
26

Adaptive Management of Volatile Edge Systems

at Runtime With Satisfiability

COSMIN AVASALCAI, CHRISTOS TSIGKANOS, and SCHAHRAM DUSTDAR,

Distributed Systems Group, TU Wien

Edge computing offers the possibility of deploying applications at the edge of the network. To take advantage

of available devices’ distributed resources, applications often are structured as microservices, often having

stringent requirements of low latency and high availability. However, a decentralized edge system that the

application may be intended for is characterized by high volatility, due to devices making up the system being

unreliable or leaving the network unexpectedly. This makes application deployment and assurance that it will

continue to operate under volatility challenging. We propose an adaptive framework capable of deploying

and efficiently maintaining a microservice-based application at runtime, by tackling two intertwined prob-

lems: (i) finding a microservice placement across device hosts and (ii) deriving invocation paths that serve it.

Our objective is to maintain correct functionality by satisfying given requirements in terms of end-to-end la-

tency and availability, in a volatile edge environment. We evaluate our solution quantitatively by considering

performance and failure recovery.

CCS Concepts: • Computer systems organization→ Distributed architectures;

Additional Key Words and Phrases: Resource management, edge computing, adaptive systems, distributed

systems

ACM Reference format:

Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. 2021. Adaptive Management of Volatile Edge

Systems at Runtime With Satisfiability. ACM Trans. Internet Technol. 22, 1, Article 26 (September 2021),

21 pages.

https://doi.org/10.1145/3470658

1 INTRODUCTION

One of the primary premises of edge computing is the utilization of available resources close to
end devices, at the edge of the network. This paradigm extends the typical cloud viewpoint, aim-
ing to satisfy stringent requirements such as low latency and high availability desired in emergent
microservice-based applications. However, edge computing is characterized by a high degree of
distribution that introduces volatility—computational nodes that participate on edge systems are
often heterogeneous, mobile, and spatially distributed, and may fail or leave the system often [27].
Recent developments in DevOps and software design advocate dividing applications’ functionality

This research was partially supported by EU’H2020 Marie Skłodowska-Curie grant agreement No. 764785 FORA, FWF

Austria project M 2778-N “EDENSPACE,” and the Austrian Federal Ministry of Science in the CPS/IoT project.

Authors’ address: C. Avasalcai, C. Tsigkanos, and S. Dustdar, Distributed Systems Group, TU Wien, Vienna, Austria; emails:

{c.avasalcai, christos.tsigkanos, dustdar}@dsg.tuwien.ac.at.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1533-5399/2021/09-ART26 $15.00

https://doi.org/10.1145/3470658

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

https://doi.org/10.1145/3470658
mailto:permissions@acm.org
https://doi.org/10.1145/3470658

26:2 C. Avasalcai et al.

into small, modular, and easily deployable microservices. Those may be independently deployed,
updated, scaled, or migrated according to various criteria. The overall application’s functionality is
then defined in terms of an invocation sequence among those microservices. Individual microser-
vices may have resource requirements—for instance, some dependency on local data or dedicated
hardware, to support, for example, machine learning functionalities. The overall application, as
a composition of those microservices, may need to adhere to certain requirements. Fundamental
ones, the importance of which is exacerbated on edge computing settings, are exhibiting a certain
availability, and enjoying low end-to-end (e2e) latency. During the application’s lifespan, deploy-
ment should take such requirements into account, something that is non-trivial and requires novel
resource management techniques to deploy the application and maintain its correct functionality
at runtime.

Resource management in edge computing has considered various aspects—resource placement,
migration, and discovery among others [24]. We focus on combining resource placement with re-

source migration, to deploy and host a microservice-based application on an edge system satisfying
its latency and availability requirements. We tackled latency in previous work, where we proposed
seamlessly deploying applications such that their latency requirements are satisfied [2, 3]. Exist-
ing approaches to tackling availability have been based on scaling up resources in pools/clusters
of nodes hosting microservices, such as OpenFaaS, Kubernetes, and Docker Swarm.1 In the case
considered in this article, however, we are not concerned with scaling or elasticity, but with de-
centralized systems where devices hosting microservices may fail or leave the network. Thus, the
systems we target for deployment are highly volatile, raising challenges on dependable execution
of microservice-based applications spanning multiple hosting nodes.

Specifically, we target decentralized edge-intensive systems where unforeseen behaviors at run-
time might hinder system stability as far as deployment is concerned. Computational nodes where
microservices are deployed may fail or leave at any point, or network circumstances may change—
as such, deployment decisions previously made may be rendered obsolete. Therefore, we cast our
proposal within self-adaptive systems and tackle the problems of volatility and distribution where
microservices, using resources of hosting nodes, typically need to be executed in some specific
sequence. Nodes may fail, and a specific invocation path may need to change, but it should still
satisfy the application’s latency and availability requirements. We interpret the preceding problem
as two separate goals in the systems we target: (i) placing appropriately microservices to nodes
(ii) and reacting to instabilities caused by failure of nodes.

During the microservice placement stage, we ensure that applications’ resource requirements are
met by allocating microservices appropriately over edge nodes. This stage takes into account the
desired application availability along with known failure probabilities of individual hosting nodes.
Availability is pursued by replication; this is a costly step, as it involves migrating and moving
around container images—as such, it should be performed as infrequently as possible. During the
invocation path stage, we ensure functionality by finding an invocation sequence among nodes
hosting microservices satisfying latency constraints. As the system is assumed to be unstable,
with nodes failing or leaving the system at any point, an invocation path may be disrupted and
a new one must be derived, which must adhere again to the application’s availability and latency
requirements.

The proposed framework builds on the premise that an application model consists of microser-
vices that should be invoked in some specific sequence to fulfill the desired functionality. The
application model is accompanied by a set of requirements—that is, the microservices’ resource
requirements, the maximum end-to-end (e2e) latency that an invocation path should exhibit, and

1https://www.openfaas.com;https://kubernetes.io;https://www.docker.com.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

https://www.openfaas.com; https://kubernetes.io; https://www.docker.com

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:3

the desired application’s availability. Based on these, the framework deploys and maintains the
application over the edge system. We consider that the target system consists of spatially dis-
tributed edge devices. However, we are not in a static setting similar to mobile edge computing
where edge servers reside at certain locations—instead, we assume volatile systems where service
operators have no control over nodes joining/leaving the network, which are often operated by
end users.

The problem setting treated in this article can be summarized as follows. The edge system is
defined as (i) microservices hosted on nodes (ranging from single-board computers to server-class
data center hosts) forming a network, (ii) every node is network reachable from any other node,
(iii) microservice instances are replicated to ensure availability, (iv) nodes may have high failure
likelihoods, and (v) several invocation paths among microservices hosted are possible, each char-
acterized by an e2e latency. Our framework encodes the two problems encountered—application
deployment and its runtime management—within Satisfiability Modulo Theories (SMT) [5], where
placement is captured as constraints in first-order logic while latency requirements are encoded
with integer linear arithmetic. Thus, we provide guarantees—if a solution exists, it is always found
at runtime by a solver situated in some edge node and is always correct. Those two problems cor-
respond to two Monitoring-Analysis-Planning-Execution (MAPE) loops [15]. Finally, we evaluate
performance by measuring the execution time required to deploy and maintain an application as
well as investigate its recovery from emergence of volatility.

The rest of the article is structured as follows. Section 2 summarizes the related work on both
service placement and adaptive techniques. In Section 3, we present the overview of our proposed
solution and introduce a motivational example. Section 4 defines the application and network
considered in this article. In Section 6, we describe the implementation details of our resource
provisioning technique, whereas in Section 7, we describe our stabilization technique. Section 8
presents the methodology and results of our evaluation regarding both provision and stabilization.
Finally, Section 9 concludes the article and provides an outlook on future work.

2 RELATED WORK

In this section, we discuss existing techniques found in the literature for deploying and maintain-
ing applications on edge systems. We divide related work into two categories: service placement
and adaptive techniques. In the former, we present resource placement efforts for deploying appli-
cations. In the latter, we focus on solutions that utilize adaptive techniques.

2.1 Service Placement Techniques

Multiple works tackle the resource placement problem in edge and fog settings. Typically, two
main objectives control the service placement—that is, decreasing the latency by moving some
services from the cloud closer to the end user and offload services from constrained devices to pre-
serve energy and increase performance. Mahmud et al. [18] describe a latency-aware policy aiming
to satisfy the latency requirements and optimize the utilization of fog node’s available resources.
In the target fog system, the authors consider two types of applications to be deployed: latency-
sensitive and latency-tolerant applications. The proposed decentralized placement algorithm aims
to place the applications between fog node clusters and cloud considering the applications’ la-
tency requirements. Furthermore, to optimize the fog node’s resource utilization, an optimization
technique using linear programming is proposed that minimizes the number of computational ac-
tive fog nodes found in a cluster. Skarlat et al. [23] propose an optimization service placement
algorithm, using the genetic algorithm to find a services placement strategy on fog nodes. The
authors first organize computational nodes into a hierarchy, where fog nodes are grouped into
colonies. The main idea is to distribute any application submitted to a fog colony to the controlled

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:4 C. Avasalcai et al.

fog nodes found closer to the end user. In case there are no available resources in the current
fog colony, the technique always tries to map the application to its neighbor colony. Ultimately,
the application is sent to the cloud if there are insufficient available resources on the fog layer.
Wobker et al. [28] introduce a fog computing platform to deploy and manage fog applications.
The service placement technique is based on Kubernetes and uses a labeling system that enables
the mapping of application components on fog nodes based on the application’s requirements like
memory, computational power, and storage. Another approach [6] proposes a placement technique
that supports application deployment in a fog computing architecture considering quality of ser-
vice requirements like latency and bandwidth. The proposed solution consists of two procedures:
preprocessing and resource placement. The former filters the available fog nodes and cloud data
centers according to the application’s resource requirements, reducing the search space. The latter
finds a single deployment strategy using a backtracking and heuristic approach.

Until now, all service placement techniques focused on migrating an application from the cloud
closer to the edge of the network. However, such techniques may be used for offloading service
computation from a resource-constrained device. Avgeris et al. [4] propose a service offloading
technique focusing on the efficient utilization of edge servers. For this purpose, the authors intro-
duce a two-level resource allocation mechanism that allows users found in the area of an edge
server to offload computational tasks. However, the mechanism considers a cluster of edge servers
without taking into account other edge clusters or the mobility of users. De Maio and Brandic [19]
tackle the same problem of service offloading from mobile devices. In this case, they propose a
multi-objective heuristic approach to allocate computational services to nearby edge nodes con-
sidering users’ satisfaction as well as providers’ profit. Chen et al. [7] propose a resource allocation
technique based on deep reinforcement learning to offload tasks from resource-constrained devices
to MEC servers. The objective is to find an optimal resource allocation strategy that considers la-
tency, energy consumption, and radio transmission bandwidth. Multiple other works undertake
the problem of service placement in different scenarios [10, 13, 17]. As can be observed, those ef-
forts targeting placement have in common that the main objective is to ensure latency fulfilment
upon placement of services.

Zhu and Huang [30] present EdgePlace, a heuristic technique capable of finding a placement
strategy that can minimize the resource unit cost and increases availability. Depending on the
application’s demands, the approach makes a trade-off between resource utilization, bandwidth
utilization, and availability. The technique receives as input a service graph consisting of multi-
ple service chains that must be deployed on MEC servers; a service corresponds to a VM. In this
case, to achieve service availability during the service placement phase, constraints like affinity
and anti-affinity are used when deploying a service graph. However, in the case of host failure,
functionality is recovered by migrating the service chain to another host. Sangolli et al. [22] pro-
pose an edge platform aiming to guarantee high service availability and minimize latency. For
this purpose, the authors describe a real-time service migration technique to migrate services
among nearby edge nodes when an edge node becomes unresponsive or has a high resource
utilization. Daneshfar et al. [8] propose a service allocation technique with a central controller
capable of mapping users’ requests to fog nodes where services reside. In this case, service avail-
ability is inherited from nodes’ availability. Furthermore, the authors do not consider the possible
dependencies between services, each service representing a stand-alone entity. Lera et al. [16]
present an availability-aware service placement to ensure objectives as the application’s e2e la-
tency and availability. The technique consists of two different stages: (i) break the fog network into
smaller and better-connected communities and choose a community where the entire application
is placed and (ii) map the application’s services between the nodes found in the chosen commu-
nity. Availability is achieved by deploying an entire application in one fog community since the

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:5

fog nodes have high connectivity. Furthermore, the authors consider that in a fog system, only the
communication link may fail. As a result, the application can continue to operate by reaching the
fog node using a different communication path. However, if a node fails and becomes unreachable,
the system cannot ensure the correct application functionality.

2.2 Adaptive Techniques

Generally, resource placement techniques do not account for the volatility of edge systems, where
nodes have a high failure probability. As a solution to this challenge, research has strived to propose
adaptive mechanisms based on migrating services between nodes. Govindaraj et al. [12] present
an approach to perform smart resource allocation, allowing them to achieve live migrations on
demand. Since performing a migration is an expensive task, the solution tries to minimize the
migrations required while maintaining the round trip time for each device under a certain thresh-
old. Gonzalez et al. [11] introduce a VM migration and placement technique for fog environments.
The technique consists of two parts, a proactive VM migration approach that uses user’s mobil-
ity predictions and a VM placement approach based on Integer Linear Programming (ILP). The
latter aims at improving the VM placement on selected fog nodes. Kassir et al. [14] propose an
adaptive distributed service placement technique based on Least Ration Routing capable of mi-
grating VMs to other locations when there are changes in the network, such as a change in node’s
location, a change in network size, or network congestion appears. Mseddi et al. [20] describe
an online intelligent resource allocation solution capable of determining the optimal service map-
ping on fog nodes and find a migration strategy considering the node’s available resources. The
main objective of this work is to maximize the number of satisfied user requests considering la-
tency as a quality of service requirement. Rossi et al. [21] introduce a self-adaptive technique for
deploying microservice-based applications in the cloud. The solution is using reinforcement learn-
ing techniques and has a two-layered hierarchical approach, based on MAPE cycles, capable of
self-adapting based on a learned microservices scaling threshold. In this case, the authors choose
a decentralized approach, where the first layer provides application-level feedback to the second
layer, which takes decisions at the microservice level.

From the preceding related works, we can observe that different approaches are applicable for
different problem settings. Heuristic approaches are applicable in situations where the target sys-
tem does not exhibit high uncertainty, allowing for the necessary execution time to find near-
optimal solutions. Typically, heuristic approaches are used when high scalability and maximiza-
tion/minimization of available resources or application requirements are required. In contrast, in
situations where for specific types of application and systems training data can be obtained, learn-
ing approaches appear promising. Such learning approaches are also suitable for finding optimal
resource offloading in a distributed manner or adapting to changes found in the application or the
target system. Similar to SMT, in an ILP approach, all objectives and requirements are expressed
as constraints. However, the difference is that ILP techniques aim for an optimal solution. Thus,
we argue that SMT fits well the problem setting where qualities like fast reaction and provid-
ing guarantees that a found solution satisfies the application’s requirements are desirable. Over-
all, we distinguish ourselves from the works previously mentioned by (i) proposing an adaptive
framework capable of ensuring availability on edge systems, (ii) avoiding container migration and
instead changing invocation paths, and (iii) when an application is placed on edge nodes, the re-
quired number of replicas is adjusted considering nodes’ failure probabilities and the application’s
availability requirement.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:6 C. Avasalcai et al.

Fig. 1. Adaptive framework overview featuring two adaptive cycles at runtime, in charge of placing the

application and managing the invocation path across microservices, respectively.

3 ADAPTATION FOR VOLATILE EDGE SYSTEMS

Edge-intensive systems typically heavily take into account runtime aspects, as unforeseen as well
as emergent system behaviors might hinder system stability; computational nodes may fail or
leave at any point, network circumstances may change, and assumptions taken into account for
a deployment may be rendered obsolete. As such, we cast our framework within self-adaptive
systems—microservices need to be executed in some way depending on resources that are located
in nodes that may fail. Microservices require specific resources, and “some way” refers to an invo-
cation path among them that needs to satisfy some desired property. We interpret the preceding
problem as two separate goals in the systems we target: (i) placing appropriately microservices to
nodes and (ii) reacting to instability caused by failure of nodes. Within our approach, a MAPE [1]
cycle addresses each system goal, where both take place at system runtime (Figure 1).

The placement cycle ensures that applications’ resource requirements are met, by allocating
microservices appropriately over participating edge nodes. To do so, it monitors the state of the
system, namely which nodes are available and which resources they currently have, through the
monitoring activity. Subsequently, the placement encoding activity takes into account some de-
sired availability factor of the application along with known failure probabilities of nodes (as-
sumed to be provided at design time2) and models the problem in a representation amenable to
analysis. The model is then supplied to the placement planning activity, which produces a plan by
replicating microservices accordingly throughout the system and ensures that the overall applica-
tion availability is satisfied. Finally, the plan is executed upon the system, by actual allocation of
microservices upon nodes.

The invocation path cycle is responsible for devising a sequence of nodes where microservices
reside among the ones currently deployed such that applications’ e2e latency and availability are
satisfied. As the system is assumed to be unstable, with nodes failing or leaving the system at any
point, the cycle is triggered when system changes are detected by the monitoring activity. Recall
that nodes host replicas of various microservices, but nodes themselves have communication links

2Failure probabilities may be also learned at runtime, something which we identify as an interesting avenue of future work.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:7

Fig. 2. Public-safety application model and its execution sequence.

of various qualities between them, which are also monitored. When changes occur and an existing
invocation path is disrupted, a new one must be devised by the invocation path planning activity.

Notice that the two cycles are triggered independently and upon different premises. The place-

ment cycle is triggered initially and then sporadically, when radical changes in the network appear.
Conversely, the invocation path cycle is triggered with every change in the system state, to produce
a satisfiable path, and as such targets non-radical system state changes, when the system merely
needs to be stabilized. If the invocation path cycle fails to succeed, then placement needs to be at-
tempted again. The difference among the two adaptive behaviors—targeting infrequent and radical
change versus minor instability in invocation paths—is exploited in the design of the framework’s
runtime behavior, as described in the following sections.

Running example. Consider a public-safety application deployed in a smart city scenario and
within the circumstances of a special event, such as a festival taking place within the city. Usually,
large crowds of people attend such events, leading to an increase in different types of user-facing
applications deployed in the area. A sudden request for hosting multiple applications on the current
infrastructure renders it inadequate to meet each applications’ requirements. However, there are
many unused resources owned by various participants, such as within user’s smart devices found
in the vicinity, which can be used for the benefit of the collective. Note how an application operator
does not control the users’ devices—devices may leave the system at any time for any reason.

In our example, the public-safety application must be deployed in the system for the duration of
the entire event. The application aims at citizen safety by analyzing the surroundings to find sus-
picious cases such as an unattended package or a dangerous activity in the crowd. Thus, once data
is analyzed, the application helps authorities for prevention. As one can imagine, response time is
critical in such situations, as well as maintaining correct functionality throughout the entire event.
The application may not reside entirely in a remote, centralized cloud facility due to low latency
and high availability—instead, a placement closer to the event location is desired. The application
consists of different microservices such as (i) face recognition, (ii) environment analysis, and (iii)
data analysis, among others. Furthermore, the application has a given execution sequence reflect-
ing business logic, illustrated in Figure 2. A maximum e2e latency of 12 units and a desired availabil-
ity of 0.5 is assumed. The target system consists of multiple nodes that may range from powerful
server-grade edge nodes (e.g., in the event premises) to user-operated mobile nodes. Each node has
an associated failure probability and each communication link has a latency, assumed to be known.
The objective is to satisfy all the application’s requirements during its life span—at runtime.

We distinguish three characteristic stages that an edge system may be found in during the lifes-
pan of an application. Those represent the initial placement and start of the application’s execution,
the emergence of some disruption due to node failure, and then the stable system state after the
corrective action employed by our approach. Those are illustrated in Figure 3; specifically:

• Initial placement: Microservices are mapped; this includes replication of certain microser-
vices across nodes, to account for possible future node failures. During this process, both
the placement cycle and the invocation path cycle are utilized in sequence. The former places
the required microservices and their replicas, whereas the latter aims at finding a satisfi-

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:8 C. Avasalcai et al.

Fig. 3. Three distinct stages in which the edge system may be found: (i) initial placement, the application be-

comes operational; (ii) disruption, a node failure renders the invocation path non-viable; and (iii) stabilization,

the system adapts by finding a new path.

able invocation path among the already allocated microservices such that the latency re-
quirements are met. The invocation path cycle chooses one path from the many possible
paths. This stage yields a stable system, where all nodes and placed microservices are op-
erational and an invocation path is derived. In Figure 3, the dashed line represents the
communication path between two nodes, whereas f shows the failure probability of a node,
and l is the latency associated to a certain communication path. Finally, p1 represents the
invocation path chosen by the invocation path cycle.
• Disruption: Given a stable and running system, a disruption occurs due to the failure of one

or more nodes resulting in an unresponsive application since microservices nodes previously
hosted cannot be reached. For example, assume that during execution of the public-safety
application, node 2 where m1 and m3 reside has failed. The previous invocation path is no
longer viable and a new one must be devised.
• Stabilization: After a new path is calculated, the application’s operation is restored. Note

how this new stable state may be fragile; if more nodes fail, the invocation path planning
activity may fail. If a path cannot be calculated (e.g., because multiple nodes hosting critical
microservices disappeared), the system is unable to return to a stable state and a placement
must be triggered again.

4 APPLICATION AND SYSTEM MODELS

In this section, we outline the application and system models upon which the proposed framework
is based. We start by defining the target edge system model; next, we present the application model
along with its defining components, such as microservices and execution sequence. Finally, we
introduce the framework objectives—latency and availability.

4.1 Edge System Model

The target edge system consists of interconnected nodes distributed at different locations. It is as-
sumed that there is a central node (i.e., a coordinator node) that governs over all other nodes. Let EN

represent the total number of devices found under the supervision of a coordinator node (i.e., EN =
{E1, E2, . . . }). The coordinator is meant to reside in a powerful device like an edge server or gate-
way. Edge nodes within the scope of the coordinator may have different capabilities, ranging from
resource-constrained single-board computers to server-class data center hosts. Each edge node has
a failure probability representing its likelihood to leave the network or fail during the application’s
life span. The failure probability can be estimated at runtime using historic data of each type of

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:9

edge device to predict the failure probability of a new node [29]. Besides the failure probability,
a set of available resources Eres = {r1, r2, . . .} denotes the node’s current capabilities. Those may
range from typical computation, memory or storage to specialized hardware (e.g., GPUs/TPUs for
machine learning workloads) and sensing/actuation features.

4.2 Application Model

In our conception, the (developer-provided) application model follows a microservice-based archi-
tecture where its functionality is divided into multiple linked microservices, each being character-
ized by a set of requirements. As such, a model is defined as (i) a set of microservices MN = {m1,
m2, . . .}, (ii) the execution sequence, and (iii) a set of functional and resource requirements. The
functional requirements are in terms of latency and availability, whereas the resource requirements
reflect what each microservice needs to function properly on a hosting node.

A microservice mi performs one part of the application’s functionality. Each is defined at design
time, by a set of resource requirements Mres = {res1, res2, res3}. To obtain a successful deployment,
at least one node must be able to fulfill the requirements for each microservice. Each mi can have
multiple replicas Rp = {rp1, rp2, . . .}, intended to guarantee fulfillment of availability. The num-
ber of replicas for each microservice is dependent on the application’s availability requirements
and nodes’ failure probabilities. Replication increases the application’s resilience to disruption,
enabling the coordinator to stabilize the application in the event of node failure. Recall that the
business logic entails an order in which microservices are invoked. This execution sequence starts
with a source and ends with a sink. The total e2e latency of an invocation path is key—this is
the time required for the network to traverse the path starting from the source microservice and
ending with the sink microservice (barring any computation, which is application dependent). A
communication link between two nodes Ei and Ej thus has an associated latency lEi,Ej . This is as-
sumed to be monitored at runtime (i.e., through the monitoring activities of the MAPE loop of
Figure 1). Latency of a node with another is inherited by all the microservices mi and mj they host.
Finally, similar to latency, each microservice has an availability inherited from their host.

5 MONITORING AND EXECUTION ACTIVITIES

The monitoring and execution activities guarantee that any devised strategy considers the up-to-
date information retrieved from the target edge system and is capable of enacting the required
changes. Consequently, both the placement and the invocation path cycles share the two activities.

5.1 Monitoring Activity

Considering the uncertainty found in the target edge system—where nodes may fail or leave the
system—the monitoring activity is crucial for the two MAPE cycles. The overall objective is to
provide a global view by providing information about (i) overall system changes, (ii) edge nodes,
and (iii) communication links:

• System and node monitoring: To be effective in determining when a change occurs, the ac-
tivity detects system changes by keeping as a reference the last known stable state—the
state when the application was successfully operating within desired parameters. A change
appears when a microservice used in the current invocation path is no longer active due
to node failure or the arrival of new nodes. The former has a disruptive effect on the sys-
tem’s stability that requires the triggering of the invocation path cycle or, in the worst case,
the placement cycle before it. The latter is not a adverse change; new nodes increase the
resources available. At the node level, the coordinator monitors nodes’ available resources
every time the placement cycle is to be invoked.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:10 C. Avasalcai et al.

• Communication links monitoring: Since a primary objective is to satisfy latency, monitor-
ing the communication links between nodes is crucial. Not only do these links provide the
communication latency between dependent microservices, but they are part of the invoca-
tion path alongside nodes. However, links may fail, and when this occurs, the coordinator
must invoke the invocation path cycle; we assume that a link fails if either the source or the
destination node is unresponsive.

Consider the running example; first, monitoring recognizes the appearance of new nodes when
participants arrive at the event, obtains nodes’ available resources, and measures their communi-
cation links. After the public-safety application is operational, the activity monitors in particular
the nodes that participate in the current path, triggering the corresponding cycle when one or
more become unresponsive.

5.2 Execution Activity

The last conceptual step in the MAPE cycle is the execution activity. When either of the two cycles
finds a successful plan, the execution activity is responsible for enacting it upon the edge system—
after its conclusion, the application becomes operational.

Initially, based on the placement plan conceived during placement planning, the execution ac-
tivity distributes microservices on nodes. In this case, execution works above the node level, by
sending microservice container images to nodes, where their execution is assumed to be man-
aged by some container framework such as Kubernetes or OpenFaaS. Once all microservices are
available, execution enacts the newly generated path by informing each node about each of its
microservices’ destination (i.e., the node where dependent microservices reside). As such, there is
no need for costly migration; instead, execution locates the new nodes that participate in the path
and informs them about addresses used for communication. For an example of this, consider exe-
cuting a path found for the public-safety application (Figure 3). First, during initial placement, the
cycle finds p1 as the satisfying path. In this case, to execute the plan, execution finds the addresses
of nodes E1, E2, and E3. Next, it informs E1 that m0 communicates with its dependent m1, using
the address of E2. Notice that if two dependents share the same node as in the case of m1 and m3,
the communication is internal. Finally, the activity informs E2 about E3.

6 PLACEMENT CYCLE

The placement cycle ensures that the edge system satisfies the application’s requirements in terms
of availability and microservices’ resource requirements. The cycle is bootstrapped with a given
application-wide availability requirement, an application model, and the target edge system—those
are specified per application. Note how the cycle is not concerned with invocation path calculation
and its associated e2e latency, but merely aims to derive the needed number of replicas to satisfy
availability, and subsequently map them. We distill the following objectives:

• What is the minimum number of microservice replicas required to satisfy the application’s
availability requirement?
• Given the application model and the number of replicas, what placement strategy satisfies

the microservices’ resource requirements?

6.1 Placement Encoding Activity

The purpose of the placement encoding activity is to find a satisfiable mapping considering the infor-
mation received from the monitoring activity: the edge system, the nodes’ failure probabilities, and
the intended availability. Computing an optimal placement is not necessary (due to the increased
computation this would require), since the network configuration may change frequently and the

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:11

procedure may need to be invoked frequently as well. Instead, we seek a placement that satisfies
the given requirements with respect to the target edge system. To this end, we adopt SMT [5];
we model placement as first-order formulas consisting of constraints and an objective. Moreover,
computational demands are kept low—more on this will be discussed in Section 8. Specifically, we
model the problem with the linear integer arithmetic and Boolean theories, having three distinct
targets: (i) placing microservices on nodes, (ii) placing microservice replicas on nodes, and (iii)
keeping track of availabilities of microservice on their hosting nodes.

Microservice placement. The first constraint ensures correct placement. As a rule, upon deploy-
ment, a microservice mi can be placed on a node Ei if and only if (i) Ei is capable of satisfying
the resource requirements of mi and (ii) mi does not exist in the system yet. Based on these rules,
we can deduct that microservice placement does not consider replicas of mi, replicas being han-
dled by another constraint. Consider an edge system of two nodes E1 and E2 on which mapping
of microservice m1 (face recognition) from the public-safety application is desired. There are two
possible mappings of m1—behavior where the m1 is placed on both nodes must be avoided. This
is captured with Formula 1, where nm represents the total number of microservices found in the
application model, whereas the map() function provides a mapping between mi and a node E. For
number of nodes n and microservicesm, the formula construction exhibits complexity O (nm).

mrcFacts :

nm∧

i=1

(∃! E : map(mi = E)), ∀E ∈ EN (1)

Microservice replication. Replication of a microservice mi is considered separately. First, only
one replica rpi can be placed on a node Ei; placing replicas on different nodes aims at higher
availability. Second, as in the case of the placement constraint, Ei must have the required resources
to execute rpi. For example, consider one more replica of the face recognition m1 is desired. In
this case, its replica rp1 must be deployed on a system consisting of three nodes E1, E2, and E3.
Following Formula 1, m1 is mapped on E2. rp1 cannot be mapped on the same node as m1, and
only two possible nodes are available when deploying rp1 – E1 and E3. More concretely, Formula 2
ensures that if a replica is mapped on a certain node, then all other remaining replicas cannot be
placed on that node, where nr represents the total number of replicas for a certain microservice
and nrl the total number of replicas without considering the current rpi. Construction of Formula 2
exhibits complexity of O (nnr), where n is the total number of possible locations where replicas of
mi can reside.

replDomain :

nr∧

i=1

((map(rpi = E)) =⇒
nrl∨

j=i

(!map(rpj = E)), ∀E ∈ EN (2)

Microservice availability. A microservice mi inherits availability from its host node, which has a
known failure probability. Knowing the availability of each microservice aids in determination of
the maximum number of replicas required and the decision of if a certain placement configuration
fulfills the requirements. For example, if m1 is mapped on E1 where E1 has a failure probability of
40%, then the availability factor of m1 is mavaili = 1 − Efailure. Formula 3 encodes this based on the
deployment destination node; its construction complexity is analogous to the previous formula.

availDomain :

nr∧

i=1

(map(mi = E) =⇒ mavaili = 1 − Efailure), ∀E ∈ EN (3)

Placement objective. The number of replicas is dependent on the application’s availability re-
quirement. As a result, we define an objective constraint to ensure that placement satisfies the
application’s availability. Microservices’ availability are dependent on the number of replicas and

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:12 C. Avasalcai et al.

their inherited availability. Keeping their availability equal to the application’s availability aims at
having enough resources to make the application more resistant to node failures; the availability
of a microservice helps to distribute multiple replicas on different edge nodes. This is captured
in Formula 4, where tmaxAvail is the desired microservice availability ; its construction amounts to
complexity of O (nr).

objConstraint : 1 −
nr∏

i=1

tavaili ≥ tmaxAvail (4)

6.2 Placement Planning Activity

This activity employs the encoding of the previous step to generate a satisfiable placement plan.
By virtue of the design choice of employing SMT, we guarantee that the generated plan provably
satisfies all the defined constraints and fulfills the placement objective. At the core of the place-

ment planning activity is solving a formula F capable of deciding if a strategy satisfies the cycle’s
objectives or not. Formula 5 is a conjunction of Formulas 1 through 4, received from the previous
activity. Once the activity knows F , a plan is devised by employing an SMT solver—solutions
obtained are used to deduce the plan.

F : mrcFacts ∧ replDomain ∧ availDomain ∧ objConstraint (5)

In essence, the activity calculates the minimum number of replicas required by each microser-
vice to meet the availability requirements. To do this and find a placement strategy, the placement

planning activity uses F to place one microservice mi at a time in an iterative process, where at
each step a new replica of mi is placed in the system until the availability of mi is satisfied. Once
mi is placed successfully in the system, the process continues with the next microservice mj. The
process terminates upon two conditions: (i) all microservices are placed in the system or (ii) one or
more microservices cannot be placed. In the former case, since there are enough resources in the
system to accommodate all applications’ microservices, the cycle is able to find a plan. In the latter,
the target system lacks the required resources to host all microservices; a plan does not exist.

For an example of the entire process, consider the activity placing the running example appli-
cation on an edge system consisting of six nodes. First, the activity deduces F ; the process to find
the minimum number of replicas and the placement strategy can commence. We start by mapping
one microservice at a time, placing its required replicas as well. For example, consider the process
of placing m1. At this stage, the activity already found a suitable placement for m0. Hence, on the
system, there are fewer available resources when placing m1. Based on this information, a replica
of m1 is placed in the system and an evaluation occurs, to check if the current placement of m1

is enough to satisfy Formula 4. If placing only one replica of m1 is not enough, then replicas for
m1 are increased and a solution of F is attempted again. We continue to increase the number of
replicas until either Formula 4 is satisfied or there are not enough available resources to accommo-
date all replicas. Finally, if we manage to find and place the minimum number of replicas for m1,
the planning process continues with m2. However, if no solution is found for m1, then the process
stops without producing any placement strategy. Figure 4 shows a placement strategy found for
the public-safety application.

7 INVOCATION PATH CYCLE

The objective of the placement cycle was to deploy the application’s microservices across available
nodes comprising the system. After the cycle has been completed, they may be invoked accord-
ing to the application’s business logic. Due to replication, however, multiple invocation paths are
possible. The invocation path cycle is responsible for establishing (and maintaining) the call se-

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:13

Fig. 4. Placement of the example, showing locations of microservices and their replicas across nodes.

quence across those replicated microservices such that the application’s latency requirements are
met. Disruptions such as network changes or node failures may render a path no longer usable;
thereupon, the cycle is triggered.

7.1 Invocation Path Encoding Activity

Considering the invocation cycle’s objectives and information received from monitoring, three dif-
ferent formulas can be constructed—two that reflect the cycle’s constraints and one that considers
its objectives; they capture (i) the location of microservices and (ii) the communication latency
between nodes.

Microservice location. The location of microservices plays an important role in finding a satisfi-
able path; the domain for each needs to be defined, offering a set of nodes where it resides. This
domain is an asset to the cycle when searching for a satisfiable path: first, by knowing the location
of each mi, the search space is constrained by considering a subgroup of nodes—a group formed
with nodes from the combined microservices’ domains. For example, consider that there are nodes
E1, E2, and E3, where the face recognition microservice m1 exists. Under these conditions, the invo-
cation path cycle considers one of the three when building the path. This is illustrated in Formula 6,
where nM represents the total number of microservices and nE is the total number of nodes where
mi is mapped; its construction exhibits complexity of O (nEnM).

microDomain :

nM∧

i=1

��
�

nE∨

j=1

(mi = Ej)
��
�

(6)

Microservice latency. Recall that microservices inherit latency from their hosting nodes; a pair
mi, mj may have a different communication latency on different combinations of nodes. Given For-
mula 6, one can observe the latency between two microservices lmi,mj , considering their possible
locations. For example, for the public-safety application (Figure 2), m1 has a dependency with m2;
m1 and its replicas are mapped on E1, E2, and E3, whereas m2 is on E2. Under these conditions,
the encoding consists of all possible combinations between the two microservices’ domains. In the
end, the constraint yields a connection between the location of a microservice and its associated
node latency (i.e., lmi,mj = lEi,Ej)—captured in Formula 7. Its construction exhibits complexity of
O (nMDnESnED), where nMD is the total number of dependent groups consisting of two microser-
vices (a source and a destination), whereas nES and nED represent the total number of nodes where
microservices part of a dependent group exist.

latencyDomain :

nm∧

D

(mi = Ei, mj = Ej) ⇒ (lmi,mj = lEi,Ej)for D = {i, j},

where i ∈ [0, nm] and j ∈ [0, nEN].

(7)

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:14 C. Avasalcai et al.

Invocation path cycle objectives. There are two objectives the cycle must ensure: e2e latency and
availability. The latter can be obtained by Formula 3, where nr represents all available microser-
vices and their replicas. The former represents the sum of all communication latencies between
each of two dependent microservices. Recall that we assume that the maximum e2e latency and
the desired availability are given at design time; to capture the e2e latency of a path, the invocation
path cycle must perform three steps: (i) choose an invocation path, (ii) obtain the latency between
dependent microservices, and (iii) verify that the total e2e latency is fulfilled. The cycle can perform
the first two steps using the placement and the latency constraints. For the third step, Formula 8
is used to check if the chosen path fulfills the objective. The formula ensures that the path’s e2e
latency is smaller than or equal to the maximum e2e latency allowed e2emax. Construction of For-
mula 8 exhibits complexity O (mnmd), where m represents the number of available microservices
and nmd the number of dependencies a microservice has.

objConstraint :

m∑

i=1

li ≤ e2emax (8)

7.2 Invocation Path Planning Activity

Similar to placement, this activity creates a plan for a new path. Formula FI builds upon the
formulas received from the invocation path encoding activity. By casting this activity within SMT,
we guarantee that every path found fulfills the cycle’s objectives. Finally, to obtain the path plan,
FI is solved by employing an SMT solver.

FI : microDomain ∧ latencyDomain ∧ objConstraint (9)

In contrast to the iterative process employed by placement planning, this activity considers all
microservices in one step. After obtaining FI , planning takes the application’s execution sequence
and attempts to find a series of nodes (ones that host microservices invoked in the execution
sequence) such that the cycle’s objectives are fulfilled. In comparison to the formula employed
by the placement cycle, observe that FI has (i) a smaller formula size since it considers only a
subgroup of nodes, (ii) awareness of microservice placement, and (iii) existing information about
latency. In essence, FI must find a combination of nodes that fulfill Formula 8. As a result, FI is
expected to scale well with an increase in network or application size—more on this topic will be
discussed in Section 8.

Figure 5 illustrates a produced plan for the public-safety application. Path planning starts from
the placement cycle; the activity obtains the application’s execution sequence and attempts to find
a set of nodes where microservices reside to build a path. There may be multiple invocation paths
in the system, but not all of them satisfy Formula 8. Finally, the activity returns a satisfiable path
(e.g., p1).

8 EVALUATION

To concretely support evaluation and investigate feasibility of the proposed framework, we real-
ized a proof-of-concept implementation that is available as open source software reflecting the
cycles of Sections 6 and 7, along with auxiliary functionalities supporting monitoring and execu-
tion. Thereupon, we assess performance and scalability of the critical placement and invocation
path cycles. We additionally investigate the framework’s capability to reach stabilization when
nodes fail and conclude with a discussion.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:15

Fig. 5. Satisfiable path p1 found for the public-safety example.

Fig. 6. Combined deployment and dataflow diagram for a framework realization.

8.1 Framework Realization

To investigate feasibility, we realized the proposed framework as a prototype implementation; its
main architectural components are illustrated in Figure 6. The coordinator node hosts the place-
ment and invocation cycles, which construct the required formulas and through interaction with a
solver build the corresponding plans. Monitoring functionality is responsible for detecting the sta-
tus of nodes in the network, their available resources as well as obtaining latencies between them.
Execution entails deployment of containers on nodes and setting up communication between de-
ployed microservices. Edge nodes host Docker (or alternatively Kubernetes/OpenFaaS) and report
their latencies to others to the coordinator. All interactions are performed through REST APIs and
use Ansible for infrastructure-as-code. The prototype built in Python using Z3 [9] as the underly-
ing SMT solver and an example microservice application are available.3

8.2 Experiments Setup

In the following, we evaluate the performance of our proposed solution considering different sce-
narios. For each, we first assess the performance of the placement cycle; then we employ the
invocation path cycle to find valid paths. Each scenario has different characteristics to evaluate
the performance in terms of the time required to find a valid solution. Therefore, we gradually

3https://github.com/cavasalcai/Adaptive-Volatile-Edge-Systems.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

https://github.com/cavasalcai/Adaptive-Volatile-Edge-Systems

26:16 C. Avasalcai et al.

Table 1. Characteristics of the Synthesized Scenarios Adopted

for Performance Evaluation

Scenario
Micro–

services

e2e

Latency
Availability

Failure

Probability
Nodes

1 10

350 0.75 [0.1, 0.5] 10–500
2 20
3 30
4 40
5 50

increase the number of nodes of the target system—Table 1 shows the five scenarios along with
their specifications. Each has a different number of microservices. This intends to examine the
impact of the system size as the total number of nodes on execution time. The e2e latency and
availability are kept unchanged since (i) we are interested in understanding how the number of
nodes influences the placement execution time, and (ii) choosing more stringent constraints (i.e.,
having a lower e2e latency or a higher availability) will have an impact on the execution time; how-
ever, this does not alter how the execution time rises with an increase in network size. Finally, the
resource requirements of each microservice are a set of resources as a tuple (RAM, CPU, HDD); for
each, we randomly choose a value between [5, 18] units. Experiments are performed on a machine
with an Intel i5 2.3-GHz processor and 16 GB of RAM.

Recall that the system is characterized by (i) the number of nodes, (ii) their failure probabilities,
and (iii) the communication latency associated with each link. We set the failure probability of
each node and latency by choosing a random value between [0.1, 0.5] and [1, 10] ms, respectively.
Regarding resources, we assign a random value chosen from [15, 30] units. Finally, for each sce-
nario, we increase the number of nodes by 10 up to a maximum of 500. Furthermore, when we
increase the system size, we add new nodes on top of the current network. Thus, a progressively
larger system always contains the previous nodes, simulating a case where new nodes appear.

Finally, for each application size, we choose an execution sequence that starts with a source and
ends with a sink. For this reason, we create a sequence that involves all microservices and leads
to a different sequence for each application size. For example, consider building the execution
sequence for an application with 10 microservices, MN = {m1, m2, m3, . . ., m10}. The procedure
starts by choosing m1 as the initial source. Next, we remove m1 from MN and randomly choose
a destination microservice from the remaining elements in MN. Assume that m3 is chosen as the
destination of m1—there is a dependency between m1 and m3. Notice that we do not remove m3

from MN; we remove m3 only when it becomes the source. After a destination for m1 is found, the
procedure is restarted by taking the next microservice from MN (i.e., m2). Finally, the procedure
stops when MN is empty.

8.3 Placement and Invocation Path Performance

We consider that the placement cycle consists of two phases: (i) finding a placement strategy and
(ii) starting the microservice on the host node. To evaluate the placement cycle’s performance, we
measure the time required to find a satisfiable placement strategy according to the application’s
objectives. We perform 50 placements per scenario, one placement for each new network size. In
this case, once we find a placement strategy for the current network, we increase the network size
by 10 and attempt to find a new strategy. Figure 7 illustrates the execution time required to find
a placement strategy for all scenarios. The x-axis shows the number of nodes, whereas the y-axis

presents the execution time in seconds. Subsequently, the invocation path cycle requires as input

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:17

Fig. 7. Execution time of the placement cycle for dif-

ferent scenarios across different network sizes.
Fig. 8. Average execution time required by the

invocation path cycle across the five scenarios.

Fig. 9. Application model and its execution se-

quence.

Table 2. Initial Placement and Invocation Paths

Micro–

services
Nodes

Initial

Path

m0 E6, E16, E49, E50, E1, E43 E6

m1 E6, E16, E49, E50, E1, E43 E6

m2 E6, E16, E49, E50, E1, E43 E6

m3 E39, E17, E33, E48, E32, E4 E33

m4 E4, E32, E44, E6, E2, E39 E4

m5 E25, E45, E2, E4, E33, E50 E25

m6 E17, E2, E4, E32, E33, E43 E17

the location of microservices and their replicas on the system, which is the result of placement.
Similar to placement, we measure the invocation path cycle’s performance as the time required to
derive a feasible path considering the application’s latency requirement. We evaluate the cycle’s
performance on obtaining satisfiable invocation paths on 250 different network topologies, 50 for
each scenario, when there was no failure in the system. Figure 8 illustrates the time required to
find a satisfiable invocation path among all replicas.

8.4 Stabilization Performance

In the following, we investigate the framework’s capabilities to reach stabilization when one or
more nodes have failed. This occurs when the system recovers from node failure, by employing
the invocation path cycle; we focus on evaluating the performance of the cycle after the system
has lost nodes. We consider an application of 50 edge nodes. The application model is a slightly
modified version of the one presented in the work of Rossi et al. [21] and illustrated in Figure 9. It
consists of seven microservices—we further add a new dependency between m4 and m5; it has one
source (m0) and one sink (m6). We adopt a maximum e2e latency of 100 time units and a required
availability of 0.96. All other characteristics, like resource requirements and latency, remain the
same as described for the other scenarios. However, to evaluate stabilization, we adopt a different
set of characteristics for edge nodes, aiming for a higher number of replicas in the system: we
randomly select node failure probabilities between [0.1, 0.5] and set available resources in the
range of [50, 80] units, respectively.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:18 C. Avasalcai et al.

Fig. 10. Execution time required by the invocation

path cycle to reach stabilization after node failures.

Table 3. Invocation Paths and Their e2e Latency

Found When Incrementally Failing Nodes

#
Microservice

Invocation Path

e2e La-

tency

Node

Failure

1 E17, E4, E25, E33, E6 32 E4

2 E32, E17, E25, E33, E6 41 E25

3 E32, E17, E45, E33, E6 39 E6

4 E32, E17, E45, E16, E33 31 E32

5 E17, E44, E45, E16, E33 42 E44

6 E45, E17, E2, E16, E33 42 E17

7 E2, E45, E39, E16, E33 46 E33

8 E45, E39, E16, E2 45 E45

9 E49, E39, E16, E2 46 E16

10 E49, E39, E2, E50 41 E50

11 E49, E2, E48 30 E2

Initially, microservices and the invocation path are missing from the target system: a placement
and derivation of a path are first performed. Table 2 records the starting placement configuration
and the chosen path. Each row then shows all nodes where a microservice resides and the node that
participates in the respective path. Recall that after the initial deployment, nodes may fail, leading
to the need to start the stabilization process. However, not all failed nodes from the system disrupt
the application’s functionality: only ones that are part of the path. As such, we incrementally fail
a node from the current path and use the cycle to recover. Table 3 records each path found during
stabilization as well as its associated e2e latency. For example, in the first row, the current path
(from Table 2) has a total e2e latency of 32 units. However, at some point, the edge node E4 fails,
disrupting the path. As a result, a new path is obtained and presented on the next row. This process
continues until there is no possibility of system stabilization with the remaining microservices
across the system, resulting in the need of employing the placement cycle again to repopulate
nodes. Performance results are shown in Figure 10.

8.5 Discussion

We believe that we have demonstrated that by virtue of the framework’s two cycles, application
placement and its recovery from an unstable state resulting from volatility can be performed timely.
Results of Figure 7 illustrate that (i) the time required to find a placement strategy increases with
the network size and that (ii) the application size impacts the execution time as well. Among the
two, the application’s size has a greater impact on the execution time, since one microservice and
its replicas are deployed at a time, a step that requires to invoke the solver for each. The execu-
tion time is influenced by other factors as well, such as applications’ requirements (e2e latency,
microservice’s resource requirements, and availability) and network characteristics (failure proba-
bilities and available resources). However, these factors do not alter the increasing trend observed
in Figure 7, as it only impacts the time required to find a solution for specific scenarios; it can
increase or decrease the execution time depending on how stringent the requirements are. We can
observe the impact of these factors at the spikes found at lower network sizes. In these particular
cases, the network topology size, the node’s failure probabilities, and its available resources play
an important role: (i) either there is no feasible solution due to the lack of available resources in
the target network or (ii) available resources are equal to the application’s requirements. In both
situations, the solver must traverse the entire search space to try and find a placement strategy. We

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:19

can observe that with the increase in the network size, there are more available resources, offering
the solver more possibilities to find a satisfiable placement, lowering the execution time.

Figure 8 shows the execution time required to find a path for different cases. Compared to place-
ment, the invocation path cycle is capable of finding a solution faster. We can observe that there are
no big spikes in execution times—this behavior is attributed to the extra knowledge that the solver
has as the encoding is “aware” of the location of all microservices and replicas on the network.
Hence, independent of the network size, the solver only attempts to find a path between nodes
where the application is deployed. As a consequence, we can conclude that this cycle is influenced
only by the total number of microservices and their placement.

Figure 10 shows the proposed framework’s capabilities to restore functionality after node
failures. In this scenario, we make use of specific requirements—availability and node’s failure
probabilities—to increase the number of microservice replicas found. As a consequence, the failure
probabilities of all nodes are set under 0.5 and a high availability of 0.95 is chosen. This practice
forces the placement cycle to place replicas on more nodes. Another factor that influences the
number of replicas is the network size. In a network with many nodes (e.g., 500), there are more
chances to find nodes with available resources and low failure probability to deploy a small-sized
application. Thus, placement is capable of being satisfied with fewer replicas. However, when the
size of the network is limited to 50 and stringent requirements are set, a solution would require
increasing the number of replicas. Under these conditions, the placement cycle requires more time
to find a satisfiable deployment, whereas the invocation path cycle remains unchanged. We can
observe that in the experiments performed the invocation path cycle is capable of recovering from
an unstable state in under 70 ms. Furthermore, since the cycle only considers nodes where mi-
croservices are placed (see Table 3), the required time to find a path decreases with every node
failure.

Regarding the overall process, observe that adaptation entails changing the path between repli-
cated microservices instead of migrating them to other hosts. This is because a migration typically
requires higher communication overhead as a microservice must be moved from one node to an-
other. For example, a 25-MB container would take 25 seconds to migrate from one node to another,
assuming an 1-MB/s link. In comparison, our approach targets recovery with small overhead, since
no migrations are involved; naturally, there is a trade-off between communication overhead and
the increased redundancy due to replication. Depending on the application, the technique advo-
cated may require significantly more available resources to host replicas. However, this can be
mitigated by considering microservice boot/cold starts. On the one hand, if fast reactions or stabi-
lization is desired, the replicas can be kept warm, a practice that requires more available resources.
On the other hand, if conservation of resources is desired, replicas can be kept cold and latency
introduced by cold starts can be considered in the e2e latency computation.

The maximum number of stabilizations employing singularly the invocation path cycle is de-
pendent on multiple factors. First, the distribution of microservices on hosting nodes plays the
most crucial role. Stabilization is not possible if a microservice does not have any active replicas
in the network. The application’s requirements represent a second factor that impacts stabiliza-
tion success; in this case, available replicas are still found, but the cycle is unable to find a new
path. Finally, the number of failed nodes in the current path lowers the number of possible sta-
bilizations; losing more nodes leads to one of the two factors previously discussed. If there is at
least one available replica for each microservice and both the e2e latency and availability are ful-
filled, stabilization is, however, guaranteed. Finally, we note that the proposed framework is not
bound to a specific edge network topology or density and assumes that all nodes are reachable.
Density may hinder the invocation path cycle’s ability to find a paths if edge nodes are scattered
in a large area, increasing links’ communication latency. Finally, we acknowledge the high com-

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

26:20 C. Avasalcai et al.

putational demands of the placement cycle in some scenarios (referring to the spike of Figure 7).
However, since placement is performed only at the beginning of the application’s life span and
sporadically during its execution, we argue that it does not impose significant delays in practical
settings. Moreover, as mentioned earlier, placement performance depends on the target system and
how stringent requirements are. Placement is not used for recovery from an unstable state, since
for such cases the other cycle is employed for adapting to volatility; the invocation path cycle is
capable of recovering an application rather timely (under 100 ms for sizes considered in Section 8).

9 CONCLUSION AND FUTURE WORK

In this article, we considered that applications execute on distributed edge systems where node
failure is a prime concern; devices may leave the network or fail without prior notice. As such,
the application’s stable state needs to be maintained throughout its execution. We proposed an
adaptive framework consisting of two MAPE cycles: the placement and invocation path cycles. The
former aims at devising a placement to provide the required resources for a microservice-based
application. Furthermore, the placement cycle facilitates availability by replicating microservices
throughout the system. The latter cycle provides fast recovery from unstable states by building
satisfying invocation paths across deployed microservices and their replicas.

Regarding future work, we intend to extend the adaptive framework presented to deploy appli-
cations with multiple invocation paths (i.e., more than one source and sink microservices). Further-
more, we aim to develop functionality capable of deducing nodes’ failure probabilities at runtime,
also since their availability may change over time; something that is closely related to monitoring
in edge systems [26]. Finally, integration with management frameworks such as OpenFaas or Ku-
bernetes is another aspect that should be further tackled, as well as capturing other requirements
pertinent to the edge-based systems that we target, such as privacy [25].

REFERENCES

[1] Danilo Ardagna and Li Zhang. 2010. Run-time Models for Self-Managing Systems and Applications. Springer Science &

Business Media.

[2] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. 2019. Decentralized resource auctioning for latency-

sensitive edge computing. In Proceedings of the IEEE International Conference on Edge Computing (EDGE’19).

[3] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. 2021. Resource management for latency-sensitive IoT

applications with satisfiability. IEEE Transactions on Services Computing. Early access, April 20, 2021.

[4] Marios Avgeris, Dimitrios Dechouniotis, Nikolaos Athanasopoulos, and Symeon Papavassiliou. 2019. Adaptive re-

source allocation for computation offloading: A control-theoretic approach. ACM Transactions on Internet Technology

19, 2 (April 209), Article 23, 20 pages.

[5] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. Springer International Publishing, Cham, Switzer-

land, 305–343.

[6] Antonio Brogi and Stefano Forti. 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet of

Things Journal 4, 5 (2017), 1185–1192.

[7] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu. 2019. iRAF: A deep reinforcement learning approach for

collaborative mobile edge computing IoT networks. IEEE Internet of Things Journal 6, 4 (2019), 7011–7024.

[8] Nader Daneshfar, Nikolaos Pappas, Valentin Polishchuk, and Vangelis Angelakis. 2018. Service allocation in a mobile

fog infrastructure under availability and QoS constraints. In Proceedings of the 2018 IEEE Global Communications

Conference (GLOBECOM’18). 1–6.

[9] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Confer-

ence Tools and Algorithms for the Construction and Analysis of Systems. 337–340.

[10] Raphael Eidenbenz, Yvonne-Anne Pignolet, and Alain Ryser. 2020. Latency-aware industrial fog application orches-

tration with Kubernetes. In Proceedings of the 2020 5th International Conference on Fog and Mobile Edge Computing

(FMEC’20). 164–171.

[11] Diogo Goncalves, Karima Velasquez, Marilia Curado, Luiz Bittencourt, and Edmundo Madeira. 2018. Proactive virtual

machine migration in fog environments. In Proceedings of the 2018 IEEE Symposium on Computers and Communications

(ISCC’18). 00742–00745.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

Adaptive Management of Volatile Edge Systems at Runtime With Satisfiability 26:21

[12] Keerthana Govindaraj, Jibin P. John, Alexander Artemenko, and Andreas Kirstaedter. 2019. Smart resource planning

for live migration in edge computing for industrial scenario. In Proceedings of the 2019 7th IEEE International Conference

on Mobile Cloud Computing, Services, and Engineering (MobileCloud’19). 30–37.

[13] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang. 2020. A cloud-MEC collaborative task offloading scheme with service

orchestration. IEEE Internet of Things Journal 7, 7 (2020), 5792–5805.

[14] Saadallah Kassir, Gustavo de Veciana, Nannan Wang, Xi Wang, and Paparao Palacharla. 2020. Service placement for

real-time applications: Rate-adaptation and load-balancing at the network edge. In Proceedings of the 2020 7th IEEE

International Conference on Cyber Security and Cloud Computing (CSCloud’20) and the 2020 6th IEEE International

Conference on Edge Computing and Scalable Cloud (EdgeCom’20). 207–215.

[15] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.

[16] Isaac Lera, Carlos Guerrero, and Carlos Juiz. 2019. Availability-aware service placement policy in fog computing based

on graph partitions. IEEE Internet of Things Journal 6, 2 (2019), 3641–3651.

[17] C. Liu, M. Bennis, M. Debbah, and H. V. Poor. 2019. Dynamic task offloading and resource allocation for ultra-reliable

low-latency edge computing. IEEE Transactions on Communications 67, 6 (2019), 4132–4150.

[18] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2018. Latency-aware application module manage-

ment for fog computing environments. ACM Transactions on Internet Technology 19, 1 (Nov. 2018), Article 9, 21 pages.

[19] V. De Maio and I. Brandic. 2018. First hop mobile offloading of DAG computations. In Proceedings of the 18th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing. 83–92.

[20] Amina Mseddi, Wael Jaafar, Halima Elbiaze, and Wessam Ajib. 2019. Intelligent resource allocation in dynamic fog

computing environments. In Proceedings of the 2019 IEEE 8th International Conference on Cloud Networking (Cloud-

Net’19). 1–7.

[21] Fabiana Rossi, Valeria Cardellini, and Francesco Lo Presti. 2020. Self-adaptive threshold-based policy for microser-

vices elasticity. In Proceedings of the 2020 IEEE International Symposium on the Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS’20).

[22] Deepa R. Sangolli, Nagthej M. Ravindrarao, Priyanka C. Patil, Thrishna Palissery, and Kaikai Liu. 2019. Enabling high

availability edge computing platform. In Proceedings of the 2019 7th IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering (MobileCloud’19). 85–92.

[23] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner. 2017. Optimized IoT service

placement in the fog. Service Oriented Computing and Applications 11, 4 (Dec. 2017), 427–443.

[24] Klervie Toczé and Simin Nadjm-Tehrani. 2018. A taxonomy for management and optimization of multiple resources

in edge computing. arXiv:1801.05610.

[25] Christos Tsigkanos, Cosmin Avasalcai, and Schahram Dustdar. 2019. Architectural considerations for privacy on the

edge. IEEE Internet Computing 23, 4 (2019), 76–83.

[26] Christos Tsigkanos, Marcello Bersani, Pantelis A. Frangoudis, and Schahram Dustdar. 2021. Edge-based runtime veri-

fication for the Internet of Things. IEEE Transactions on Services Computing 1 (2021), 1.

[27] Christos Tsigkanos, Stefan Nastic, and Schahram Dustdar. 2019. Towards resilient Internet of Things: Vision, chal-

lenges, and research roadmap. In Proceedings of the 39th IEEE International Conference on Distributed Computing Sys-

tems (ICDCS’19).

[28] Cecil Wobker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. 2018. Fogernetes: Deployment and management

of fog computing applications. In Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium

(NOMS’18). 1–7.

[29] Kuang Yuejuan, Luo Zhuojun, and Ouyang Weihao. 2021. Task scheduling algorithm based on reliability perception

in cloud computing. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical &

Electronic Engineering) 14, 1 (2021), 52–58.

[30] He Zhu and Changcheng Huang. 2018. EdgePlace: Availability-aware placement for chained mobile edge applications.

Transactions on Emerging Telecommunications Technologies 29, 11 (2018), e3504.

Received October 2020; revised March 2021; accepted June 2021

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 26. Publication date: September 2021.

