
1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 1

Optimal Application Deployment in
Resource Constrained Distributed Edges

Shuiguang Deng, Senior Member, IEEE, Zhengzhe Xiang, Student Member, IEEE,
Javid Taheri, Member, IEEE, Mohammad Ali Khoshkholghi, Jianwei Yin, Member, IEEE, Albert

Y. Zomaya, Fellow, IEEE Schahram Dustdar, Fellow, IEEE

Abstract—The dramatically increasing of mobile applications make it convenient for users to complete complex tasks on their
mobile devices. However, the latency brought by unstable wireless networks and the computation failures caused by constrained
resources limit the development of mobile computing. A popular approach to solve this problem is to establish a mobile service
provisioning system based on a mobile edge computing (MEC) paradigm. In the MEC paradigm, plenty of machines are placed
at the edge of the network so that the performance of applications can be optimized by using the involved microservice instances
deployed on them. In this paper, we explore the deployment problem of microserivce-based applications in MEC environment, and
propose an approach to help optimizing the cost of application deployment with the constraints of resources and the requirement of
performance. We conduct a series of experiments to evaluate the performance of our approach. The result shows that our approach
can improve the average response time of mobile services.

Index Terms—Mobile Service, Distributed System, Mobile Edge Computing, Service Deployment

F

1 INTRODUCTION

W E are now embracing an era of mobile comput-
ing where about 5.18 million mobile services are

serving Chinese mobile users alone 1. As a result, mobile
devices and mobile services play more and more impor-
tant roles and remolded the communication between peo-
ple and machines. However, instability of channels and
limited resources of mobile devices prevent users from
experiencing high efficiency and seamless interactions
with applications. For example, the low computational
capability and energy storage [1], [2], [3] of mobile devices
restrict the popularization of novel services such as AR
(Augmented Reality)/VR (Virtual Reality)/AI (Artificial
Intelligence), and the packet losses cause external wait-
ing time for urgent messages. Mobile Edge Computing
(MEC) technology is proposed to solve some relevant
problems for the aforementioned services [4]. MEC is a
novel paradigm that emerges recently as a reinforcement
of mobile cloud computing, to optimize the mobile re-
source usage and wireless network to provide context-
aware services [5].

In MEC paradigm, users can easily connect to the

• S. Deng and Z. Xiang are with College of Computer Science, Zhe-
jiang University, Hangzhou, PR China (e-mail:dengsg@zju.edu.cn;
xiangzhengzhe@zju.edu.cn).

• M. Khoshkholghi and J. Taheri are with Department of
Computer Science, Karlstad University, Karlstad, Sweden (e-
mail:javid.taheri@kau.se; ali.khosh-kholghi@kau.se).

• A. Y. Zomaya is with School of Computer Science, The University of
Sydney, Sydney, Australia (email: albert.zomaya@sydney.edu.au

• S. Dustdar is with Distributed Systems Group, TU Wien, Vienna,
Austria (e-mail:dustdar@infosys.tuwien.ac.at)

Manuscript received Jan 19, 2019
1. https://aso114.com

nearby edge servers via wireless network [6] and offload
their computation tasks to them. The short-distance con-
nection between users and edge servers can dramatically
reduce the latency, and the computation capability of the
edge servers are quite qualified to finish those conven-
tional tasks. Additionally, the edge servers do not act
alone in many cases – with the help of cluster man-
agement techniques, edge servers may coordinate with
each other. For example, one edge server can dispatch
users’ requests to other servers which can handle them.
Besides this, the services will also not work alone to fulfill
simple tasks – with the help of microservice architecture
[7], [8], [9], more complex applications will be easily
developed using services in some specific orders. It’s a
trend that more and more influential IT companies or
application vendors start to develop complex applications
with microservice techniques (e.g. Kubernetes, Apache
Mesos, etc.) nowadays. With this technique, though the
developers should be more cautious about the external
complexities in application developing, communication
controlling and failure recovering, the advantage of de-
composing applications into several logically related but
functionally individual microservices will bring a high de-
gree of flexibility and reuse and makes it much easier for
updating. What’s more, it will be much easier to scale out
for better performance. And with the help of Container-
based techniques, these microservice-based applications
can be easily deployed on edge servers.

However, the deployment scheme must be carefully
considered, because these servers may have various com-
putation or data storage capacities [10], [11], while the
mobile users may have different application preferences

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 2

— if microservices are deployed on servers with low-
level hardware or deployed on the edge servers whose
connected users rarely use them, the performance of the
system will not satisfy both users and vendors. More
critically, there would be no doubt that the application
vendors can rent lots of edge servers and deploy many
instances of microservices to provide better user experi-
ence, but the cost of renting edge servers then becomes
a major challenge. According to the report of RightScale
2, a company that specializes in cloud delivery, 26% of
enterprises with more than 1,000 employees are spending
more than 6 million dollars a year on public cloud, but
35% of their cloud spendings is wasted — the users
may always overrate the resource consumption. To the
contrary, the vendors always have clear demand about
their applications: they want the applications to keep
some key performance indicator (KPI) [12], e.g., average
response time. In this way, we need to work out how to
find an appropriate deployment scheme of a microservice-
based application with low cost while its actual KPIs are
ensured in the service provisioning system based on MEC
paradigm.

In this paper we mainly focus on the deployment prob-
lem of the microservice-based applications with the con-
straints of application average response time and server
resources. The main contributions of this paper are:

1 We highlight the advantages of using MEC archi-
tecture in improving the performance of applica-
tions.

2 We consider the cooperation of edge servers and
the core server in MEC service provisioning sys-
tems based on MEC paradigm, and model the
application with a composition of microservices.
Based on this, we translate the application de-
ployment problem to the problem of deploying
heterogeneous microservice instances.

3 We consider the constraints of resource limitations
of edge servers, the business logic of applications
as well as the average response time of applica-
tions, and then propose an approach to generate
appropriate deployment schemes with minimum
cost under the on-demand billing model.

4 We conduct a series of experiments to evaluate
performance of the generated deployment schemes
and show the improvement comparing with other
existing baselines.

The rest of this paper is organized as follows. In
Section 2 we describe the motivation and scenario of the
application deployment problem with an example of a
virtual application called Clairvoyance. In Section 3 we
present how the entities of an MEC service provisioning
system work when the microservice-based application is
deployed on the system, and give the definition of our
problem. In Section 4 we introduce how we formulate
this deployment problem to an optimization problem.
In Section 5 we describe the details of the approach we

2. https://www.rightscale.com/lp/state-of-the-cloud

proposed to solve this problem. In Section 6 we show
the experimental results and analysis about the factors
that may affect the results. In Section 7 we highlight
related work of edge computing and the corresponding
approaches. In Section 8, we conclude our contribution
and outline future work.

2 MOTIVATION AND SCENARIO

In this section, we will outline the scenario and motivation
of our problem with an example. The concept of "Smart

Edge Server Mobile User Mobile Device Wireless Link Microservice Request

Fig. 1. Smart policing using wearable equipments

City" integrates information and communication technol-
ogy (ICT), and Internet of things (IoT) to optimize the
efficiency of city operations [13], [14], [15], [16]. It allows
city officials to interact directly with both community and
city infrastructure and to monitor what is happening in
the city and how the city is evolving. In smart city projects,
one of the most popular topic is smart policing. By deploy-
ing webcams, velometers, decibelmeters in the city, ille-
gal behaviors like speeding and unpermitted road work
can be easily detected. By equipping the policemen with
portable alcometers and ID card readers, lawbreakers will
get punished in time. Under this background, assume that
an IT company SoftPoliz, which devotes itself to help sim-
plifying policing affairs with information technology, has
developed an application called Clairvoyance. This ap-
plication aims at providing fast authentication service for
policemen so that they can verify criminal suspects effec-
tively.Clairvoyance is made up of 3 related microservices
SC = {FaceRecognizer, IllegalQuery, AutoAlarm}.
Besides packing and unpacking the data according to the
communication protocol, these 3 microservices have their
own function. FaceRecognizer is an image processing
service that receives a face image and recognizes the
owner, IllegalQuery is data access service which receives
ID card number and queries the criminal database with it,
AutoAlarm is an alarm service which receives the illegal
or criminal records of someone, evaluates the danger level
of him (a drug abuser may be not as dangerous as a
murder with weapons), and give recommendations about

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 3

what to do (e.g., wait for reinforcement or arrest on the
spot) to policemen according to some laws and cases. By
invoking the service in the service chain SC in order, the
task will be easily finished. Therefore, the policemen can
patrol the city with portable ID card readers and check
whether a man is a criminal suspect by taking his photos
using the application Clairvoyance.

It will be convenient for developers of SoftPoliz to
deploy the related microservices on a cloud and to in-
voke them with RESTful APIs [17]. However, a better
performance is required in this situation, because there are
too many people in the overcrowded places like railway
stations or airports. It is not acceptable to wait minutes
for results. A good way to improve the performance is
to turn to the MEC architecture. In MEC architectures, the
servers in proximity work cooperatively as a platform that
integrates the computation and storage capacities of them.
With plenty of microservice instances deployed on the
distributed nearby edge servers, the latency will be dra-
matically reduced. According to the experiment in [18],
it shows that as much as 72% of the communication cost
will be saved by taking advantage of MEC architecture in
some cases. Fig.1 shows how it works. In this scenario,
every edge server has its own serving area and resource
limitation, users in different serving areas will connect to
nearest edge server to invoke the application. The users
are not evenly distributed: from Fig.1 we can find that
the Railway Station and other crowded places included
in the serving area of edge server s1 while s3 will only
serve residential areas. Therefore, more policemen will
be assigned to the serving area of s1, and Clairvoyance
will be invoked more frequently in the serving area of
s1 than s3. Intuitively, it will be better to deploy more
microservice instances on s1. However, it is not acceptable
for SoftPoliz to rent all the resource of edge servers for
microservice instances — the cost will be too high to
afford. There must be a trade-off between the performance
and expense.

FaceRecognizer AutoAlarmIllegalQuery

Cloud

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 2. Using microservice-based applications

Fig.2 gives an example of the deployment scheme of
application Clairvoyance. In this case, there are 3 edge
servers and a cloud server (core server). Users invoke
the application from different areas, and the related mi-
croservices on different servers will be invoked in order to
generate the final results. Table.1 shows the configurations
of servers in this situation, in which s0 means the cloud

TABLE 1. Configurations of servers

Server
Bandwidth Computation

capacity
Storage
capacity

Wireless
rate

s0 s1 s2 s3

s0 +∞ 5 2 4 +∞ +∞ 0.6

s1 4 +∞ 20 25 200 400 4

s2 6 20 +∞ 40 200 200 2

s3 2 10 20 +∞ 100 600 4

server. The bandwidths (mbps) between cloud server and
edge servers are smaller because of the long distance
communication. And because the core server is a cluster
of machines that can easily scale-out, it can have a very
large resource capacity. Table.2 shows the parameters of
related microservices. When a microservice is deployed
on a machine, it will consume some computational and
storage resources. There are many types of computational
resources like memory and CPU, and we take memory as
an example in this case. These microservices may not be
homogeneous on different servers, because the operating
system and hardware can be different and some special
optimization technologies can be adopted on these ma-
chines. Therefore, we can find from Table.2 that microser-
vice FaceRecognizer will use 10MB memory and 50MB
disk space, and can process 20 requests per second when it
is deployed on edge server s1. Because the microservices
are invoked in order, the output of previous microservice
will be the input of next microservice.

In many cases, resources are charged by the amount
of consumption. In this situation, we assume that the
price of memory is $10/MB and the price of disk is
$25/GB. In addition, we assume that in this time period,
the request rates from devices of these three areas can
be modeled with Poisson flows [19] whose parameters
(request arrival rate) are 20 requests per second, 30 re-
quests per second and 50 requests per second. Then
there will be many feasible deployment schemes for the
application Clairvoyance. For example, the deployment
scheme Ω1 = [[2,0,2,6];[4,0,1,1];[3,3,0,1]] which means de-
ploying 2 instances of FaceRecognizer on s0, 0 instance
of FaceRecognizer on s1, 2 instances of FaceRecognizer
on s2 and 6 instances of FaceRecognizer on s3 etc.. When
we use the scheme Ω1, the expectation of response time for
the application will be 9.56s, and the cost will be $3872.5.
However, if some investigations tell that it is acceptable
to wait less than 12s, a better deployment scheme Ω2

= [[2,0,2,3];[4,0,1,1];[3,2,0,1]] would be worth considering
because the expectation of application response time is
11.15s and the cost can be $3310.0. Thus, we can find
out that it is important to select the deployment scheme
carefully.

3 SYSTEM MODEL

3.1 Servers and Network

In a typical MEC service provisioning system based on
MEC paradigm, there will be a core server s0 which acts

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 4

TABLE 2. Resource consumption and running parameters of microservices

Microservice
Computation resource Storage resource Processing capacity

Input size Output size

s0 s1 s2 s3 s0 s1 s2 s3 s0 s1 s2 s3

FaceRecognizer 10 10 20 10 50 40 50 50 40 20 30 20 10 1

IllegalQuery 30 30 40 30 30 30 10 30 50 30 40 30 1 5

AutoAlarm 10 10 20 10 60 50 60 60 60 40 50 40 5 2

as the typical cloud platform and n edge servers s1, s2,
..., sn distributed in different areas. These servers are
available for the application developers. Considered as a
major form of MEC, mobile base stations (BSs) endowed
with cloud-like computing and storage capability are the
most common devices that play the role of edge servers
[20]. Every edge server sj has its own serving area and
Uj is the set of mobile users in this serving area. The
average transmission rate between sj and users in Uj is
vju. These edge servers can cooperate with each other to
form a local mobile edge computing platform (sometimes
it is named with “Fog Platform”) to make full use of
their resources. The average bandwidth between the j-
th edge server and the k-th server is Bj,k. Especially,
because the edge servers can communicate with s0, the
average bandwidth between the core server and the j-th
edge server is denoted with B0,j (In general, as the edge
servers in a local MEC platform may communicate with
each other in a single-hop, B0,j will always be smaller
than Bk,j , k > 0). The edge server sj can provide at
most Ljc computation resource and Ljd storage resource
for deploying microservice instances.

3.2 Microservice-based Application
A microservice msi is an abstract concept that describes
what task it can complete with specific parameters, it has
its own responsibility and scope and can be launched
as instances based on container techniques. Receiving a
request for msi whose average data size is Din

i as input,
an instance of msi on sj can process the request with
processing capacity µi,j and output the result whose aver-
age data size is Dout

i while it consumes ci,j computation
resource and di,j storage resource on sj . Here we use the
M/M/c queue model to describe and evaluate the running
of those microservice instances [21], [22], [23], it means
there are Ωi,j workers serving the requests as a queue
node Qi,j if there are Ωi,j instances of microservice msi
deployed on server sj . We use this model because that
the sojourn time of M/M/c system is less than that of c
parallel M/M/1 system. This is easy to prove – if there are
k jobs in system, then the M/M/c queue will process with
rate = min{k, c}µ while the c paralleling M/M/1 system
will process with rate = jµ where j ≤ min{k, c} is the
number of active queues. By fulfilling the tasks described
by microservices in a service chain SC = (ms1, ms2,
..., msm), the function declared by a microservice-based
application is implemented. Though sometimes there will
be data access operations in the application which may
break the chain structure as shown in Fig.3, we can also

Host

Data

Microservice

data2
data3

data4

ms3

Fig. 3. An example of application deployment

use the following transformation to create a equivalent
service chain: In Fig.4, we can find that microservice ms2

ms1 ms2 ms3

data2

ms1 ms3data2

Dout
1

q2 d2

ms2s ms2e

q2 d2Dout
1Dout

2 Dout
2

Dout
1 = Din

2

Dout
2 = Din

3

(b)(a)

Fig. 4. An example of equivalent structure transformation

will access its data (data2). ms2 first sends query q2 to
tell which part of data it wants, and receives the querying
results d2. The structure (a) can be transformed to (b) by
adding two virtual microservices ms2s and ms2e — the
input of ms2s is Dout

1 and the output of ms2s is q2, the
input of ms2e is d1 and the output of ms2e is Dout

2 . The
data microservice then becomes the successor ofms2s and
the predecessor of ms2e in the service chain. Here the
resource consumption of ms2s is the same as ms2, but
ms2e will not consume any resources. What’s more, ms2s

and ms2e will share the same deployment scheme as ms2.
In this way, we only focus on the chain structure, which
means that the input of the application is the input of
ms1 and the output of msm is the required output for the
application. Besides these, msi+1 will use the output of
msi as input.

3.3 Request Life Cycle
Denote the probability that server sj dispatch requests
about msi to sk with Prij,k, which describes the routing
policy, we can overview the life cycle of a request in
Fig.5: For u in Uj , when he/she tries to use application
described by SC, his/her device will first produce a
request with input in1 about it and send the request to sj .
According to the probabilities Pr1

j,∗, this request is sent to

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 5

! ! !

...

...

...

!!!

!!

...

...

...

!!

Microservice Instance

Core Server

Edge Server

Functionality

Serving Area

Mobile Device

Fig. 5. An overview of the MEC service provisioning system

server sk1 to fulfill the task declared in ms1. The instances
of ms1 on sk1 finish this task and get the output out1,
then produce a new request whose input in2 = out1 and
send it to server sk2 according to the probabilities Pr2

k1,∗.
Step by step, the instances of msm on skm finally get the
output outm, which is the result of the application. The
final result will be sent back to sj and then to u via sj .

As requests produced by Uj will be dynamic in one
day, here we follow the works in [20], [24] etc. to divide
time into discrete time periods (or time slots) in which
the requests of Uj in time period tp can be modeled
with a Poisson flow whose average request arrival rate
is λtpj . In every time period, the deployment scheme can
be updated. The length of time period is not fixed, but it
won’t be long so that the system won’t update frequently.
Therefore, the deployment problem over time is divided
into a series of service deployment subproblems over
time periods. In the rest of this paper, we will omit the
superscript tp of λtpj (namely, we will use λj) and focus
on the service deployment scheme in one time period.

3.4 Billing Model

Different companies have their own billing models. For
example, there are two types of billing models for Ama-
zon Elastic Container Service 3: the Fargate launch type
model and the EC2 launch type model. With Fargate
model, you pay for the amount of vCPU and memory
resources that your containerized application requests and
you pay for AWS resources you create to store and run
your application in EC2 model. In this work, we mainly
consider the on-demand billing in evaluating the cost
of the deployment scheme — it means that the more
resource is used, the more you have to pay. Without loss of
generation, here we assume that the cost is proportional
to the used resource, and the unit cost of computation
resource and storage resource are represented by α and β
respectively.

3. https://aws.amazon.com/ecs/pricing/?nc1=h_ls

3.5 Problem Definition

With the introduction of related concepts, now we can
give the problem definition clearly.

Definition 1 (Optimal Instance Deployment Problem,
OIDP). Given the core server and edge servers S =
{s0, s1, ..., sn}, an application A whose service chain
is SC = {ms1,ms2, ...,msm}, and users’ average re-
quest rate for A on different edge servers represented
with λ = (λ1, λ2, ..., λn)T in a time period, find the
deployment scheme Ω = {Ωi,j}m,ni=1,j=0 with minimum
cost so that the application can serve the users with an
average response time no more than T ∗.

4 PROBLEM FORMULATION

In this section, we will clarify the objective and constraints
of the problem and formulate them in a brief way.

4.1 Objective of Deployment Problem

In this work, we mainly consider the computation cost
and storage cost of microservices. According to the expla-
nation of billing model in Section 3, the cost of resource
consumption can be represented as:

C(Ω) = α
m∑
i=0

n∑
j=0

ci,jΩi,j + β
m∑
i=0

n∑
j=0

di,jΩi,j (1)

If we denote γi,j , αci,j + βdi,j as the cost of instances of
different microservices. By vectorize γi,j and Ωi,j with the
order of service chain, we can get two column vectors γ =
(γ1,0, ..., γ1,n, ..., γm,0, ..., γm,n)ᵀ and Ω = (Ω1,0, ..., Ω1,n, ...,
Ωm,0, ..., Ωm,n)ᵀ whose dimension θ is m ∗ (n + 1). Then
the cost C(Ω) can be represented as:

C(Ω) = γᵀΩ (2)

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 6

4.2 Constraint of Application Response Time
Here we denote φ = (φs, φ1, φ2, ..., φm, φe) as the request
path to describe a request’s life cycle, it shows the order of
hosts to handle this request. Denote Pφ the probability of
request path φ, and Tφ is the total time for requests that
go through path φ. The average application response time
can be represented as:

E[T] =
n∑

φs=1

n∑
φ1=0

· · ·
n∑

φm=0︸ ︷︷ ︸
m

n∑
φe=1

PφTφ (3)

In this way, we will investigate Pφ and Tφ respectively to
calculate E[T].

4.2.1 Probability of Request Path
With the definition of Prti,j , we can represent Pφ as:

Pφ = PrφsPr
s
φs,φ1

(
m−1∏
t=1

Prtφt,φt+1
)Preφm,φe (4)

Here Prφs means the probability that the nearby edge
server is sφs . Because the requests will always go back
to the caller and his nearby edge server, Preφmφe will not
effect the value of Pφ. Thus, we have

Pφ = PrφsPr
s
φs,φ1

(
m−1∏
t=1

Prtφt,φt+1
) (5)

Pφ will be different under different service routing po-
lices. There are many reasonable routing polices because
different developers may consider different factors. For
example:

Round-Robin. Under this policy, the instances of a
microservice on different servers will have the same prob-
ability to receive requests — if ms1 has 1 instance on s1

and has 2 instances on s2, the probability that request of
ms1 goes to s2 is twice as much as that to s1.

Weighted Routing. Under this policy, the process-
ing capability is considered as another factors that can
help scheduling requests, the probability a instance of
microservices receives is proportional to processing capa-
bility — if ms1 has 1 instance on s1 whose processing
capability is 200 request/sec and has 2 instances on s2

whose processing capability is 100 request/sec, the prob-
ability that request of ms1 goes to s2 is the same as that to
s1, because 1 × 200 = 2 × 100.

In this work, we will take the round-robin policy as ex-
ample to explain how we will formulate the deployment
problem, so that developers can easily follow the process
with their own routing policies.

It is obvious that Prφs is dependent on the distribution
of application requests, therefore we have

Prφs =
λφs∑n
i=1 λi

(6)

because the requests will be dispatched to instances ac-
cording to the amount in round-robin policy, we have

Prsφs,φ1
=

Ω1,φ1∑n
k=0 Ω1,k

, P rtφt,φt+1
=

Ωt+1,φt+1∑n
k=0 Ωt+1,k

(7)

4.2.2 Response Time of Request Path
For each Tφ, it includes the access time, routing time,
queue time and backhaul time:

Tφ = Taccess + Trouting + Tqueue + Tbackhaul (8)

Where the four parts can be computed as follows:
a) Access time. The access time has two parts, the trans-
mission time between mobile devices to their nearby edge
server sφs and the transmission time from sφs to server
sφ1 which caches the instances of ms1. Therefore, the
access time is:

Taccess =
Din

1

vφsu
+

Din
1

Bφsφ1

(9)

b) Routing time. When any instance has finished its work,
the result will be routed to the next microservice instance.
Therefore, the routing time can be represented as:

Trouting =
m−1∑
i=1

Dout
m

Bφiφi+1

(10)

c) Queue time. The queue time includes the execution
time and waiting time. Given the processing capacity
µi,φi , the execution time T ei,φi can be represented as:

T ei,φi =
1

µi,φi
(11)

At the same time, we use Twi,φi to denote the expectation of
waiting time in the queue of msi’s instance on server sφi .
According to the queuing theory, Twi,φi can be represented
as:

Twi,φi =
1/µi,φi

Ωi,φi(1− ρi,φi)[1 + (1− ρi,φi)Υi,φi]
(12)

where Υi,φi ,
Ωi,φi !

(Ωi,φiρi,φi)
Ωi,φi

∑Ωi,φi−1

k=0
(Ωi,φiρi,φi)

k

k! is

used here to simplify the expression.
Note that there is a parameter ρi,j involved in the

expression of Twi,φi . It means the serving utilization of
queuing node Qi,j . And according to the queuing theory,
ρi,j can be represented as

ρi,j =
λ
′

i,j

µ
′
i,j

(13)

here λ
′

i,j is the average request arrival rate of for microser-
vice instances msi at node Qi,j , and µ

′

i,j = Ωi,jµi,j is the
processing rate. ρi,j is always less than 1 so that requests
will not be blocked in the queuing node.

Suppose λ
′
i+1 = (λ

′

i+1,0, λ
′

i+1,1, ..., λ
′

i+1,n)ᵀ is the re-
quest arrival rates for instances on different severs of
msi+1. According to Burke’s theorem [19], the request
leaving rates for instances on different severs of msi will
be equal to λ

′
i+1. Denote Pri as the routing matrix for

requests generated from msi:

Pri ,

Pri0,0 Pri1,0 · · · Prin,0

Pri0,1 Pri1,1 · · · Prin,1
...

...
. . .

...

Pri0,n Pri1,n · · · Prin,n

 (14)

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 7

As the microservices are invoked one by one, the requests
will go to the next microservice instances when previous
tasks are fulfilled. Therefore, we can use the following
equation to describe the relation between λ

′
i+1 and λ

′
i :

λ
′

i+1 = Priλ
′

i (15)

while the elements of λ
′
1 are initialized with

λ
′

1,j =
n∑
k=1

Prsk,jλk (16)

By solving the equation (15), we can get:

λ
′

i,j =
Ωi,j∑n
k=0 Ωi,k

n∑
k=1

λk (17)

Therefore, the sojourn time in queue is:

Tqueue =
m∑
i=1

(T ei,φi + Twi,φi) (18)

d) Backhaul time. The backhaul time has two parts as
well — the transmission time between the edge server sφe
to connected mobile devices and the transmission time
from sφm to server sφe (φe = φs). Therefore, the backhaul
time is

Tbackhaul =
Dout
m

vφeu
+

Dout
m

Bφmφe
(19)

4.2.3 Application Response Time Estimation

As the response time of a request path is divided into
four parts, and because E[X + Y] = E[X] + E[Y], the
expectation of application response time E[T] can be rep-
resented by the sum of E[Taccess], E[Tbackhaul], E[Trouting]
and E[Tqueue]. With the former equations, we can get
these time costs separately, and substitute Eq. (5, 6, 7,
9, 10, 18, 19) into Eq. (3), the expectation of application
response time can be represented as follows (with the help
of auxiliary variables shown in Appendix B):

E[T] = κ(λᵀv�u +
λᵀHΩ

eᵀ1Ω
)+

m−1∑
i=1

ΩᵀWiΩ

ΩᵀJ iΩ
+

m∑
i=1

ηᵀ
i Ω

eᵀi Ω
(20)

As a consequence, when rewrite E[T] with E[T (Ω)] for the
decision variable Ω, the constraint of application response
time can be represented as:

E[T (Ω)] ≤ T ∗ (21)

4.3 Constraint of Resource Consumption

Though edge servers are powerful machines with larger
storage and faster computation units, they have limita-
tions on their resources. Besides this, there are still many
other application to be deployed, it is not possible to
give all the resource to an specific application. Here we
use Lc = (L0

c , L1
c , ..., Lnc)ᵀ and Ld = (L0

d, L1
d, ..., Lnd)ᵀ

to represent the computation resource quota and storage
resource quota for application A. By denoting CR the

constraint matrix of resources, and L the concatenation
of Lc and Ld,

CR ,

c1,0 . . . 0 cm,0 . . . 0

...
. . .

...
...

. . .
...

0 . . . c1,n 0 . . . cm,n

d1,0 . . . 0 dm,0 . . . 0

...
. . .

...
...

. . .
...

0 . . . d1,n 0 . . . dm,n

then we can describe the constraint of edge resources as

CRΩ ≤ L (22)

4.4 Constraint of Business Logic
As the microservices works in order to fulfill complex
tasks, the absence of microservice instance for any mi-
croservice in the service chain SC will not be allowed.
Therefore, we have

−CBΩ ≤ −~1 (23)

Here the business logic constraint matrix CB is denoted
by

CB ,

1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0

...
. . .

...
...

. . .
... . . .

...
. . .

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1

and ~1 = (1, 1, ..., 1)ᵀ.

4.5 Constraint of Queuing System
In queuing system, the parameter ρ means the serving
utilization of the queuing node. As mentioned in Section
4.2.2, ρ should be positive and less than 1.0 for a stable
queuing system. Otherwise, the requests will heap up so
that the system cannot handle them anymore. With Eq.
(12), we can represent the constraint by:

−CQΩ ≤ −Λ ·~1 (24)

where the constraint matrix of queue system CQ is de-
noted with:

CQ ,

min
j
µ1,j . . . min

j
µ1,j . . . 0 . . . 0

0 . . . 0 · · · 0 . . . 0

...
. . .

... · · ·
...

. . .
...

0 . . . 0 . . . min
j
µm,j . . . min

j
µm,j

and Λ =

∑k=1
n λk is the total request arrival rate.

5 APPROACHES

With the objective and constraints shown in Section.6, we
now can easily the formulate the OIDP as the following
optimization problem:

P 1 : min γᵀΩ (25)

s.t.

{
κ(λᵀv�u + λᵀHΩ

eᵀ1Ω) +
∑m−1
i=1

ΩᵀWiΩ
ΩᵀJiΩ

+
∑m
i=1

ηᵀ
iΩ
eᵀiΩ ≤ T

∗

AΩ ≤ b,Ω ∈ Nθ

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 8

where A , (CR, - CB, - CQ)ᵀ and b , (L, - ~1, - Λ ·~1)ᵀ.
The definitions of the auxiliary variables v�u , κ, ei, ηi, H,
Wi and Ji are shown in Appendix B.

Therefore, searching the optimal application deploy-
ment scheme is to find the scheme Ω∗ from the feasible
region which has the minimum cost γᵀΩ∗. From the
form of P 1 we can find that it is a nonlinear integer
programming problem, which is NP-Complete. Therefore,
we turn to approaches which can help to find some sub-
optimums. At first, we will relax the constraint of N to
R0 (R0 = R - R+) so that we can take advantage of the
optimization technology for continuous problems. And
then, the branch and bound technique will be adopted
to find the integer solutions.

However, as the queue time vector ηi is derived from
the queueing theory, in which the waiting time Twi,j is
calculated by summation of sequence (in Υi,j). It will
be hard for us to compute the derivatives. Therefore, we
need a continuous and easier form of Twi,j , and if it is an
approximation form, we should quantify the gap between
it and the original one. By setting ρ = ρi,φi and n = Ωi,φi
for the 3rd Lemma shown in Appendix A, we will have
the approximation form of Υi,φi :

Υ̂i,φi = e−(1−ρi,φi)(Ωi,φi−1)ρi,φi
−Ωi,φi (26)

and Υi,φi ≤ Υ̂i,φi . Then the upper bound T̂wi,φi of waiting
time in queue is:

T̂wi,φi =
1

µi,φiΩi,j
(

1

1− ρi,φi
− 1

1− ρi,φi + Υ̂−1
i,φi

) (27)

Similarly, we can also get that:

1

1− ρi,φi + Υ−1
i,φi

− 1

1− ρi,φi + Υ̂−1
i,φi

≤ Ωi,φi (28)

Therefore, the relation between Twi,j and T̂wi,j will be clear:

T̂wi,j − Twi,j ≤
1

µi,jΩi,j
· Ωi,j =

1

µi,j
(29)

On the other hand, for all positive vector x ∈ Rθ we have

min
q∈[1,θ]

ωq ≤
ωᵀx

1 · x ≤ max
q∈[1,θ]

ωq (30)

Therefore, by carefully choosing a parameter ε ∈ [0, 1
µmin

]
(µmin = mini,j µi,j), we can transform the constraint of
E[T (Ω)] to the following equivalent one:

E[T̂ (Ω)]− ε ≤ T ∗ (31)

where the E[T̂ (Ω)] has the same structure as Eq.(20),
except that the queue time vector ηi in E[T̂ (Ω)] is replaced
with:

ηi , (0, ..., 0︸ ︷︷ ︸
(i−1)(n+1)

,
1

µi,0
+ T̂wi,0, ...,

1

µi,n
+ T̂wi,n, 0, ..., 0︸ ︷︷ ︸

(m−i)(n+1)

)ᵀ

(32)

Suppose bk is the k-th element of vector b and Ak is
the k-th column vector of A, and denote the constraints
with:

c0(Ω) = ε+ T ∗ − E[T̂ (Ω)]

ck(Ω) = bk −AkΩ
(33)

then we can minimize an l1-penalty function with some
sufficiently-large penalty factor ν to solve P 1 [25]:

min
Ω∈Rθ

Ψ(Ω; ν) = C(Ω) + ν
∑
k

max(−ck(Ω), 0) (34)

What’s more, by smoothing this penalty function with
some elastic variables w and regarding the concatenated
vector xP = (Ω, w) as points in the expanded space, we
can get problem P 1’s smooth version (P 2):

P 2 : min
Ω∈Rθ

ΨS(Ω,w; ν) = C(Ω) + ν
∑
k

wk

s.t. ck(Ω) + wk ≥ 0, wk ≥ 0

(35)

Thus we can now apply the primal-dual interior point
method [26] to find the suboptimal of P 2. Namely, we
need to solve a sequence of unconstrained problems (Qt):

Qt : min
(Ω,w)

ΨB(Ω,w; τ t, ν) (36)

where the objective ΨB(Ω,w; τ t, ν) is represented with
the following logarithmic barrier form:

ΨB(Ω,w; τ t, ν) =ΨS(Ω,w; ν)− τ t
∑
k

log(wk)

−τ t
∑
k

log(ck(Ω) + wk)
(37)

ν is the penalty factor that measures the infeasibility of
subproblem Qt and τ t is the barrier factor that manages
the constraints shown in P 2. According to the require-
ment of the primal-dual interior point method [26], {τ }
should be a decreasing sequence where limt→∞ = 0, and
the minimizer (Ω∗t+1, w∗t+1) will be generated by solving
Qt with Qt’s minimizer (Ω∗t , w∗t) as initial point. And the
minimizer will finally converge to the minimizer of P 2

(see in Section 5.1). It’s worth noting that with the elastic
variable w, the initial feasible point for the interior point
method will be easily got by setting wk ≥max(−ck(Ω), 0)
for any Ω.

Before solving the problem Qt, we will first denote
the primal-dual function Φ(xP ,xD; τ t, ν) for it. Suppose
the primal first-order Lagrange multiplier estimates are
denoted with:

y , τ t(Cdiag(Ω) +W diag)
−1~1

u , τ t(W diag)
−1~1

(38)

where we use vectors c(Ω) to represent the above con-
straints for convenience, Cdiag(Ω) and W diag are matri-
ces that diagonalized from c(Ω) and w. Then the primal-

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 9

dual function for primal vector xP = (Ω, w) and dual
vector xD = (y, u) can be represented with:

Φ(xP ,xD; τ t, ν) ,

γ − Jᵀ(Ω)y

ν − y − u

(Cdiag(Ω) +W diag)y − τ t

W diagu− τ t

 (39)

here J(Ω) is the Jacobian matrix of c(Ω), and the sum of
vector x and scalar a here means that every elements of x
is added with a for convenience. Then the Karush-Kuhn-
Tucker (KKT) condition can be represented with:

Φ(xP ,xD; τ t, ν) = 0

(c(Ω) +w,w,y,u) ≥ 0
(40)

As limt→∞ τ t = 0, and the KKT condition for P 2 can be
represented with Φ(xP ,xD; 0, ν), then we can find that if
there is a limit point x∗ = (Ω∗, w∗, y∗, u∗) generated by
solving Qt when t is sufficiently large, it will be a KKT
point for P 2. And because P 2 is equivalent to P 1, it will
also be the KKT point for P 1.

As with the process introduced in [27], the goal to
solve the problem Qt is to generate appropriate (xt+1

P ,
xt+1
D). Suppose δ = (δP , δD) is the direction vector so

that (xt+1
P ,xt+1

D) = (xt+1
P + δP , xt+1

D + δD), then δ can
be approximated by:

min
δ
δᵀΦ(xt

P ,x
t
D; τ t, ν) +

1

2
δᵀ∇Φ(xt

P ,x
t
D; τ t, ν)δ (41)

Thus, the solution of the following linear system

∇(xtP ,x
t
D)Φ(xtP ,x

t
D; τ t, ν)δ = −Φ(xtP ,x

t
D; τ t, ν) (42)

can be used as the direction vector [28].
With the above statements, the framework of the

primal-dual interior point algorithm will be clear: itera-
tively find the by approximately solving Qt until τ t is
small enough and ||Φ(xP ,xD; τ t, ν)|| less or equal than
some tolerance, the detail of it is shown in Algorithm
1, whose name is ID4AReE. It is named after Instance
Deployment Approximation algorithm for Resource con-
strained Edges.

However, in Eq (25), the instance number of microser-
vices should be integer, we should go back to N to find our
optimal solutions. There are several methods helping us
to solve this integer programming problem like decompo-
sition method [29], cut-and-solve method [30] and branch-
and-bound method [31]. In our work, we will choose the
branch-and-bound method. The branch-and-bound algo-
rithm enumerates candidate solutions with a rooted tree.
By checking against upper and lower estimated bounds
on the optimal solution, the algorithm traverses the rooted
tree and terminates if it cannot produce a better solution
than the best one. By branching the optimization problem
with the bound of integer constraint in different steps,
we can get the searching algorithm – the instance deploy-
ment algorithm for resource constrained edges (ID4ReE),
whose process is shown in Algorithm 3. It contains a
branch-and-bound function (Algorithm 2) which finds the

Algorithm 1: Instance Deployment Approximation
algorithm for Resource constrained Edges, IDA4ReE

Input:
γ: the cost vector;
c(·): the constriant functions;
τ : the initial barrier factor, τ ∈ (0, 1)
ν: the penalty factor, ν > 0

Output:
Ω∗: the deployment scheme of instances;

1 Initialize Ω0 ∈ Rθ

2 Initialize w0 ∈ RK+ so that c(Ω0) +w0 > 0
3 Initialize dual estimates y0,u0 ∈ RK+
4 xt = (Ωt,wt,yt,ut)
5 for t = 0, 1, 2, ... do
6 solve linear system (42) to get δt

7 xt+1 = xt + δt

8 if

‖

γ − Jᵀ(Ωt)yt+1

ν − yt+1 − ut+1

 ‖ ≤ τ 3
2

||(Cdiag(Ωt+1) +W t+1
diag)yt+1 − τ || ≤ τ

||W t+1
diagu

t+1 − τ || ≤ τ
(yt+1,ut+1) > 0

(c(Ωt+1) +wt+1,wt+1) > 0

(43)

then
9 (Ωt+1,wt+1,yt+1,ut+1) = xt+1

10 Ω∗ = Ωt+1

11 return Ω∗

12 else
13 τ = τ

4
3

bounds and branches the searching space of the problem
with a Firt-In-First-Out (FIFO) queue. The upper bound
means the current minimum cost for solutions ∈ Nθ
while the lower bound stands for the minimum cost for
solutions ∈ Rθ0. A problem will be branched only when
the minimizer is not integer and its corresponding cost is
less than the upper bound (Algorithm 2 - Line 11-19).

5.1 Convergence Analysis

In this section, we will examine the convergence of
the algorithms. Specifically, according to the structure
of ID4ReE, we need to analyze both the interior point
method and the branch-and-bound method. With an
equivalent smooth reformulation of the penalty function,
we can naturally adopt the primal-dual interior-point
method to solve the problem. And with the help of [28]
and [32], we have:

Lemma 1. The stopping conditions are satisfied at xt+1 =
(xtP ,x

t
D) with τ t for sufficiently large t, and

||Φ(xtP ,x
t
D; τ t, ν)|| = o(τ t) (44)

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 10

Proof 1. The details are described in Theorem 6.2 of [28].

Lemma 2. In Algorithm 1, the complete sequence {xt} con-
verges to x∗ and sequence {Φ(xt; τ t, ν)} converges to
zero, the asymptotic convergence rate can be described
with:

|xt+2 − x∗|
|xt+1 − x∗| 32

= M (45)

where M is a constant.

Proof 2. It can be proved with Theorem 6.5 of [28] and
Theorem 3.2 of [32] by setting {γk} with { 1

2 }.

Lemma 1 shows the convergence, and by denoting the
error after n-th step in Lemma 2 with εn = |xn − x∗|, we
can iteratively estimate the error with:

lg εn + 2 lgM =
3

2
(lg εn−1 + 2 lgM) (46)

Then when the precision of a dp-dight number is required
for IDA4ReE, the iteration number can be described with
O(lg dp) by solving Eq. (46). On the other hand, because
the main process of the ID4ReE is the branch and bound
algorithm, it will be extremely hard to determine when the
integer solutions will occur. What’s more, if no bounds are
available in running this algorithm, the method will de-
generate to an exhaustive search. To avoid this situation,
we heuristically try to solve an integer linear program-
ming (ILP) problem whose objective is max

∑θ
i=1 Ωi and

constraints are c1∼k(Ω) ≥ 0. This is because the appli-
cation is more likely to have smaller average response
time if more microservice instances are deployed in the
system. By selecting solutions that have c0(Ω) ≥ 0 from
this ILP’s solution set, we can roughly get the initial upper
bound. Even though, the computation complexity may be

as large as O(
∏m,n+1
i=1,j=0 min(

Ljc
ci,j

,
Ljd
di,j

)) in the worst case

(here min(
Ljc
ci,j

,
Ljd
di,j

) determines the upper bound of Ωi,j
according to Eq. (22)).

6 EXPERIMENTS AND ANALYSIS

6.1 Preliminary
We have implemented the proposed algorithms in Matlab
2018b and our experiments are conducted on a machine
with Intel Xeon E5-2620 v4@2.10GHz × 2 CPU and 64GB
memory on Windows 10 operation system. Due to the
lack of well adopted platforms and datasets, we generate
a dataset for configurations of services and servers in a
synthetic way for our experiment. Therefore, several edge
service provisioning systems are created with the system
configuration settings shown in Table.3. Though in many
cases (e.g. like [24], [33] .etc) simulations are conducted
on single computer check the results, here we try to use
a multi-machine environment to make the results more
convincing. Meanwhile, as we also want to investigate
the factors that may affect the results by keeping other
factors fixed, we finally turn to a powerful simulation tool
whose name is CloudSim [34]. It can model the edge
environments and measure the impact of resources, and

Algorithm 2: Branch and Bound, BnB
Input:

Ω†: the currently best solution;
lb, ub: the lower and upper bound of BnB;
c(·): the constraint functions;
γ: the cost vector;
ν: the penalty factor, ν > 0
τ : the barrier factor, τ ∈ (0, 1)

Output:
Ω∗: the deployment scheme of instances;

1 Q = Queue()
2 Q.enqueue(c)
3 while Q is not empty do
4 co = Q.dequeue()
5 Ωo = IDA4ReE(γ, co, τ, ν)
6 v = γTΩo

7 if Ωo ∈ Nθ and v ≤ ub then
8 Ω†, ub = Ωo, v

9 if Ωo /∈ Nθ then
10 if v ≤ ub then
11 lb = min (lb, v)
12 k∗ = arg maxk∈[1,θ],Ωo

k /∈Z
γk

13 Ik = bΩo
k∗c

14 uk = [0, ..., 0︸ ︷︷ ︸
k∗−1

, 1, 0, ..., 0︸ ︷︷ ︸
θ−k∗

]ᵀ

15 c<(Ω) = Ik − uᵀ
kΩ

16 c>(Ω) = uᵀ
kΩ - Ik - 1

17 cl(Ω), cr(Ω) =

 c(Ω)

c<(Ω)

 ,
 c(Ω)

c>(Ω)

18 Q.enqueue(cl)
19 Q.enqueue(cr)

20 Ω∗ = Ω†

21 return Ω∗

many existing edge computing simulation platforms are
built on it [35].

6.2 Baselines

Generally, researchers prefer to adopt some heuristic al-
gorithms to solve the constrained nonlinear integer pro-
gramming problem. Therefore, we choose some of the
representative approaches as our baselines besides the
brute-force (BF) one.

6.2.1 Genetic algorithm
Genetic algorithm (GA) is one of the famous methods
[33] which can be used for this purpose. GA simulates
the evolution of populations with operations like selec-
tion, crossover and mutation. It is designed to favor
chromosomes with highest fitness values to produce next
populations (solutions). As a result, quality of solutions
for a problem is gradually improved (population by pop-
ulation) until the optimal answer is reached.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 11

Algorithm 3: Instance Deployment Algorithm for
Resource Constrained Edges, ID4ReE

Input:
c(·): the constraint functions;
γ: the cost vector;
ν: the penalty factor, ν > 0
τ : the barrier factor, τ ∈ (0, 1)

Output:
Ω∗: the deployment scheme of instances;

1 Ω†, lb, ub = [∞]ᵀθ ,∞,∞
2 solve the following ILP , and get the solution set L:
3

max [1, 1, ..., 1︸ ︷︷ ︸
θ

]T ·Ω

s.t. ck(Ω) >= 0(k = 1, ...,K),Ω ∈ Zθ
(47)

for Ω ∈ L do
4 if c0(Ω) ≥ 0 and γᵀΩ < ub then
5 Ω†, lb, ub = Ω,γᵀΩ,γᵀΩ

6 return BnB(Ω†, lb, ub, γ, ν, τ)

(1) Selection. Suppose the population is initialized
with C = (Ω1, Ω2, ..., ΩP). Then in each successive gen-
eration, a portion of the existing population is selected to
breed a new generation. Individual solutions are selected
through a fitness-based process, where fitter solutions are
typically more likely to be selected. The fitness function
measures the solution quality. In our approach, it can be
defined by

F (Ωi) =
1

Ψ(Ωi, ν)
(48)

, where ν is a large positive number. In this way, the k-th
solution will be selected with probability P k = F (Ωk)∑P

i=1 F (Ωi)

to produce new generation.
(2) Crossover and Mutation. To produce a new so-

lution with crossover operation, a pair of "parent" chro-
mosomes are selected with probability reflected in P k. A
new solution is created by exchanging parts of the selected
parents with each other. On the other hand, the selected
"parents” may choose not to crossover, then the new "off-
spring” are identical to themselves. The mutation opera-
tion changes some points of a solution, it gives the algo-
rithm the ability to avoid premature convergence. At last,
several solutions with good fitness will stay unchanged
as elites in next generation to keep the convergence. This
process finally stops when converged after 5 consecutive
iterations, it results in solutions with appropriate fitness
values.

6.2.2 Teaching-Learning-Based Optimization Algorithm

The teaching-learning-based optimization (TLBO) algo-
rithm was first proposed by Rao and Kalyankar [36].
TLBO is a population-based method that uses a popu-
lation of solutions to proceed to the global solution. In

TLBO, this population is named with “Class” , in which
“Teacher” is the optimal solution and “Learners” are
the feasible solutions. When the i-th feasible solution is
denoted with Ωi, the class C can be represented with C
= (Ω1, Ω2, ..., ΩP). TLBO consists of two parts: “Teacher
Phase” and “Student Phase”.

(1) Teacher Phase. The “Teacher Phase” means learn-
ing from the teacher. Every learner in the class will
learn from the teacher through the difference between the
teacher and the mean value of the learners:

mean =

∑P
i=1 Ωi

P
diff = ri × (Ωteacher − TF i ×mean)

Ωi
new = Ωi

old + diff

(49)

here ri = rand(0,1) is the learning step-length for Ωi, and
TF i = round(1 + rand(0,1)) is the teaching factor for Ωi.
With the fitness function F (Ωi) in Eq. (48) as grade for
Ωi, all learners will update themselves with Ωi

new when
F (Ωi

new) > F (Ωi
old).

(2) Student Phase. The “Student Phase” means learn-
ing through interactions between learners. A learner
learns something new if another learner has more knowl-
edge, it can keep the population diverse. For each learner
Ωi in the class, it will randomly choose a classmate Ωj (i
6= j) to see if it can learn something:

Ωi
new =

{
Ωi
old + ri(Ωi −Ωj), F (Ωj) > F (Ωi)

Ωi
old + ri(Ωj −Ωi), F (Ωj) < F (Ωi)

(50)

6.2.3 Simulated Annealing Algorithm
Taking advantage of the idea from the annealing tech-
nique in metallurgy, the Simulated Annealing (SA) al-
gorithm simulates the cooling steps for materials. It is
a probabilistic technique for approximating the global
optimum of a given function [37]. Suppose the current
solution after the i-th step is Ωi while the temperature
is T i. Then the energy of Ωi can be estimated with Ei =
F (Ωi), where F is the fitness function shown in Eq. (48).
To generate a new possible solution in step i + 1, SA will
randomly select a solution Ωi

n from the neighborhood of
Ωi in the searching space. Suppose Ein is the energy of
solution Ωi

n. Then we can compare Ein and Ei to produce
the solution Ωi+1:

Ωi+1 =

{
Ωi
n, E

i
n > Ei or P (Ei, Ein, T

i) > ri

Ωi, otherwise
(51)

Here ri = rand(0,1) is the acceptance threshold, and the
acceptance probability P (Ei, Ein, T

i) can be calculated

with P (Ei, Ein, T
i) = e−

Ei−Ein
kTi . After that, SA will conduct

cooling operation T i+1 = C · T i to adjust the temperature
(C is the cooling factor). With this policy, the algorithm
will finally find some solutions with high energies.

6.3 Performance Comparison And Data Analysis
Based on the different configurations shown in Table. 3,
we construct 50 edge service provisioning systems for

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 12

TABLE 3. Configurations of Edge Service Provision Systems

ID # m n µ qps c MB d MB Lc MB Ld GB B MB/s Din MB Dout MB vu MB/s α β

#1 2 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#2 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [10, 50] [1, 3] 10 25

#3 4 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#2 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#4 3 3 [50, 60] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#5 3 4 [50, 60] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#6 3 5 [50, 60] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#7 3 5 [20, 50] [80, 100] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#8 3 5 [20, 50] [100, 200] [5, 6] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#9 3 5 [20, 50] [100, 200] [2, 5] [2048, 2560] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#10 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [128, 160] [80, 100] [1, 5] [1, 5] [1, 3] 10 25

#11 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [50, 60] [1, 5] [1, 5] [1, 3] 10 25

#12 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [6, 7] [1, 5] [1, 3] 10 25

#13 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [6, 7] [1, 3] 10 25

#14 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [3, 4] 10 25

#15 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 20 25

#16 3 5 [20, 50] [100, 200] [2, 5] [512, 2048] [32, 128] [80, 100] [1, 5] [1, 5] [1, 3] 10 50

each of the configurations. For example, with configura-
tion #1, we will construct a service provisioning system
with 5 edge servers and the application to be deployed
is made up of 2 microservices. Besides these, we set the
running parameters with µi,j ∼ U(20, 50) qps, ci,j ∼
U(100, 200) MB, di,j ∼ U(2, 5) GB, Ljc ∼ U(512, 2048)
GB, Ldj ∼ U(32, 128) GB, Bi,j ∼ U(80, 100) MB/s,
D
in/out
i ∼ U(1, 5) MB, vju ∼ U(1, 3) MB/s, and the price

of computation/storage resource is set with α = 10$/MB
and β = 25$/GB. Then we apply different approaches
on these systems to find the appropriate deployment
schemes. By evaluating the average cost, which is the
objective of our problem for those systems with different
configurations, we can explore how these factors will
effect the performance of edge service provision system.

In Fig. 6, we illustrate the average costs of deploy-
ment schemes generated by different approaches on 50
edge service provisioning systems with a grouped bar
chart. For each group of bars, they show the deploy-
ment costs for systems with some specific configurations.
Namely, the costs of deployment schemes generated by
GA, ID4ReE, SA and TLBO with the i-th configuration
set in Table.3. In summary, our approach performs better
than other baselines, which means that it will cost less to
deploy application microservices with our approach.

To go a step further, we then apply the deployment
schemes generated by these approaches on those provi-
sioning systems to explore the response time of requests.
Therefore, we simulate 10,000 requests for every edge
service provisioning system, and show the distributions
of application response time for these requests for the 4
approaches with a heat-map. In the heat-map Fig.7, the
colored blocks stand for the distributions of the appli-

cation response times. We can find that the application
response times derived by ID4ReE is more concentrated,
and most of application response times are less than 1.64s.

Besides the comparison between approaches, we will
discuss what are the factors that may impact the results
and how they will impact the results in the following
parts.

6.3.1 Impact of Microservices
The number of microservices or the length of service
chain determines the complexity of an application. From
Fig.8 and the comparison of system #01, #02 and #03, we
can find that the cost of generated deployment scheme
increases when the application becomes complex. Because
more instances of the new microservices will be deployed
to fulfill new tasks. Besides this, we can find that the
cost increases when computation resource consumption
or storage resource consumption of microservices become
larger. This result is very clear because the cost is the
linear weighting sum of the costs of computation resource
consumption and storage resource consumption. At the
same time, the cost increment caused by computation re-
source consumption is larger than that of storage resource
consumption because of its larger unit price.

Microservice instances with larger processing capacity
handle the requests more efficiently, which means the
execution time can be reduced dramatically. Therefore,
given the requirement of response time we will need less
instances to fulfill the tasks of application, as shown in
Fig.6 that the cost of #02 is less than that of #06. Besides
these, the comparison of #12 and #13 points out that
when the input and output size of microservices becomes
smaller, the cost will also be less than before.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 13

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

0.5

1

1.5

2

2.5
C

o
s
t(

$
)

105

BF

ID4ReE

GA

SA

TLBO

Fig. 6. The costs of deployment schemes generated by different approaches

0.92-1.10(s)

1.10-1.28(s)

1.28-1.46(s)

1.46-1.64(s)

1.64-1.82(s)

1.82-2.00(s)

2.00-2.19(s)

2.19-2.37(s)

2.37-2.55(s)

2.55-2.73(s)

2.73-2.91(s)

2.91-3.09(s)

TLBO

SA

GA

ID4ReE 0.1855

0.4388

0.356

0.4031

0.3886

0.2756

0.3086

0.2754

0.2425

0.08523

0.07932

0.1314

0.06652

0.1177

0.07232

0.06822

0.07062

0.07502

0.07742

0.08232

0.04781

0.04711

0.03431

0.02701

0.008002

0.013

0.005602

0.005302

0.003001

0.002901

0.0004001

0.0006002

0.002201

0.0002001

0

0

0.0011

0.0001

0

0

0.0008002

0

0

0

0.0003001

0

0

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 7. The distribution of application response time

0.2

0.7

1.2

1.7

2.2

2.7

2 3 4 5 6

De
pl

oy
me

nt
 C

os
t($

)
x

10
00

00

Microservice Number

Fig. 8. Scheme costs for different microservice number

6.3.2 Impact of Pricing Policy
The pricing policy here means the price of different
resources, it is determined by the infrastructure providers
in general. Similar with the situation of microservice
resource consumption, because the cost is proportional
to the unit prices of computation resource and storage

resource, we can find that a higher unit price of resources
will cause the increasing of cost by comparing the results
of #02 and #15, #16.

6.3.3 Impact of Servers

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

2 4 6 8 10 12

D
ep

lo
ym

en
t C

os
t($

)
x

10
00

0

Server Number

Fig. 9. Scheme costs for different server number

The edge server number, available resources and com-
munication bandwidth determines the potential of the
edge service provisioning system altogether, if we regard
the system as a distributed machine.The number of edge
server determines the complexity of system topology. It
provides more possibilities for the deployment schemes.
For example, if a new edge server es‘ which has the
same parameters with es∗ was added to the system, the
instances deployed on es∗ originally can be moved to
es‘ partially without any loss while the risk resistance
capacity can even increase. Not only comparing the results
of #4, #5 and #6 in Fig.6, we can go a step further with
the result shown in Fig.9. In this figure,we can find that
the costs of these schemes decrease at first and then keep
almost the same with the increasing of server number.
This is caused by the changing of total available edge
resource. At the first time, microservice instances have to

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 14

be deployed on the core server because there is no enough
resource for the edge servers, and to offset the response
time loss for the low transmission rate between edge
servers and core server. Then, when the total available
resource is enough so that most of the instances can be
deployed on the edge servers, the generated deployment
schemes will be similar.

0

1

2

3

4

5

6

7

8

9

10

500

700

900

1100

1300

1500

1700

1900

50 60 70 80

In
sta

nc
e N

um
be

r

Re
so

ur
ce

 C
on

su
m

pt
io

n

Bandwidth (MB/s)

Computation Resource(in MB)

Storage Resource(in 1/50GB)

Instance Number

Fig. 10. The resource consumption and instance number
under different bandwidth

The bandwidth is another important factor that can
impact the deployment scheme. In reality, transmission
time is always the major part of response time. Therefore,
we keep the configuration of a system fixed, and adjust the
average bandwidth between servers and finally get Fig.10
(to illustrate both the computation resource consumption
and storage resource consumption, here we multiply the
storage resource consumption with 50 in the figure).
We can find that, by increasing the bandwidth between
servers, the resource consumption and instance number
both decrease. And these will directly decrease the cost of
schemes. Besides the data transmission between servers,
the data transmission between mobile devices and edge
servers are also an important factor that can impact the
results. By comparing the results of #2 and #14, it can
be found that costs increase 8.32% when the transmission
rate between user and edge server becomes lower.

Besides the former relations, there is another interest-
ing point that the microservice instances show a trend
of aggregation in the deployment in the experiment. The
aggregation here means that microservice instances would
like to be deployed on the same sever. For example, the
list [2, 0, 2, 0] has a larger aggregation degree than the list
[1, 1, 1, 1]. Naturally, here we use the variance to quantify
the aggregation degree of instance number on server, and
the results are shown in Fig.11. In this figure we census
the instance numbers on servers for different microser-
vices in 50 edge service provision systems (the system
configuration is #2), and illustrate the results with a scatter
plot. In this figure, we can find that the variance becomes
larger with the increasing of instances on edge server,
which means the aggregation degree becomes larger. This
phenomenon can be explained with the queuing theory,

because that the sojourn time of M/M/c system is less
than c parallel M/M/1 systems.

0

10

20

30

40

50

60

A
g
g
re

g
a
ti
o
n
 D

e
g
re

e

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Average Instance Number on Edge Server

Fig. 11. The aggregation degree of microservice instances

6.3.4 Impact of Response Requirement

70000

75000

80000

85000

90000

95000

100000

0

200

400

600

800

1000

1200

1400

1600

2.12.42.733.33.6

D
ep
lo
ym
en
tC
os
t($
)

R
es
ou
rc
e
C
on
su
m
pt
io
n

Response TimeRequirement (s)

Computation Resource (in MB)
Storage Resource (in 1/5GB)
Deployment Cost

Fig. 12. The costs with different response requirement

The requirement of response time reflects the devel-
opers’ expectation for their application. In many cases,
the application providers need a trade-off between per-
formance and cost, so they should be more careful about
the balance so that they can save money as well as keep
the quality of experience. In Fig.12, we draw the curve
for deployment schemes with different application re-
sponse time requirement to show this relation (to illustrate
both the computation resource consumption and storage
resource consumption, here we multiply the storage re-
source consumption with 5 in the figure). We can find that
there is an obvious trend that the cost increases when we
want to have lower response time. By drawing figures
for different systems, the application developers will get
a general idea of the cost they have to pay for given
response requirements. This will help the developers bal-
ance the cost and performance.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 15

0 0.2 0.4 0.6 0.8 1
1/

8.35

8.4

8.45

8.5

8.55
C

o
st

 (
$

)

10
4

Fig. 13. The costs with different ε

6.3.5 Impact of Queue Time Approximation

As we use the approximation form E[T̂ (Ω)] instead of
E[T (Ω)] to simplify the problem in this work, some extra
loss in accuracy maybe introduced for it. Though the
gap between E[T̂ (Ω)] and E[T (Ω)] can be estimated with
Eq (29) (31), we also need to check how it will affect
the results with experiments. Therefore, we choose ε =
[1
5µmin

, 2
5µmin

, 3
5µmin

, 4
5µmin

, 1
µmin

] and Eq (31) to find
service deployment scheme individually, and compare
them with response time constraint Eq (21) and ε = 0.
The comparison result is shown in Fig.13. In this figure,
we can find that: compared with the original form, the
deployment scheme generated with the approximation
form can get more or less cost with different choice of ε.
This is easy to understand because the real gap εr may
locate in [0, ε) or [ε, 1

µmin
]: a smaller guess for εr may

result in a smaller response time requirement, and the
corresponding deployment scheme will result in a smaller
average response time but a higher cost; a larger guess
for εr may result in a larger response time requirement,
and the corresponding deployment scheme will result in
a larger average response time but a lower cost.

6.3.6 A Guide for Service Deployment

To go a step further, we can investigate the relationship
between the instance number of microservice and the
states of different edge servers to explore the best practice
of deploying. In this way, the first thing to do is to
represent the state of an edge server. As the edge server
will provide resources, process requests and communicate
with different devices, we can describe its state from
these perspectives. From the perspective of resource pro-
vision, every edge server can provide computation and
storage resources, which are represented with Lc and
Ld. From the perspective of communication efficiency,
the communication of every edge server can be classi-
fied into machine-to-machine (M2M) communication and
machine-to-device (M2D) communication. The efficiency
of M2M can be defined with:

eM2M =
1

n

∑
s′∈ES,s′ 6=s

1

Bs,s′
(52)

And the efficiency of M2D can be defined with:

eM2D =

1
vsu

, s ∈ ES
1
n

∑n
s=1

1
vsu

+ 1
n

∑
s′∈ES

1
B
s,s
′

, s ∈ CS (53)

these two definitions measure the transmission efficiency
for 1MB data to users and servers. From the perspective
of request processing, the efficiency can be described by
the average processing capacity µ̂j = Ωi,jµi,j∑m

i=1 Ωi,j
and active

request to an edge sever, which can be quantified with λj .
Therefore, we can represent the state of an edge server
with these 6 indicators.

In general, Pearson correlation coefficient can be used
to describe the relation between two sequence X and Y .

rp(X,Y) =

∑n
i=1 (Xi − X̄)(Yi − Ȳ)√∑n

i=1 (Xi − X̄)2
√∑n

i=1 (Yi − Ȳ)2
(54)

Therefore, by using Pearson correlation coefficient to cal-
culate the correlation between the instance number and
these indicators, we can get the radar plot shown in Fig.14.
In this figure, we can find that the deployed instance num-

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Computation

Storage

M2M

M2D

Activeness

Processing

Fig. 14. The correlations between instance number and 6
dimensions for microservices

ber of an edge server is related to the processing capacity
and the requests that generated from the devices in its
serving area. This will be reasonable because deploying
instances on these edge servers will result in reduction in
execution and transmission. Compared with the storage
resource, the computation resource will affect more on
the deployment schemes. This is true according to our
settings, because the computation resource will be the
bottleneck in most cases. Therefore, a heuristic guide for
the developers is to put microservice instances on the
servers whose processing capacity is better and whose
users in serving area are more active.

7 RELATED WORK

With an increasing number of mobile devices connecting
to the cloud, the demand for high-quality service provi-
sion becomes urgent. It drives more and more researchers
to pay attention to issues of the MEC model that affect
the effectiveness of service provision. In this section, we
review the research related to our study, i.e. MEC frame-
work and cache policy.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 16

7.1 MEC Framework
With the help of a MEC model, researchers and developers
reconstruct their system components to achieve their dif-
ferent goals. Since the MEC model focuses on mobile end
devices, energy consumption reduction and performance
optimization become the main research topics to perform
computation in an economical and efficient way. For ex-
ample, Li et al. [38] consider the energy consumption of
mobile devices; they analyze overheads of mobile devices
and propose an overhead-optimizing multi-device task
scheduling strategy for ad-hoc-based MEC systems. Ste-
fania et al. [39] consider a Multi-Input and Multi-Output
(MIMO) multi-cell system where multiple mobile users
ask for computation offloading to servers; they formulate
the offloading problem as the joint optimization of the
radio resources and the computational resources to satisfy
the latency constraints. Yu et al. [40] consider incorpora-
tion with dense cellular networks; they propose an online
algorithm based on Lyapunov optimization to determine
offloading and edge server sleeping policy and increase
performance while keeping low energy consumption. Yi
et al. [41] propose LAVEA, a system built for edge comput-
ing, which offloads computation tasks between clients and
edge nodes, collaborates nearby edge nodes, to provide
low-latency video analytics at places closer to the users.

7.2 Microservice Deployment
The nature of microservice deployment problems is an as-
signment problem, by considering different types of con-
straints in reality, researchers have done lots of work on
it. Fan et al. [6] consider the application workloads among
cloudlet and propose an application aware workload al-
location scheme for edge to minimize the response time
of application requests by assigning requests to appro-
priate destination cloudlets. And they also consider the
workload balance problem [42], they propose a workload
balancing scheme to minimize the latency of data flows
by associating devices to suitable edge servers. Huang et.
al [43] present a load-aware service deployment approach
for dynamic workloads and a service request scheduling
method based on task ranking mechanisms to improve
the execution performance of composite cloud services in
dynamic cloud environments. Moens et. al [44] present
and evaluate a formal model for resource allocation of
virtualized network functions within NFV environments.
Wu et. al [45] have proposed an elastic framework to
automatically and dynamically deploy cloud services on
data center, base stations, client units, even peer devices,
so that all available resources around mobile users are
made use of to provide seamless service. Li et. al [46]
study the joint problem of service function chain deploy-
ing and path selection for bandwidth saving and virtual
network functions reuse, model it as a multi-objective
problem and propose a heuristic approach to solve it.
Wu et. al [45] propose an elastic framework which can
automatically and dynamically deploy cloud services on
data center, base stations, client units, even peer devices
based on their context-aware model so that the cost can be

optimized. Vögler et. al [10] present a framework for the
dynamic generation of optimized deployment topologies
for IoT cloud applications that are tailored to the currently
available physical infrastructure so that the application
components on edge devices can provide service flexibly.

These researches shed light on the fundamental con-
cepts that involved in the cache problem in MEC models.
Based on their work, we can go a step further to explore
how to deploy microservice instances on the mobile edge
servers for the microservice-based applications with both
performance and cost requirements.

8 CONCLUSION AND FUTURE WORK

This paper introduces the mobile edge computing model
and highlights the scenario of deploying microservice-
based application on the edge service provisioning sys-
tem. Based on them, we model the microservice instances
on servers as the queuing node and propose an ap-
proach to find optimal deployment schemes with lower
cost while meeting the demand of application average
response time. In addition, we explore the factors that may
effect the results and give some guidance for developers
in deploying microservice-based applications. As the ap-
proach can generate deployment schemes for applications
when the location-aware request arrival rate λ is given in
a time period, the application developers can dynamically
update the deployment schemes when the request arrival
rate can be predicted accurately. It means that we can
turn to develop some prediction models in the future
work. Besides this, the routing policy can also act as a
decision variable. If we can determine the routing policy
as well as the deployment scheme, there also may be an
improvement in saving the cost.

REFERENCES

[1] A. Paya and D. C. Marinescu, “Energy-aware load balancing
and application scaling for the cloud ecosystem,” IEEE Transac-
tions on Cloud Computing, vol. 5, no. 1, pp. 15–27, 2017.

[2] K. Li, “Improving multicore server performance and reducing
energy consumption by workload dependent dynamic power
management,” IEEE Transactions on Cloud Computing, vol. 4,
no. 2, pp. 122–137, 2016.

[3] S. Deng, H. Wu, W. Tan, Z. Xiang, and Z. Wu, “Mobile service
selection for composition: an energy consumption perspective,”
IEEE Transactions on Automation Science and Engineering, 2015.

[4] M. atel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal
et al., “Mobile-edge computing introductory technical white
paper,” White Paper, Mobile-edge Computing (MEC) industry ini-
tiative, 2014.

[5] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “Qos predic-
tion for service recommendations in mobile edge computing,”
Journal of Parallel and Distributed Computing, 2017.

[6] Q. Fan and N. Ansari, “Application aware workload allocation
for edge computing-based iot,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 2146–2153, 2018.

[7] I. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices
scheduling model over heterogeneous cloud-edge environ-
ments as support for iot applications,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2672–2681, 2018.

[8] P. D. Francesco, P. Lago, and I. Malavolta, “Migrating towards
microservice architectures: An industrial survey,” in IEEE Inter-
national Conference on Software Architecture, ICSA 2018, 2018, pp.
29–39.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 17

[9] F. Boyer, X. Etchevers, N. D. Palma, and X. Tao, “Architecture-
based automated updates of distributed microservices,” in
Service-Oriented Computing - 16th International Conference, IC-
SOC2018, 2018, pp. 21–36.

[10] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “Opti-
mizing elastic iot application deployments,” IEEE Trans. Services
Computing, vol. 11, no. 5, pp. 879–892, 2018.

[11] S. Nastic, H. L. Truong, and S. Dustdar, “Data and control
points: A programming model for resource-constrained iot
cloud edge devices,” in 2017 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2017, 2017, pp. 3535–3540.

[12] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng et al., “Unsupervised anomaly detection via
variational auto-encoder for seasonal kpis in web applications,”
the web conference, pp. 187–196, 2018.

[13] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya,
“Composition-driven iot service provisioning in distributed
edges,” IEEE Access, vol. 6, pp. 54 258–54 269, 2018.

[14] M. D. Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mah-
moodi, M. Zorzi, and A. Zanella, “Using smart city data in 5g
self-organizing networks,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 645–654, 2018.

[15] S. Dustdar, S. Nastic, and O. Scekic, Smart Cities - The Internet of
Things, People and Systems. Springer, 2017.

[16] M. Vögler, J. M. Schleicher, C. Inzinger, S. Dustdar, and R. Ran-
jan, “Migrating smart city applications to the cloud,” IEEE Cloud
Computing, vol. 3, no. 2, pp. 72–79, 2016.

[17] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes, “An analysis
of restful apis offerings in the industry,” in International Confer-
ence on Service-Oriented Computing. Springer, 2017, pp. 589–604.

[18] S. Wang, C. Ding, N. Zhang, N. Cheng, J. Huang, and Y. Liu,
“ECD: an edge content delivery and update framework in
mobile edge computing,” CoRR, vol. abs/1805.10783, 2018.

[19] P. Burke, “The output process of a stationary m/m/s queueing
system,” The Annals of Mathematical Statistics, vol. 39, no. 4, pp.
1144–1152, 1968.

[20] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvest-
ing devices,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3590–3605, 2016.

[21] W.-P. Yang, L.-C. Wang, and H.-P. Wen, “A queueing analytical
model for service mashup in mobile cloud computing,” in
2013 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2013, pp. 2096–2101.

[22] Y. Xiao, C. Lin, Y. Jiang, X. Chu, and X. Shen, “Reputation-based
qos provisioning in cloud computing via dirichlet multinomial
model,” in 2010 IEEE International Conference on Communications.
IEEE, 2010, pp. 1–5.

[23] D. Chouhan, S. D. Kumar, and J. A. Ajay, “A mlfq scheduling
technique using m/m/c queues for grid computing,” Interna-
tional Journal of Computer Science Issues (IJCSI), vol. 10, no. 2 Part
1, p. 357, 2013.

[24] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. IEEE, 2018, pp. 207–215.

[25] T. Antczak, “The l1 penalty function method for nonconvex dif-
ferentiable optimization problems with inequality constraints,”
Asia-Pacific Journal of Operational Research, vol. 27, no. 05, pp.
559–576, 2010.

[26] A. Forsgren and P. E. Gill, “Primal-dual interior methods for
nonconvex nonlinear programming,” SIAM Journal on Optimiza-
tion, vol. 8, no. 4, pp. 1132–1152, 1998.

[27] A. R. Conn, N. I. Gould, D. Orban, and P. L. Toint, “A primal-
dual trust-region algorithm for non-convex nonlinear program-
ming,” Mathematical programming, vol. 87, no. 2, pp. 215–249,
2000.

[28] N. I. Gould, D. Orban, A. Sartenaer, and P. L. Toint, “Super-
linear convergence of primal-dual interior point algorithms for
nonlinear programming,” SIAM Journal on Optimization, vol. 11,
no. 4, pp. 974–1002, 2001.

[29] F. Yang, K. Gao, I. W. Simon, Y. Zhu, and R. Su, “Decomposi-
tion methods for manufacturing system scheduling: a survey,”
IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 389–400,
2018.

[30] P. Wu, A. Che, F. Chu, and M. Zhou, “An improved exact ε-
constraint and cut-and-solve combined method for biobjective
robust lane reservation,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 3, pp. 1479–1492, 2015.

[31] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell,
“Branch-and-bound algorithms: A survey of recent advances
in searching, branching, and pruning,” Discrete Optimization,
vol. 19, pp. 79–102, 2016.

[32] N. I. Gould, D. Orban, A. Sartenaer, and P. L. Toint, “Compo-
nentwise fast convergence in the solution of full-rank systems of
nonlinear equations,” Mathematical programming, vol. 92, no. 3,
pp. 481–508, 2002.

[33] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
“Mobility-aware service composition in mobile communities,”
IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 47, no. 3,
pp. 555–568, 2017.

[34] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
simulation of scalable cloud computing environments and the
cloudsim toolkit: Challenges and opportunities,” in 2009 inter-
national conference on high performance computing & simulation.
IEEE, 2009, pp. 1–11.

[35] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,
“ifogsim: A toolkit for modeling and simulation of resource
management techniques in the internet of things, edge and
fog computing environments,” Software: Practice and Experience,
vol. 47, no. 9, pp. 1275–1296, 2017.

[36] R. V. Rao, V. J. Savsani, and D. Vakharia, “Teaching–learning-
based optimization: a novel method for constrained mechanical
design optimization problems,” Computer-Aided Design, vol. 43,
no. 3, pp. 303–315, 2011.

[37] S. Lyden and M. E. Haque, “A simulated annealing global
maximum power point tracking approach for pv modules
under partial shading conditions,” IEEE Transactions on Power
Electronics, vol. 31, no. 6, pp. 4171–4181, 2016.

[38] L. Tianze, W. Muqing, Z. Min, and L. Wenxing, “An overhead-
optimizing task scheduling strategy for ad-hoc based mobile
edge computing,” IEEE Access, vol. 5, pp. 5609–5622, 2017.

[39] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE Trans. Signal and Information Processing over
Networks, vol. 1, no. 2, pp. 89–103, 2015.

[40] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp.
1397–1411, 2017.

[41] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on. IEEE, 2017, pp. 2573–2574.

[42] Q. Fan and N. Ansari, “Towards workload balancing in fog
computing empowered iot,” IEEE Transactions on Network Sci-
ence and Engineering, 2018.

[43] K. Huang, Y. Lu, M. Tsai, Y. Wu, and H. Chang, “Performance-
efficient service deployment and scheduling methods for com-
posite cloud services,” in Proceedings of the 9th International
Conference on Utility and Cloud Computing, UCC 2016, Shanghai,
China, December 6-9, 2016, 2016, pp. 240–244.

[44] H. Moens and F. D. Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in 10th International
Conference on Network and Service Management, CNSM 2014,
D. Raz, M. Nogueira, E. R. M. Madeira, B. Jennings, L. Z.
Granville, and L. P. Gaspary, Eds. IEEE Computer Society,
2014, pp. 418–423.

[45] K. Wu, W. Liu, and S. Wu, “Dynamic deployment and cost-
sensitive provisioning for elastic mobile cloud services,” IEEE
Trans. Mob. Comput., vol. 17, no. 6, pp. 1326–1338, 2018.

[46] D. Li, J. Lan, and P. Wang, “Joint service function chain deploy-
ing and path selection for bandwidth saving and VNF reuse,”
Int. J. Communication Systems, vol. 31, no. 6, 2018.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2970698, IEEE
Transactions on Mobile Computing

TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 18

Shuiguang Deng is currently a full professor
at the College of Computer Science and Tech-
nology in Zhejiang University, China, where he
had received a BS and PhD both in Computer
Science in 2002 and 2007, respectively. He
was previously a visiting scholar worked at
the Massachusetts Institute of Technology in
2014, and at Stanford University in 2015 as a
visiting scholar. His research interests include
Edge Computing, Service Computing, Mobile
Computing, and Business Process Manage-

ment. He serves as Associate Editor for the journal IEEE Access and
IET Cyber-Physical Systems: Theory & Applications as an Associate
Editor. During the past ten years, he has published more than 90 pa-
pers in journals in such as IEEE TOC, TPDS, TSC, TCYB and TNNLS,
and refereed conferences including WWW, ER, ICWS, ICSOC, et al.
In 2018, he was granted the Rising Star Award by IEEE TCSVC.

Zhengzhe Xiang received the Bachelor de-
gree of Computer Science and Technology in
Zhejiang University, China. Now, he is working
toward the PhD degree in the College of Com-
puter Science, Zhejiang University, China. His
research interests lie in the fields of Ser-
vice Computing, Cloud Computing, and Edge
Computing.

Javid Taheri received his Bachelor and Mas-
ters of Electrical Engineering from Sharif Uni-
versity of Technology, Tehran, Iran in 1998 and
2000, respectively. He received his Ph.D. in
the field of Mobile Computing from the School
of Information Technologies at the University
of Sydney, Australia. Since 2006, he has been
actively working in several fields, including:
networking, optimization, parallel/distributed
computing, and cloud computing. Because of
for his contribution to the vibrant area of Cloud

Computing, he was selected among 200 top young rehearses by the
Heidelberg Forum in 2013. He also holds several cloud/networking
related industrial certification from VMware (VCP-DCV, VCP-DT, and
VCP-Cloud), Cisco (CCNA), Microsoft, etc. He is currently working as
an Associate Professor at Department of Computer Science in Karl-
stad University, Sweden. His major areas of interest are (1) Profiling,
Modelling and Optimization techniques for private and public cloud
infrastructures, (2) Profiling, Modelling and Optimization techniques
for Software Defined Networks, and (3) Network-aware Scheduling
Algorithms for Cloud and Green computing.

Mohammad Ali Khoshkholghi is currently
a postdoctoral research fellow at Department
of Computer Science in Karlstad University,
Sweden. He received his Bachelor and Mas-
ters of Computer Engineering in 2007 and
2010, respectively. He obtained his PhD in
Computer Science from the Faculty of Com-
puter Science and Information Technology at
the University Putra Malaysia in 2017. Before
joining KAU, he worked as researcher and
university lecturer within Computer Science.

He serves as the referee, TPC and editorial board member for many
prestigious journals and conferences. His research interests lie in the
area of Edge and Cloud Computing, Network Function Virtualization
and Optimization Techniques.

Jianwei Yin Jianwei Yin received the PhD de-
gree from Zhejiang University, China, in 2001.
He is a full professor in the College of Com-
puter Science and Technology, Zhejiang Uni-
versity, China. His current research interests
include cloud computing, performance evalu-
ation, service computing, middleware, etc. He
has published more than 120 research papers
in major peer-reviewed international journals
and conference proceedings in these areas.
He is the associate editor of Transaction on

Service Computing.

Albert Y. Zomaya is currently the chair pro-
fessor of High Performance Computing & Net-
working in the School of Information Tech-
nologies, The University of Sydney. He is also
the director in the Centre for Distributed and
High Performance Computing, which was es-
tablished in late 2009. He published more than
500 scientific papers and articles and is a
author, co-author or editor of more than 20
books. He served as the editor in chief of
the IEEE Transactions on Computers (2011-

2014). He serves as an associate editor for 22 leading journals, such
as, the ACM Computing Surveys, IEEE Transactions on Computa-
tional Social Systems, IEEE Transactions on Cloud Computing, and
Journal of Parallel and Distributed Computing. He delivered more
than 150 keynote addresses, invited seminars, and media briefings
and has been actively involved, in a variety of capacities, in the
organization of more than 600 national and international conferences.
He received the IEEE Technical Committee on Parallel Processing
Outstanding Service Award (2011), the IEEE Technical Committee
on Scalable Computing Medal for Excellence in Scalable Comput-
ing (2011), and the IEEE Computer Society Technical Achievement
Award (2014). He is a chartered engineer, a fellow of AAAS, IEEE,
and IET (United Kingdom). His research interests are in the areas
of parallel and distributed computing and complex systems. He is a
fellow of the IEEE.

Schahram Dustdar is Full Professor of Com-
puter Science (Informatics) with a focus
on Internet Technologies heading the Dis-
tributed Systems Group at the TU Wien. He
is Chairman of the Informatics Section of
the Academia Europaea (since December 9,
2016). He is elevated to IEEE Fellow (since
January 2016). From 2004-2010 he was Hon-
orary Professor of Information Systems at the
Department of Computing Science at the Uni-
versity of Groningen (RuG), The Netherlands.

From December 2016 until January 2017 he was a Visiting Professor
at the University of Sevilla, Spain and from January until June 2017
he was a Visiting Professor at UC Berkeley, USA. He is a member
of the IEEE Conference Activities Committee (CAC) (since 2016),
of the Section Committee of Informatics of the Academia Europaea
(since 2015), a member of the Academia Europaea: The Academy
of Europe, Informatics Section (since 2013). He is recipient of the
ACM Distinguished Scientist award (2009) and the IBM Faculty Award
(2012). He is an Associate Editor of IEEE Transactions on Services
Computing, ACM Transactions on the Web, and ACM Transactions
on Internet Technology and on the editorial board of IEEE Internet
Computing. He is the Editor-in-Chief of Computing (an SCI-ranked
journal of Springer).

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:29:41 UTC from IEEE Xplore. Restrictions apply.

