates Nt predicted results, each of
which contains g×g predicted probabilities corresponding to
the g×g regions. Each predicted result generates a ranking
of the regions based on their predicted probabilities, and
these can be intuitively obtained by users and adversaries.
There are g×g ranks (i.e., 1st rank, . . . , g×gth rank) in a
ranking; if the region corresponding to the ith rank is the
exact destination, we consider it a successful prediction for
the ith rank. To calculate prediction accuracy, we perform
statistical computations. First, we accumulate the number of
successful predictions at each of the g×g ranks. Then, we cal-
culate g×g accuracy by dividing each number of successful
predictions by the total number of predictions Nt. The g×g
accuracies P1, P2, . . . , Pg×g correspond to the 1st rank to
the g×gth rank. The accuracy at the ith rank is as follows:

Pi =
Nai

Nt
, (1)

where Nai denotes the number of successful predictions for
the ith rank.

Based on the accuracy for the ith rank Pi, we define the
degree of privacy preservation as follows:

Definition 4 (Degree of Privacy Preservation): Based on
the different privacy threats in the rankings, we define the
degree of privacy preservation by employing the Weighted
Absolute Error (WAE) as follows:

WAE =
N∑

i=1

1
i
| Pi − P ′

i |, (2)

where Pi denotes the accuracy of the ith rank without
preservation, P ′

i represents the accuracy of the ith rank with
preservation, N denotes the number of regions, and 1

i denotes
the effect of the change in accuracy at the ith rank.

To preserve location privacy in destination prediction, our
straightforward conception is to counter the adversary’s back-
ground knowledge by reducing the accuracy rates at the top
rankings. More specifically, with a reduction in the accuracy,
the adversary cannot infer the victim’s exact destination even
with the help of the background knowledge. The reason
for this is that the reduction in the accuracy for the top
rankings makes the region with the highest probability no
longer necessarily being the most likely exact destination
of the victim. To achieve this conception, we propose the
construction of a data-driven framework. Our framework first
processes the sub-trajectories before the victim’s query infor-
mation is sent to the prediction server. In the prediction server,
the processed sub-trajectories skew the predicted results to
reduce the accuracy at the top rankings. However, the above
processed sub-trajectories included in users’ queries definitely
affect the utility of the predicted results. Referring to a state-
of-art work [3], [6], [14], we consider the total accuracy from
the 1st rank to the kth rank (called the top-k accuracy) as the
utility of the predicted results, where k generally depends on
users’ requirements. To this end, we define the utility loss as
follows:
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Fig. 3. Overview of the proposed general framework.

Definition 5 (Utility Loss): The utility loss (UL) is the
decline of the predicted destinations’ utility based on
processed query information (i.e., sub-trajectories):

UL = 1 − P ′
top−k

Ptop−k
, (3)

where Ptop−k and P ′
top−k denote the sum of the accuracies

from the 1th rank to the kth rank for the raw sub-trajectories
and the processed sub-trajectories, respectively.

In Eq. (3), the closer the top-k accuracy of the processed
sub-trajectories P ′

top−k is to the top-k accuracy of the raw
sub-trajectories Ptop−k, the less utility loss. Note that we
extend our framework to restrain the utility loss by maintaining
the accuracy P ′

top−k of the top-k rankings. Considering the
enhancement of privacy and the restraint of the utility loss,
our framework achieves a trade-off between the privacy and
the utility of the predicted destinations.

III. THE PROPOSED FRAMEWORK FOR

DESTINATION PREDICTION

In this section, we first present the details of the pro-
posed general framework with quantifiable privacy preserva-
tion. Then, we introduce the optimization of the proposed
framework.

A. General Framework With Quantifiable Privacy
Preservation

Overview. Considering a specific user’s privacy require-
ments (i.e., the WAE) as the input, we obtain the output
(i.e., the scale of the noise) from our model. To provide
quantifiable privacy preservation, our model injects proper
noise into the user’s sub-trajectory with the Laplacian mech-
anism (introduced in Appendix A) based on the output. More
specifically, we assume that the user’s privacy requirement is
xu and that the sub-trajectory is lu1 , lu2 , . . . , l

u
c (query infor-

mation). As demonstrated in Fig 3, our privacy preservation
framework consists of several steps. First, our model absorbs
xu to generate the scale of the noise ru. Then, we set multiple
circular regions at each location in the sub-trajectory, where
the centers of the circles are locations lu1 , lu2 , . . . , l

u
c and

all radii are r1, r2, . . . , rc. Hereby, based on the Laplacian
mechanism, ri is generated as follows:

ri = −1
ε
(W−1(

p− 1
e

) + 1) + ru, (4)

Thereafter, multiple dummy locations are randomly generated
in each circular region instead of in the original locations to
construct a dummy sub-trajectory. This well-designed dummy
sub-trajectory can guarantee that the degree of privacy preser-
vation is consistent with the user’s privacy requirements.

To train our model, it is essential to prepare the processed
training dataset (i.e., the WAE and the scale of the noise).
In this section, we first introduce the generation method for the
processed data. Then, we employ Multiple Linear Regression
and propose an algorithm for selecting a subset of coefficients
to build our model.

1) Preparation of Processed Data: As shown in Fig. 4, for
the generation of processed data, there are three procedures:
1) Noise injection; 2) Multiple accuracy generation; and
3) Processed data generation.

Noise Injection. First, we make N copies of the training
dataset Dtrain, thereby generating N + 1 identical training
datasets Dtrain. Then, we set a basic radius for the noise rbase

(approximately 500 meters). Thus, different scales of noise can
be controlled by i×rbase, i ∈ [0, 1, . . . , N ].

As demonstrated in the Overview, we inject different scales
of noise into the N training datasets. In Di

train, T i
j ⇐ i×rbase,

j ∈ [1, 2, . . . , LD], where Di
train denotes the ith dataset,

T i
j denotes the jth movement in Di

train, ‘⇐’ represents the
Laplacian noise injection and LD is the size of Dtrain.

According to Eq. (4), with i ∈ [0, 1, . . . , N ], we can obtain
N + 1 sets of training datasets with different noise injections
corresponding to N + 1 scales of noise, where i = 0 means
that no noise is injected.

Multiple Accuracy Generation. We need to generate N+1
accuracy sets corresponding to the N + 1 training datasets.
Therefore, we put these N +1 noisy datasets into the destina-
tion prediction model to obtain N+1 sets of predicted results.
As shown in Section II-C, each set of results contributes to
a set of accuracies P1, P2, . . . , Pg×g, where g×g denotes
the number of regions in the grid map. Hence, we obtain
N + 1 accuracy sets P g×g

0 , P g×g
1 , . . . , P g×g

N , where P g×g
i =

{Pi,1, Pi,2, . . . , Pi,g×g}.
Processed Data Generation. Then, we generate the

processed data. We know that the input of our model is the
WAE mentioned in the Overview and that a set of accuracies
can generate a value of the WAE according to Section II-C.
The WAE is calculated as follows:

WAEi =
g×g∑
j=1

1
j
| P0,j − Pi,j |. (5)

With N + 1 accuracy sets, we generate N + 1 WAE values
WAE0, WAE1, . . . ,WAEN , while the output of our model
is the scale of the noise. Here, N +1 WAE values correspond
to N + 1 scales of noise 0, 1, . . . , N . Therefore, N + 1 WAE
values and N + 1 scales of noise are combined to form the
processed data for training our model.

2) Privacy-Preserving Model Training: We employ Multi-
ple Linear Regression to fit the WAEs (i.e., the input variable
x) and the scales of noise (i.e., the output variable y) included
in the processed data and then propose an algorithm for
building the model.

Multiple Linear Regression. In fact, x (WAE) and y
(scale of noise) do not form a simple linear relationship.
Thus, we consider the response variables of x (e.g., x2

and log x) and form the variable and its response variables
into an input set of variables x1, x2, . . . , xq. To fix the
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Fig. 4. The procedures for training the privacy-preserving model.

regression model, we assume there is a sequence of coef-
ficients λ0, λ1, . . . , λq , , and then, we derive multiple
equations:

y0 = λ0 + λ1x0,1 + λ2x0,2 + . . .+ λqx0,q + ε0,

y1 = λ0 + λ1x1,1 + λ2x1,2 + . . .+ λqx1,q + ε1,

. . .

yN = λ0 + λ1xN,1 + λ2xN,2 + . . .+ λqxN,q + εN ,

where εi denotes the random error of the ith dataset and xi,j

represents the jth variable of the ith dataset.
λ would be perfectly fitted under several assumptions:

1) E(εi) = 0 for i = 1, 2, . . . , n; 2) var(εi) = σ2 for
i = 1, 2, . . . , n; and 3) cov(εi, εj) = 0 for i �=j. The first
assumption shows that our regression model is linear and that
there is no need for any additional terms or λ. Then, the second
assumption contributes to var(yi) = σ2, since xi,1, xi,2,…,
xi,q are fixed in the first assumption. The last assumption
ensures that there is no correlation between each pair of error
terms εi and εj . Based on these assumptions, we adopt the least
squares estimates of λ0, λ1, . . . , λq , aiming to minimize the
sum of squares of the deviations of the N observed y:

SSE =
N∑

i=1

(ŷi − λ̂0 − λ̂1xi,1 − λ̂2xi,2 − . . .− λ̂qxi,q)2, (6)

where ŷi denotes the predicted yi and λ̂i denotes the ith coef-
ficient among the optimal coefficients. In our method, we use
the scikit-learn machine learning suite3 to accomplish multiple
linear regression (MLR) with two outputs (the SSE and the
coefficients λ).

Selection of a Subset of Coefficients. In fact, some
response variables of x may be redundant and can be dis-
carded. Hence, to simplify our privacy-preserving model,
it is necessary to delete redundant response variables from
the fitted model. The traditional method for doing so is to
examine all possible subsets of x1, x2,…, xq . However, it may
be impractical to examine all possible subsets for a large
number of permutations. Inspired by Hilton [35], we propose
Algorithm 1 to select the subset of coefficients. The key idea
of this algorithm is to operate the response variable xi based
on the correlation coefficient between xi and y.

3http://scikit-learn.org/stable/

In Algorithm 1, we set all the variables x1, x2, . . . ,xq,
including x and the response variables, as inputs. In line 1,
an empty array is defined to store the output coefficients, and
A is an array of size q for storing all variables xi, i ∈ [1, q].
Then, we need to obtain the correlation coefficients between
all variables and y (cf. lines 2-5):

Rj =
∑N

i=1(xi,j − x̄j)(yi − ȳ)√∑N
i=1(xi,j − x̄j)2

∑N
i=1(yi − ȳ)2

, (7)

where xi,j denotes the value of the jth variable in the
ith dataset and yi denotes the value of the ith dataset.

To find the least relevant variables, a list R is set up to store
the pairs of correlation coefficients and the orders of variables
{R1, 1}, {R2, 2}, . . . , {Rq, q}. Then, we sort R based on
the correlation coefficient degrees.

Before subset selection is performed, Algorithm 1 obtains
the SSE and initial λ = λ0, λ1, . . . , λq based on MLR.
Then, the deletion occurs on Lines 8-17 in Algorithm 1. First,
the algorithm judges whether the correlation coefficient is
greater than 0.5. If so, it means that the correlation between
the current variable and y is strong, and the current variable
and the rest of the variables are not deleted. Then, a new array
is used to store partial variables, where one variable has been
deleted. Then, y and the new array with partial variables are
put into the MLR model to obtain the new SSE and the new
coefficients. Thereafter, it is necessary to judge the sizes of
the last SSE and the new SSE. If the size of the last SSE is
larger than the new one, A is updated to At and the last set
of coefficients λ is updated to the new set λt, which means
that the current variable is deleted. After q iterations, the final
coefficients and subset of variables are obtained.

With the final coefficients (λ0, λ1, . . . , λm, m ≤ q) and
the subset of variables, we construct our model as follows:

rn = λ0 +
m∑

i=1

λi×xi, (8)

where xi is the response variable of the user’s privacy require-
ment and rn is the scale of the noise.

B. Optimization of the Proposed Framework

In the framework proposed above, the preservation of the
user’s location privacy will inevitably cause utility loss with
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Algorithm 1 Selection of a Subset of Coefficients
Input : Variables x1, x2, . . . , xq

Output: Coefficients λ and a subset of variables

1 Initialize the sets λ = ∅ and A = {x1, . . . , xq} ;
2 for j = 1 to q do

3 Rj =
�N

i=1(xi,j−x̄j)(yi−ȳ)√�
N
i=1(xi,j−x̄j)2

�
N
i=1(yi−ȳ)2

;

4 R(j) = (Rj , j) ;
5 end
6 Sort R ;
7 SSE, λ = MLR(y, A) ;
8 for i = 1 to q do
9 if R(i) > 0.5 then

10 break;
11 end
12 At = A− xR(i,2) ;
13 SSEt, λt = MLR(y, At) ;
14 if SSEt < SSE then
15 A = At ;
16 λ = λt ;
17 end
18 end
19 Return λ and A ;

respect to the predicted results. Hence, it is crucial to optimize
the proposed privacy-preserving framework, with the aim of
protecting location privacy and guarantee the utility of the
predicted results at the same time.

In Section III-A, we inject the noise of the same scale into
each location in a sub-trajectory. However, we observe that
if we inject noise of different scales to different locations in
each sub-trajectory, the utility of the predicted results can be
guaranteed.

Therefore, the key idea of optimization is to inject
fine-grained noise based on the comprehensive features of
the training dataset. More specifically, we employ a neural
network combining NALU [30], Multi-layer Perceptron (MLP)
and Gated Recurrent Unit (GRUs) to extract features from
the training dataset. Then, based on the built neural network,
we search for the optimal model of noise injection.

In summary, this process includes three steps:
1) Pre-generating the training data; 2) Building the architecture
of the neural network; and 3) Optimizing the noise injection
model.

1) Pre-Generation of Training Data: To build the neural
network, we need to obtain the training dataset. We first
consider the input as the model of fine-grained noise and the
output as the area under the curve constructed by the WAE
and UL (called AUCWU ). Then, we generate the training data.

Model of Fine-grained Noise. We first introduce multiple
coefficients μ1, μ2,…, μc in the method of noise injection,
where μc denotes the coefficient of the current location.
Therefore, the new method of noise injection is r×rbase =
{μi×rbase | i ∈ [1, 2, . . . , Lc] }, where r denotes the
model of fine-grained noise and Lc denotes the length of the
sub-trajectory.

However, sub-trajectories with different lengths require
models with different sizes, and these cannot be absorbed
by the neural network for an input of indefinite length.

Fig. 5. The training of the area prediction model.

We observe that different locations in a sub-trajectory con-
tribute to different influences on destination prediction. For
instance, in destination prediction based on Markov matrix,
the posterior probability is computed as P (T p|d∈nj) =
p12·p23...p(c−1)c ·pc→j

ps→j
, where pi(i+1) denotes the transition prob-

ability between two adjacent nodes, and pc→j and ps→j

represent total transition probabilities from lc to lj and from ls
to lj , respectively. We observe that the current location lc and
the start location ls have the largest effect on destination pre-
diction. Thus, based on this observation, we adopt a restricted
quadratic function to represent the model, where α, β, and γ
are employed to denote the parameters of the function. That
contributes to the input of our neural network.

The Area under WAE-UL Curve. In Section III-A.1,
N + 1 accuracies generate a set of WAE values
WAE0, WAE1,…, WAEN . In addition, with Eq. (3) in
Section II-C, we can adopt the obtained N + 1 accuracies to
generate a set of UL values UL0, UL1,…, ULN correspond-
ing to WAE0, WAE1,…, WAEN . Then, with the WAE as
the horizontal axis and the UL as the vertical axis, we map
the two sets of data in the Cartesian coordinate system, where
we can obtain an area under the WAE-UL curve, i.e., the
output of the neural network. Within a certain range of WAEs,
the smaller AUCWU is, the lower the UL is.

With the input and output above, we first randomly generate
M sets of models (α1, β1, γ1),…, (αM , βM , γM ). Then,
from Section III-A.1, we know that each set of parameter
models can generate N + 1 sets of accuracies to compute
N + 1 values of WAEs and ULs, thereby generating a value
of AUCWU . Therefore, M sets of modes contribute to M
values of AUCWU , which constitutes the training data.

2) Building the Architecture of the Neural Network: As
shown in Fig. 5, the architecture of the network consists
of three integral components: Encoder module, Exception
module, and MLP-dropout module.

Encoder Module. To extract the features from the data,
Multi-layer Perceptron (MLP) is used to embed the input
αi, βi, γi and obtain the hidden vector hn

i with a fixed
size, which contains exhaustive information about the training
data. Then, Exponential Linear Units (ELUs) are chosen as
the activation function to implement gradient descent and
back propagation. Moreover, we operate Gated Recurrent
Unit (GRU) cells for coefficient distribution changes in the
hidden space. The hidden vector and the output of the Encoder
module are:

hi = φ(αi, βi, γi : Wee), (9)

hn
ei = GRU(hn−1

ei , hi : WEncoder), (10)
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where φ(·) represents the embedding function with ELU
nonlinearity, andWee and WEncoder are the embedding weight
and the GRU cell weight, respectively.

Exception Module. In addition to the nonlinear relation-
ship, there may also be a linear relationship between the model
and AUCWU . However, common neural networks seldom per-
form well outside of the range of numerical values encountered
during training (e.g., linearity) [30]. Thus, to overcome this
problem, we employ NALU to handle the linear relationships
among features. In this module, a fully connected layer
extracts features from the input hidden vector hn

i . Thereafter,
the NALU layer extracts the linearity by reconstructing basic
arithmetic relationships:

hn
fi = ω(hn

ei), (11)

m = expW (log | hn
fi | +ε), (12)

g = σ(Ghn
fi), (13)

hdi = g � a+ (1 − g) �m, (14)

where ω(·) denotes the fully connected layer, W ∈ [−1, 1]
is a weight factor, ε prevents the calculation of log 0, and g is
the learned sigmoidal gate in the NALU layer.

MLP-dropout Module. After the nonlinear and linear
features are extracted, the MLP-dropout module decodes the
hidden state hdi. Then, the network outputs the predicted
AUCWU ŷi:

ŷi = ψ(hdi : WDecoder), (15)

where ψ(·) denotes the function of the MLP with ELU
nonlinearity, and WDecoder is the weight of the decoder.

Algorithm 2 Optimal Model Searching

Input : The model α, β, γ
Output: Locally optimal model αm, βm, γm

1 Initialize G = ∅ ;
2 Generate approximate gradients Gα, Gβ , Gγ ;
3 G = {Gα, Gβ , Gγ} ;
4 if |G(1)| ≤ Gmin and |G(2)| ≤ Gmin and |G(3)| ≤
Gmin then

5 αm, βm, γm = α, β, γ ;
6 end
7 else
8 αt = α+G(1) ;
9 βt = β +G(2) ;

10 γt = γ +G(3) ;
11 αm, βm, γm = OMS(αt, βt, γt) ;
12 return αm, βm, γm ;
13 end
14 return αm, βm, γm ;

3) Optimizing the Model of Noise Injection: To search for
an optimal model of noise injection, we propose an algorithm
employing Hill Climbing on the basis of the neural network
built above. In Algorithm 2, we set a random model α, β, γ
and the optimal model αm, βm, γm as the input and output,
respectively. In Line 1, an empty array is defined to store the
approximate gradients Gα, Gβ , and Gγ of the model α, β, γ
in the neural network. An approximate gradient is generated

as follows:

Gi =
ŷi+ε − ŷi−ε

2ε
, (16)

where ε denotes a small but non-zero positive real number, and
ŷi+ε and ŷi−ε denote the results output by the neural network
based on the two processed models. These two models are
obtained by adding and subtracting ε from the model α, β, γ
for the ith parameter.

Then, it is necessary to determine whether the absolute
values of all gradients in G are less than the threshold Gmin.
If so, the algorithm assigns the input model to the output
model αm, βm, γm. Otherwise, αt, βt, and γt are used
to represent the updated model (cf. Lines 6-8). Thereafter,
the updated model is adopted as the input to perform function
recursion until all gradients are below the threshold Gmin.
Finally, the algorithm returns the optimal model αm, βm, γm.
However, the optimal model generated by this algorithm
may be a local maximum. Therefore, we randomly generate
multiple models as inputs and execute multiple algorithms to
obtain multiple local maximum values. Then, we select the
best model from these local maximum values.

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on two
real-world trajectory datasets [31], [32] to evaluate the per-
formance of the proposed framework against the four attack
models [3]–[6].

A. Experimental Setup

1) Datasets: We use two real-world taxi trajectory datasets
from Kaggle [32] and T-drive project [31] in our experiments.

• Dataset from Porto. The dataset was collected from
July 1st, 2013, to June 30th, 2014, and published by
Kaggle [32]. This dataset is composed of more than
1.7 million trajectories of taxis in the center of Porto,
which covers an area of 22 km × 22 km.

• Dataset from Beijing. This dataset is a common tra-
jectory dataset provided by T-drive project [31] with
a sparse number of trajectories collected from Septem-
ber 1st, 2013, to October 25th, 2013. We mainly extract
253,020 taxi trajectories from within the sixth ring road
of Beijing. It covers an area of 52.28 km × 41.07 km.

The two datasets consist of different scales of trajectories,
where the dataset from Porto is an extensive dataset and
the dataset from Beijing is a sparse dataset. These datasets
are used to demonstrate the robustness of our framework.
Specifically, we randomly divide each dataset into three partial
datasets: DP (50% of the dataset), Dtrain (35% of the dataset),
and Dtest (15% of the dataset). DP is used to train the attack
models (i.e., destination prediction models). Dtrain and Dtest

are used to build our privacy-preserving model and then to
demonstrate the privacy preservation ability of the proposed
framework.

2) Attack Models: We explain the attack model in
Section II-B, where we consider the destination prediction
model as the attack model. Here, we select four attack models
from different types of destination prediction models to show
the performances of our framework against different attack
models.

• Sub-Trajectory Synthesis (SubSyn) [3]. SubSyn is a classic
destination prediction method that combines the Markov
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model and Bayesian inference to improve the coverage
of trajectories in sparse datasets.

• Trajectory Destination Prediction (T-DesP) [4]. Based
on the Markov model, T-DesP considers the temporal
sensitivities of the trajectories and constructs a transition
tensor to enhance the accuracy of the predicted results.

• Trajectory Distribution-based Model [5]. This model first
obtains clusters of trajectories and then models the main
traffic flow patterns by a mixture of 2-D Gaussian dis-
tributions to generate possible destinations and probabil-
ities. For convenience, we call this model “Distribution”
hereafter.

• Hierarchical Trajectory-based Attentional LSTM Learn-
ing model (H-TALL) [6]. H-TALL adopts a bidirectional
LSTM network to capture spatial-temporal relations and
employs Attention mechanism to increase the prediction
accuracy.

3) Metrics: Our experimental results consist of two aspects:
privacy preservation and utility loss. To evaluate the perfor-
mance of our framework in terms of privacy preservation,
we employ several metrics, namely, the degree of privacy
preservation (WAE), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Effective Rate (ER). Specifically,
the WAE is defined in Section II-C as implying the degree of
privacy preservation. The MAE and RMSE can well reflect
the error of the value and measure the deviation, respectively,
between the required WAE and the achieved WAE, which are
formalized as follows:

MAE =
1
n

n∑
i=1

|ŷi − yi|, (17)

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2, (18)

where ŷi and yi denote the required WAE (i.e., privacy
requirement) and the achieved WAE, respectively. The closer
the MAE is to 0, the more precise the achieved WAE. The
closer the RMSE is to 0, the smaller the deviation of the WAE.

Additionally, to quantify the privacy preservation of our
framework more intuitively, we define the Effective Rate (ER)
metric. First, we set a threshold ω to indicate the degree of
tolerance of the user for the privacy error (i.e., the MAE).
If MAE of the achieved WAE is less than ω, we call it
“satisfactory privacy protection”. Thus, the ER is defined as
follows:

Definition 6 (Effective Rate (ER)): The Effective Rate is
the proportion of “satisfactory privacy protection” instances
in multiple experiments:

ER =
Ns

N
, (19)

where Ns and N denote the number of “satisfactory privacy
protection” instances and the total number of experiments,
respectively.

Therefore, the higher the ER is, the higher the proportion
of satisfactory predicted results is, and the more precise our
quantitative privacy protection is.

To evaluate the utility loss incurred in our experiments,
we adopt the definition UL (defined in Section II-C) to imply
the utility loss of predicted results.

4) Parameter Settings: To build the proposed model,
we randomly sample 450,000 trajectories in Dtrain from
Porto (15,000 trajectories from Beijing). Then, to handle the
preparation of the processed data obtained in Section III-A.1,
we divide the data into 900 (50 for Beijing) sets of 300 trajec-
tories, where each set is injected with noise of N=100 differ-
ent scales to generate 100 values of the WAE corresponding
to the 100 different scales of noise. Therefore, we obtain 900
(50 for Beijing) × 100 sets of processed data to build our
general model. In addition, referring to work [3], [4], [6],
we choose a sufficient grid granularity g=30 in the grid space,
as this is a proper value in practice.

In our experiments, we consider the impacts of three para-
meters: the privacy requirement (PR), the privacy budget ε, and
the trajectory completion percentage (tcp). The PR is the WAE
of users’ requirements. The goal of the proposed framework
is to make the privacy preservation of the predicted result
(i.e., the WAE) as close to the PR as possible. In addition,
with the analysis of experimental results, we observe that ε and
tcp have obvious impacts on the performance of the privacy
preservation. Hence, we sample parameters of multiple scales
to repeat the experiment for choosing proper values of the
parameters. The default values of ε and tcp are 0.5 and 50%,
which will be explained in Section IV-B.3.

B. Experimental Results

1) Privacy Preservation: We consider 300 predictions
as one group to generate a WAE value and arrange
1000 experiments to demonstrate the performance of our
privacy-preserving framework with different degrees of
PRs. Here, we set the PR to be 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6, respectively.

For the general framework (cf. Fig. 6), the degrees of
privacy preservation (i.e., the WAEs) are very consistent
with the different degrees of PRs. All WAEs are distributed
near the targeted PRs, and this indicates that our framework
can guarantee users’ privacy requirements. Especially when
PR = 0.1 and 0.6, the boxplots of the experimental results
are particularly narrow. That is, we achieve highly precise
privacy protection. In the boxplots, it is obvious that against
different attack models, there are significant differences in the
performances of our framework. For instance, we can clearly
see that for the two datasets (cf. Figs. 6(a) and 6(b)), the box
of H-TALL is narrower than those of the other attack models,
which means that when against H-TALL, our framework
performs best. In addition, by comparing Figs. 6(a) and 6(b),
we can find that the boxes based on the dataset from Porto are
narrower than those based on the dataset from Beijing against
most of the examined attack models (i.e., SubSyn, T-DesP
and H-TALL). This indicates that our framework performs
much better on extensive datasets (e.g., the dataset from Porto)
than on sparse datasets (e.g., the dataset from Beijing) in
most cases. Despite the sparseness of the dataset, the WAEs
obtained based on the dataset from Beijing are also precise,
thereby proving that our framework can be effectively applied
to datasets of different sizes. This proves the robustness of our
privacy-preserving framework.

For the optimized framework (i.e., the utility-aware general
framework), from Fig. 7, we can intuitively observe the
similarities and differences between the performances of the
optimized framework and the general framework. For instance,
in the boxplots, the box at PR = 0.2∼0.5 is wider than that at
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Fig. 6. Boxplots of the performances with multiple degrees of PR at ε = 0.5 and tcp = 50% in the general privacy-preserving framework.

Fig. 7. Boxplots of the performances with multiple degrees of PR at ε = 0.5 and tcp = 50% in the optimized privacy-preserving framework.

TABLE I

MAE OF THE GENERAL FRAMEWORK

PR = 0.1 or 0.6. The performance on the dataset from Porto
is better than the performance on the dataset from Beijing.
In addition, we can clearly observe that the boxes in Fig. 7
are slightly wider than the boxes in Fig. 6, which indicates that
privacy preservation is only slightly decreased in the optimized
framework.

More specifically, to demonstrate the performance in detail,
we calculate the MAE and RMSE, as shown in Tables I and II
and Tables III and IV, respectively. We enlarge the minimum
MAE and RMSE in each setting. Table I demonstrates that
with different datasets and attack models, our framework
can achieve very low MAEs in terms of quantitative pri-
vacy preservation, indicating that the WAE provided by our

framework can precisely meet the targeted PR. Especially on
the dataset from Porto, most MAEs are less than 0.01, which
implies that the general framework provides extremely precise
quantitative privacy protection on this dataset. On the Beijing
dataset, most MAEs are less than 0.02, and the smallest MAEs
do not exceed 0.01, implying that the general framework
achieves users’ PRs with relative precision (especially when
PR=0.1 or 0.6). In Table III, it is obvious that the MAE of
the optimized framework only increases slightly, whereas the
minimum MAE on the dataset from Porto against SubSyn
is 0.002049 in Table I, but it increases to 0.003392 in
Table III. By calculating the average MAE, we obtain that
the average MAE of the general framework is approximately
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TABLE II

RMSE OF THE GENERAL FRAMEWORK

TABLE III

MAE OF THE OPTIMIZED FRAMEWORK

TABLE IV

RMSE OF THE OPTIMIZED FRAMEWORK

0.011519, and the average MAE of the optimized framework
is approximately 0.013536, where the difference between the
two average MAEs is approximately 0.002. Therefore, despite
the slight increase in the MAE, our optimized framework can
still guarantee users’ PRs with precise WAEs.

In Table II, most RMSEs generally have very low degrees.
Especially when the attack model is H-TALL, the average
value of the RMSE does not exceed 0.01, which means that
the deviations of our experimental results are very small, and
our quantitative privacy protection is robust for guaranteeing
users’ PRs with minuscule deviation. Moreover, on the dataset
from Porto with the SubSyn model and PR=0.6, the minimum
RMSE is 0.002405, which is negligibly small with respect to
users’ PRs. Similarly, Table IV demonstrates that the similiar
performance is achieved by the optimized framework. Specif-
ically, we calculate two average RMSEs in Tables II and IV,
and these are 0.014044 and 0.016654, respectively. That is,
both our general framework and our optimized framework can
guarantee users’ PRs with robust privacy preservation in this

case (i.e., the dataset from Porto with the SubSyn model and
PR=0.6).

With different values of ω (0.01, 0.02, 0.03, 0.04, 0.05),
we statistically calculate the ERs, as shown in Tables V. From
the statistical results, we find that as ω increases, the ER
increases. Specifically, when ω = 0.04 and 0.05, the ER
is extremely close to 100%, which means that with tolerant
users (i.e., ω > 0.03), the privacy protection provided by
our framework can satisfy all users’ privacy requirements.
Moreover, when the threshold ω is harsh (i.e., ω < 0.02),
in Table V, we see that we can also satisfy most users
(most ERs exceed 75%), and our optimized framework can
satisfy half of the users’ PRs. Furthermore, on an extensive
dataset (i.e., the dataset from Porto), the ER value is higher
than that on a sparse dataset (i.e., the dataset from Beijing),
implying that our framework performs better on extensive
datasets. In addition, even though the dataset from Beijing
is highly sparse, our framework can still achieve an ER of
80% (0.03 < ω < 0.05).
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TABLE V

ERS UNDER DIFFERENT VALUES OF ω FOR THE GENERAL FRAMEWORK AND OPTIMIZED FRAMEWORK

TABLE VI

THE MAES OF THE DEGREES OF PRIVACY PRESERVATION AND PRIVACY REQUIREMENTS

Mixture of different PRs: In the above evaluation, we use
the same PR value for the entirety of Dtest in the experi-
ments. However, in practice, we are more likely to encounter
situations where different users select different PRs. For this
use, we design two experiments: 1) In the first experiment
(called Equal), we equally divide our Dtest into 6 parts and
set the PRs as 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, correspond-
ing to the 6 parts of Dtest. Then, we mix these 6 parts
of Dtest to evaluate the performance of the quantifiable
privacy-preserving frameworks. 2) In the second experiment
(called Random), we randomly generate the PR from 0.1 to
0.6 for each sub-trajectory in Dtest. We then evaluate the
performance achieved with random PRs. We employ the
MAEs of the WAEs and PRs to evaluate the performance of
our frameworks. Moreover, to demonstrate their effects more
rigorously, we repeat the Random experiment 100 times and
extract the minimum and maximum MAE values from the
experimental results.

In Table VI, we can intuitively observe that all the MAE
values are relatively low and that most of the MAEs do not
exceed 0.02, indicating that with different PRs, the privacy
preservation provided by our frameworks can still sufficiently
satisfy users’ privacy requirements. Moreover, in the Random
experiment, the worst performance of our frameworks is
approximately 0.02 (i.e., the maximum MAE). Comparing
Equal and Random, we find that the MAE value in Equal
is similar to the mean value of the maximum and minimum

Fig. 8. Utility losses (UL) incurred by the general and optimized
privacy-preserving frameworks against four attack models with two real
datasets at ε = 0.5 and tcp = 50%.

values in Random. For instance, in the condition (Porto,
SubSyn, General), the MAE of Equal is 0.00745, and the
mean MAE of Random is (0.00460+0.01077)/2 = 0.007685.
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Fig. 9. The impact of ε on the RMSE (the deviation of the WAEs) with PR = 0.3 and tcp = 50%. a) Experiment with the general framework on the
dataset from Porto. b) Experiment with the general framework on the dataset from Beijing. c) Experiment with the optimized framework on the dataset
from Porto. d) Experiment with the optimized framework on the dataset from Beijing.

Fig. 10. The impact of ε on the utility loss (UL) with PR = 0.3 and tcp = 50%. a) Experiment with the general framework on the dataset from Porto.
b) Experiment with the general framework on the dataset from Beijing. c) Experiment with the optimized framework on the dataset from Porto. d) Experiment
with the optimized framework on the dataset from Beijing.

This result prove that our framework performs similarly in
Equal and Random. The reason is that the effects of privacy
preservation for each user are independent of each other, and
different users select different PRs, which have no influence
on the effect of the privacy preservation that they obtained.

Therefore, our privacy-preserving frameworks can provide
effective (low MAE) and robust (low RMSE) quantitative
protection to satisfy users’ privacy requirements. Although
optimization does harm the performances of privacy preser-
vation, our optimized framework is still able to achieve a
very comparable the effect of privacy preservation compared
with that of the general framework. Moreover, the two frame-
works perform well on both the dataset from Porto and the
dataset from Beijing, thereby proving the robustness of our
frameworks.

2) Utility Loss: In the general framework, we do not
consider the reduction of the utility of the predicted results.
Through optimization, the optimized framework significantly
improves the utility loss (cf. Fig. 8). In Fig. 8, the orange
line and the blue line represent the experimental results based
on the dataset from Porto and the dataset from Beijing,
respectively, and the solid line and the dashed line represent
the experimental results obtained by the general framework
and optimized framework, respectively.

We can observe that as the PR increases, the UL increases.
In particular, between PR=0.2 and 0.5, the UL increases more
severely than it does in PR=0.1∼0.2 and 0.5∼0.6. For the
general framework, at WAE=0.6, the UL is close to 1.0 for
the dataset from Porto, which means that the utilities of the
predicted results are completely destroyed and the predicted
results are worthless for users.

The solid lines demonstrate the experimental results
obtained by the optimized framework, where the UL is signifi-
cantly reduced, especially when PR = 0.2 ∼ 0.6 (at PR = 0.1,
the UL is too low to be reduced heavily). The improvement in
the UL is very obvious with most attack models (i.e., SubSyn,
T-DesP and Distribution), and in H-TALL, there is a slight

improvement in the UL. Moreover, on the dataset from Beijing
and against Distribution, the UL declines by approximately
0.4 at PR = 0.3 and 0.4. Hence, compared to the gen-
eral framework, the optimized framework does significantly
improve the UL. So it can adequately satisfy users.

3) Impacts of the Parameters: Figs. 9 and 10 show the
impact of ε on the RMSEs of the WAE and UL, respectively.
In Fig. 9, as ε increases, the RMSE increases dramatically until
ε = 0.9 ∼ 1.7. Comparing the impacts of ε in different figures,
we can see that against the H-TALL model, as ε increases,
the RMSE does not increase as severely as it does against other
attack models. Moreover, in Figs. 9(c) and 9(d), the RMSE
increases more severely with the optimized framework, which
indicates that the privacy protection of the optimized frame-
work is more sensitive to ε than that of the general framework.
In addition, apart from Fig. 9(a), when ε > 0.7, most
RMSEs are larger than 0.03, which exceeds almost all RMSEs
in Table II. Assume that the maximum RMSE of the stable
quantitative privacy preservation framework is 0.030. Thus,
ε must be less than 0.7.

Then, in Fig. 10, we observe that the UL decreases dras-
tically when ε = 0.1 ∼ 0.5. Furthermore, there are severe
utility losses at ε = 0.1 (UL > 0.4 in Figs. 10(a) and 10(b) ).
In addition, it is obvious that the ULs in Figs. 10(c) and 10(d)
are less than the ULs in Figs. 10(a) and 10(b). Considering the
proper values of ε, we find that from ε = 0.5 ∼ 1.7, the utility
of the predicted results is best retained (the lowest UL).
Therefore, to choose a proper ε, we consider comprehensively
that ε = 0.5 is the optimal parameter in our experiments for
the best RMSE range (ε = 0.1 ∼ 0.5) and the best UL range
(ε = 0.5 ∼ 0.7).

For the tcp, we plot Figs. 11 and 12 to show its impact on
the RMSEs of the WAE and UL. In Fig. 11, the relationship
between the tcp and RMSE is interesting, where against the
most attack models (i.e., SubSyn, T-DesP, Distribution), from
tcp = 10% to 50%, the trend is that as the tcp increases,
the RMSE decreases. From tcp = 50% to 90%, as the tcp
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Fig. 11. The impact of the trajectory completion percentage (tcp) on the RMSE (the deviation of the WAEs) with PR = 0.3 and ε = 0.5. a) Experiment
with the general framework on the dataset from Porto. b) Experiment with the general framework on the dataset from Beijing. c) Experiment with the
optimized framework on the dataset from Porto. d) Experiment with the optimized framework on the dataset from Beijing.

Fig. 12. The impact of the trajectory completion percentage (tcp) on the utility loss (UL) with PR = 0.3 and ε = 0.5. a) Experiment with the general
framework on the dataset from Porto. b) Experiment with the general framework on the dataset from Beijing. c) Experiment with the optimized framework
on the dataset from Porto. d) Experiment with the optimized framework on the dataset from Beijing.

decreases, the RMSE increases. Hence, at tcp = 50%, our
framework can provide the most stable effect of quantita-
tive privacy preservation. However, against H-TALL, there is
almost no impact on the RMSE. Regarding the UL, there are
distinct decreases in the ULs in Fig. 12(a) and 12(b). However,
there is no obvious difference in the impacts of different tcp
values on the utility loss. Hence, we set the default value of
the tcp to 50%.

In summary, the results of various experiments demon-
strate the excellent performance of our general framework
and optimized framework. First, our frameworks can provide
effective and robust quantitative privacy preservation. Sec-
ond, compared with the general framework, the optimized
framework greatly retains the utility of the predicted results.
More specifically, with tolerant users (i.e., ω > 0.03), our
frameworks can satisfy almost all users. Even with harsh users
(i.e., ω < 0.02), our frameworks can provide sufficient privacy
preservation with low deviations of the WAEs to satisfy half of
the users. Moreover, due to optimization, there is a significant
improvement in the utility loss of the optimized framework,
and this contributes to the utility-aware and quantitative pri-
vacy preservation.

V. CONCLUSION

This paper proposes a utility-aware general framework
that can provide quantifiable privacy preservation, obtain
a trade-off between privacy and the utility of the pre-
dicted results, and be applicable to several kinds of des-
tination prediction methods. We first construct a general
privacy-preserving framework based on a specially designed
type of differential privacy and Multiple Linear Regression.
Then, on this basis, an optimized framework utilizing an RNN
and Multi-hill Climbing is proposed. Finally, we evaluate the
proposed frameworks on the two real-world trajectory datasets
and four attack models, and the extensive results validate that
the proposed frameworks outperform the methods in existing
work.
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