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Abstract—Industry 4.0 have automated the entire manufac-
turing sector (including technologies and processes) by adopting
Internet of Things and Cloud computing. To handle the work-
flows from Industrial Cyber-Physical systems, more and more
data centers have been built across the globe to serve the growing
needs of computing and storage. This has led to an enormous
increase in energy usage by cloud data centers which is not
only a financial burden but also increases their carbon footprint.
The private Software Defined Wide Area network (SDWAN)
connects a cloud provider’s data centers across the planet. This
gives the opportunity to develop new scheduling strategies to
manage cloud providers workload in a more energy-efficient
manner. In this context, this paper addresses the problem of
scheduling data-driven industrial workflow applications over a set
of private SDWAN connected data centers in an energy-efficient
manner while managing trade-off of a cloud provider’ revenue.
Our proposed algorithm aims to minimize the cloud provider’s
revenue and the usage of non-renewable energy by utilizing the
real-world electricity prices with the availability of green energy
on different cloud data centers, where the energy consumption
consists of the usage of running application over multiple data
centers and transferring the data among them through SDWAN.
The evaluation shows that our proposed method can increase
usage of green energy for the execution of industrial workflow
up to 3× times with a slight increase in the cost when compared
to cost-based workflow scheduling methods.

Index Terms—Software Defined Networking; Green Energy;
Industrial Workflow Applications; Big Data; Industrial Clouds.

I. INTRODUCTION

The Industry 4.0 revolution helps to gather data in real-time
and then analyze it at remote clouds to improve the industrial
processes and detect faulty operations. This helps to realize the
future operating problems in advance and make the industrial

Z. Wen, and D. Puthal are with the School of Computing,
Newcastle University, United Kingdom. E-mail:{Zhenyu.Wen,
Deepak.Puthal}@newcastle.ac.uk

S. Garg is with the University of Tasmania, Australia. E-mail:
Saurabh.Garg@utas.edu.au

G. S. Aujla is with the Department of Computer Science, Durham
University, Durham, UK. E-mail: gagangeet.s.aujla@durham.ac.uk

K. Alwasel is with the School of Computing Science, Newcastle
University, United Kingdom and also with the College of Computing
and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia. E-
mail:k.alwasel@seu.edu.sa

S. Dustdar is with the TU Wien, Austria. E-mail: dustdar@dsg.tuwien.ac.at
A. Y. Zomaya is with the School of Computer Science, the University of

Sydney, Australia. E-mail: albert.zomaya@sydney.edu.au
R. Ranjan are with the School of Computing Science, Newcastle

University, United Kingdom and also with the Chinese University of
Geosciences, Wuhan, China E-mail:Raj.Ranjan@newcastle.ac.uk

processes more stringent. This transition triggers high quality
productivity that further improves the industrial productivity,
economics, and workflows. However, this makes more data-
driven undertakings which increases the data sharing across
multiples sites and even across industrial (factory) boundaries.
As a result, the dependence on Cloud computing will increase
though the deployment of machine data and functionality over
remote clouds. Eventually, this leads to an increase in the
industrial workflow applications running at the cloud data
centers. However, more and more industrial applications are
harnessing cloud resources. To satisfy the needs of their cus-
tomers and industrial workflow applications, cloud computing
providers in general maintain very large infrastructure.

It is quite evident that the amount of energy consumed
by the world’s data centers – the repositories of billions of
gigabytes of information – will exponentially increase over the
next decade, putting an enormous strain on energy sources. In
2010, electricity usage in global data centers accounted for
about 1.3 per cent of total electricity usage worldwide [1].
Data centers now consume about three per cent of the global
electricity supply. Clearly, to operate such large infrastructure,
a very large amount of electricity is required depending on the
size of the data centers. This also contributes significantly to
their high operational cost. According to a report published by
the European Union, a decrease in emission volume of 15-30
per cent is required before 2020 to keep the global temperature
increase below 2◦C. Thus, high energy consumption and the
carbon footprint of cloud data center infrastructures have be-
come key environmental concerns and have immense potential
to deal a hefty blow to efforts to contain global warming.
The majority of cloud providers (such as Amazon, Apple, and
Google) offer a multi-cloud environment (including industrial
clouds) which is Geo-distributed across different countries and
are connected via software-defined network (SDN) [2]. Some
of them are designed to utilize the green energy, provided from
local providers1. So, this provides an opportunity for the cloud
providers to schedule their workloads to the data centers which
utilize more renewable energies.

A. Research Question

How to execute an industrial workflow application
across multiple data centers via private SDWAN? To exe-

1www.google.com/green
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cute an industrial workflow task on cloud, we need sufficient
computing resources provided by cloud provider, the codebase
of the task belonged to user and data provided by user or
generated from upstream tasks. To this end, the workflow
scheduler has to handle the three factors at the same time i.e.,
resource provisioning, task provisioning and data provisioning.
Some works [3], [4] have developed the schedulers to run
scientific workflow over multiple data centers. However, they
do not consider the software-defined data centers that offers
more flexible for design new green energy scheduling algo-
rithm. WARM [5] aim of scheduling the tasks in SDN-based
cloud data center while maximizing the revenue of the cloud
provider. It optimizes the latency of tasks both in network and
VM. However, this solution is not suitable for multiple clouds
scenarios.

How to optimize for energy efficiency while avoiding
SLA violations? While Cloud computing aims to optimize
the use of hosted ICT resources, the Cloud providers do not
(yet) have an effective solution for simultaneously optimiz-
ing energy consumption and SLAs (e.g. deadline, processing
cost) especially for Big Data-driven Scientific and industrial
workflow application scheduling in software-defined multi-
cloud environments. One of the major reasons for this state
of affairs is that cloud providers operate multiple large data
centers distributed across multiple locations. Depending on the
location of the data center and location of the application
owner, the scheduling process for cloud applications has
to automate cloud data center selection and, in doing so,
ensure that SLA (e.g. application hosting cost, application
run-time performance) and energy (e.g. total electricity bills,
sustainability goals) requirements are met at the same time,
which are often conflicting. When selecting ICT resources
(e.g. virtual machines, containers, storage space) from multiple
data centers, cloud providers must consider heterogeneous set
of criteria and complex dependencies across multiple layers
(e.g. application level, data center level), which is impossible
to resolve manually.

There is a substantial amount of related work addressing the
improvement of the carbon footprint of data centers by man-
aging customer workloads at different levels such as storage,
computation, and network [6], [7], [8]. However, most of these
solutions are not directly applicable in the context of scientific
or industrial workflow applications which is the focus of this
paper. For each application workload and execution profile,
a different strategy is needed to minimize their energy usage
while optimizing SLAs. Scientific and industrial workflows are
one of the most complex applications where several tasks have
to be executed in a synchronous manner to achieve the required
Quality of Service [9]. Communication between different tasks
makes the matter worse as the energy usage of the network
also needs to be considered with other constraints. Several
authors have proposed usage of multiple data center locations
to improve energy cost and also minimize environmental
impact [10]. However, these solutions are designed for simple
applications that consist of tasks which can run independently.
Also, the existing solutions do not take the advantages of SDN
network to account to further improving the data provision
strategies.

In order to minimize energy usage while avoiding SLA
violations of workflow applications, we need new system and
algorithmic solutions that can consider several factors includ-
ing dependency between different tasks with data transfer cost
in private SDWAN, in addition to energy cost and carbon
footprint associated with application execution. To this end,
we propose an adaptive genetic algorithm-based mechanism to
schedule workflow applications considering application users’
requirements such as deadline and budget. To minimize the
carbon footprint [11], the proposed algorithm selects the
schedule that favors the data centers where green energy being
utilized. However, as green energy availability varies with
time [12], thus our algorithm also considers resources from
different data centers. Moreover, from the user perspective
execution cost and minimum execution time is also important;
our algorithm also considers this trade-off between execution
cost, usage of green energy and execution time. In particular,
our proposed algorithm minimizes execution cost while se-
lecting solutions with minimum carbon footprint for overall
schedule by using multiple data centers with more green
energy usage (Table III highlights the novelty of our work).
The contributions of this papers are:
• A new SDN-based Workflow Broker (SDNWB) to de-

ploy industrial workflow tasks across multiple software-
defined data centers while automating the task provision-
ing, data provisioning and resource provisioning.

• An adaptive Genetic Algorithm (GA) and associated
SDNWB for green scheduling of industrial workflow
applications.

• Trade-off analysis of different factors such as energy
cost, green energy availability and workflow requirements
based on real data.

• Extensive experimental evaluation to study the feasibility
of the proposed scheduling algorithm and architecture.

II. SYSTEM MODEL

Fig1 present a high level system model with components of
SDNWB utilized by public cloud providers for executing the
industrial workflow application.

The system S in this paper consists of a set of software-
defined data center owned by a provider such as Amazon
EC2. S = {R1, R2, . . . , R3} ∪ D, where Ri, 1 ≤ i ≤ k,=
{vm1, vm2, . . . , vmi, vmk} ∪ di.

In a data center Ri, vmi is a virtual machine for hosting
application services (e.g. a workflow task) and di is the cloud
specific data repository (such as S3 in the case of Amazon S3
cloud).

A public cloud provider utilizes Workflow Orchestrator that
deploys the industrial workflow application across multiple
data center and the SDN Controller optimizes the data trans-
ferring among the data centers while executing a workflow
application, such that the application can be executed with
minimal execution cost and carbon footprint. In particular,
the users submit their industrial workflows with all the ex-
ecutables and information such as execution requirements,
task description, and the desired security requirements to our
broker. Workflow Orchestrator is responsible for matching
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Fig. 1: High level system model for running industrial workflows

different workflow tasks to different data centers based on
their electricity prices and usage of green energy. Based
on the planning, the Workflow Orchestrator interacts with
each data center to prepare virtual machines to execute the
workflow tasks in a defined order. SDN Controller manages
the data transfer between different tasks during execution by
configuring the flowable of the related SDN-switches.

A. Cost model

We assume that each DCi has three types of VM:
small(VM ), medium(VM ) and large(VM ). The price of
these three VMs are: 4 ∗ Price(Small(VM)) = 2 ∗
Price(medium(VM)) = Price(large(VM)) = 4M . In
this paper, we assume that the VMs are charged according
to how long they are used for, therefore the cost of running
small(VM ) for four minutes is 4M .

Based on the assumptions above, we can have the cost of
executing vi over small(VM ) as follows:

Cost(vi, vmi) =(Tl(small(VM))) + Te(vi, vmi)+

Tt(vi, vmi)) ∗ Price(vmi)
(1)

where Tl(vmi) is time required to launch
VMi ∈ {small(VM),medium(VM), large(VM)},
and Te(vi, vmi) represents the time required execute vi over
vmi. Tt(vi, vmi) is the the time required transfer vi’s input
data to vmi. However, if all the input data are in the same
VM, the transferring is equal to 0, i.e., Tt(vi, vmi) = 0. The
models for calculating these times will be detailed in the
next subsection. Based on equation 1, we can identify the
total cost of executing a workflow over a set of VMs that are
allocated over different data centers as follows:

TCost(λ, V M) =
∑

vi∈λ, VMi∈VM

Cost(vi, V Mi) (2)

B. Performance model

As mentioned above, the makespan (or performance) of
executing an industrial workflow application over different

VMs that are deployed over different data centers includes
three parts: the time the VM (Tl) is launched, transferring
input data to destination VM (Tt) and executing the service
(Te). In order to model this, we assume that the launching
time of each type of VM is the same which is equal to
Tl. Next, the network throughput (or bandwidth) is tp, 2tp
and 3tp corresponding to small(VM), medium(VM) and
large(VM), noting tpvmi . However, data transmission rate is
not only affected by throughput of the deployed VMs, but also
the geographical location of the VMs.

The same data center: a workflow includes two tasks v1,
v2, where the data is generated from v1 and transferred
to v2. They are allocated to two different VMs VM1 and
VM2, and the VMs are deployed over the same data center.
Thus, the throughput between v1 and v2 is tpv1→v2 =
min(tpvm1

, tpvm2
)). Thus, the time required to transfer P

size of data from v1 to v2 is: Tt(v1, v2) = P
min(tpvm1

,tpvm2
) .

Moreover, the host VMs of v1 and v2 are allocated in
different data centers. For instance, if the vm1 which is used
to host v1 is deployed on DC1, and vm2 which is used to
host v2 is deployed on DC2. So the time of transferring P
data from v1 to v2 is: Tt(v1, v2) = P

min(tpvm1
,tpvm2

) + P ∗
ϕ∗H(DC1, DC2), where ϕ is the average latency incurred at
each hop and H(DC1, DC2) is the number of core network
hops between two data centers.

The execution time of each service depends on the per-
formance of the host VM, in general, the larger VM has
better performance. Therefore the execution of time vi which
is hosted on vmi can be represented as: Te(vi, vmi). Thus,
the makespan of executing λ is :

Makespan(V, V M) =
∑

vi,vj∈V⊂λ
vmi,vmj∈VM

i6=j

Tl(vi, vmi) + Tt(vi, vj)

+Tt(vi, vmi)
(3)

where V is a set of the services which belong to the critical
path.
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C. Energy model

There are two key operations in the execution of a industrial
workflow application where energy is spent: a) in data process-
ing or computation and b) communication. For computation, in
general the power consumption of a server varies as a function
of its utilization level. If a server is idle, the power saving
mechanism lowers the frequency of CPU and thus only a small
proportion (α) of peak power is utilized. If ρ is peak power
consumption and u is utilization of resources, then the power
consumption by a host in the data center will be:

P comphost = α ∗ ρ+ (1− α) ∗ ρ ∗ u (4)

A host may run several VMs at a time thus this power will
be spent by each VM according to its usage of resources.
Even though a host may have several resources such as CPU
cores, disk, memory and other elements, we assume that uvmi

indicates aggregate resources utilized by each VM i hosted on
the server. The power consumption of server (host) will be:

P comphost (VM) =
∑

vmi∈VM
(α ∗ ρ+ (1− α) ∗ ρ ∗ uvmi

) (5)

Let one VM i be transmitting data to another VM j. Let
H(i, j) be the number of hops or routers/switches between
these VMs. For communication, the power consumption de-
pends on the bandwidth used by a VM in communication
and number of routers those data need to be transmitted from
to reach to the destination VM. If B is the total bandwidth
available and ξrouter is the power consumed by a router, the
power consumption for the communication will be

P comm(vmi, vmj) = ξrouter ∗H(i, j) ∗ tpv1→v3
B

(6)

Therefore, the total energy consumption can be formalized as:

TEnergy(λ, V M) = P comphost (VM)+∑
vmi∈VM
vmj∈VM

P comm(vmi, vmj) (7)

D. Electricity cost

The electricity cost is caused by data processing and com-
munication. We compute the electricity cost of data processing
by multiplying the local electricity price with energy con-
sumed by the corresponding VM as shown in Eq 8, where
Eprice(vmi) represent electricity price of the data center vmi

deployed.

Ecomphost (VM) =
∑

vmi∈VM
[(α ∗ ρ+ (1− α) ∗ ρ ∗ uvmi)

∗Eprice(vmi)]

(8)

Regarding the electricity cost cause by data exchanging,
we assume that the electricity price is a constant value Ω for
each hop. As the result, the total electricity cost for running a
workflow with deployment solution λ is formalized in Eq 9.

TEle(λ, V M) = Ecomphost (VM)+∑
vmi∈VM
vmj∈VM

P comm(vmi, vmj) ∗ Ω (9)

III. PROPOSED ENERGY-AWARE INDUSTRIAL WORKFLOW
SCHEDULING ALGORITHM: GREENGA

In this paper, we aim to find an optimized solution that
maximizes the proportion of renewable energy and minimizes
the real electricity cost under deadline constraints from users.
Therefore, this can be considered a dual objective optimization
problem.

Given the complexity of the problem with multiple objective
functions and constraints, it is not possible to find the solution
to the scheduling problem in polynomial time. Thus, we
adapted a well known evolutionary algorithm (i.e. Genetic
Algorithm) which is known to find the near-optimal solution
for scheduling workflow applications. Previously the genetic
algorithm has been applied for optimizing makespan of work-
flow applications, however its applicability and performance
has not been tested for optimizing different factors such as
revenue, energy consumption and carbon footprint. In our
approach, we first converted this multi-objective problem into
a single objective optimization problem by multiplying each
objective; the resultant problem is formulated as:

min (f(λ) ∗ g(λ))

s.t. f(λ) = TEle(λ, V M)

g(λ) = (1− σ(λ))TEnergy(λ, V M)

Makespan(V, V M) ≤ deadline
TCost(λ, V M) ≤ budget

(10)

f represents the total monetary cost of running a given work-
flow with deployment solution λ. Next, g indicates the non-
green energy consumption and where σ(λ) is a function that
calculates the proportion of renewable energy consumption on
deployment solution λ. Finally, deadline and budget are given
by users as the hard constraints of the execution time and the
maximum deployment cost of the given workflow.

A. Algorithm details

The aim of genetic algorithm (GA) is to search the solution
space and find the best value for objective function or fitness
function i.e. combination of renewable energy and energy cost.

To this end, we need to encode the objective function in
equation 10. Our deployment solution λ is encoded as a
vector [si1; sj2 :::: skn], where sij means that service or task
si is deployed on cloud cj . Therefore, the vector can be
used to compute the value of the objective function as well
as the constraints based on the cost model, energy model
and performance model. After encoding, we can perform the
adaptive GA to compute a sub-optimal solution through the
following four phases:

1) Candidate List Generation and Initializing population:
Initially, we randomly generate the population which is
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coded as above. We select the the clouds from the “Can-
didate List” that lists the clouds meet the constraints of
workflow task such as deadline to reduce the possibility
of generating an infeasible solution.

2) Selection: To generate efficient solutions, two factors
(selection pressure and population diversity) have to
be carefully considered. We utilized the elitism method
[13] given in Algorithm 1, to prevent superior individu-
als from getting destroyed in crossover and mutation.
Thus, if a solution is tagged as elitist, it should be
part of the new population generation process. This
method can ensure that our algorithm does not waste
time to re-discovery the good results that have been
already obtained in previous generations. For the se-
lection process two methods are used: fitness function
and diversity analysis. The fitness function can transfer
the fitness of a coding into a numeric representation
to select superior solutions. The fitness function is the
same as the objective function defined in Equation 10
which consists of green energy usage and execution cost.
The diversity analysis is important step as it influences
further steps of crossover and mutation. Low diversity
of population usually indicates a local extreme which
impacts the search for optimal solutions.

3) Crossover and Mutation: Crossover aims to exchanges
the parts of two chromosomes to generate two new
chromosome. In this paper, we use one-point crossover
[14]. Mutation can enhance the search range, thus we
developed a solution that randomly select a small pro-
portion (as described in [15]) of chromosomes in current
generation and changing them to new feasible chromo-
somes for next generation. We set a very small initial
mutation rate as 0.015. However, it can be dynamically
adjusted by our proposed algorithm, detailed in the
following.

4) Diversity Maintenance: The diversity of a chromosome
affects by the mutation rate adjusted by Algorithm 2.
Firstly, we compute the density d of the population by
comparing unique chromosomes (sr) with total number
of population (size). Next, we increase the mutation
rate if d is less than predefined threshold. However, if
the mutation rate is higher than its maximum rate, it
will be decreased. The increasing and decreasing step is
computed as 1.75

|λ|∗|pop| following the suggestion of [16].

The above steps are repeated until the termination constraints
are reached.

Time Complexity. The proposed method is split into four
phases: selection, crossover, mutation and diversity mainte-
nance. The time complexity of the selection phase is O(|P |×
|G|× |O|), where P is the size of population; G is the number
of generations O represent the total number of tasks of a
given workflow. For crossover phases, we need to operate
each individual in every generation, so the complexity of both
is O(|P | × |G|). Although mutation does not operate each
individual in each generation, the mutation rate is decided on
diversity maintenance phase which requires to sort solutions.
Thus, the time complexity mutation and diversity maintenance

ALGORITHM 1: Elitist Prevention
s–elitist size; elist– elitist list; pop– all individuals O–task list;
C–cloud list

if elist is empty then
. ASCsort sorts the pop as ascending order
pop← ASCsort (pop)
. copy the first s number of solutions to elist

elist← from pop[0] to pop[s− 1]
end
for o in O do

for c in C do
pop ← combine(elist, pop) pop← ASCsort (pop)
.delete s numbers of pop in tail

elist← from pop[0] to pop[s− 1]
end

end

ALGORITHM 2: Diversity Protection
pop– all individuals; size–size of pop; threshold–threshold of

diversity; rate–the current mutation rate; Max–maximum
mutation rate.

. function removeDup removes the duplication
rpop ← removeDup(pop)
sr ← |rpop|
d ← 1− sr

size
if d < threshold then

increase rate
end
else if rate > Max then

decrease rate
end

together is O(|P | × |G|). As a result, the over all time
complexity of the proposed method is O(|P | × |G| × |O|).

B. Termination Method

If the number of iterations iter is ∞, GA can provide
an optimal solution. However, the computation resource is
limited. In this paper, we terminate our algorithm if there is
not further improvement of the solution in a fixed number of
interactions R.

IV. PERFORMANCE EVALUATION

A. Experimental setup

In this work, we use CloudSim [17] to simulate the mul-
tiple data center environments to investigate our algorithm.
Cloudsim is one of the most widely used simulators in the
world and it was evaluated and made comparison with the
real-world test-beds in many scenarios, including deploying
scientific and industrial workflow on multiple clouds [4], [18].

1) Cloud provider configurations:
• Data center Location and Proportion of Green Energy

We assume there are six cloud data centers which are
allocated in different areas as shown in Fig. 2. The

Workflow Medium Large Very large
CyberShake 30 100 1000
Montage 25 100 1000
LIGO 30 100 1000
Epigenomics 24 100 995

TABLE I: Number of tasks of each workflow at each scale.
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VM type Small Medium Large
Price 10.5($/h) 12.8($/h) 30($/h)
Bandwidth 1000(Kb/s) 1500(Kb/s) 4000(Kb/s)
CPU 70(mips) 80(mips) 100(mips)
Energy consumption 4.5(kw/h) 6.5(kw/h) 10.5(kw/h)
VM size 1000(GB) 2000(GB) 4000(GB)
RAM 512(MB) 2000(MB) 6000(MB)

TABLE II: The configuration of different type of VMs

proportion of the usage of green energy of the given area
is {0.895, 0.895, 0.934, 0.932, 0.622, 0.071 }.

• VM configuration We assume each data center has three
types of VM: Small, Medium and Large. Table II shows
the configuration of each type of VM. The Small VM
for example, it will cost 10.5 US Dollar per hour and
its network bandwidth, CPU, VM size and RAM are
1000(Kb/s), 70(mips), 1000(GB) and 512(MB) respec-
tively, where the mips describes the CPU powers, i.e.,
millions of instructions per second. Also, we assume that
the Small VM consume 4.5 kw electric energy per hour.

• Data center networking. Fig. 2 indicates the allocation
of the data center, and where the weight of each edge
represents the number of hops that have been passed for
transferring data from one data center to another. Also
we assume that the network latency between data centers
will add 0.3 extra time for transferring data from one data
center to another on average.

• Electricity Prices Market electricity price varies by
country and by hour of the day. We use United Kingdom
day-ahead market2 observed over one week to simulate
the market electricity cost of each data centre. The prices
are modified based on the cost of energy in the countries
in which the data centers are allocated 3. More details
can be found in [12].

2) User Configuration:

• Workflow generation To evaluate our algorithm, four
common workflow applications are consider: CyberShake
(earthquake risk characterisation), Montage (generation
of sky mosaics), LIGO (detection of gravitational waves)
and Epigenomics (bioinformatics).4. Table I shows the
number of tasks of each workflow application. Notably,
our simulator only consider input and output data size
and execution time of each task.

• Deadline generation In this paper, deadline is a hard
constraint which is defined as the mean of fastest solution
and slowest solution. fastest solution is the deployment
solution, deploying the workflow over most the powerful
VMs in the same data center, and the slowest solution
is to deploy the workflow over the least powerful VMs
across different data centers.

2http://www.nordpoolspot.com accessed 01-06-2015
3https://en.wikipedia.org/wiki/Electricitypricing
4The XML description files of the workflows are available via the Pegasus

project: https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

Fig. 2: data centers

B. Experimental results

We evaluate the performance of our proposed algorithm
based on five objectives: electricity cost, energy consumption,
deadline and proportion of the usage of renewable energy.
To this end, we compare the solutions generated by our
proposed algorithm with the best and worst case of each
objective. Moreover, we evaluate the performance of our
adaptive algorithm in two ways: 1) to optimize only one
objective and keep others within predefined constraints; 2) to
optimize more than one objectives by mapping these objectives
into a weighted linear function while ensuring other objectives
within the predefined constraints.

1) Electricity cost: We develop two versions of GA-based
algorithms namely EleCostGA and GreenGA to optimize
the workflow deployment across multiple data centers. Ele-
CostGA only considers minimization of the electricity cost,
while meeting other constraints in terms of makespan, energy
consumption, and user budgets. GreenGA shares the same
constraints as EleCostGA, but also aims to minimize both
electricity cost and consumption of non-renewable energy (i.e.
green energy).

Figs. 3, 4, 5 show the results of applying both algorithms to
different types of workflow. The Lower bound represents the
lowest electricity cost that be obtained without considering any
constraints, where Y axis is the ratio of the results generated by
proposed algorithms with the Lower bound (i.e., EleCostGA

Lower bound

or GreenGA
Lower bound ).

The results illustrate that the cloud providers have to spend
more when they optimise the proportion of the usage of
renewable energy. However, with the increasing size of the
workflows, the differences of electricity cost for GreenGA and
ElecCostGA become smaller.

Lower bound is generated by a greedy based method which
is briefly illustrated as follows:

Lower bound. The electricity cost is calculated by
excutionT ime ∗ electricityPrice ∗ Consumption. In this
paper, we do not have the electricity price of each hop when
data is transferred from one data center to another. Also, in
practice this cost is considered by cloud providers. Therefore,
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the electricity cost of execution workflow over multiple data
centers, which can be simply computed by adding the elec-
tricity cost of each data center where the target workflow is
allocated. So the Lower bound can be obtained by minimizing
the electricity cost of executing each task of the workflow.
To this end, we first select the VMs which can minimize the
excutionT ime∗Consumption of each task, and then choose
the data centers which have the cheapest electricity price for
deploying the selected VMs (mainly considering when the
selected VMs are started and how long the selected VMs will
be launched).

Fig. 6 shows the relation between the number of generations
of GA and electricity cost. We first set the result of 10
generations as the baseline and then compute how many
percentage can be saved with the increasing generations.

2) Energy efficiency: In this paper, we do not aim to
minimize the energy consumption for executing workflow ap-
plications across a set of data centers. However, our proposed
method allows cloud providers to set a constraint for energy
consumption. To this end, we first provide the Lower bound
and Upper bound of energy consumption for executing a
workflow application over available data centers.

Lower bound and Upper bound. The Lower bound of
energy consumption is computed by selecting the most energy
efficient VMs inside the same data center to execute the given
workflow. Furthermore, the most energy efficient Vs for a task
Vi is: arg minVMi∈VM Makespan(vi, V Mi) ∗ P comphost (VMi).
The Upper bound includes both energy consumption for VM
and transferring data over hops. Therefore, we choose the type
of VM that consumes the most energy and the data center
which contains the most hops for data transmission.

Figs. 7, 8, 9 and 10 indicate the energy consumption of
executing the given workflows over different data centers. The
Y-axis indicates the ratio of the energy consumption of differ-
ent solution with the Lower bound of energy consumption.
Although both GreenGA and ElectCostGA are not designed
to minimize energy consumption, they can guarantee energy
consumption that will meet the predefined constraints, while
minimizing the electricity cost.

3) Green energy efficiency: This subsection shows the
proportion of the usage of renewable energy of each solution
which is generated by different algorithms. Figs. 11, 12 and
13 show that the solutions which are generated by GreenGA
use more green energy than those generated by EleCostGA.
However, the difference reduces with the increasing size of
workflows. The larger size of workflow corresponding to
more deployment solutions, the GA based methods are easier
to reach local optimal. The local optimal has a very high
probability of causing the termination of the program by
meeting the pre-defined termination condition as described in
Subsection III-B.

4) Performance/makespan: Deadline is a hard constraint,
which means that the execution time of each submitted work-
flow must be equal to or less than the specific deadline. Fig 14
shows the time saving of the generated solutions, comparing
with user given deadlines, where the Y-axis represents the ratio
of saving time and the given deadline( savedTimedeadLine ). The X-axis
is the type of workflow, where “M EP”, “L EP” and “VL EP”

are the medium, large and very large size of “Epigenomics”
workflows. The results show that all generated solutions can
guarantee the given deadline.

V. ENERGY EFFICIENCY IN SDWAN

To evaluate the energy efficiency and flexibility of the SDN
for data transmission in WAN, we conduct the following
experiments by using IoTSim-SDWAN [19], which simulates
multiple cloud data center connected via traditional WAN and
SDWAN environments. It provides the facilities to evaluate
energy consumption of networks in both traditional WAN and
SDWAN environments.

Experiment configuration. We consider two types of net-
work topology: small scale WAN and large scale WAN. The
number of hops in the large scale WAN are twice as in small
scale WAN. Regarding the data centers and workflows, we
keep configuration similar to the experiments performed in
the previous sections. In the SDN-enabled WAN environment,
we use the shortest path to transfer the data between two data
centers. However, in the traditional WAN environment, we
randomly select a path for the data transmission.

We report the experimental results as the ratio of the
energy consumption of SDN based solution and Non-SDN
based solution i.e., SDN/Non − SDN . Fig. 15 16 and 17
show that SDN-enabled environment consume less energy
than traditional WAN environment on transferring data across
multiple clouds. The SDWAN solution can save energy up
to 32.5%, compared to non-SDWAN solution. However, the
advantage reduces with the increase size of workflow. For
example, the energy saving of SDWAN solution is around
21.5%. This is because the small scale network topology has
less option of routing paths in which are very similar number
of hops. The increase size of the workflow, the more shortest
paths are selected by the random solution.

When the network topology becomes more complicated, the
advantage of the SDWAN become more significant. Compared
to non-SDWAN solution, SDWAN solution consumes 73.8%
less energy as shown in Fig. 18 19 and 20. Similar to the small
scale network typology case, this advantage degrades with the
increase size of the workflow. However, this degradation is
very slow. From medium size workflow to very large size
workflow, the energy saving is reduced from 77% to 70.75%.

VI. DISCUSSION

The evaluations in the simulated environment show that
our proposed algorithm outperforms the comparison methods
in terms of green-energy efficiency and network efficiency.
In order to conduct the evaluations in the real world envi-
ronments, the following challenges need to be considered:
1) multi-data-centre SDWAN network which are currently
owned and by managed by cloud providers (e.g., Google,
Facebook) which is restricted or no access to the network
control plane of the data centres; 2) monitoring the energy con-
sumption, while running workflow applications in data centers,
is not currently supported by the proprietary cloud monitoring
tools (e.g. AWS Cloudwatch); 3) the use of real data centre
servers and networks for benchmarking energy efficiency and
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Fig. 3: Electricity cost for
medium size workflow
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Fig. 4: Electricity cost for large
size workflow
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Fig. 5: Electricity cost for very
large size workflow
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Fig. 7: Energy consumption for
Epigenomics
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Fig. 8: Energy consumption for
CyberShake
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Fig. 9: Energy consumption for
Montage
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Fig. 10: Energy consumption
for LIGO
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Fig. 11: The proportion of the
usage of renewable energy for
medium size workflow

Epigenomics
CyberShake LIGO Montage

Workflows

0.0

0.2

0.4

0.6

0.8

Re
ne

wa
bl

e 
en

er
gy

 u
sa

ge GreenGA EleCostGA

Fig. 12: The proportion of the
usage of renewable energy for
large size workflow
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Fig. 13: The proportion of the
usage of renewable energy for
very large size workflow
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TABLE III: Compare with other related work

Feature/ Research work [7] [8] [20] [5] [4] [3] [21] [22] Our work
Workflow application × × × × × ×
SDN enbaled × × × × ×
WAN aware × × × × × × × ×
Multiple clouds × × ×
Green energy × × × × ×
Energy minimization × × × ×
Cost minimization ×

workflow application performance is often constrained by
their heterogeneity (e.g., hypervisor type, network type). To
overcome the above-mentioned challenges, we propose the
potential solutions as follows. One can utilize the network
trace data (e.g., from B4 project [2] ) to parameterize a
micro-benchmark which is emulated by a lab level test-bed.
Regarding to the large scale experiments, the environments
can be simulated using the real world network trace data to
parameterize our simulators. Similarly the energy consumption
of different VMs, can be modelled based on the data center
cluster traces such as Microsoft Azure Dataset 5 and Alibaba

5https://github.com/Azure/AzurePublicDataset

Cluster Data 6.

VII. RELATED WORK

A. Cost and performance-based tasks scheduling

To improve the performance of run a workflow application,
[23] introduced an auto-scaling method to allocate workflow
tasks to a set of VMs to meet the deadline constraints.

[24] considered the monetary cost for running workflow
over cloud. They developed the algorithm to overcome the
trade-off between makespan and financial cost. An new al-
gorithm was proposed in [17] that utilizes the idle time of

6https://github.com/alibaba/clusterdata
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Fig. 15: Energy consumption for
transferring medium size workflow
data in small scale WAN
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Fig. 16: Energy consumption for
transferring large size workflow data
in small scale WAN
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Fig. 17: Energy consumption for
transferring very large size workflow
data in small scale WAN
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Fig. 18: Energy consumption for
transferring medium size workflow
data in large scale WAN
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Fig. 19: Energy consumption for
transferring large size workflow data
in large scale WAN
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Fig. 20: Energy consumption for
transferring very large size workflow
data in large scale WAN

provisioned resources and surplus budget to scale up the exe-
cution of workflow application to catch of chance of meeting
deadlines. There are also some algorithms [25] considering
security for running the workflow applications on cloud.

In multiple clouds case, [20] proposed an effective algorithm
to scheduling the tasks across public cloud and private, while
minimizing the cost and ensuring the delay within a boundary.
However, this method is not suitable for scientific or industrial
workflow applications. PANDA [26] was developed to sched-
ule workflow across private cloud and public while finding the
“best”trade-off between performance and cost. Fard et al. in
[27] solve the trade-off between monetary cost and completion
time via a Pareto-optimal based algorithm. However, none
of them considered security and cloud availability change.
Security was consider in [28] that introduced a static method to
optimize the deployment of a workflow application on multiple
cloud by considering security, makespan and monetary cost.

B. Green scheduling

Various existing proposals [21], [22] suggested different
solutions with respect to green scheduling in cloud computing.
The author from [29] proposed a predictive energy saving
online scheduling algorithm to reduce the energy consumption
of distributed web search engines. Y.Li et al.[30] proposed
an energy model for edge and core cloud, to estimate the
energy consumption based on the number of IoT devices and
the desired application QoS. There have been many works
[31][32][6][33] that have proposed techniques to improve
cloud data center efficiency in terms of electricity usage and
decreasing their carbon footprint. For instance, Aksanli et al.

[31] proposed a database scheduling strategy which predicts
the green energy availability reducing rescheduling of jobs.
Goiri et al. [32] also predict green energy availability to
schedule map reduce jobs. Deng et al. [33] proposed an online
algorithm to minimize the operational cost of data centers by
using mutiple energy resources. Kaushik et al. [34] proposed
an energy saving cloud storage solution by dividing the storage
structures in different zones based on power characteristics.
Most of the above works focus on single data centers. Garg
et al. [11] proposed a green cloud framework which utilizes
multiple clouds to improve energy consumption. However, the
work does not give a mechanism to maximize the usage of
green energy. Kiani et al.[35] share similar aims to ours i.e. to
increase green energy usage and cutting the cost of electricity
across multiple data centers. They utilize the concept of
decomposing the workload into green and brown, however
they focus on a simple workload consisting of individual
tasks. Giacobbe et al. [10] and [36] introduce approaches for
migrating Virtual Machines among more distributed Federated
clouds where costs ([36]) and environmental impact (using
renewable energy along with the selection of data centers with
the lower PUE [10]) are taken into account. [7] proposed an
algorithm that focus on ensuring the deadline of executing
tasks on green data centers. These works consider simple
computation resources at the level of generic VMs, no further
investigation from this perspective is performed.

In summary, to best of our knowledge, our proposed GA-
based scheduling is the first work that focuses on increasing
usage of green energy and minimizing electricity cost for
workflow application execution in multiple cloud data centers.
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We also consider variable electricity cost across different cloud
data centers. Table III provides a comparison between our
work and the state-of-the-arts.

VIII. CONCLUSION AND FUTURE WORK

In recent years, several works have attempted to develop
mechanisms to be able to efficiently execute industrial work-
flow applications in software-defined cloud environments with
minimal cost. However, over the years, as usage of cloud
increases, concern about its carbon footprint has also became a
critical topic of research. In this context, this paper proposed
an adaptive GA-based industrial workflow scheduling algo-
rithm that utilizes multiple software-defined cloud data center
resources not only to improve green energy usage but also keep
the cost of execution to a minimum. The performance of our
algorithm has been evaluated using real industrial workflow
workload with different sizes under various configurations of
virtual machines. We compared our algorithm with another
GA-base algorithm that just optimizes electricity cost. The
experimental results clearly show that our proposed algorithm
favors more green energy usage with expenditure similar to
the base algorithm for large and very large size workflows.
For smaller size workflows, with 10-20 per cent increase in
electricity cost, our algorithm can generate a schedule that uses
almost 200 per cent times more green energy.

In future, we will evaluate our proposed algorithm in real
cloud environments and integrate with workflow engines. We
will also work on improving the algorithm by considering
dynamic changes in green energy availability.
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