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a b s t r a c t

Operating data-intensive applications on edge systems is challenging, due to the extreme workload
and device heterogeneity, as well as the geographic dispersion of compute and storage infrastructure.
Serverless computing has emerged as a compelling model to manage the complexity of such systems,
by decoupling the underlying infrastructure and scaling mechanisms from applications. Although
serverless platforms have reached a high level of maturity, we have found several limiting factors that
inhibit their use in an edge setting. This paper presents a container scheduling system that enables
such platforms to make efficient use of edge infrastructures. Our scheduler makes heuristic trade-offs
between data and computation movement, and considers workload-specific compute requirements
such as GPU acceleration. Furthermore, we present a method to automatically fine-tune the weights of
scheduling constraints to optimize high-level operational objectives such as minimizing task execution
time, uplink usage, or cloud execution cost. We implement a prototype that targets the container
orchestration system Kubernetes, and deploy it on an edge testbed we have built. We evaluate our
system with trace-driven simulations in different infrastructure scenarios, using traces generated from
running representative workloads on our testbed. Our results show that (a) our scheduler significantly
improves the quality of task placement compared to the state-of-the-art scheduler of Kubernetes, and
(b) our method for fine-tuning scheduling parameters helps significantly in meeting operational goals.

© 2020 Published by Elsevier B.V.
1. Introduction

The requirements of data-intensive applications that process
ata located at the edge of the network are challenging the
revalent cloud-centric compute model [1–3]. Consider an urban
ensing scenario [4] where sensor nodes deployed throughout a
ity provide applications, such as machine learning workflows,
ith real-time access to sensor or camera feeds. It may be im-
ractical or infeasible to offload compute tasks to the cloud,
ecause data would have to leave the edge network, causing
rivacy issues, or incurring high latency and bandwidth use. To
nable this emerging family of edge-native applications, compute
esources are placed at the network edge and pooled together to
orm a diverse and distributed compute fabric. While traditional
loud-native approaches to resource management, service or-
hestration, and scheduling have reached a high level of maturity,
hey are challenged when dealing with key characteristics of dis-
ributed edge systems: compute device heterogeneity, geographic
ispersion, and the resulting operational complexity [5].
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Serverless edge computing has emerged as a compelling model
for dealing with many of these challenges associated with edge
infrastructure [6–11]. It expands on the idea of serverless com-
puting, which first drew widespread attention when Amazon
introduced in 2015 its AWS Lambda service [12]. It allowed
users to develop their applications as composable cloud functions,
deploy them through a Function-as-a-Service (FaaS) offering, and
leave operational tasks such as provisioning or scaling to the
provider. Analogous to the idea of serverless cloud functions, we
imagine that edge functions can significantly simplify the devel-
opment and operation of certain edge computing applications.
Operating data-intensive edge functions, and the limiting factors
of state-of-the-art serverless platforms in supporting them, is the
focus of this paper.

Current serverless platforms exhibit several limitations for
enabling data-centric distributed computing [13], that are further
exacerbated by the operational properties that underpin edge
systems, in particular when making function placement decisions.
Specifically, this manifests as follows. First, they do not consider
the proximity and bandwidth between nodes [6,13], which is par-
ticularly problematic for edge infrastructure where the distance
between compute nodes, data storage, and a function code repos-
itory (e.g., a container registry), incurs significant latencies [14].

Second, fetching and storing data is typically part of the function
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ode and left to application developers (e.g., manually accessing
3 buckets), which makes it hard for the platform to reason about
ata locality and data movement trade-offs [6,15]. Third, they
rovide limited or no support for specialized compute platforms
r hardware accelerators such as GPUs [13,16], leaving potential
dge resources that provide such capabilities underutilized.
We present Skippy, a container scheduling system that facili-

ates the efficient placement of serverless edge functions on dis-
ributed and heterogeneous clusters. Skippy interfaces with ex-
sting container orchestration systems like Kubernetes, that were
ot designed for edge computing scenarios, and makes them sen-
itive to the characteristics of edge systems. The core component
f Skippy is an online scheduler, modeled after the Kubernetes
cheduler, which implements a greedy multi-criteria decision
aking (MCDM) algorithm. We introduce four new scheduling
onstraints to favor nodes based on (1) proximity to data stor-
ge nodes, (2) proximity to the container registry, (3) available
ompute capabilities (e.g., for favoring nodes that have hardware
ccelerators), and (4) edge/cloud locality (e.g., to favor nodes at
he edge). We have found that these constraints are a critical
issing piece for making an effective trade-off between data
nd computation movement in edge systems. Furthermore, we
ecognize that tuning scheduler parameters for effective function
lacement is challenging, as it requires extensive operational
ata and expert knowledge about the production system. In-
tead, we propose a method that leverages the tight integration
f the scheduler with a simulation framework, in combination
ith existing multi-objective optimization algorithms, to opti-
ize high-level operational goals such as function execution time,
etwork usage, edge resource utilization, or cloud execution cost.
e show how the scheduler and optimization technique work in

andem to enable serverless platforms to be used in a wide range
f edge computing scenarios.
The contributions of this paper are as follows:

• Skippy: a container scheduling system that enables existing
serverless frameworks to support edge functions and make
better use of edge resources. Our scheduler introduces com-
ponents and constraints that target the characteristics of
edge systems.
• A method to tune the weights attached to low-level con-

straints used by the scheduler, by optimizing high-level
operational goals defined by cluster operators. To compute
the optimization we introduce a serverless system simulator
we have developed.
• We demonstrate Skippy’s performance in various scenarios

using data from our testbed and running trace-driven simu-
lations. We analyze emerging edge computing scenarios to
synthesize edge topologies.
• Open dataset of traces from extensive profiling of our edge

testbed, and synthetic traces from our simulations of differ-
ent infrastructure scenarios [17].

. Related work

Serverless computing in the form of cloud functions is seen
y many in both industry and academia as a computational
aradigm shift [12,18–20]. Only recently has the serverless
odel, and in particular the FaaS abstraction, been investigated

or edge computing. Gilkson et al. [7] proposed the term Device-
ess Edge Computing, to emphasize how serverless edge computing
elps to hide the underlying compute fabric. However, the char-
cteristics of edge infrastructure exacerbate the challenges of
erverless computing, such as platform architecture [8,9], run-
ime overhead [21], cold starts [22], or scheduling [6]. In a
ecent effort, Baresi and Mendonça [9] proposed a serverless edge
omputing platform based on OpenWhisk. They focus on the
omplete system architecture design and the implementation of
oad balancer that considers distributed infrastructure. In indus-
ry, AWS IoT Greengrass [18] enables on-premises execution of
WS Lambda functions, Amazon’s serverless computing platform.
WS IoT Greengrass currently allows machine learning inference
n edge devices, using models trained in the cloud. However,
he configuration of AWS IoT Greengrass devices is highly static,
ince the functions running on a device are defined using a
ocal configuration file. In an effort to extend existing serverless
untimes to enable serverless edge computing, Xiong et al. [23]
mplemented a set of extensions to Kubernetes called KubeEdge.
ts most important component, the EdgeCore node agent, manages
networking, synchronizes state, and potentially masks network
failures. Our approach is complementary, in that Skippy provides
an edge-enabled scheduling system for making better function
placement decisions on edge infrastructure.

There is a strong relation between serverless function schedul-
ing and the service placement problem (SPP). Many variants of
the SPP for different edge computing system models and opera-
tional goals exist [24–28]. Typically, the problem is formulated
as an optimization problem, and an algorithm is implemented
to solve an instance of the problem heuristically by leveraging
assumptions within the system model. Gog et al. [29] map the
service placement problem to a graphic data structure and model
it as a min-cost max-flow (MCMF) problem. Hu et al. [30] pursue
a similar approach by modeling the service placement as a min-
cost flow problem (MCFP) which allows encoding multi-resource
requirements and affinities to other containers. Their scheduler
considers the costs for offloading tasks from the edge nodes to
rented cloud resources. Aryal and Altmann [31] map the service
placement problem to a multi-objective optimization problem
(MOP) and propose a genetic algorithm to make placement de-
cisions. Bermbach et al. [10] propose a distributed auction-based
approach for a serverless platform in which application develop-
ers bid on resources. These and other approaches [32,33] have
in common that the constraints considered by the schedulers are
defined a priori. Generally, scheduling algorithms described in
academic literature often assume very detailed information about
the system state and service requirements, whereas in production
systems, both may not be available.

Many online container schedulers, such as the ones from
Docker Swarm, Kubernetes, or Apache Mesos, implement a
greedy MCDM procedure. A key phase in this procedure is scoring,
.e., calculating the score of a feasible node by invoking a set of
riority functions, building a weighted sum of priority scores, and
electing the highest scoring node for scheduling. The Kubernetes
cheduler implements this procedure in a very general and flexi-
le way [34], which is why we build on its model, as it generalizes
o many other container schedulers. It allows to dynamically plug
n and configure different hard- and soft-constraints, theoretically
ven at runtime. It is unclear whether and how existing SPP
pproaches could be implemented in this framework. Our work
s an effort to examine how ideas from service placement in edge
omputing, such as using latency and proximity awareness for
lacement decision, can translate to, or be implemented in, these
ypes of schedulers.

. Background & application scenarios

This section outlines the domain for which we have developed
ur system. We discuss different application and infrastructure
cenarios to motivate serverless edge computing and highlight
ystems challenges we uncovered during initial experiments. Fur-
hermore, we provide background on the operational underpin-
ings of serverless platforms using as examples Kubernetes and
penFaaS.
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3.1. Data-intensive serverless edge computing

Many modern application scenarios require data processing at
the edge of the network, close to where data is generated. Typical
characteristics and requirements associated with data-intensive
edge computing applications can be summarized as follows:

• heterogeneous workloads: the application is composed of
multiple functions that have different computational re-
quirements (e.g., GPU acceleration)
• locality sensitive: some parts of the application are locality

sensitive, e.g., should not be executed in the cloud because
consumers are located at the edge
• latency sensitive: some parts of the application are required

to provide service quality at low latency
• high bandwidth requirements: some parts of the application

may exchange large amounts of data

Research has shown that edge AI applications that deal with
video or image data typically have all of these requirements [2,
3,35,36]. Smart city scenarios are also an illustrative example.
Data from sensor and camera arrays distributed throughout the
city can be used to create analytics models such as traffic risk
assessment, crowd behavior, flooding or fire spreading models, or
ecosystem/plant monitoring [2]. They could also serve as sensory
input for cognitive assistance applications [2,3]. Serverless com-
puting may be a good model for implementing such applications
at scale on a distributed compute fabric [6].

We implemented a prototypical edge computing application
that has the characteristics and requirements described above.
Specifically, we found the most generalizable application to be a
machine learning (ML) workflow with multiple steps, where each
step has different computing requirements, and needs to make
efficient use of a diverse set of edge resources. We consider a
typical ML pipeline with three steps [37], where each step can be
implemented as a serverless function: (1) data preprocessing, (2)
model training (that can be accelerated by GPUs), and (3) model
serving. In our concrete example we use the MNIST dataset
to train an image classifier because of the dataset’s availability
allowing reproducibility.

A serverless function is essentially an event handler that reacts
to some event. For example, in case of model training, the event
would be triggered by the previous ML workflow step, i.e., the
data preprocessing. An example of a serverless function written
in Python that implements an ML training step is shown in Listing
1. In OpenFaaS, the platform packages function code and its
dependencies into a container image, pushes it to a registry, from
where the code is pulled by a compute node after scheduling.

import boto3
import numpy
# ... import ML libraries such as tensorflow or mxnet

def handle(req):
s3 = boto3.client(’s3’)
with open(tmpfile, ’wb’) as f:

s3.download_fileobj(’bucket’, req[’train_data’], f)

data = numpy.load(f)
model = train_model(data, req[’train_params’])

s3.upload_fileobj(serialize(model), ’bucket’,
request[’serialized_model’]’])

Listing 1: Example of a data-intensive serverless function.

The model training function involves: (1) connecting to an S3
server, downloading the training data from the file object en-
coded in the request (which was previously generated by the data
preprocessing step), converting the data into some appropriate
format for running a training algorithm, and then uploading the
Fig. 1. Comparison of container image sizes and total data transferred by
functions. The right figure shows the time spent on either container image or
data transfer in either cloud or edge networks.

Fig. 2. The same calculation as Fig. 1 when subtracting shared layers between
images and only considering unique image size.

serialized model. As every data-intensive function has a similar
format, i.e., fetching, processing, and then storing data, we previ-
ously developed a higher-level abstraction for these functions [6].
Specifically, we elevate fetching and storing data as platform
features, which allows the platform to reason over metadata of
the function, e.g., which specific data is pulled (encoded by a
URN for example) to locate the closest data store that holds the
data. We use this feature in the scheduler (see Section 4.3.1) for
determining the trade-off between data and computation move-
ment. Fig. 1 shows a comparison between the size of container
images for each function of our application, and the total amount
of data each function has to transfer during its execution. It also
shows a back-of-the-envelope calculation on how much time the
cloud or edge spends on transferring either container images
or data for each function step. We consider a typical scenario,
where an edge network has a 1 Gb/s internal bandwidth, 25 Mb/s
uplink and 100 Mb/s downlink. Data is located at the edge, and
the container registry is located in the cloud, which also has an
internal bandwidth of 1 Gb/s. We can see that the difference in
uplink and downlink bandwidth play a significant role in trading
off data and computation movement.

Docker uses a layered file system, meaning that layers can be
shared between container images. Because most containers build
on similar base images, the unique image size when considering
shared layers if often much smaller. For distributing container
images this means that, if the base image has already been down-
loaded by some container, downloading a different container
image that uses the same base image will also be much faster.
When inspecting the images of our specific application, we found
that almost 90% is shared across images. Fig. 2 shows the same
calculation as above, illustrating that, now, most of a function’s
latency comes from pulling data.

3.2. Edge cloud compute continuum

A challenging aspect of edge computing are the extremes
of the compute continuum [5]. We have built an edge com-
puting testbed that reflects this, which we describe in more
detail in Section 6.1. For the edge compute nodes, we consider
the following computers and architectures. We have presented
various application scenarios for each in [38]. (1) Small-scale
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Fig. 3. Average execution time and standard deviation of ML workflow functions
in seconds on different device types illustrating both workload and device
heterogeneity.

Table 1
Cluster configurations of different scenarios.
Scenario Category Nodes % of compute device types

VMs SBC NUC TX2

Our testbed 7 14 57 14 14
S1: Urban sensing Edge 1170 3 39 19 39
S2: Industry 4.0 Hybrid 110 40 40 10 10
S3: Cloud regions Cloud 450 100 0 0 0

Table 2
Device type specifications.
Device Arch CPU RAM

VM x86 4 × Core 2 @ 3 GHz 8 GB
SBC arm32 4 × Cortex-A53 @ 1.4 GHz 1 GB
NUC x86 4 × i5 @ 2.2 GHz 16 GB
TX2 aarch64 2 × Cortex-A57 @ 2 GHz 8 GB

256-core Pascal GPU

data centers that use VM-based infrastructure and are placed at
the edge of the network, often termed cloudlets [14]. (2) Small
form-factor computers, such as Intel’s Next Unit of Computing
(NUC) platform with built-in CPUs are used in, e.g., Cannonical’s
Ubuntu Orange Box [39]. (3) Single Board Computers (SBCs)
such as ARM-based Raspberry Pis used as IoT gateways or micro
clusters [40]. (4) Embedded AI hardware, such as NVIDIA’s Jetson
TX2 that provide GPU acceleration and CUDA support [41].

We have profiled our ML workflow steps as OpenFaaS func-
tions on these different devices. Table 2 lists the hardware speci-
fications of the device instances we used. Fig. 3 shows the results
of 156 warm function executions. The Raspberry Pis were not able
to run the model training step as they ran out of memory. The
results show the impact of extreme device heterogeneity. Also,
we can see that the model training step benefits greatly from GPU
acceleration, performing better on a Jetson TX2 compared to an
Intel NUC despite the NUC’s powerful i5 processor.

3.3. Cluster infrastructure scenarios

The lack of available reference architectures for edge sys-
tems and data on real-world deployments, make it challenging
to evaluate edge computing systems in general [38]. Cloud com-
puting architectures are fairly well understood, and traces such
as the Borg cluster data [42], allow well grounded systems eval-
uations. To evaluate our approach under different conditions in
a simulated environment, we use the Edge Topology Synthesizer
framework [38] to synthesize plausible cluster configurations,
which we draw from three different existing or emerging appli-
cation scenarios. Table 1 summarizes the cluster configurations
for our testbed, and each scenario which we describe below:
S1: Urban sensing. More and more cities are deploying sensor
arrays and cameras to enable Smart City applications that require
real-time data on urban environments [4]. These sensors are
often attached to IoT gateways, and complemented by proximate
compute resources such as cloudlets [14] to process sensor data.
For this scenario, we assume a total of 200 sensor nodes, where
each node is equipped with two SBCs (e.g., for data processing
and communication). Furthermore, we assume that throughout
the city, there are installations of cloudlets that comprise an
Intel NUC, and two embedded GPU devices per sensor node
camera for, e.g., video processing tasks. To meet peak demands,
30 VMs hosted at a regional cloud provider are added as fallback
resources into to the cluster. In terms of network topology, we
assume that each municipal district forms an edge network. Each
edge network has an internal LAN bandwidth of 1 Gb/s and
connected with 100/25 Mb/s down/uplink to the internet. Cloud
nodes have an internal bandwidth of 10 Gb/s and a direct 1 Gb/s
uplink to the internet. These data are plausible extensions of the
urban sensing project Array of Things (AoT) [4], which operates a
deployment in Chicago that currently consists of about 200 sensor
nodes. Each AoT node contains two SBCs, and is connected via a
mobile LTE network to the Internet.

S2: Industry 4.0. Edge computing is considered a key component
in realizing Industry 4.0 concepts such as smart manufacturing
or the Industrial IoT (IIoT) [43]. For this scenario, we assume
that several factories at different locations are equipped with
edge computing hardware, and each location has an on-premises
but provider-managed cloud (e.g., a managed Microsoft Azure
deployment, where on-premises cloud resource use is billed). We
assume ten factory locations, each having 4 SBCs as IoT gateways,
1 Intel NUC, 1 Jetson TX2 board, and 4 VMs on the on-premises
cloud. The numbers are plausible extensions to the prototypes
presented in [43], and the general trend towards using embedded
AI hardware for analyzing real-time sensor and video data in IIoT
scenarios [44]. Each edge and on-premises cloud has a data store.
The SBCs are connected via 300 Mb/s WiFi link to an AP that has
a 10 Gb/s link to the edge resources, and a 1 Gb/s link to the on-
prem cloud. Premises are connected via 500/250 Mb/s internet
down/uplink.

S3: Cloud federation. To compare our system in non-edge com-
puting scenarios, we also consider a cloud computing configu-
ration where there are no edge devices and less heterogeneity
than in edge scenarios [42]. We model a cloud federation scenario
across three cloud regions, where each region has, on average,
150 VMs. All regions contain several nodes with data stores.
Region one has slightly more VMs and more storage nodes than
the others. The bandwidth is 10 Gb/s within a region, and 1 Gb/s
cross-region. These data match the results of a recent benchmark
on cross-region traffic of AWS [45]. We assume that each region
has local access to a container registry, e.g., through a CDN.

3.4. Technical background: Kubernetes & OpenFaaS

Our system is designed to extend existing platforms that en-
able serverless computing and FaaS deployments, such as Ku-
bernetes and OpenFaaS. Because our prototype was developed
for these two systems, we present technical background on the
interplay between the two. The core mechanisms, however, are
found in similar systems.

3.4.1. Kubernetes & container scheduling
Kubernetes is a container orchestration system used for au-

tomating application deployment and management in distributed
environments. It is a popular runtime for serverless computing,
micro-service-based application deployments, and, increasingly,
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Function-as-a-Service (FaaS) platforms [34]. Using Kubernetes,
FaaS platforms can package function code into lightweight con-
tainer images, and can then make use of all the features of the
Kubernetes platform, such as scheduling, autoscaling, or request
routing. The Kubernetes scheduler is one of the critical compo-
nents of the platform. The task of the scheduler is to assign a
pod (the atomic unit of deployment in Kubernetes) to a cluster
node. A pod can consist of one or more containers, shared storage
volumes, network configuration, and metadata through which the
pod can, for example, communicate its resource requirements.
The Kubernetes scheduler is an online scheduler, meaning it
receives pods over time and generally has no knowledge of future
arrivals. It is therefore different from many SPP solutions that
schedule several services at once [24]. Similar to many resource
schedulers of real-world systems, it employs a greedy MCDM
procedure, which we formalize in Section 5. Hard and soft con-
straints are implemented as follows. First, the available cluster
nodes are filtered by predicate functions. These functions evaluate
to true or false, and represent hard constraints that eliminate
nodes incapable of hosting a pod, e.g., because they are unable to
provide the resources requested by a pod. Second, the remaining
set of feasible nodes are ranked by priority functions that rep-
resent soft constraints to favor nodes based on their suitability
for hosting the pod. Calculating the score for a pod–node tuple
involves invoking each active priority function, normalizing the
values of each function to a range between 0 and 10, and building
a weighted sum. The highest scoring node is then selected for
placement. Kubernetes provides a variety of predicate and pri-
ority functions that can be configured in the scheduler. However,
as we describe in more detail in Section 4.3.1, the default priority
functions do not perform well in edge scenarios. In particular,
they do not consider the critical trade-off between data and
computation movement which we have highlighted earlier. In the
remainder of this paper, we use the terminology of Kubernetes
(i.e., pod, node, priority function), to refer more generally to a unit
of deployment, cluster resource, and soft constraint, respectively.

3.4.2. OpenFaaS
OpenFaaS is a serverless framework that uses Kubernetes as

both execution runtime and deployment platform. Function code
is packaged into Docker containers, and a small watchdog is
added to the container that executes the function based on HTTP
calls triggered by events or through invocations of the Open-
FaaS API gateway. With OpenFaaS, the Kubernetes scheduler is
triggered in two situations: an initial manual deployment of
new functions, or automated function replica creation through
autoscaling. If an OpenFaaS user runs the faas-cli deploy
command to deploy function code, the code is packaged into a
Kubernetes pod, and the pod is placed in the scheduling queue.
Subsequent requests to the function triggered by events or HTTP
endpoint calls are forwarded to Kubernetes, which takes care of
load balancing requests among running replicas. This is the case
if the function’s autoscaling policy is set to at least one replica,
and is useful to avoid cold starts for functions that are invoked
frequently. A cold start refers to a function invocations where
the container image has to be downloaded and the container is
started for the first time, which incurs significant latency. For
short-lived functions that are not invoked frequently, and would
otherwise block a node’s resources despite being idle, OpenFaaS
allows a scale-to-zero policy, which removes such idle functions
from nodes after a short time. This is useful for functions such
as the data pre-processing or training step in our ML pipeline. In
this case, a request to a function immediately triggers a replica
creation and therefore scheduling.
Fig. 4. Overview of Skippy’s components and their interaction in a deployment
with Kubernetes.

4. Skippy — design and prototype implementation

Skippy is designed to integrate with existing container or-
chestration systems, allowing them to satisfy the requirements
of data-intensive edge computing applications described in Sec-
tion 3. Skippy adds runtime components and domain concepts
that make such systems sensitive to device capabilities; locality
between nodes, data and container images; and cloud/edge net-
work context. To do so, Skippy requires a minimal interface to the
container orchestration system. We demonstrate this by building
a prototype for Kubernetes. This section describes Skippy, its
individual components, the scheduling logic, and the integration
with Kubernetes and OpenFaaS.

4.1. System overview

We briefly outline the main components of Skippy. Fig. 4
shows the specific integration with Kubernetes.

• metadata schema: Skippy makes heavy use of container
and node labels, which are supported by many container
platforms, to communicate information about functions and
compute nodes to the scheduler. Skippy uses various mech-
anisms to automate labeling, such as the skippy-daemon or
annotation parsing as described in [6]. All metadata labels
of Skippy have the prefix *.skippy.io.
• skippy-daemon: a daemon that runs on all cluster nodes

alongside the primary node agent (e.g., kubelet in the case of
Kubernetes). It scans a node’s compute capabilities, such as
the availability of a GPU, and then labels the node with the
corresponding metadata. It can do this periodically to react
to pluggable capabilities, such as USB attached accelerators.
• skippy-scheduler: the Skippy scheduler is an online sched-

uler that is sensitive to the characteristics of edge systems. It
requires access to the cluster state and a programmatic way
of binding containers to nodes. In the case of Kubernetes,
the kube-apiserver provides these features via REST APIs.
• data index & bandwidth graph: Functions can access data

via storage pods that host MinIO instances (an S3 compatible
storage server), distributed across the cluster. Skippy cur-
rently does not automatically manage these storage nodes.
Replication and data distribution is left to other system
components. However, Skippy dynamically discovers stor-
age nodes, keeps an index of the file tree, and is sensitive to
the proximity between compute and storage nodes by using
the bandwidth graph.



264 T. Rausch, A. Rashed and S. Dustdar / Future Generation Computer Systems 114 (2021) 259–271

4

a
h
c
t
p
d
I
v
S

4

n
i
p
i
d
b
t
l
m
r
o
c

4

f
a
t
E
o
L

f
a
M
c

t
i
n
T

.2. Node and function metadata collection

As any scheduler, Skippy depends on certain information
bout the cluster state and the job requirements. Skippy makes
eavy use of metadata about functions and compute nodes in the
luster to communicate this information to the scheduler. We use
he Skippy daemon to collect node metadata, and a high-level
rogramming API to collect function metadata. The node meta-
ata are stored and accessed via the cluster orchestration system.
n the case of Kubernetes, this is stored in etcd, a distributed key–
alue store. If the orchestrator does not provide a storage system,
kippy can also store the metadata in memory.

.2.1. Node metadata: Skippy daemon
The Skippy daemon is deployed as a container on all cluster

odes. It automatically probes a node’s capabilities and maintains
ts Skippy-specific labels. Currently, the daemon probes if a node
rovides an NVIDIA GPU, the availability and version of a CUDA
nstallation, and if the node is running a MinIO storage pod. The
aemon code allows straight-forward addition of custom capa-
ility probes. When nodes are added to the cluster at runtime,
he Skippy daemon labels the node with an appropriate locality
abel (edge/cloud). The system overhead of running the daemon is
inimal given a fairly simple Python implementation. It requires

oughly 120 MB of disk space and 25–40 MB of RAM depending
n the CPU architecture, making it feasible even for resource
onstrained devices.

.2.2. Function metadata: Annotation parsing
In previous research, we have proposed a programming model

or data-intensive serverless edge computing applications [6] that
llows developers to express operational requirements directly in
heir code, which is then translated into scheduler constraints.
xamples include: execution deadlines, hardware requirements,
r privacy rules. Listing 2 shows the example function from
isting 1 re-written with this high-level API.

from skippy.data import DataArtifact , ModelArtifact ,
consumes , produces , policy

# ... import ML libraries such as tensorflow or mxnet

# can have multiple data annotations
@consumes.data(urns = ’my_bucket:train_data’)
@produces.model(urn = ’my_bucket:model’)
@policy.fn(capability = ’gpu’)
def handle(req, data: DataArtifact) -> ModelArtifact:

arr = data.to_ndarray()
model = train_model(arr, req[’train_params’])
return model

Listing 2: Example of training function with metadata
annotations.

By analyzing the function metadata, Skippy would label this
unction with the labels shown in Listing 3. These are then used
s input for the priority functions described in Section 4.3.1.
etadata do not necessarily have to be specified in the code, but
ould be attached as, e.g., an additional YAML deployment file.

{
’data.skippy.io/recv’: [’my_bucket:train_data’],
’data.skippy.io/send’: [’my_bucket:model’],
’capability.skippy.io/gpu’: ’’

}

Listing 3: Example function labels resulting from metadata
parsing.
4.3. Skippy scheduler

The Skippy scheduler enables serveless platforms to schedule
edge functions more efficiently. It is based on the default Ku-
bernetes MCDM scheduling logic described in Section 3.4.1. We
introduce two additional components that are commonly missing
in state-of-the-art container schedulers: (1) a static bandwidth
graph of the network holding the theoretical (or estimated) band-
width between nodes, and (2) a storage index that maps data
item identifiers to the storage nodes that hold the data. These
two extra components facilitate our priority functions.

4.3.1. Edge-friendly priority functions
We introduce four priority functions that target requirements

of edge computing applications and characteristics of edge sys-
tems, which complement common scheduling constraints found
in, e.g., Kubernetes [46]. The additional functions are motivated
by the following observations: First, in many data-intensive edge
computing applications, data is stored at edge locations. Yet,
container clusters typically rely on centralized cloud-based repos-
itories such as Dockerhub for managing container images. When
scheduling pods that operate on data, there is therefore an in-
herent trade-off between sending computation to the edge or
sending data to the cloud, as we have highlighted in Section 3
and Fig. 1. The two priority functions LatencyAwareImageLocal-
ityPriority and DataLocalityPriority help the scheduler make this
rade-off at runtime. Second, the increasing diversity of special-
zed compute platforms for edge computing hardware provide
ew opportunities for accelerating the equally diverse workloads.
he CapabilityPriority matches tasks and nodes based on their

requirements and advertised capabilities, respectively. Third, it is
often the case that functions should prioritize execution at the
edge for a variety of reasons. The LocalityTypePriority enables the
system to respect these placement preferences.

We explain each function in more detail and provide algorith-
mic descriptions. Note that the Kubernetes scheduler expected
normalized values from priority functions, which are the result
of mapping the range of scores to an integer range [0..10]. We
omit the code for this step.

LatencyAwareImageLocalityPriority. Favors nodes where the nec-
essary container image can be deployed more quickly. We use
knowledge about the network topology to estimate how long
it will take in an ideal case to download the image. Algorithm
1 shows pseudocode for the function. Because the bandwidth
graph is static and does not consider actual available bandwidth
during runtime, the calculation is only an approximation. Making
a plausible estimate of actual network download speed would
be too complicated for a priority function, which has minimal
runtime knowledge and needs to execute quickly. However, to-
gether with the implementation of the DataLocalityPriority, the
function allows us make a heuristic trade-off between fetching
the container image, or fetching data from a data store.

DataLocalityPriority. Estimates how much data the function will
transfer, and favors nodes where the data transfer happens more
quickly. We leverage the high-level data API we have described
in [6], to label functions that perform read or write operations
on the data stores. Specifically, a function is labeled with the
data item identifiers it reads or writes. We query the storage
index to get all storage nodes that hold the specific data item.
The data size can be queried through the MinIO S3 API. We
then make the same network transfer time estimations as in
LatencyAwareImageLocalityPriority using our bandwidth graph.
Algorithm 2 shows pseudocode for the function.
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Algorithm 1: LatencyAwareImageLocalityPriority
Result: Estimation of how long it will take to download a pod’s

images
1 Function score:

Input: pod
Input: node
Input: bandwidthGraph

2 size← 0;
3 for container in pod’s list of containers do
4 if container’s image is not present on node then
5 size

+
←− size of the container’s image;

6 end
7 end
8 bandwidth← bandwidthGraph[registry][node];
9 time← size

bandwidth ;
10 return time;

Algorithm 2: DataLocalityPriority
Result: Estimate how long it takes for a node to transfer the

required runtime data
1 Function score:

Input: pod
Input: node
Input: storageIndex, bandwidthGraph

2 time← 0;
3 for urn in values of ’data.skippy.io/recv’ do
4 storages← storageIndex[urn];
5 bandwidth← mins∈storages(bandwidthGraph[s][node]);
6 size← of data item urn;

7 time
+
←−

size
bandwidth ;

8 end
9 for urn in values of ’data.skippy.io/send’ do

10 ... analogous to ’recv’
11 end
12 return time;

Algorithm 3: CapabilityPriority
Result: Scores how many of a pod’s requested capabilities are

provided by a node
1 Function score:

Input: pod
Input: node

2 nodeCapabilities← get all of node’s labels starting with
capability.skippy.io;

3 podCapabilities← get all of pod’s labels starting with
capability.skippy.io;

4 score← 0;
5 for podCapability in podCapabilities do
6 if nodeCapabilities contains podCapability ∧ values are

equal then
7 score

+
←− 1

8 end
9 end

10 return score;

CapabilityPriority. Checks the compute platform requirements of
a function, and favors nodes that have those capabilities (e.g., a
GPU for a ML training function). The implementation uses node
and function metadata gathered by the Skippy daemon and func-
tion annotation parsing. Algorithm 3 shows pseudocode for the
function.

LocalityTypePriority. Favors nodes in a certain locality, e.g., nodes
located at edge or in the cloud. Through the programming model
we have described, developers can specify a high-level place-
ment prioritization, e.g., for preferring nodes in a certain net-
work context. It checks the presence of the same values of lo-
cality.skippy.io/type in pod and node labels. We omit the code for
this function.

4.4. Integration with OpenFaaS

To enable the deployment of applications as serverless func-
tions, our prototype makes use of OpenFaaS. It provides a frame-
work for defining function deployments, an API gateway through
which all function requests are routed, and several runtime com-
ponents to manage monitoring, alerting, and autoscaling. Open-
FaaS’ runtime driver for Kubernetes is faas-netes, which deploys
functions as Kubernetes pods, and then delegates scheduling
decisions to the Kubernetes scheduler. We modified faas-netes
to label pods resulting from OpenFaaS function deployments, to
indicate that these pods should be scheduled by Skippy instead
of the default Kubernetes scheduler. Otherwise Skippy integrates
with OpenFaaS only via Kubernetes, in that Skippy schedules the
pods created by faas-netes.

4.5. Serverless simulator

Part of our system is a discrete event simulator built with
SimPy [47] to simulate the basic behavior of serverless function
execution on container systems. It serves two purposes: (1) it
allows experiments in different large-scale scenarios that we
could not perform on our small-scale testbeds, and (2) it is used to
estimate goal functions in our optimization technique described
in Section 5. The simulator directly calls the Skippy scheduler
code for scheduling functions, with the only difference that it
does not call the Kubernetes API for requesting the cluster state
and performing node bindings. The simulator is open source and
can be found in our Git repositories [48].

The simulator uses Ether [38] to generate network topologies,
and adds features for synthesizing function parameters, and gen-
erating random workload. We simulate the execution of functions
on cluster nodes using the profiling data we have gathered from
our testbed and a basic network simulation. Our network model
is more high-level than packet-level simulators such as ns-3 or
OPNET. Simulating data transfer involves opening a flow through
several connected network links, i.e., a route. Each link has a
certain amount of bandwidth, and we implement fair allocation
of bandwidth across flows. We plan to add features for degra-
dation functions to simulate the degrading TCP behavior with
many flows [49]. For simulating container startups, we synthesize
profiling data and our network simulation. A perfect simulation
of a Docker pull command would consider the layers of an image,
the availability of layers on a host, and the time it takes to
decompress layers. This is out of scope for this paper. We make an
assumption based on observations of our images we described in
Section 3: around 90% of an image’s size comes from layers that
are shared with other images. Meaning that, if any one of the im-
ages has already been pulled before, only 10% of another image’s
unique data has to be pulled. For our evaluation this means that
we are not biasing the simulation towards the estimation that the
Skippy scheduler makes through the LatencyAwareImageLocali-
tyPriority. Our simulator also implements the basic autoscaling
behavior of OpenFaaS. In particular, it includes OpenFaaS’ faas-
idler component that enacts the scale-to-zero policy: when a
function is idle for 5 min or more, the respective function replica
is stopped and the underlying Kubernetes pod removed. A sub-
sequent call to the function incurs a cold start. Our simulator
currently only supports simulating platforms that deploy function
code via containers, whereas some platforms like OpenWhisk

deploy function code through platform-layer mechanisms.
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. Optimizing weights of priority functions

Some operational goals, such as minimizing overall function
xecution time or uplink usage, depend on too many (and possi-
ly at runtime unknowable) factors that they could be calculated
fficiently in priority functions. Schedulers that employ MCDM,
uch as the Kubernetes scheduler, often allow users to assign
eights to each constraint to tune the scheduler towards certain
ehavior. This fine-tuning to meet specific operational goals can
e difficult. Many factors need to be considered, such as the
luster topology, node heterogeneity, or workload characteristics.
his leaves operators to either rely on their intuition, or use trial-
nd-error in production systems, to find weights that achieve the
esired behavior.
We propose an approach to automatically find weights of pri-

rity functions that result in good placements that meet certain
igh-level operational goals. We consider a placement to be good
f it: (1) leads to low function execution time during runtime,
2) uses edge resource efficiently, (3) reduces traffic leaving
r entering a network, and (4) reduces costs associated with
xecuting functions in the cloud. To that end, we use multi-
bjective optimization techniques, and use the simulator we have
eveloped to evaluate the goodness of optimization solutions. We
irst formalize some key aspects.

.1. Problem formulation

Let S be the set of priority functions S ∈ S : P × N → R
here P is the domain of pods and N is the domain of nodes (and
ll metadata attached to them). The function schedule : P → N
aps a pod p to a node n by evaluating the scoring function score

or each node, and selecting the highest scoring node. The scoring
unction is essentially a weighted sum model over all priority
unctions and feasible nodes. Formally, this can be expressed as

chedule(p) = argmax
n∈N

score(p, n) :
|S|∑
i=0

wi · Si(p, n). (1)

The default Kubernetes scheduler sets every wi = 1. Our goal
s to find values for w = (w1 w2 · · · w|S|) that optimize towards
he previously defined objectives.

We have explained the technical details of the simulator in
ection 4.5, but formally a simulation run sim(T ,W ,w) takes as
nput (1) the cluster topology T , (2) a workload profile W , (3) the
ector of priority function weights w, and simulates the function
xecution based on the profiling data we have gathered. The
luster topology T is formally a graph T = (V , E), V = N ∪ L,
here N is the set of cluster nodes, L is the set of links that have
n associated bandwidth (e.g., several nodes can be connected to
common WiFi link), and E are weighted edges that indicate the

atency between nodes and links. A workload profile W assigns
ach function (in our case, the ML workflow functions), an inter-
rrival distribution, from which we sample at simulation time to
enerate workload. Our four goal functions fi(sim(T ,W ,w)) are
alculated from the simulation traces as follows:

f1 : average function execution time over all functions
f2 : up/downlink usage, i.e., the number of bytes transferred

between edge and cloud networks
f3 : edge resource utilization, i.e., the percentage of allocated

resources on edge compared to cloud nodes
f4 : cloud execution costs, i.e. traffic and function execution

time in the cloud, given a pricing model

We now want to find w s.t. f1, f2, f4 are minimized, and f3 is

aximized.
Fig. 5. Our edge cloud testbed comprising a Raspberry Pi cluster, an NVIDIA
Jetson TX2 board, and two Intel NUCs, one acting as edge storage node by
hosting a MinIO pod. A VM hosted on our on-premises cloudlet is also part
of the cluster.

5.2. Implementation

We implement the optimization using our simulator and the
Python Platypus [50] framework for multi-objective optimiza-
tion. Platypus implements the well-known NSGA-II genetic algo-
rithm [51], which has been found to be one of the best performing
algorithms in the framework [52].

To find an optimized value of w, we execute the Platypus
ramework’s NSGA-II implementation with 10 000 generations.
ach generation executes a single simulation run sim(T ,W ,w)

with a predefined W and T , and the current evolution of w. A
run creates function deployments according toW until the cluster
is fully utilized, using our scheduler for placement decisions. We
store execution traces into Pandas data frames, and then calculate
the goal functions fi from the traces. The result is a set of 100
solutions that are at the Pareto frontier of the solution space. As
input for the scheduler, we select from that set a single solution
w that is balanced across all goals.

6. Evaluation

This section presents our experiment setup, results, and a
discussion of limitations. We first present the testbed we have
built that we used to test our prototype implementation, and
generate traces for the simulator. The scenarios we have defined
in Section 3, and the traces generated from our testbed, are
then used as input for our serverless simulator. We investigate
how the scheduling decisions and parameter optimization impact
application and system performance. We discuss the scheduler’s
performance in terms of scheduling throughput and latency, and,
finally, discuss the current limitation of our system.

6.1. Edge cloud testbed & profiling

The testbed we have built comprises several edge computing
devices listed in Section 3.2. Fig. 5 shows the current setup. The
nodes marked with a Kubernetes logo are part of the Kubernetes
cluster used as runtime for OpenFaaS. The OpenFaaS gateway
and Kubernetes master are hosted on a VM in our on-premises
cloudlet.

We run the application we have described in Section 3.1 on
the testbed using our system prototype. That is, we implement
each task as an OpenFaaS function, and execute each task on each
device in both cold and warm state using different bandwidth
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Fig. 6. Drill-down into timeseries data from simulated experiment runs. The first row shows the average data rate of traffic going over up/downlinks. The second
row shows the average function execution time (FET) over time (10 min rolling window). The third row shows the maximum function execution time (FET) over
time (10 min rolling window).
and latency configurations. The functions are implemented in
Python and use the Apache MXNet machine learning framework.
We measure various system and application metrics, such as the
system resource utilization, task execution time, the bandwidth
requirements, e.g., when the container image that holds the func-
tion has to be downloaded, as well as the traffic produced by
function invocations.

6.2. Experiment setup

We perform the experiments with parameters drawn from
the infrastructure scenarios described in Section 3.3, and com-
pare three scheduler implementations: the default Kubernetes
scheduler as baseline, Skippy with weights set to 1, and Skippy
with optimized weights. The experiment process is as follows.
We generate random application deployments, in our case ML
workflow pipelines that comprise three ML functions, inject them
into the scheduler queue, generate random requests given some
workload profile, and then run the simulation for a certain num-
ber of invocations. Specifically, we deploy a new pipeline every
few minutes and start generating requests to those functions
a few seconds afterwards. After a specified number of function
instances have been deployed, we generate another several thou-
sand requests, until a request limit for that scenario has been
reached. For example, in Scenario 2, each experiment ends after
30000 invocations. Having the same amount of deployments
and function invocations allows for a fair comparison of overall
network traffic.

For synthesizing pipelines and requests we make the following
assumptions. Each pipeline has three steps, where each step as
an individual container image. However, as we have discussed
in Section 3, we consider the commonalities across images. We
synthesize both pipeline instances (i.e., functions deployed in
Kubernetes pods) as well as container images, and assume a
Pareto distribution of images. That is, not every function has a
unique image. Instead we assume a Pareto-distributed relation of
container images to pod instances, i.e., 80 percent of pods use
the same 20 percent of images. For the workload profile W , we
assume a typical [53] Poisson arrival process where inter-arrivals
are described by an exponential distribution. We set distribution
parameters s.t. model serving requests of an individual pipeline
are triggered at 40 requests per second, and data-preprocessing
requests happen every few minutes allowing the faas-idler to
occasionally shut down a replica. For synthesizing data items
(e.g., training data as input for training functions), we assume
that data items are distributed uniformly across data stores and
workflows.

Experiment runs that compare different scenarios and sched-
ulers use the same random seed for distribution sampling to
guarantee comparability between scenario runs.

6.3. Experiment results

This section presents the results of our experiments. The re-
sults show (1) how function placement affects system perfor-
mance, (2) how function placement affects system scalability,
and (3) which priority functions have the highest impact on
optimization goals.

6.3.1. Runtime performance of placements
Fig. 6 shows key performance indicators from simulation runs

in each scenario for the schedulers: the default Kubernetes sched-
uler, the Skippy scheduler, and Skippy using optimized priority
function weights. The first row shows the average data rate
going over up and downlinks. Ideally, a placement keeps traffic
within networks, resulting in a low up/downlink usage. As the
deployments are injected in the first phase of the simulation,
the data rate grows, but is overall significantly higher with the
Kubernetes scheduler. The Cloud Regions scenario (S3) highlights
the problem when there are many nodes within a network, and
few up/downlinks between them. The second and third row show
the function execution duration over time. In the Urban Sensing
scenario (S1), the Kubernetes scheduler’s placements run into
queuing issues early on. Function time keeps increasing because
the network cannot keep up transferring data necessary by the
function executions. In the Industrial IoT scenario (S2), while
there are no queuing issues, the Kubernetes scheduler’s place-
ments lead to overall higher function execution times. There is no
significant difference in the Cloud Regions scenario, because the
devices within the cluster (cloud VMs) are fairly homogeneous
in terms of task execution performance. Overall, the second row
shows the interplay between using resources effectively, and
trading-off data movement costs.

Fig. 7 shows the aggregated results from several runs with dif-
ferent random seeds for the other two performance goals we have
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Fig. 7. Edge resources utilization and execution cost of placements in three
cenarios. Bars show the average across ten runs, error bars show one σ .

Fig. 8. Scalability analysis of placements with increasing number of deployments
in each scenario. The first row shows the raw inter-network traffic in GB. The
second row shows the data throughput of functions, i.e., the overall network
traffic per compute second.

defined: edge resource utilization and execution cost. For calcu-
lating the cost we use the pricing model of AWS Lambda [54].
For S1 we observe the effect of a low amount of cloud resources:
almost no cloud execution cost and generally high edge resource
utilization. Skippy and the optimization perform slightly better.
In S2, where data is also placed in on-premises managed cloud
instances, we observe that optimized Skippy can make a useful
trade-off between cost and edge utilization by preferring cloud
resource in favor of moving data. S3 has no edge resources, but
we can see that the Kubernetes scheduler’s decision to place
functions across regions leads to a high cost incurred by data
movement. It also illustrates that most of the costs in our scenario
comes from data movement (specifically data egress), rather than
compute time, corroborating the results of a study about the
unintuitive nature of serverless pricing models [55].

6.3.2. Impact of placements on system scalability
We investigate how function placements affect runtime scal-

bility properties of the system. In ad-hoc experiments we found
hat network bottlenecks were the biggest challenge for guar-
nteeing low function execution times and high throughput. In
ur scenarios in particular, we were not able to saturate clus-
er resources before running into extreme network congestion
flows receiving less than 0.1 Mb/s link bandwidth). The most
mportant metric of scalability in our scenarios is therefore net-
ork throughput, and whether the placement can maintain high
ata throughput in the face of an increasing amount of active
eployments. To examine this, we run experiments that inject
n increasingly larger number of deployments per node. As men-
ioned earlier, a deployment in our scenario is an instance of one
L pipeline with its three functions. We start at a ratio of 0.1
eployments per node up to 2 deployments per node. Fig. 8 shows
he results of experiment runs without the scale-to-zero policy.

Two things in particular are noteworthy. First, in S2, while the
ptimized Skippy has a lower data throughput than Skippy, as we
Fig. 9. Optimized priority function weights in each scenario.

ave seen in Fig. 7, it does this to trade off execution cost while
aintaining similar function execution times (see Fig. 6). Second,

n some situations, the Kubernetes scheduler produced infeasible
lacements even with very few deployments. In particular in S3,
he inter-region bandwidth was quickly saturated and leading
o infeasible placements. We consider a placement infeasible if
t, during the course of a simulation, leads to bottlenecks in the
etwork that degrade the bandwidth allocated to a flow to less
han 0.1 Mb/s. Another finding was that, if the OpenFaaS scale-to-
ero policy was used, the default scheduler produced no feasible
lacements in the first scenario. Functions would be rescheduled
.t. the network was quickly congested with inter-network traffic.

.3.3. Optimized priority function weights
Fig. 9 shows the values of w assigned by the optimization as

escribed in Section 5.2, i.e., the optimized weight of each priority
unction in the different evaluation scenarios. In S1, the capability
riority is less relevant, as there is a high percentage of GPU
odes available, which are not saturated. Locality plays a much
igger role in avoiding using the scarce cloud resources. In S2,
ecause there are few GPU nodes, and data is also distributed
o on-premises cloud, the data locality and capability priorities
re favored. In S3, the results confirm the intuition that resource
alance, locality, and capabilities do not have much weight for
cheduling in relatively homogeneous environments.

.4. Scheduling latency and throughput

The main source of latency in greedy online MCDM schedulers
omes from iterating over nodes and computing priority func-
ions. Because Skippy requires a significant number of priority
unctions compared to the default Kubernetes scheduler, we think
t is worth discussing the resulting impact on scheduling latency
nd throughput. Let N be the set of all nodes in the cluster, Nc

e the set of feasible nodes for scheduling container c , and S be
he set of priority functions. Scheduling requires the evaluation of
very priority function S ∈ S for every feasible node n ∈ Nc . The
lgorithmic complexity of scheduling one container c therefore
epends on the complexity of the individual priority functions.
f we neglect this, i.e., assume that invoking any S is O(1), the
omplexity of the scoring step is O(|Nc

| · |S|), where Nc
= N

n the worst case. Because |N| can reach several thousands in
production cluster, the Kubernetes scheduler employs a sam-
ling heuristic to reduce |Nc

|. The percentage of nodes that are
ampled, progressively decreases with the number of nodes in
he cluster. Once the cluster reaches |N| ≥ 6500, the scheduler
nly considers 5% of available nodes for scoring. This heuristic
orks under the assumption that the cluster and the network

s relatively homogeneous, and that aggressive sampling will not
ignificantly impair placement quality. However, in the case of
dge infrastructure, where these assumptions may not hold, this
euristic would introduce extreme variance in the placement
uality, which is why we disable it and have to consider all nodes
n the cluster. This leads to a general degradation in scheduling
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Fig. 10. Scheduler throughput in functions/second with sampling heuristic (left),
and without (right).

throughput. We measured the throughput given different cluster
sizes and number of priority functions. Our results in Fig. 10
roughly match those of a recent Kubernetes performance evalua-
tion [56]. The default Kubernetes scheduler only uses two priority
functions and the sampling heuristic, which allows it to process
around 170 pods per second in a cluster of 10000 nodes. Whereas
Skippy uses by default five priority functions and scores all nodes,
which, at 10000 nodes, yields a throughput of around 15 pods
per second. While in our scenarios this is not an issue because
scheduling latency is only a small fraction of the overall round-
trip time, it does negatively affect scheduling throughput. We are
investigating alternative disaggregated scheduler architectures,
such ones employed by Omega [57] or Firmament [29].

6.5. Challenges & limitations

Beyond scheduling performance, our system has several limi-
ations that need to be discussed. We also identify several open
hallenges for serverless edge platforms.
Our system currently makes no particular considerations of

he dynamic nature of edge systems. Reconciling deployment
nd runtime aspects of serverless edge computing applications
s especially challenging. Generally, we can distinguish function
eployment, function scaling, and function requests to already
unning functions. Finding good placements for long-living func-
ions is challenging, especially when they are network bound. For
unctions such as those serving static content or simple image
lassification tasks, the request RTT perceived by clients will be
ominated by link latency between the client and the node host-
ng the function. Therefore, to make better placement decision for
uch functions, the system would require knowledge about the
ocation of clients with respect to nodes in the cluster [27]. In this
ase, an autoscaling strategy could, for example, spin up replicas
hat favor nodes in close proximity to clients. This falls into the
ategory of dynamic service migration problems [58], and is a
hallenge that confronts edge computing systems in general. The
entralized API gateway architecture of OpenFaaS, Kubernetes,
nd similar systems, presents a serious obstacle in solving this
ssue, as generally all traffic goes through a type of ingress to
llow dynamic request routing and load balancing. A strategy
ould be to replicate API gateways across the network and using
localization mechanism to resolve an API gateway in proximity.
his may not be fine-grained enough for scenarios such as the
rban sensing infrastructure where the resolution would have to
e on city neighborhood level. A solution or detailed analysis of
his issue is out of scope of the paper.

Another issues of using state-of-the-art serverless platforms
or edge infrastructure is the rudimentary way they model node
esources and function requirements [13]. For example, in Ku-
ernetes, a node has three capacities: CPU, memory and the
aximum number of pods that can be scheduled onto the node.
odeling capabilities of edge resources is challenging, as their

vailability may not be known at design time, and whether they
are shareable at runtime. This is particularly important for scarce,
(potentially) non-shareable and discrete resources such as GPUs,
where containers that use the resource may completely block
other containers from execution, while not requiring them often.
We therefore see resource modeling as an important aspect of
future edge computing platforms.

Using container-based systems can have several drawbacks
with respect to isolation and multitenancy. It is currently unclear
how our system would behave in a multi-tenant scenario, where
cluster resources are shared between multiple runtimes. Further
research is necessary to investigate the effect of, e.g., workload
interference.

Our system currently makes the assumption that function
code is distributed in container images. Some FaaS platforms,
such as OpenWhisk, have platform-level facilities for distributing
function code, that may not benefit from the computation move-
ment estimation made by the LatencyAwareImageLocalityPriority.
lthough we could conceive a more higher-level abstraction for
code movement soft-constraint, it would require additional fa-

cilities to allow the scheduler to query the runtime for function
metadata (like it’s code size), and whether a function’s code has
been deployed at a particular node.

7. Conclusion

Serverless computing helps platform providers to hide oper-
ational complexity from application developers, making it par-
ticularly attractive for edge computing systems. Analogously to
serverless cloud functions, we believe that edge functions are a
promising approach to manage applications that run on a dis-
tributed edge compute fabric. We have demonstrated several
limitations of existing serverless platforms when they are used
in such scenarios, leading to poor function placement on hetero-
geneous geo-distributed infrastructure that has limited up/down-
link connections between edge networks.

We presented Skippy, a container scheduling system that en-
ables existing container orchestrators, such as Kubernetes, to
support serverless edge functions. Skippy does this by introduc-
ing scheduling constraints that leverage additional knowledge of
node capabilities, the application’s data flow, and the network
topology. Overall our experiments show that (1) Skippy enables
locality-sensitive function placement, resulting in higher data
throughput and less traffic going over up/downlinks, (2) in sce-
narios where there is a fairly even distribution of cloud and edge
resources, the optimization helps significantly in trading off exe-
cution cost and overall application latency, and (3) the improved
placement quality comes at the cost of scheduler performance.
We have shown that the most critical aspect of function place-
ment in data-intensive serverless edge computing is the trade-off
between data and computation movement. However, making this
trade-off in a generalized way is challenging due to the wide
range of edge infrastructure scenarios. By introducing higher-
level operational goals, we can fine-tune the underlying scheduler
parameters to consider infrastructure-specific aspects.

There are several open issues to fully realize the idea of edge
functions on a distributed compute fabric. For example, the cen-
tralized API gateway architecture employed by most state-of-the-
art serverless platforms may be impractical for edge computing,
particularly with dispersed clients that consume network-bound
functions. Moreover, the dynamic nature of edge systems requires
the continuous re-evaluation of placement decisions, necessitat-
ing context-aware autoscaling and workload migration strategies.
Finally, the automatic characterization of workloads and mapping
to their preferred node capabilities could significantly improve
function placement.
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