
1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

1

A Decentralized Approach for Resource Discovery
using Metadata Replication in Edge Networks

Ilir Murturi and Schahram Dustdar
Distributed Systems Group
TU Wien, Vienna, Austria

Abstract—Recent advancements in distributed systems have
enabled deploying low-latency edge applications (i.e., IoT ap-
plications) in proximity to the end-users, respectively, in edge
networks. The stringent requirements combined with heteroge-
neous, resource-constrained and dynamic edge networks make
the deployment process a challenging task. Besides that, the lack
of resource discovery features make it particularly difficult to
fully exploit available resources (i.e., computational, storage, and
IoT resources) provided by low-powered edge devices. To that
end, this paper proposes a decentralized resource discovery mech-
anism that enables discovering resources in an automatic manner
in edge networks. Through replicating resource descriptions (i.e.,
metadata), edge devices exchange information about available
resources within their scope in a peer-to-peer manner. To handle
the resource discovery complexity, we propose a solution to built
edge networks as a flat model and enable edge devices to be
organized in clusters. Our approach supports the system in
coping with the dynamicity and uncertainty of edge networks.
We discuss the architecture, processes of the approach, and the
experiments we conducted on a testbed to validate its feasibility
on resource-constrained edge networks.

Index Terms—Edge Computing, Internet of Things, Decentral-
ized, Resource Discovery

I. INTRODUCTION

Researchers from academia and industry stakeholders sug-
gest adding more computational resources (i.e., perceived as
edge devices) in proximity to the end-users to overcome high-
latency issues between the cloud and the Internet of Things
(IoT) domain [1]. Edge devices are low-powered computer
entities featuring different capabilities; resources available may
differ in terms of computational capabilities and IoT resources
attached to them. A wide range of available resources at
the edge has introduced new opportunities such as deploying
low-latency, privacy-awareness, and resilient edge applications
(e.g., IoT applications). In this regard, many studies have
been carried to exploit edge networks for various purposes
(i.e., from processing sensory data streams to EdgeAI appli-
cations) [2]. Notably, we consider edge networks as resource-
constrained, heterogeneous, and dynamic environments where
multiple low-powered edge devices in proximity are con-
nected. In this sense, we may have various edge networks
(e.g., smart building, smart home, drone network, etc.) where
end-users may deploy different edge applications.

In the past few years, computer scientists have been mostly
focused on proposing multiple techniques for resource allo-
cation problems to minimize latency and maximize resource
utilization at the edge. Notably, today’s applications are not

monolithic; they are divided into multiple independent deploy-
able tasks. Each task may have various resource requirements
that need to be fulfilled by available edge devices upon
deployment. Tasks are characterized by requirements such
as computational (i.e., processing, memory, storage), energy,
or bandwidth. However, resource allocation approaches often
overlook the dependence between tasks and IoT resources
(e.g., sensors and actuators) [3]. Additionally, despite the
numerous advantages introduced by edge networks, communi-
cation between edge devices and the network organization has
been neglected by many research papers [4], [5]. According
to the paper [6], the communication and network organiza-
tion type of a platform affects the functionality of the final
applications deployed at the edge infrastructure.

Very few research works consider IoT resources as an appli-
cation requirement that needs to be fulfilled when deploying
them at the edge [7], [8]. For example, computing a local
weather forecast in a smart agriculture setting may require
various IoT resources such as temperature and humidity
readings from available sensors across a crop field [5]. In
such a scenario, application tasks dependent on particular IoT
resources must be deployed on edge devices providing those
resources. Notably, edge devices are not equipped with the
same capabilities, and such a stringent constraint reduces the
number of eligible deployments at the edge. For example,
the allocation technique [7] tries to overcome the problem
by enabling sharing IoT resource information within neighbor
nodes. Similarly, the proposed solution [8] acknowledges the
problem; however, it faces latency issues, and it considers a
limited number of edge devices in the network topology. Nev-
ertheless, both approaches do not address issues related to the
communication between edge devices, network organization,
and resource discovery.

To overcome these shortcomings, we discuss two major
issues. First, edge networks should be designated to handle
the complexity of discovering resources in a decentralized and
automatic manner. Thus, we design edge networks in a flat
model where edge devices in certain proximity are connected
in a peer-to-peer (P2P) way. A set of edge devices form
a cluster; while multiple connected clusters form an edge
network, respectively an edge neighborhood. Besides that, we
introduce system coordinators with their corresponding func-
tionalities to organize edge devices and support the resource
discovery process in an edge neighborhood. Second, resource
managements’ fundamental objective is to discover resources
available at the edge [9]. Edge devices provide heterogeneous

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

2

resources and are equipped with a rich set of IoT resources.
We refer to heterogeneous resources as computational, sensing,
context data, or other domain-specific resources. Naturally,
performing a resource discovery algorithm for each resource
on the entire network is possible. However, such a process
is computationally intensive, and resources are discovered by
querying the entire network based on a keyword [10]. Thus,
we advocate that exchanging information about available re-
sources between edge devices in an automatic manner enables:
i) sharing resources across the whole system and ii) edge
devices to perform complex queries locally.

In this paper, we extend the framework of [11] with a
methodology to built edge networks as a flat model and
enable edge devices to be organized in clusters. Our proposed
framework enables discovering heterogeneous resources and
make them available at the runtime. A resource is described by
providing certain core information about the functionality and
its properties. This type of description, known as the resource’s
metadata, is replicated among edge devices and stored in a
decentralized manner. Furthermore, we treat privacy aspects
based on each edge device’s resource preferences, ensuring
that not all resources are advertised across the whole system.
Specifically, our concrete contributions are as follows:

• We develop a prototype enabling edge devices to be
connected in a P2P manner and form an edge network.
Our approach is built on top of the Kademlia Protocol
[12] used as the communication protocol between edges
devices. To enable scaling of our approach, we propose
a solution to break down edge networks into clusters
as well as introduce new coordinators to handle the
complexity to discover resources automatically.

• We advocate decentralization as the system can operate
without a static entity for discovering available resources.
Essentially, coordinators are placed dynamically and run
on the most suitable edge devices providing various
services. Our approach supports the system in coping
with the environment’s dynamicity and uncertainty and
continuously re-evaluates coordinators’ placements.

• To validate the approach’s feasibility, we show that the
prototype’s footprint is limited to hardware resources
and network bandwidth. We evaluate our prototype on
a testbed composed of low-powered ARM-based edge
devices.

The rest of the paper is structured as follows. After a
motivating example used throughout this paper in Section II,
related work is presented in Section III. Section IV presents
our approach to organize edge devices in edge neighborhoods
and resource modeling. Section V describes in detail the pro-
posed algorithm in charge of determining system coordinators
and the framework for automatic resource discovery in edge
neighborhoods. Section VI provides the experiment results to
evaluate the proposed solution. Finally, Section VII concludes
the paper and outlines future work directions.

II. MOTIVATION SCENARIO

To motivate our discussion, we consider emergencies such
as natural disasters (e.g., earthquakes, fires, floods) in a city

[13]. Various city areas can be affected by natural disasters
such as earthquakes, which can destroy infrastructure, cause
injury or death, and trap people under buildings. In such situ-
ations, time is valuable, and drones could be used to analyze
the situation and assist rescue teams in locating and com-
municating with victims trapped under a collapsed building.
In such a scenario, multiple connected drones are essentially
edge devices forming an edge neighborhood. Drones flying
over the city’s affected areas (i.e., neighborhoods) assist rescue
teams in locating people trapped under a collapsed structure.
Each drone is equipped with various computation capabilities
and integrated sensors (e.g., radar sensors, infrared cameras,
electronic noses, etc.). We consider drones as multipurpose
devices where the rescue teams may deploy various services
depending on the emergency. Furthermore, we consider three-
tier Edge-Cloud infrastructure (i.e., cloud, fog, and edge)
[14]. Fog devices (i.e., server-graded hosts) placed in base
stations provide computational and storage capabilities to edge
neighborhoods. In addition to that, base stations may provide
docker charge stations for charging drones. Cloud hosts can
be used to store data for long terms.

E2

E3

E4

E1

Fog node
 Charge station

Deploy services

4G/5G

Rescue team

Use services

Cloud

Edge
neighborhood

(1)
(2)

(3)

(4)

En

(5)

(4)4G/5G

Fig. 1: IoT safety application [13].

We assume that drones are connected via a wireless con-
nection provided by the ground users (i.e., rescue team) or
by drones [15] covering a particular city area (e.g., neighbor-
hood). Based on the situation seen in Figure 1, we assume that
the rescue team deploys (1) a public safety IoT service that
detects a dangerous zone in the affected area (i.e., discovering
cracks, smoke, hazardous gases, etc.). Such a service aims at
helping rescue teams (2) find a safe path, and avoid danger
zones. The service is dependent on various resources such
as multiple infrared cameras, radar sensors, and an electronic
nose that are integrated into various drones. Since each drone
is a potential candidate to run the service, it is then evident
that each edge devices should be able to automatically discover
resources in a decentralized manner and make them available
at runtime. In such use case scenarios, we cannot depend on
the service availability [16] offered from physically static en-
tities (3-4). Additionally, edge-based systems with centralized
architecture cannot run properly due to the network dynamicity
(i.e., drones may join (5) and leave often).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

3

III. RELATED WORK

We divide related work into two categories. First, we
review P2P approaches and communication types used at the
edge. Afterwards, we review related techniques on resource
management as they apply to IoT.

A. Communication in Edge Networks

Many studies have been carried out, leading to different
approaches aiming at exploiting the edge and provide various
allocation techniques to fulfill application requirements. In this
context, many platforms use different communication types
aiming to achieve particular system goals. The current litera-
ture recognizes and briefly discusses communication types at
the edge [17], [18]. According to the paper [6], three main
types of communications in Edge Computing are identified:
hierarchical, P2P, and hybrid.

Notably, P2P approaches have shown great potential to
handle edge infrastructures in a scalable manner [19]. There-
fore, a lot of research has been conducted in this context,
resulting in many approaches that aim at organizing edge
devices using different communication types [20]. Due to their
fully distributed nature, P2P architectures are both scalable, re-
liable [21], and fault-tolerant [22]. Many edge-based platforms
use P2P to organize edge devices within the edge network
[23]. Similarly, Cabrera et al. [24] propose a P2P-based fog
platform that enables storing data generated from IoT devices.
In the proposed approach, data is stored among fog devices in
a distributed manner. A fog device can restore corrupted data
by asking other fog device in the network. In the mentioned
works, devices are organized in a P2P manner and are assumed
to have partial view [25] or full view of the network (i.e.,
O(1) protocols). In contrast to the mentioned works, our
approach provides a decentralized mechanism to organize edge
devices in clusters. Our solution determines the most suitable
edge devices to place coordinators in edge networks and
adapts to the network changes that may occur. Nevertheless,
the proposed solution makes edge neighborhoods autonomous
environments and less dependent on centralized nodes.

B. Resource Management

Performing a resource discovery algorithm for each resource
on the entire edge neighborhood is computationally demand-
ing. For instance, queries like discovering all cameras in a cer-
tain area are becoming highly desirable for IoT applications.
In the general sense, such system behavior in decentralized
common DHT protocols is hardly achievable. Even though
some DHT-based approaches support discovering data through
multi-attribute queries [26]; however, such methods remain
unsuitable in IoT systems and edge networks due to the high
content lookup latency. In addition to that, resource discovery
is a critical challenge for IoT application performance.

Service-based discovery has been widely studied [27], [28].
Paganelli et al. [10] introduce a DHT-based IoT service
discovery that supports multi-attribute and range queries. Fur-
thermore, the proposed solution enables real-time monitoring
of resource positions since it updates resource location pe-
riodically. Santos et al. [22] propose a resource discovery

service for resource provisioning in fog environments. The
proposed solution is based on DHTs and enables exchanging
provisioning information about the available resources (i.e.,
performance metrics, workloads, etc.). However, in contrast to
our approach, the proposed solution does not address privacy
aspects, does not consider discovering IoT resources, and no
actual provisioning mechanisms are discussed.

Resource allocation and management have been widely
studied both in cloud and fog computing [17]. A taxonomy
of resource management at the edge is presented in [9]. Up to
now, many factors have been considered including time (e.g.,
computation [29]), data size [30], cost (e.g., networking and
deployment [31], execution [32]), deploying self-adaptive IoT
systems [33], user-application context [32], etc., which have
been found to play important roles in resource and service
provisioning. Jain et al. [34] propose a solution where the
IoT application is divided into multiple tasks annotated with
location information. The application is decomposed into frag-
ments and deployed to the corresponding individual compute
nodes based on the annotation. In contrast to the mentioned
research papers, the resource discovery aspect has been mostly
ignored. Furthermore, none of the papers have addressed
privacy aspects when considering resource discovery.

Our approach’s second novelty lies in a decentralized mech-
anism for automatic resource discovery in edge networks.
Discovering resources at once represents a feasible and optimal
solution for edge neighborhoods. Through replicating metadata
between edge devices, we enable end-users or edge applica-
tions to perform locally various complex queries. Moreover,
our resource discovery mechanism considers resource privacy
preferences ensuring that not all resources are advertised
across the whole system.

IV. EDGE NETWORKS AND RESOURCE MODELING

This section introduces our approach to organize edge
devices in an edge neighborhood. We describe basic defini-
tions and then discuss communication protocol between edge
devices. Subsequently, we discuss architecture modeling and
resource modeling in Section IV-D.

A. Definitions

We refer to an edge neighborhood as a resource-constrained
edge network, which is comprised of edge devices placed close
to each other (see Figure 2). Edge neighborhoods are formed
in various geographical areas and within different contexts
(i.e., smart homes, drones network, etc.). Notably, they may
vary in their sizes and settings; thus, our proposed system
is configurable by the system designer. In our conception,
edge devices are low-powered, heterogeneous, and resource-
constrained computational entities in the system. Within the
system context, edge devices may provide multiple function-
alities (e.g., act as a client device, server device, and bootstrap
device). Furthermore, edge devices are grouped in clusters to
promote scaling, reduce bandwidth consumption, and manage
the difficulty of discovering resources in an automatic manner
in edge neighborhoods. Subsequently, edge devices within
the same cluster are considered neighbor devices, as well as

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

4

E1

E4

E12

E3

E2

E7

E5

E10

E8

E9

E6

E11

E13

E16

E14

E15

Global Coordinator

Cluster Coordinator

Edge Device

Joining the network

Contact link

Routing table / DHT

Legend:

Start

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13) (14)

(15)

C1

C1

C1

C1

C1

C2

C2

C2

C2

C2

C3

C3
C3

C3

C3

C4

Cluster IDCn

Fig. 2: An example of an edge neighborhood consisting of sixteen devices organized in four clusters.

clusters close to each other are considered as neighbor clusters.
Each cluster consists of a finite number of edge devices, and
each device belongs to one and only one cluster at a time.

In the system context, each edge device may serve specific
roles such as i) cluster coordinator and ii) global coordinator.
Such roles are dynamically assigned to the edge devices based
on their resource capabilities (discussed in Section V-B). In
Figure 2, each cluster has a coordinator device (i.e., with a
green circle) and a single global coordinator device (i.e., with
red and green circles). We assume that cluster coordinators
act as superpeers [35]. Each cluster coordinator keeps track
of the other coordinators and devices within the same cluster
(i.e., IP addresses, port). Similarly, edge devices in the same
cluster store information for one another and are always
aware of their cluster coordinator and global coordinator.
A cluster coordinator may have various responsibilities for
a subset of devices (i.e., monitoring, discovering resources,
etc.). The global coordinator is responsible for monitoring
coordinators, exchange resource descriptions between clusters,
and orchestrate edge applications in Edge-Cloud infrastructure
(i.e., controlling elasticity, migrating tasks, etc.). However, it
remains the future work to provide a complete solution for
the coordinators introduced in this paper. In this paper, we
focus on three main aspects: i) organizing edge devices in the
edge neighborhood, ii) determining the most suitable devices
to place the global and cluster coordinators, and iii) enabling
automatic resource discovery on heterogeneous and dynamic
edge neighborhoods.

Each edge device may serve as the entrance door into the
edge neighborhood. Essentially, edge devices provide core
functionalities to assign newly added edge devices in the avail-
able clusters or create new clusters in the edge neighborhood.
We introduce three functionalities to identify the maximum
number of edge devices in a cluster. First, the system designer
may define a system-wide parameter to bound the maximum
size of clusters. Second, the system designer may configure
cluster coordinators to generate random cluster size (i.e., not
higher than the system-wide parameter). And third, the system
designer may define a system-wide threshold value specifying
the maximum CPU utilization for cluster coordinators. As a

result, depending on the functionality enabled, we may have
edge neighborhoods with different cluster sizes. s in an edge
neighborhood is not bounded (see Section III-C).

B. Communication Protocol

In our proposed architecture, communications between edge
devices is realized through implementing the Kademlia Pro-
tocol [12]. We have outlined [11] our main reasons to use
Kademlia as the communication protocol between edge de-
vices. Kademlia is a distributed hash table (DHT) for decen-
tralized P2P computer networks. Essentially, DHT is a data
storage that is kept consistent between all edge devices within
the whole edge network. Essentially, when an edge device
updates its local DHT, the changes are propagated to all other
devices, allowing them to be queried and manipulated again.
Likewise, information about current cluster coordinators and
the global coordinator is stored in DHT.

Each edge device implements a distributed routing table and
stores data in Kademlia buckets ordered by the local device’s
distance. The routing table size is bounded by O(log2(l/k))
where l is the number of edge devices in the edge neighbor-
hood, and k is the bucket size. Once a bucket is full, it starts
replacing unresponsive devices in favor of incoming devices.
The routing table size in our proposed approach is config-
urable, and it depends on the expected edge neighborhood size.
We consider edge devices as resource-constrained computers
(i.e., in terms of computational and storage capabilities); thus,
edge neighborhoods’ size is not expected to be massive.

C. Forming an Edge Neighborhood

Figure 2 shows an illustration of how our solution organizes
edge devices in an edge neighborhood. Initially, the edge
neighborhood is formed with an edge device E1. Since it is the
only device in the edge neighborhood, it is automatically as-
signed to cluster C1 and determined as the cluster coordinator
C1coord and the global coordinator Gcoord. At the same time,
E1 serves as an entrance door into the edge neighborhood. We
assume edge devices progressively join the edge neighborhood
and each edge device also becomes another bootstrap device

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

5

Enb (i.e., n is a unique random ID). It is a common approach
to keep a list of always-running edge devices to allow new
edge devices to join an edge neighborhood. In our case, E1 is
the first device contacted by E2 to join the edge neighborhood.
The edge device E2 is assigned to cluster C1 by E1 in
coordination with C1coord. Furthermore, E2 is supplied with
DHTs and the complete routing table from E1. The process of
adding new edge devices in an edge neighborhood is presented
in Algorithm 1.

Algorithm 1: Process of adding a new edge device
Input : Enew
Output: Adding Enew to the edge neighborhood

1 CM = this.MaxClusterSize()
2 CS = this.CurrentClusterSize()
3 CN = this.OtherClusters()
4 boolean flag = false
5 if CM < CS then
6 Enb.addDevice(Enew,this.cluster())
7 else
8 if CN != null then
9 Cclo = this.findMostClosest(CN)

10 foreach c ∈ Cclo do
11 if c.size() <

CN.cluster(c).maxSize() then
12 Enb.addDevice(Enew,c.cluster())
13 flag = true
14 break
15 end
16 end

17 end
18 end
19 if flag = false then
20 Enb.addDevice(Enew,new Cluster())
21 end
22 this.updateRoutingTable()
23 this.updateDHT()

The process continues with adding a new edge device
Enew by contacting Enb. Once Enew request to join the
neighborhood, bootstrap device Enb initially provides a unique
random ID (i.e., 160-bit). Afterward, Enb retrieves information
from its cluster coordinator Cncoord where to assign Enew. A
cluster coordinator Cncoord (i.e., referred as this) maintain
information regarding: i) own cluster maximum size CM (line
1), the current cluster size CS (line 2), and other available
clusters CN (line 3). CN provides clusters with available places
where Enew can be assigned.

The MaxClusterSize() function is configurable and
enables the system designer to define the maximum number
of edge devices per cluster. Such value can be determined
by i) the system-wide parameter (e.g., five edge devices per
cluster or random value), implying that when the cluster ex-
ceeds the maximum allowed devices, more clusters with their
corresponding coordinators should be designated to handle the
resource discovering complexity, and ii) the CPU utilization
threshold (e.g., CPU utilization set to 35%). When the system-

wide parameter is set and random cluster size is disabled,
edge devices are grouped into clusters of the same size (as
illustrated in Figure 2). Edge devices are grouped into clusters
of different sizes when the CPU utilization threshold is set.
More specifically, when CM and CS are equal, Enew is assigned
to one of the existing clusters, or a new cluster is created.
Nevertheless, both options can be used at the same time.
However, the option that is violated decides whether or not
the cluster can scale further. Furthermore, if the condition in
(line 5) is not violated, Enew is assigned to the current cluster
of the Enb (line 6).

Neighbor clusters are found through using a system call
(i.e., traceroute command), which estimates proximity with
other cluster coordinators (i.e., using hop count and latency).
The function findMostClosest(CN) uses traceroute com-
mand and returns the most suitable clusters that Enew can be
assigned (line 9). This is especially useful in edge neigh-
borhoods running on different networks. Finally, Cncoord
provides information to Enb to assign the Enew to the particular
cluster if and only if condition in (line 11) is not violated
(lines 11-15). Otherwise, when there are no clusters with
free places, then Enew is assigned to a newly created cluster
by Cncoord (line 20). Note that each cluster in the edge
neighborhood has a unique ID generated by Enb when the
cluster is created. Notably, the bootstrap device’s task is to
cooperate with the cluster coordinator to assign a cluster ID
to the newly joined devices. Finally, once Enew joins the edge
neighborhood, Cncoord updates the routing table and other
DHTs (lines 22-23).

D. Resource Modelling

We assume that an edge device may contain multiple
resources (i.e., computational, sensing, or context data) rep-
resented as microservices [36]. When invoked remotely, such
microservices yield resources; however, resource information
needs to be shared among edge devices in the edge neigh-
borhood beforehand. An essential step towards discovering
these resources in the edge network is resource modeling at
design time. To ensure automatic resource discovery in an
edge setting, two types of resources must be modeled: i) IoT
resources (i.e., sensors, actuators, etc.) and ii) edge devices.

To accomplish our goal in a pervasive environment, we have
outlined resource representation structure in [11]. The resource
structure provides seven main properties such as: i) resource
identification, ii) resource connectivity, iii) resource capability,
iv) resource accessibility, v) resource output, vi) resource
location, and vii) resource administrative domain. Our resource
structure is similar to the ontology-based structure proposed by
Barnaghi et al. [37]. Unlike the ontology-based approach, we
format resource descriptions in a JavaScript Object Notation
(JSON). We advocate that exchanging metadata over JSON
is a lightweight process, machine-readable, and provides rich
information about resources. Besides that, size of metadata
in JSON is very small. Thus, the replication process across
many edge devices organized in clusters is feasible and does
not degrade the overall network performance.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

6

V. A DECENTRALIZED EDGE-TO-EDGE RESOURCE
DISCOVERY

In this section, we first discuss the overall design goals for
the proposed approach in edge networks. Then, we discuss
the process of determining the global coordinator and cluster
coordinators. Next we explain in detail the framework for
sharing edge device resources based on their privacy prefer-
ences. Finally, we discuss edge device failures, dynamicity and
uncertainty of edge neighborhoods.

A. Design Goals

Edge Computing introduces effective ways to overcome
many of the limitations faced by the cloud [3]. Nevertheless,
the paradigm alone also presents some limitations (i.e., com-
putation capability and latency). To address such challenges,
we identify three design goals that need to be established by
any edge-based system:

• Latency-aware. The Edge Computing paradigm aims at
providing low-latency services for the endpoint devices
and the end-users. As a result, determining system coor-
dinators at the edge neighborhood quickly is essential to
fulfilling such a stringent requirement.

• Dynamic Network. An edge neighborhood changes with
time (i.e., new edge devices can be added or excluded).
Hence, the edge-based systems should be able to utilize
newly added resources at the edge flexibly.

• Adaptability. Edge-based systems should be able to
adapt to unexpected changes that might occur in the
edge neighborhood. Thus, the coordinators should be
dynamically placed among available edge devices and
continuously re-evaluate placement decisions.

B. The Process of Determining Coordinators

The process to determine coordinators in a distributed sys-
tem should be carried out in system background, encapsulated
from the end user’s perspective, but indispensable for the
correct and efficient execution of distributed tasks. System
coordinators’ role is versatile and can range between orches-
trating applications, monitoring resources, or distributing data
between devices. We define two leading roles, such as i)
cluster coordinator and ii) global coordinator. Such roles are
dynamically assigned to edge devices based on their resource
capabilities. The process to determine new coordinators is
triggered by an event when the global or a cluster coordinator
experiences high utilization in specific hardware resources
(i.e., CPU, memory, or storage) and requests to transfer
leadership to other devices. The process to determine a new
cluster coordinator occurs only between edge devices within
the same cluster. The process to determine a new global
coordinator occurs between cluster coordinators. The latter
essentially consists of two phases: first, cluster coordinators
are determined; second, new cluster coordinators determine
the global coordinator. In Algorithm 2, we present the process
to determine system coordinators.

The proposed algorithm runs on each edge device sepa-
rately. The algorithm takes three inputs: i) an edge device

Algorithm 2: Process of determining coordinators
Input : φi , θ, σi
Output: Ccoord , Gcoord

1 t = 0
2 νthis = GetDeviceMetrics(φi)
3 round = Random()
4 Initial_Message(round,σi)
5 Parameter_Message(νthis, round,σi,γ)
6 I ← Receive_Parameter_Messages()
7 Solution_Found ← False
8 while t < θ or !Solution_Found do
9 ν = I.getBest()

10 if ν < νthis and ν.round = round then
11 Solution_Found ← True
12 Set(Ethis, EdgeMode)
13 Set(En, Coordinator, σi)
14 end
15 if !Solution_Found then
16 Set(Ethis,Coordinator, σi)
17 end
18 Ethis.updateDHT()

hardware metrics denoted with φi, ii) the deadline to find
a solution denoted with θ, and iii) the process type denoted
with σi. The process to determine coordinators is designed by
considering hardware metrics and bandwidth of edge devices.
We consider hardware metrics both statically (e.g., CPU cores,
storage capacity, etc.) and dynamically (e.g., current CPU
load, current storage, etc.). Such hardware information can be
monitored using Hyperic Sigar [38] while Assolo [39] enables
collecting bandwidth probes. Notably, the algorithm gets only
the current device metrics νthis specified at design time (line
2). In our case, we consider metrics θi related to the CPU
utilization degree. However, such a parameter is configurable
based on system requirements. The deadline θ is given at
design time (e.g., θ = 50ms). The third input σi specify
the process type: i) determining the global coordinator (σ
= global) and ii) determining a cluster coordinator (σ =
cluster).

A unique random signature (i.e., SHA-1) called round is
used to make each process unique (line 3). In lines (4-5), we
define two types of messages exchanged between devices: i)
initial message and ii) parameter message. First, the initiating
coordinator (i.e., process initiator device) probes which edge
devices are up and running in the edge neighborhood. Then,
it sends an initial message only to the edge devices that
responded on time. The initial message essentially contains
a list of all participating devices (i.e., only those edge devices
that replied) and a unique round value assigned to a process
round. Second, once receiving an initial message and the list
of participants, the process initiator device sends a parameter
message containing its local metrics to all participating de-
vices. The parameter message contains local hardware metrics,
utilization values in percentage, a process round value, and
timestamp when the process to determine the new coordinator
is started γ. The timestamp γ is used to ensure that the metrics

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

7

are not older than the process initiation time. Each edge device
responds to the initial message and sends its parameter mes-
sage to other edge devices, including the initiating coordinator
(line 6). Notice that the same proposed algorithm is used to
determine the global and cluster coordinators.

After exchanging performance metrics, edge devices de-
velop the same result independently. Each device compares
received parameter metrics and determines which device is
most suitable to serve as a cluster/global coordinator (lines 8-
14). To find the most suitable edge device, we compare the
number of CPU cores, clock speed, and current utilization
(line 9). Ethis changes the status to the EdgeMode (i.e., edge
device only shares resources) only when an edge device En
with better performance metrics is found. Line 16 is executed
only when a solution is not found within the time θ, and the
coordinator role remains in the current edge device Ethis since
no better edge device is found. Furthermore, each edge device
maintains a complete overview of all processes and saves the
information in a DHT. The result is propagated to all edge
devices within the edge neighborhood by using the DHT. The
latter step is executed by all edge devices, which on the one
side creates some redundancy but also improves the stability
of propagating results (line 18).

C. System Architecture and Resource Discovery
We propose a framework for enabling automatic discovery

of heterogeneous resources in edge networks [11]. Figure 3
illustrates three main components of the framework: Edge-to-
Edge Communication, the Metadata Container, and the Local
Search Engine facility. The Edge-to-Edge Communication
component implements communication between edge devices
(i.e., Kademlia Protocol), organizes edge devices in clusters,
determines coordinators, and exchanges resource descriptions
in an edge neighborhood (1). The Metadata Container is
responsible for analyzing resource descriptions based on their
privacy preference defined by the system designer at design
time. Besides that, the component is responsible for sharing
resource descriptions system-wide (2), processing received
resource descriptions from other edge devices (3), and store re-
source descriptions locally (4). The Local Search Engine com-
ponent (4) is based on CouchDB document-oriented NoSQL
database [40]. This component subsequently stores data locally
and, through APIs, enables users to query stored content (6).

Referring to Figure 3, our resource discovery mechanism
allows edge devices within the same cluster to exchange
metadata through their cluster coordinator. Once coordinators
are determined, edge devices are ordered to share their public
metadata document with their cluster coordinator (1). Other
edge devices contact their cluster coordinator to retrieve all
public metadata documents contained within their cluster. This
may happen once a new edge device is connected to the edge
neighborhood or when an edge device wants to refresh its
current storage. The frequency to refresh metadata documents
is also configurable at design time. Besides that, the global
coordinator regularly exchanges metadata documents with the
cluster coordinators (5).

In Figure 4, we present the process to analyze resource
descriptions and the process to share them in edge neigh-

Edge-to-Edge

Metadata
Container

Search Engine
Local

Edge Device

Edge-to-Edge

Metadata
Container

Edge Device

4

1

23 23

4

User

6 6

Search Engine
Local

UserUsers
UserUserUsers

APIs APIs

5

C
C

G

Fig. 3: Resource discovery through metadata replication: High-
level architecture.

Local
resources

Search Engine
Local

Shared
 resources

Metadata
Component

Local resources

Network resources

1

2

Edge Device

3

4

JSON

JSON

Fig. 4: Processing metadata on the edge.

borhood. As mentioned before, we consider edge devices as
resource-constrained devices with a set of built-in sensors and
actuators. Each resource is described by providing certain core
information about the functionality and properties (see Section
IV-D). We assume that resource descriptions (i.e., metadata)
are provided by edge device manufacturers in JSON format.
The Metadata Container is responsible for analyzing metadata
in the edge device. The component stores resource descriptions
based on privacy preference i) public resources (i.e., shared
resources (4)) and ii) private resources (i.e., local resources
(2)). Public resource descriptions are merged into a single
metadata document and named with the edge device ID. The
public metadata document is shared with the corresponding
cluster coordinator system-wide (3). The local search engine
component separates resource descriptions into private ones
and those that are shared system-wide.

D. Edge Device Failures

Consider a situation when a cluster coordinator triggers a
new process to determine the new coordinator in the cluster.
An edge device under a high workload may fail to participate
in determining cluster coordinators or the global coordinator.
Even though not participating in a determination process,
edge devices continuously update their local DHTs with the
closest devices. Besides that, those who have failed and re-
joined the edge neighborhood may also contain some obsolete
information (i.e., DHT is not up-to-date, coordinator informa-
tion is outdated). However, edge devices must update their

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

8

local DHTs with the closest devices after joining the edge
neighborhood.

Another situation may arise when a specific cluster coordi-
nator fails. The global coordinator is responsible for detecting
such failure and trigger a new process to determine the
coordinator. As discussed previously, edge devices within the
cluster are responsible for determining their new coordina-
tor. When the global coordinator fails, one of the cluster
coordinators triggers a new global coordinator determination
process. Notably, each cluster coordinator verifies whether the
global coordinator has failed and responds to the determination
process. Furthermore, the resource discovery process is not
repeated when edge devices frequently leave and join the edge
neighborhood (i.e., due to the connectivity issues). Moreover,
when an edge device went offline, the metadata documents
remain stored in the other devices for some time. This is es-
pecially useful in unstable edge neighborhoods (e.g., wireless),
prone to momentary loss of connection.

VI. EVALUATION

In this section, we first discuss our evaluation setup environ-
ment, prototype details, and limitations. Next, we experimen-
tally evaluate the approach’s effectiveness by running multiple
experiments and checking the proposed solution’s behavior
in different situations. We assess our proposed solution in
terms of hardware and bandwidth consumption during runtime.
Then, through a use case, we show how the proposed discovery
mechanism increases the number of eligible deployments
when deploying edge applications in an edge neighborhood.
Finally, we conclude with a discussion in Section VI-D.

A. Setup, Prototype Details, and Limitations

To assess the proposed approach’s feasibility, we developed
a prototype that implements the Kademlia Protocol and core
functionalities to enable the automatic discovery of heteroge-
neous resources in edge networks. The prototype is written in
Java, and it is tested on a testbed composed of (a) edge devices
(i.e., Raspberry Pi 3 Model B V1.2) with 4×ARM Cortex-A53
CPU at 1.2 GHz, 1 GB of RAM, and 16 GB disk storage, and
(b) virtual edge device instances. To evaluate our prototype, we
exploited the testbed (i.e., edge neighborhood) composed of 60
edge devices placed close to each other. Edge devices contain
multiple resource descriptions generated randomly at design
time. Furthermore, edge devices in the testbed are connected
through a wireless connection with a nominal speed of 10
Mbps and 5 Mbps in download and upload. We assume that
every edge device trusts all other devices, and they all belong
to the same local administrative domain.

In distributed systems, discovering devices is a significant
challenge. In our current implementation, edge devices have
an open designation port that listens for possible future con-
nections. To join the edge neighborhood, edge devices require
to know at least one device (i.e., IP, port) currently up and
running. We acknowledge that the current implementation
represents a limitation, and further investigations are required
to develop an advanced approach to discover running edge
devices. We acknowledge that IoT resources (e.g., sensors)

can also be connected on edge devices using various end-to-
end communication protocols (e.g., Zigbee, etc.). However, in
this paper, we treat communication and operational aspects of
IoT resources as orthogonal to our approach; we assume edge
devices are equipped with a set of IoT resources. Furthermore,
we acknowledge that using the Java Virtual Machine (JVM)
environment is resource-expensive. However, within this pa-
per, we aim to show the approach’s feasibility in resource-
constrained edge neighborhoods.

B. Experiments and Results
We evaluate our prototype on a testbed, whose size progres-

sively increases to 60 edge devices as presented in Table I. The
cluster coordinators can determine their cluster sizes based
on i) the CPU utilization threshold (i.e., configured to 35%),
ii) the system-wide parameter (i.e., configured to 30 devices
per cluster), and iii) the random value (i.e., not bigger than
the system-wide parameter). Furthermore, the routing table
size is set to k = 20. We monitor edge devices through
the nmon tool [41] and retrieve information regarding the
hardware utilization and the data received and sent between
edge devices.

TABLE I: Edge neighborhood

Neighborhood Edge Devices (per cluster) Total

C1 15 15
C2 20 35
C3 15 50
C4 10 60

The goal of the first experiment is to assess the prototype’s
footprint on hardware resources and bandwidth usage. Notably,
we focus on resource consumption to determine the system
coordinators and discover resources in the edge neighborhood.
For each cluster created, we monitor the global coordinator for
up to 60 seconds in the edge neighborhood (i.e., running on
RPi3). We also monitor bootstrap devices (i.e., RPi3s) when a
new request arrives to join the edge neighborhood. Notably, we
observe that the time required to join the edge neighborhood
and assign it to the existing cluster is between 0.07 − 0.2
seconds in all test cases. However, when a new cluster is
required to be created, the average latency is slightly higher
between 0.5− 1.02 seconds, but reasonable for the resource-
constrained edge neighborhood. Specifically, the overall CPU
and memory utilization remains almost similar. Concretely,
the average CPU consumption stayed around 2.5%, while
the overall memory consumption stayed around 5 MB. In
all test cases, edge devices have been successfully assigned
to the corresponding clusters, or new clusters are created
when required. Table II presents a detailed overview of the
resource consumption and latency for edge devices to join the
neighborhood.

Figure 5 plots the overall CPU utilization during the process
to determine the global coordinator (i.e., the global and cluster
coordinators are determined) and synchronization processes
running in the background. Essentially, we simulate the situa-
tion when the global coordinator is overloaded, and the func-
tion to determine the new global coordinator is automatically

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

9

TABLE II: Average latency and resource consumption to join
the edge neighborhood

Clusters Latency (avg.) CPU (avg.) RAM (avg.)

C1 71.25 ms 2% 2 MB
C2 82 ms 2.5% 3 MB
C3 137.36 ms 2.5% 2 MB
C4 193.6 ms 3% 5 MB

triggered. We repeat the process more than 10 times for each
test case (i.e., clusters). As shown in Figure 5, the overall
CPU utilization is slightly increased when adding more edge
devices/clusters in the edge neighborhood. Specifically, the
average CPU consumption during the process to determine the
system coordinators is around 10%, while the overall memory
consumption is around 5 MB. The most important aspect is
the accuracy of assigning edge devices to a particular cluster
or forming new clusters when needed (i.e., when the cluster
size is exceeded). In all test cases, creating new clusters was
successful, including newly joined edge devices added to their
adequate clusters. Since the overhead imposed by our approach
is small, the experiments show that the proposed approach is
feasible to operate on low-powered and battery-powered edge
devices. Notably, the proposed approach has shown a very
contained impact on hardware resources and bandwidth usage.
To obtain consistent results, for each experiment, we calculated
an 83% confidence interval of means.

Fig. 5: Analysis of the CPU utilization during the process to
determine the system coordinators.

Figure 6 and Figure 7 plot the overall maximum and
minimum data transfer/received by the global coordinator
during the process to determine new system coordinators
and the synchronization process. We consider analyzing the
bandwidth due to the relationship between network traffic
and the load on the memory system of an edge device [15].
Furthermore, in resource-constrained edge neighborhoods, the
energy supply and bandwidth are among the main resource
constraints of edge devices [42]. Therefore, it is necessary to
know the total data size transferred/received (i.e., metadata
sharing, processes to determine coordinators, synchronizing
processes, etc.) between edge devices during the runtime.

Fig. 6: Analysis of the data received in kilobytes per second
by the global coordinator.

Fig. 7: Analysis of the data transfer in kilobytes per second
by the global coordinator.

Notably, the maximum and minimum values vary depending
on the number of edge devices in the neighborhood. As shown
in Figure 7, the data transfer is slightly increased by adding
more devices in the edge neighborhood. The slight increase
occurs due to the increased number of edge devices that
impose the formation of new coordinators. Thus, newly formed
coordinators synchronize their routing tables and their DHTs
with the global coordinator.

The goal of the second experiment is to assess the time
complexity to determine coordinators and place them on the
edge neighborhood’s most suited edge devices. Concretely,
we show how the proposed mechanism discussed in Section
IV and Section V performs to determine coordinators. The
experiment results illustrated in Figure 8 show that the pro-
posed approach in all test cases finds an edge device with
the most suitable computation resources to assign the global
coordinator. Besides that, the proposed approach successfully
determines cluster coordinators for each cluster.

In Figure 9, we analyze the percentage of responsive edge
devices during the process to determine the cluster coordinator
on an edge neighborhood with a single cluster and different

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

10

Fig. 8: Time required to determine coordinators.

Fig. 9: Percentage of responsive edge devices during the
process to determine coordinator on clusters with different
sizes.

sizes (e.g., CS=15, etc.). We repeat the process more than five
times for each test case. Notably, we observe that the time
required to join the edge neighborhood and assign it to the
existing cluster remains similar to the previous results (i.e.,
between 0.07 − 0.2 seconds in all test cases). The number
of edge devices that respond to this process is critical since
it enables us to find the most suitable edge device to place
the cluster coordinator. In clusters with more than 40 edge
devices, the percentage of responsiveness is decreased to 92%.
In contrast, clusters up to 30 edge devices show a higher rate
of responsiveness. To that end, we configure the system-wide
parameter to bound the maximum number of edge devices per
cluster (i.e., 30 edge devices).

C. Use case: Deploying IoT safety application

The third experiment aims at demonstrating the proposed
mechanism’s function in the application deployment process.
For the demonstration purpose, we adopt and extended parts
of the FogTorchΠ simulator [43] to generate deployment plans
in the edge infrastructure. FogTorchΠ was originally proposed

to support IoT designers in making decisions about where
to deploy application components at the edge. The approach
allows to specify IoT resources as an application requirement
that must be met before applications can be deployed.

Insights Backend

Processing

Monitoring

50 ms, 3 Mbps

200 ms, 2 Mbps

200 ms, 2 Mbps

1 GB

1 GB 1 GB <camera, 3, location>
<gas_sensor,1, location>
<infra_camera,1, location>

<radar, 1, location>

φ0

φ1

φ2

Fig. 10: IoT safety application.

We assume edge devices containing a set of built-in IoT
resources (i.e., cameras, radars, gas sensors, etc.) that can
be accessed remotely through APIs. Recalling our motivation
scenario, consider the IoT safety application that provides a
service to rescue teams (as discussed in Section II). As illus-
trated in Figure 10, the IoT safety application comprises three
components: i) the insights backend component (ϕ0), ii) the
monitoring component (ϕ2), and iii) the processing component
(ϕ1). The insights backend component (ϕ0) enables users to
interact with the service. The monitoring component (ϕ2) is
responsible for monitoring resources specified at design time.
The processing component (ϕ1) analyzes collected data into
meaningful results and provides it to the end-users through
the insight component. We assume deploying IoT safety
application in the edge neighborhood as presented in Figure
2. Notice that only a single application component can be
executed in parallel on edge devices. The other application
requirements depicted in Figure 10 are assumed to be met by
all edge devices.

In our given edge neighborhood, the edge device E2 pro-
vides the radar resource with privacy preference set to private.
This means that the ϕ1 can be deployed only in E2. The
rest of IoT resources (e.g., cameras, gas sensors, etc.) are
remotely accessible, and their privacy preference is set to
public. Through the metadata replication process, edge devices
exchange public resources in the edge neighborhood. To this
end, each edge device is considered a potential candidate to
execute one of the two other components. Meanwhile, each
edge device shares private resources only with the global
coordinator, responsible for generating deployment plans for
the IoT safety application. Figure 11 shows the total number
of eligible deployments plans generated through FogTorchΠ
combined with our resource discovery mechanism. It is evident
that ϕ0 and ϕ2 components dependent on particular resources
can be executed on all other edge devices. More precisely,
each edge device knows how to access resources on other
edge devices due to metadata replication.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

11

C1 C2 C3 C4
0

100

200

12

72

182

210
E

lig
ib

le
de

pl
oy

m
en

ts

Fig. 11: Generating deployments plans for the IoT safety
application in an edge neighborhood (see Figure 2).

Unlike our approach, FogTorchΠ does not support resource
privacy preferences, does not provide a mechanism to dis-
cover resources (i.e., supports resource sharing with neighbor
devices), and does not support the dynamic changes in their
environments. Besides that, evaluating the deployment mech-
anism is out of this paper’s scope, as we use it to demonstrate
that the discovery mechanism allows us to completely exploit
available resources in edge neighborhoods.

D. Discussion

We have demonstrated that by using our resource discovery
mechanism, discovering heterogeneous resources in an edge
setting increases the number of eligible deployments for
applications dependent on IoT resources. We showed that
organizing edge devices in clusters and discovering resources
through the edge replication process is performant and feasible
on a testbed with low-powered ARM-based devices. Our
results showed that the overhead introduced by the proposed
decentralized resource discovery mechanism is very low for
realistic edge neighborhood sizes.

Our approach within the given testbed can operate with
larger cluster sizes. However, edge devices may not react in
time to participate in processes to determine coordinators in
large cluster sizes. In such cases, the Kademlia Protocol re-
quires much more processing capabilities to process faster in-
coming requests (i.e., updating routing tables, updating DHTs,
resource metadata, etc.). Nonetheless, we plan to improve and
optimize the current mechanism to support forming larger
clusters in edge neighborhoods. We plan to investigate the
maximum edge neighborhood size and the routing table size
acceptable for low-powered edge devices.

Our approach does not provide a mechanism to detect
which edge devices fail to send their parameter metrics and
ask them to resend their messages. In addition to that, since
multiple edge devices in an edge network come to the same
result independently, it is necessary to introduce an additional
mechanism to verify the result. In our approach, we overcome
such an issue by distributing results using the DHT. This
creates some redundancy - but also improves the stability
of propagating results. However, using consensus algorithms
where edge devices pick random participants to verify their
final result is highly desirable. Thus, some assumptions un-
derlying our methodology must be further explored.

VII. CONCLUSION AND FUTURE WORK

Edge networks provide a seamless opportunity for deploy-
ing various edge applications providing multiple services to
the end-users and the surrounding IoT devices. However, to
deploy edge applications dependent on IoT resources, we
require novel lightweight and decentralized mechanisms to
automatically discover heterogeneous resources at the edge.
To that end, we introduced a decentralized mechanism that
enables edge devices to connect in a P2P manner, organize
edge devices in clusters, and support automatic discovery
of heterogeneous resources in edge networks. The proposed
approach support resource discovery based on resource privacy
preferences. Furthermore, we evaluated our approach in a
testbed composed of a set of low-powered edge devices.
Throughout the experiments, we showed the feasibility of the
proposed approach to run on low-powered edge devices.

We believe that the proposed approach paves the way
for utilizing available resources, leading to accomplish the
promised high-quality and low-latency services deployed in
edge networks (i.e., edge neighborhoods). As future work,
we aim at providing a complete technical solution for the
global and cluster coordinator; this includes both technical and
architectural aspects. In addition to that, we plan to investigate
techniques that will enable edge devices to discover nearby
devices that allow them to join an edge neighborhood in
an automatic manner. Finally, we plan to investigate several
assumptions made in this paper.

ACKNOWLEDGMENT

Research supported in part by the Research Cluster “Smart
Communities and Technologies (Smart CT)” at TU Wien and
it has received funding from the EU’s Horizon 2020 Re-
search and Innovation Programme under grant agreement No.
871525. EU web site for Fog Protect: https://fogprotect.eu/

REFERENCES

[1] Weisong Shi and Schahram Dustdar. The promise of edge computing.
Computer, 49(5):78–81, 2016.

[2] Schahram Dustdar and Ilir Murturi. Towards distributed edge-based
systems. In 2020 IEEE Second International Conference on Cognitive
Machine Intelligence (CogMI), pages 1–9. IEEE, 2020.

[3] Cosmin Avasalcai, Ilir Murturi, and Schahram Dustdar. Edge and fog:
A survey, use cases, and future challenges. Fog Computing: Theory and
Practice, 2020.

[4] Cosmin Avasalcai and Schahram Dustdar. Latency-aware decentralized
resource management for iot applications. In Proceedings of the 8th
International Conference on the Internet of Things, page 30. ACM, 2018.

[5] Christos Tsigkanos, Ilir Murturi, and Schahram Dustdar. Dependable
resource coordination on the edge at runtime. Proceedings of the IEEE,
2019.

[6] Vasileios Karagiannis. Compute node communication in the fog: Survey
and research challenges. In Proceedings of the Workshop on Fog
Computing and the IoT, pages 36–40. ACM, 2019.

[7] Antonio Brogi and Stefano Forti. Qos-aware deployment of iot applica-
tions through the fog. IEEE Internet of Things Journal, 4(5):1185–1192,
2017.

[8] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Decen-
tralized resource auctioning for latency-sensitive edge computing. In
2019 IEEE International Conference on Edge Computing (EDGE), pages
72–76. IEEE, 2019.

[9] Klervie Toczé and Simin Nadjm-Tehrani. A taxonomy for management
and optimization of multiple resources in edge computing. Wireless
Communications and Mobile Computing, 2018, 2018.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3082305, IEEE
Transactions on Services Computing

12

[10] Federica Paganelli and David Parlanti. A dht-based discovery service
for the internet of things. Journal of Computer Networks and Commu-
nications, 2012, 2012.

[11] Ilir Murturi, Cosmin Avasalcai, Christos Tsigkanos, and Schahram
Dustdar. Edge-to-edge resource discovery using metadata replication. In
2019 IEEE 3rd International Conference on Fog and Edge Computing
(ICFEC), pages 1–6. IEEE, 2019.

[12] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[13] Schahram Dustdar and Ilir Murturi. Towards IoT Processes on the Edge,
pages 167–178. Springer International Publishing, Cham, 2021.

[14] Schahram Dustdar and Ilir Murturi. Towards distributed edge-based
systems. In IEEE 2nd International Conference on Cognitive Machine
Intelligence (CogMI 2020), pages 1–9. IEEE, 2020.

[15] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane
Debbah. Communications and control for wireless drone-based antenna
array. IEEE Transactions on Communications, 67(1):820–834, 2018.

[16] Yoshitaka Shibata, Noriki Uchida, and Norio Shiratori. Analysis of and
proposal for a disaster information network from experience of the great
east japan earthquake. IEEE Communications Magazine, 52(3):44–50,
2014.

[17] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
Fog computing: A taxonomy, survey and future directions. In Internet
of everything, pages 103–130. Springer, 2018.

[18] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[19] Adrien Lebre, Jonathan Pastor, Anthony Simonet, and Frédéric Desprez.
Revising openstack to operate fog/edge computing infrastructures. In
2017 IEEE international conference on cloud engineering (IC2E), pages
138–148. IEEE, 2017.

[20] Federico Rizzo, Giovanni Luca Spoto, Paolo Brizzi, Dario Bonino,
Giuseppe Di Bella, and Pino Castrogiovanni. Beekup: A distributed
and safe p2p storage framework for ioe applications. In 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN),
pages 44–51. IEEE, 2017.

[21] Stratis Ioannidis and Peter Marbach. Absence of evidence as evidence
of absence: A simple mechanism for scalable p2p search. In IEEE
INFOCOM 2009, pages 576–584. IEEE, 2009.

[22] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Towards
dynamic fog resource provisioning for smart city applications. In 2018
14th International Conference on Network and Service Management
(CNSM), pages 290–294. IEEE, 2018.

[23] Genc Tato, Marin Bertier, and Cédric Tedeschi. Koala: Towards lazy
and locality-aware overlays for decentralized clouds. In 2018 IEEE 2nd
International Conference on Fog and Edge Computing (ICFEC), pages
1–10. IEEE, 2018.

[24] Frank HP Fitzek et al. On network coded distributed storage: How to
repair in a fog of unreliable peers. In 2016 International Symposium
on Wireless Communication Systems (ISWCS), pages 188–193. IEEE,
2016.

[25] Genc Tato, Marin Bertier, and Cédric Tedeschi. Designing overlay net-
works for decentralized clouds. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pages 391–
396. IEEE, 2017.

[26] Yawei Zhao, Fei Cai, Junjie Xie, Lailong Luo, Xiaoqiang Teng, Honghui
Chen, and Weijie Kong. A new dht supporting multi-attribute queries for
grid information services. In 2013 IEEE 10th International Conference
on High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing,
pages 1675–1680. IEEE, 2013.

[27] Jaeho Kim and Jang-Won Lee. Openiot: An open service framework for
the internet of things. In 2014 IEEE world forum on internet of things
(WF-IoT), pages 89–93. IEEE, 2014.

[28] Edward Wang and Richard Chow. What can i do here? iot service discov-
ery in smart cities. In 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pages
1–6. IEEE, 2016.

[29] Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint
optimization of task scheduling and image placement in fog computing
supported software-defined embedded system. IEEE Transactions on
Computers, 65(12):3702–3712, 2016.

[30] Heng Shi, Nan Chen, and Ralph Deters. Combining mobile and fog
computing: Using coap to link mobile device clouds with fog computing.

In 2015 IEEE International Conference on Data Science and Data
Intensive Systems, pages 564–571. IEEE, 2015.

[31] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang.
Cost efficient resource management in fog computing supported medical
cyber-physical system. IEEE Transactions on Emerging Topics in
Computing, 5(1):108–119, 2015.

[32] Mohammed A Hassan, Mengbai Xiao, Qi Wei, and Songqing Chen. Help
your mobile applications with fog computing. In 2015 12th Annual IEEE
International Conference on Sensing, Communication, and Networking-
Workshops (SECON Workshops), pages 1–6. IEEE, 2015.

[33] Fahed Alkhabbas, Ilir Murturi, Romina Spalazzese, Paul Davidsson, and
Schahram Dustdar. A goal-driven approach for deploying self-adaptive
iot systems. In 2020 IEEE International Conference on Software
Architecture (ICSA), pages 146–156. IEEE, 2020.

[34] Rakesh Jain and Samir Tata. Cloud to edge: distributed deployment of
process-aware iot applications. In 2017 IEEE International Conference
on Edge Computing (EDGE), pages 182–189. IEEE, 2017.

[35] Gian Paolo Jesi, Alberto Montresor, and Ozalp Babaoglu. Proximity-
aware superpeer overlay topologies. In IEEE International Workshop on
Self-Managed Networks, Systems, and Services, pages 43–57. Springer,
2006.

[36] Athman Bouguettaya, Munindar Singh, Michael Huhns, Quan Z Sheng,
Hai Dong, Qi Yu, Azadeh Ghari Neiat, Sajib Mistry, Boualem Benatal-
lah, Brahim Medjahed, et al. A service computing manifesto: the next
10 years. Communications of the ACM, 60(4):64–72, 2017.

[37] Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner. Ser-
vice modelling for the internet of things. In 2011 Federated Conference
on Computer Science and Information Systems (FedCSIS), pages 949–
955. IEEE, 2011.

[38] Hyperic Sigar. ”https://github.com/hyperic/sigar/wiki/overview”. [On-
line accessed: January 2020].

[39] Emanuele Goldoni, Giuseppe Rossi, and Alberto Torelli. Assolo, a new
method for available bandwidth estimation. In 2009 Fourth International
Conference on Internet Monitoring and Protection, pages 130–136.
IEEE, 2009.

[40] CouchDB. https://www.couchdb.com/. [Online accessed: January 2020].
[41] IBM. Nmon. https://developer.ibm.com/technologies/systems/articles/au-

nmon analyser/. [Online accessed: January 2020].
[42] Changhun Bae and Wayne E Stark. A tradeoff between energy and

bandwidth efficiency in wireless networks. In MILCOM 2007-IEEE
Military Communications Conference, pages 1–7. IEEE, 2007.

[43] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera. How
to Place Your Apps in the Fog-State of the Art and Open Challenges.
arXiv preprint arXiv:1901.05717, 2019.

Ilir Murturi received the M.Sc. degree in computer
engineering from the Faculty of Electrical and Com-
puter Engineering, University of Prishtina, Prishtina,
Kosovo. He is currently working toward the Ph.D.
degree in Edge Computing under the supervision of
Prof. S. Dustdar at the Distributed Systems Group,
TU Wien, Vienna, Austria. His current research
interests include the Internet of Things, Edge Com-
puting, crowdsourcing, privacy, and smart cities.

Schahram Dustdar (Fellow, IEEE) is currently a
Professor of computer science with the Distributed
Systems Group, TU Wien, Vienna, Austria. He is an
elected member of the Academia Europaea, where
he is also the Chairman of the Informatics Section.
He serves on the Editorial Board of IEEE Internet
Computing and the IEEE Computer Magazine. He
was a recipient of the ACM Distinguished Scientist
Award in 2009, the IBM Faculty Award in 2012, and
the IEEE TCSVC Outstanding Leadership Award
for outstanding leadership in services computing in

2018. He is also the Co-Editor-in-Chief of the ACM Transactions on Internet
of Things and the Editor-in-Chief of Computing (Springer). He is also an
Associate Editor of the IEEE Transactions on Services Computing, the IEEE
Transactions on Cloud Computing, the ACM Transactions on the Web, and
the ACM Transactions on Internet Technology.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 27,2021 at 08:23:20 UTC from IEEE Xplore. Restrictions apply.

