
1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

Edge-based autonomous
management of vertical farms

Adrian Jandl, Pantelis A. Frangoudis, and Schahram Dustdar
Distributed Systems Group, TU Wien, Vienna, Austria

Abstract—Vertical farming is the practice of growing crops vertically to increase total yield for a
given space and is one approach towards sustainable food production. Concerns related with its
operational costs, and the need to optimize plant growth parameters in a controlled environment
call for advanced use of IoT technologies to develop low-cost mechanisms for continuous
monitoring and optimization of vertical farming processes. This article lays the groundwork for
such mechanisms, providing an extensible, edge-centric architecture for IoT-supported
autonomous vertical farm monitoring and management. We study alternative deployment
strategies for it, exploring the design and performance implications of using LoRaWAN as the
device connectivity substrate. We show experimentally that it is possible to handle vertical farm
monitoring workloads corresponding to thousands of IoT devices, even when operating purely
on minimal edge compute infrastructure, making it feasible to support the management of
vertical farms cheaply and at scale.

BY THE YEAR 2050 the worldwide population
is projected to be above 9 billion [1]. A key
challenge for this century will be to provide
all people on earth with enough food. This will
prove especially difficult, as climate change may
reduce the amount of farmable land. One proposed
solution is vertical farming [2], which is recently
attracting interest [3]. Its basic principle is growing
as much food as possible on as small a space
as possible, by growing crops above each other
rather than next to each other. This can be done
both outdoors by using natural light, or indoors
by utilizing artificial lighting, a significant cost
factor.

The opportunities of vertical farming to make
better use of space and better control factors
that affect production come directly with some
new challenges. From a physical perspective,
growing plants vertically hinders their manual
inspection and reachability by farmers. Space
limitations, besides cost, also affect how sensing
and communication infrastructure is deployed; for

example, there is a need to minimize cabling,
thus wireless sensor connectivity is preferred.
Vertical farming is often associated with planned
and connected indoor installations, but under
specific circumstances such as in underground or
remote outdoor farms, Internet connectivity cannot
always be assumed. Therefore, farm monitoring
and control logic needs to be executed in place,
at the edge, instead of in the cloud.

Studies show [4] that energy consumption (for
indoor deployments) and labor cost are the highest
contributing operational expenditure factors. At
the same time, a multitude of heterogeneous
monitoring data directly originating from IoT
devices are generated in a vertical farm, and there
are, respectively, plenty of parameters that a farmer
can directly influence and which determine plant
growth and resource consumption. This calls for
low-cost and high-volume monitoring data man-
agement, which is critical for optimized control
of the vertical farming process, and in order to
produce new domain knowledge about optimal

1

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

farming practices and procedures potentially not
yet well understood.

Towards addressing such challenges, we pre-
senting a modular, service-based architecture and
end-to-end system for the management of vertical
farm installations supported by IoT technologies.
Our design is derived with extensibility in mind
and is connectivity technology agnostic. However,
physical deployment and networking aspects are
critical. We therefore evaluate different networking
scenarios to support our scheme, with a focus
on Low-Power Wide Area Networks (LPWAN).
We build a prototype on commodity edge com-
puting devices, featuring state-of-the-art stream
processing technology and integrating IoT devices
connected, among others, via LoRaWAN. Our
experiments reveal that, from a computation and
communication perspective, low-end edge comput-
ing devices are suitable candidates to implement
autonomic vertical farm management at a low cost
and at scale.

Architecture for vertical farm
management

Key requirements for a system to support
the operation of a vertical farm include the
ability (i) to seamlessly integrate a multitude of
heterogeneous sensors, typical of the different
parameters and phenomena to be monitored, and,
in turn, (ii) provide custom analysis and decision
making logic for different aspects of the farming
process, operating on monitoring data streams
and potentially integrating domain knowledge.
Furthermore, (iii) it is desirable that the system
can function on resource-constrained compute
infrastructure, such as Single Board Computers
(SBCs) like Raspberry Pi (RPi), which we expect
to be typical of edge-assisted vertical farming
installations given their low cost, reduced power
requirements, and small form factor; these are
important when space and power consumption
matter.

Driven by these requirements, we present the
components of our architecture (Figure 1). Our
design aligns with the philosophy of autonomic
computing [5], thus our functional blocks map to
the elements of a Monitor-Analyse-Plan-Execute
(MAPE) loop.

Sensing Module
One or more Sensing Modules (SMs) are

in charge of feeding sensor measurements into
our system. A SM may also include actuation
components. We have applied a sensor gateway
approach; the SM aggregates and ingests data to
a publish/subscribe system which delivers them
to a Controller and various Decision Modules
(DMs). This approach allows to collect data from
sensors which are controlled via different systems
and programming languages, and over different
connectivity forms. It also provides a single entry
point into our stream processing pipeline and helps
with extensibility. The SM acts as a wrapper for
the sensor gateway and uses a unified interface to
communicate with the Controller. The internals of
the gateway implementation are thus abstracted.
Furthermore, the SM implements configuration
and alert functions, which (i) expose the respective
interface to receive notifications or changes in
sensor settings, and (ii) act upon them, dealing
with the particular sensor/actuator communication
interface. For example, sensors connected over
LoRaWAN do not have an IP endpoint and the
SM should interface with the LoRaWAN network
to push a downlink message.

Controller
The Controller is in charge of routing data

across the various system entities and performing
format translations, if necessary. Configuration
changes mainly originate at the User Interface
(UI) and are pushed to the SMs via the Controller,
whose configuration module provides an interface
where SMs can register to receive alarms and con-
figuration changes. Alarms and other notifications
originate from DMs. When raised, the Controller
needs to push them to the UI and the SMs.

Decision Module
A DM is responsible for data analysis and

action planning. It subscribes to, consumes, and
analyzes data produced by SMs. If an alarm
should be raised or a notification be generated,
it publishes the respective message. The system
should support common threshold-based alarms
and generic notifications (e.g., indications that the
current maximum value of a sensor has changed)
out-of-the-box, while multiple DMs, potentially
providing sophisticated analytics and decision

2 IEEE Internet Computing

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

Figure 1: Architecture components and interactions in the context of a Monitor-Analyze-Plan-Execute
loop [5]. The technologies used in our implementation are also depicted.

making, can coexist as pluggable modules. More-
over, each DM can have interfaces of its own,
e.g., for the farmer to manually provide domain
knowledge (for example, threshold values). These
are left to the architects of the various DMs.

Network topologies, technologies, and
deployment strategies

The presented software architecture is designed
to be agnostic to the underlying topology and
connectivity technologies. However, these have
significant implications when it comes to imple-
menting, deploying and operating such a system.
We analyze different deployment scenarios and
network topologies where our system could be run;
combinations of these scenarios are also possible.

A. On-site hosted (Wireless) Local Area
Network

In a small-scale farm that has good power
supply possibilities, the system can utilize Wi-
Fi internally for the communication between the
SM, the Controller, the DMs and the UI, all of
which can be hosted at edge computing nodes
on-site and within the same network. The SM-
internal communication with the sensors can
be accomplished via other means, such as over
Bluetooth, Wi-Fi, a wired connection or a sensor-
specific hardware interface. Given the range of Wi-
Fi, multiple wireless access points may be required

to cover the farm. Importantly, this setup comes
with no external hosting costs and relies on no
third parties, enabling autonomous disconnected
operation. The farmer only has on-site access to
the system in this case.

To allow remote farm monitoring, a public
IP endpoint at the farm is typically necessary.
Then, which components of the architecture are
deployed at the edge is a matter of the desired
level of cloud reliance. For example, it is possible
to deploy the SMs, Controller, and DMs on-site
and keep the UI in the cloud, or follow a more
cloud-centric approach, splitting the SM to a local
(edge) gateway component that collects sensor
readings and a remote (cloud) one which receives
sensor data from the gateway and publishes them.

B. Use of LPWAN technology
A different approach to device connectivity is

via LPWAN. This allows to host the monitoring
system at an aggregation point at the edge or
in the cloud, reducing network infrastructure
requirements in the farm. Our LPWAN technology
of choice is LoRaWAN, due to its potential to
operate a full end-to-end private network without
relying on a network provider, and its ability to
integrate well with both edge and cloud computing
resources [6]. Here, sensors (or sensor gateways
where multiple sensors are attached) are equipped
with LoRaWAN radio interfaces to emit their

3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

readings.
According to the LoRaWAN specification [7],

end devices broadcast data over the LoRa physical
layer, which are received by LoRaWAN gateways.
A LoRaWAN gateway then forwards the data
to a Network Server (NS), which is responsible
for handling the state of the network, including
device join requests, MAC-layer operations such
as packet deduplication and downlink schedul-
ing, and pushing uplink data to an Application
Server (AS) component. The AS implements
the application layer of the LoRaWAN stack. It
provides various integration mechanisms with IoT
application services, and also handles application-
level security, such as end-to-end data encryption.

LoRaWAN operates in unlicensed spectrum,
but, depending on the region, it is subject to
channel dwell time restrictions (as in the US)
or duty cycling regulation (which is the case in
the EU). For example, an IoT device may not be
allowed to transmit for more than 0.4 s over a 20 s
period at a given frequency, or it may have to
apply a 99% sleep time and 1% transmission time.
This limits how many measurements a device can
send in a given timeframe. Also, uplink latency
for LoRaWAN is higher than that of Wi-Fi, but
vertical farming typically does not come with real-
time constraints. Notably, in vertical farming it
is sometimes the case that cameras are used as
sensors. In this case, the limited uplink bandwidth
of LoRaWAN mandates that data (images) are
preprocessed on-device so that only extracted
features are transmitted, to be used as input to
DMs. Even so, the very limited frame payload
size may necessitate that fragmentation is handled
at the application level, making it cumbersome or
infeasible to use LoRaWAN.

Downlink communication also faces limita-
tions. One example is the change of SM configu-
ration values, such as the measurement interval.
There are three LoRaWAN device classes, with
Class A being the most widespread, inexpensive,
and with the minimum energy requirements. A
Class A device can only receive a downlink
message during one of the two short receive
windows (RX1 and RX2) that it opens a specified
time after an uplink [7]; by default, RX1 and RX2
open 1 s and 2 s, respectively, after an uplink has
been completed. This means that the latency for
a notification or configuration change to apply is

Table 1: Rating of deployment scenarios on a
five-point scale.a

Scenario Ease
of net-
work
setup

Infrastru-
cture
inde-
pen-
dence

Remote
moni-
toring

Compute
power

Private LAN ? ? ? ? ? ? ? ? ? ??
Public LAN ? ? ?? ?? ? ? ?? ???(??)
LoRaWAN ?? ? ? ? ? ? ? ? ? ? ??(???)

a Under the compute power category, stars in parentheses
represent a potential increase in the ranking of a scenario
when it is permissible to deploy architecture components in
the cloud, i.e., when disconnected operation is not mandated.

determined by the uplink interval.
On the positive side, LoRaWAN poses less in-

frastructure requirements, combined with extended
battery life of IoT devices. With a cloud-based
deployment of the architecture components, or by
deploying a connected LoRaWAN gateway and the
rest of the architecture at a single edge location
in the farm, remote monitoring for the farmer
is facilitated. Importantly, a LoRaWAN gateway
has a coverage radius in the order of kilometers.
However, an increased setup effort typically by
experienced IT personnel might be needed. A
LoRaWAN-based topology for our architecture is
shown in Figure 2.

Comparison
While choosing the appropriate deployment

strategy is a multi-faceted decision, this being a
matter of preference and the particularities of the
farm settings, we attempt to provide a structured
comparison which, combined with the priorities
of the system operator, can guide the latter’s
choices. We rate the various scenarios along four
dimensions on a five-point scale (Table 1).

Using a private WLAN ranks better regarding
the ease of network setup. Providing external
access might require some extra effort. LPWAN
scenarios may require the additional configuration
of a gateway and the respective network stack.
Despite that, LPWAN-based deployment ranks
better in terms of infrastructure independence.
(This applies when an end-to-end LoRaWAN
private network is deployed. Other options are
possible [6] but not discussed here.) This owes to
the fact that IoT devices can operate on battery
for prolonged periods and that a single gateway
can cover a wide area. For the same reason,

4 IEEE Internet Computing

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

Figure 2: Deployment featuring LoRaWAN. Different hosting scenarios are shown, with different levels
of cloud dependence each; from hosting everything at an edge aggregation point (option 1), to pushing
the Controller, DMs, and UI to the cloud (option 3). Other options are also possible.

LoRaWAN-based topologies score better in terms
of remote monitoring. Even if the monitoring
system is not Internet-accessible, the farmer may
have access to it from a single edge aggregation
point (e.g., where the LoRaWAN gateway is co-
located with the rest of the system components)
or the cloud. Also, a LoRaWAN-based setup has
benefits for multi-site farm installations where
different sites are in the same geographical area
and sensors from multiple physical locations feed
monitoring data into a single remote controller in
a star-like topology.

Computation-wise, hosting everything at the
edge (i.e., on-premise) is naturally more limited.
The lower ranking reflects the need to appropri-
ately dimension the compute resources necessary,
since these are provided by dedicated edge hard-
ware such as SBCs. By mandating disconnected
operation, this also constrains the cloud-based
scaling capabilities of such setups. In contrast,
other scenarios may rank better in this respect,
depending on the extent to which they are using
cloud resources to host application components.

Implementation
We have implemented our architecture re-

lying on Apache Kafka for our publish/sub-
scribe backend, which provides a scalable stream
processing engine at the core of our system.
Once a measurement is taken, it is published
by the SM (written in Python) to a specific
Kafka topic (vf-sensor-topic) using the
kafka-python library. The SMs register with
their IP address to an HTTP endpoint of the
Controller to be notified of alerts and configuration

changes. The SM-sensor interface is internal and
depends on the particular sensors used. To demon-
strate the flexibility of our design, we implemented
two different types of sensor communication:
(i) a solution where the sensor is bundled on
the same hardware as the SM; (ii) a solution
based on LoRaWAN. In both cases, the same
unified interface is used to communicate with the
Controller.

Our LoRaWAN-based proof of concept uses
end-devices with temperature and other sensors. A
reading is transmitted over LoRaWAN to a gate-
way hosted by a RPi. The full LoRaWAN network
server stack, for which we used the ChirpStack
(https://www.chirpstack.io/) open-source imple-
mentation, is co-located with the gateway device.
Uplink frames traverse the NS and the AS and,
via an integration layer, are eventually pushed
to a south-bound (internal) REST API endpoint
of the SM. On the downlink, the SM enqueues
the payload (e.g., sensor configuration) to an API
endpoint of the AS, which forwards it to the NS
for delivery.

The Controller is implemented in Kotlin us-
ing the Spring Boot framework, and consumes
data published to vf-sensor-topic using the
Kafka Consumer Java API. These are forwarded
to our web-based UI over a WebSocket. If an alert
is published, the Controller propagates it to the
UI and notifies via REST the SM that an alarm
is to be raised.

We developed two DMs which consume and
operate on sensor data streams and publish notifica-
tions. The min-max DM publishes an alarm when-
ever a new maximum/minimum value is reached

5

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

https://www.chirpstack.io/

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

for a sensor. The manual threshold DM allows
users with domain knowledge to set manually
critical threshold values for sensors via the UI.

Evaluation
We carry out an experimental campaign, striv-

ing to draw realistic figures on the capacity of
our system to handle vertical farm monitoring
workloads, especially when operating atop low-
end edge computing hardware. This is directly
linked with the scale of farms we can manage,
and the associated infrastructure costs. We perform
experiments where two types of compute devices
are involved: a RPi 2 Model B (900MHz quad-
core ARM Cortex-A7 CPU; 1 GB RAM) and a
host with an AMD Ryzen 5 3600X processor (6
CPU cores at 3.80GHz; 32 GB RAM).

Workload processing capacity
We first focus on the rate at which an SM

(producer) running on a RPi can inject sensor
readings to the system. This setup is characteristic
of cases where the SM runs on a single SBC and
acts as the sensor gateway which publishes sensor
readings to the Controller, aggregating a large
number of devices. The rest of the software stack
runs on a separate powerful host. To avoid hitting
network bottlenecks, devices were connected via
1 GB Ethernet. We found that the Kafka producer
on a RPi can emit more than 1000 measurements/s
with 100% delivery rate. This implies that many
important parameters in the operation of a vertical
farm, such as light intensity, pH levels, and others,
can be monitored at a high frequency. This adds to
the feasibility of our design and implementation.

Vertical farm monitoring over a private
LoRaWAN network

We then turn our attention to the use of
LoRaWAN for IoT device connectivity. We are
particularly interested in the deployment of a full
private LoRaWAN network to support a vertical
farm, and since low cost is a prime concern, we
aim to do so with minimal equipment. Thus, we
experiment with an all-in-one setup, where the
components of the LoRaWAN stack are co-located
with the LoRaWAN gateway and are executed on
top of the same edge device, which also hosts
the SM and the Controller. Our testbed setup
includes a Libelium Smart Water end device,

with a Microchip RN2483 LoRa radio module
on an ATmega1281 MCU. Regarding the gate-
way, we attached a Dragino PG1301 LoRaWAN
concentrator with a Semtech SX1301 baseband
unit and SX1257 RF front-end on the RPi which
also hosts the ChirpStack LoRaWAN stack. In the
experiments that follow, each transmission carries
a 4-byte payload. The spreading factor was set to
7 and the uplink channel bandwidth was 125 KHz,
operating at the EU 863-870 MHz frequency band.

Latency We first measure the round trip time
of a sensor reading from the IoT device to
the ChirpStack network stack and back. This
communication is internal to the SM: when the
AS receives a reading, it pushes it to the internal
HTTP endpoint of the SM, which then publishes
it to the Controller.

We measure the time to (i) sense a temperature
value, (ii) transmit a frame over LoRaWAN,
and (iii) receive a response (acknowledgement
and/or queued downlink frame). Transmitting also
involves powering on the LoRaWAN radio and
configuring it with the authentication state (i.e.,
the following session parameters: device address,
network session key, application session key) es-
tablished when the device joins the network using
over-the-air-activation (OTAA). In this process,
which takes ∼7.84 s on average (Figure 3), the call
to transmit the frame and receive the downlink data
accounts for 2.5 s. It is interesting to see that the
2 s receive window that opens after a LoRaWAN
transmission is manifested in this value.

Figure 3 (bottom) shows that the majority
of the time (48%) is spent to power on the
LoRaWAN radio module and re-configure it with
the parameters set up when the device joined the
network, followed by the actual transmission of
data at 33%. Powering on/off the radio module
before/after each transmission and having to re-
configure session parameters each time is optional,
but is applied to save on energy consumption.
There is a non-negligible amount of time spent
in sleep() calls after each command sent from
the host MCU to the radio module. This takes
place over a UART hardware interface and the
sleep guards are in place to ensure that commands
execute properly. This is specific to the hardware
and software of our testbed.

6 IEEE Internet Computing

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

7750 7800 7850 7900 7950

Total latency to sense, transmit, and receive confirmation

Latency (ms)

Read

sensor value

Power on

LoRa radio
Configure

Transmit,

get response

Latency components

% time

0 20 40 60 80 100

1.44s 0.8s 3s 2.56s

Figure 3: Top: Total latency to communicate a
sensor reading over LoRaWAN, from sensing
to receiving a confirmation. The median and
mean are shown with a line and circle point,
respectively. Minimum, maximum, first and third
quartile values are shown. Bottom: Breakdown of
the total latency. After powering on the LoRaWAN
module, configuration refers to setting session
parameters which were derived when the device
joined the network.

Message processing throughput We used
the ChirpStack Simulator to inject load in the
LoRaWAN network stack in the form of simulated
uplink frames, and measured how much it takes
for a sendConfirmed call from a real device to
complete. Confirmed transmission is an optional
feature, where the NS acknowledges reception.
If an acknowledgement is not received after a
number of retries (seven, in our tests), the frame
is considered lost. Our tests showed that the
LoRaWAN stack, when deployed on a RPi, has
a maximum uplink message processing capacity
of less than 60 messages/s. When the injected
load reached 60 messages/s, we observed an
abrupt latency increase from 2.5 s to approximately
13 s. This is because the increased workload on
the LoRaWAN network stack leads to increased
time to process uplink frames. These latencies,
in turn, often cause the NS to fail to deliver an
acknowledgement for an uplink frame in time,
i.e., within the two receive windows that follow,
thus leading to retransmissions, which add to the
latency experienced by the device. Additionally,

∼25% of the messages were lost, which further
indicates that we reached capacity.

Implications of our results Using Lo-
RaWAN as the device connectivity technology for
vertical farm monitoring is promising. Latencies
in the order of few seconds are still acceptable
since no hard real time requirements typically
apply. Regarding downlink traffic, using Class
A LoRaWAN devices, latency depends on the
uplink message transmission interval. If there is
a message queued for delivery to a sensor device
(such as a configuration change), this will be
delivered as a response to the next uplink message.

We derived a limit of 60 uplink messages/s
when the full LoRaWAN stack is hosted at an
edge device. While this might look modest, it
corresponds to thousands of sensors generating
readings at realistic frequencies of once per few
minutes each. Importantly, this value is associated
with the processing capabilities of our reference
edge device. Using a powerful host or VM
executed at edge or centralized clouds would
yield significantly better capacity. Furthermore,
the LoRaWAN stack can be scaled horizontally,
provided that more edge compute resources are
available to balance the load. Our results can
help the system designer to directly derive the
amount of such resources necessary (e.g., number
of SBCs at a local edge cluster) to support a target
workload.

Cost considerations
We built our proof of concept at a cost of

(prices as of November 2020) 40e for the SBC
and 130e for the sensor kit used, which included a
number of temperature, humidity and light sensors.
For a LoRaWAN-based installation, the gateway
radio hardware accounted for 130e , while an
end-device LoRaWAN radio is at the order of
10e (this can be combined with an MCU platform
or an SBC controlling multiple sensors). Since
it is feasible computationally to monitor a large-
scale vertical farm installation with a single SBC,
eventually it may be IoT device procurement that
will dominate setup costs, rather than compute
infrastructure. Subscription costs may also surface,
for instance to provide Internet access to the
farm, or if another device connectivity approach is
selected, such as using NB-IoT or a commercial

7

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

LoRaWAN network operator. For a detailed cost-
driven comparison of different LPWAN-based
connectivity options and deployment strategies,
the reader is referred to our prior work [6].

Related work
Vertical farming can be viewed as a case for

precision agriculture [8]. To support precision
agriculture, appropriate IoT service architectures
need to be in place [9], [10], [11] but currently
the majority are cloud-centric. In the context of
vertical farming, these should handle data from
a multitude of sensing technologies. Cameras
as sensors, for example, are commonplace [12],
[13], while the use of sensing-capable drones, as
already applied in traditional outdoor settings [14]
is promising. Our design facilitates the integration
of such technologies.

Prototypes of IoT-supported farming are emerg-
ing. SmartFarmNet [15] relies on semantic web
technologies and aims to address device hetero-
geneity. FarmBeats [16] introduces an IoT base
station connected over TV white spaces and uses
drones combined with ground sensors for farm
mapping.

IoT data processing is traditionally cloud-
based, but data volume and velocity stress the
communication infrastructure and necessitate sig-
nificant resources for centralized processing. This
motivates pushing computation closer to data
sources, i.e., the IoT device domain, giving rise to
edge computing [17]. Edge computing use cases
permeate the whole IoT space, and, recently, smart
agriculture. This is manifested in cloud-focused
systems for vertical/soil-less farming [18], [19]
with similar motivation as ours (albeit different
technical approach and research focus), which
can exploit edge/fog resources for certain tasks.
O’Grady et al. [20] survey various edge computing
approaches in agriculture. They conclude that most
of them have a level of cloud dependence, identify
the lack of Internet connectivity as a key limitation,
and advocate for a service model based on delay
tolerance. Our work is in line with this spirit. We
support various levels of cloud dependence, facili-
tating complex stream processing and analytics at
the edge. Most importantly, our service-oriented
design natively supports publish-subscribe asyn-
chronous communication between components, a
prerequisite for delay- and disruption-tolerance.

Conclusion
Vertical farming has emerged as an approach to

sustainable food production, but faces challenges
related with operational costs, monitoring, and
management. We have shown how such challenges
can be addressed by combining Service-Oriented
Architecture, advances in IoT connectivity, and
low-cost edge computing technology. This is a
promising result in an effort to reduce the price of
entry to vertical farmers. Our analysis of different
deployment strategies and experimental results
can further serve as a basis for dimensioning the
compute infrastructure necessary for IoT-driven
vertical farm management from the edge.

REFERENCES
1. United Nations, Department of Economic and Social

Affairs, Population Division, World Population Prospects

2019: Highlights. New York: United Nations, 2019.

2. D. Despommier, “The vertical farm: controlled envi-

ronment agriculture carried out in tall buildings would

create greater food safety and security for large urban

populations,” Journal für Verbraucherschutz und Lebens-

mittelsicherheit, vol. 6, no. 2, pp. 233–236, 2011.

3. M. Butturini and L. F. Marcelis, “Chapter 4 - vertical

farming in europe: Present status and outlook,” in Plant

Factory, 2nd ed., T. Kozai et al., Eds. Academic Press,

2020, pp. 77–91.

4. C. Zeidler et al., “Vertical farm 2.0: Designing an

economically feasible vertical farm - a combined

european endeavor for sustainable urban agriculture,”

Association for Vertical Farming, Tech. Rep., 2017, white

Paper. [Online]. Available: https://elib.dlr.de/116034/

5. J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

6. P. A. Frangoudis et al., “Connectivity technology selec-

tion and deployment strategies for IoT service provision

over LPWAN,” IEEE Internet Comput., vol. 25, no. 1, pp.

61–70, 2021.

7. LoRa Alliance, LoRaWAN 1.1 Specification, Oct. 2017.

8. N. Zhang et al., “Precision agriculture—a worldwide

overview,” Computers and Electronics in Agriculture,

vol. 36, no. 2, pp. 113–132, 2002.

9. M. S. Farooq et al., “A Survey on the Role of IoT in

Agriculture for the Implementation of Smart Farming,”

IEEE Access, vol. 7, pp. 156 237–156 271, 2019.

10. T. Ojha et al., “Internet of Things for Agricultural Appli-

cations: The State-of-the-art,” IEEE Internet of Things

Journal, 2021, in press.

8 IEEE Internet Computing

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

https://elib.dlr.de/116034/

1089-7801 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3129271, IEEE Internet
Computing

11. J. López-Riquelme et al., “A software architecture based

on FIWARE cloud for precision agriculture,” Agricultural

Water Management, vol. 183, pp. 123–135, 2017.

12. M. L. Tenzer and N. C. Clifford, “A digital green thumb:

Neural networks to monitor hydroponic plant growth,” in

Proc. SIEDS, 2020.

13. L. Zhang et al., “Growth monitoring of greenhouse lettuce

based on a convolutional neural network,” Horticulture

Research, vol. 7, no. 124, 2020.

14. P. Tripicchio et al., “Towards smart farming and sustain-

able agriculture with drones,” in Proc. IE’15, 2015.

15. P. P. Jayaraman et al., “Internet of things platform

for smart farming: Experiences and lessons learnt,”

Sensors, vol. 16, no. 11, 2016.

16. D. Vasisht et al., “Farmbeats: An IoT platform for data-

driven agriculture,” in Proc. USENIX NSDI, 2017.

17. M. Gusev and S. Dustdar, “Going back to the roots—the

evolution of edge computing, an IoT perspective,” IEEE

Internet Computing, vol. 22, no. 2, pp. 5–15, 2018.

18. I. Haris et al., “CPS/IoT Ecosystem: Indoor Vertical

Farming System,” in Proc. IEEE ISCT, 2019.

19. M. A. Zamora-Izquierdo et al., “Smart farming IoT plat-

form based on edge and cloud computing,” Biosystems

Engineering, vol. 177, pp. 4–17, 2019.

20. M. O’Grady et al., “Edge computing: A tractable model for

smart agriculture?” Artificial Intelligence in Agriculture,

vol. 3, pp. 42–51, 2019.

Adrian Jandl received his Master’s Degree in
Software Engineering and Internet Computing
from TU Wien, Vienna, Austria. Contact him at
adrian.jandl@gmail.com.

Pantelis A. Frangoudis is a post-doctoral re-
searcher with the Distributed Systems Group, TU
Wien, Vienna, Austria. He is the correspond-
ing author of this article. Contact him at pan-
telis.frangoudis@dsg.tuwien.ac.at.

Schahram Dustdar is a Full Professor of Com-
puter Science (Informatics) with a focus on Internet
Technologies heading the Distributed Systems Group,
TU Wien, Vienna, Austria. He is a member of the
Academia Europaea: The Academy of Europe. Con-
tact him at dustdar@dsg.tuwien.ac.at.

9

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 29,2021 at 07:18:37 UTC from IEEE Xplore. Restrictions apply.

