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Abstract—Cloud data centers exploit many memory page management techniques that reduce the total memory utilization and
access time. Mainly these techniques are applied to a hypervisor in a single host (intra-hypervisor) without the possibility to exploit the
knowledge obtained by a group of hosts (clusters). We introduce a novel inter-hypervisor orchestration platform to provide intelligent
memory page management for horizontal scaling. It will use the performance behavior of faster virtual machines to activate
pre-fetching mechanisms that reduce the number of page faults. The overall platform consists of five modules - profiler, collector,
classifier, predictor, and pre-fetcher. We developed and deployed a prototype of the platform, which comprises the first three modules.
The evaluation shows that data collection is feasible in real-time, which means that if our approach is used on top of the existing
memory page management techniques, it can significantly lower the miss rate that initiates page faults.

Index Terms—Cloud infrastructure, memory access management, page faults, pre-fetching, virtualization, XEN.
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1 INTRODUCTION

Dynamic memory page management techniques, such as
memory deduplication, page faults management, memory
overcommitment, memory ballooning, or hot-swapping,
rely on the cooperation of the virtual machines (VMs) hosted
on a single physical host [1]. Although all these techniques
provide autonomous and automatic memory page manage-
ment that reduces the total memory utilization and memory
access time, their application domain is still limited within
a single host. On the other hand, cloud environments use
horizontal scaling such that hundreds or thousands of VMs
(VM-siblings) of the same image work on the same problem.
These VM-siblings use the same guest operating system, the
same code segment, and many memory pages of the same
data segment are identical or similar, thereby conducting
similar memory access patterns. Since VM-siblings may be
scheduled on multiple hosts, the state-of-the-art intra-host
memory management methods cannot be fully exploited.
The goal of this paper is to introduce an inter-hypervisor
orchestration platform, which uses the knowledge obtained
by VM-siblings that are hosted on different hosts and po-
tentially use it in real-time to reduce the memory page
fault ratio, for negligible resource utilization overhead and
latency.

2 RELATED WORK

Wei-Zhe Zhang [2] presented an automatic memory control
of multiple VMs that dynamically adjusts allocation accord-
ing to the used memory by the VMs, while Qi Zhang [3]
used a shared memory pool for fast just-in-time memory
page recovery. Although these techniques reduce the num-
ber of memory page faults, they apply on a single host
without being aware of other VM-siblings at other hosts.

Hines [4] and Tasoulas [5] use the estimation of applica-
tion memory requirements for memory balancing and dis-
tribution. Their techniques automate the distribution of the

memory across VMs, but again limit the hypervisor’s level
on a single host. Additionally, they quantify the amount of
memory without a qualitative estimation of the specific page
accesses in the near future for each VM-sibling.

Several researchers presented an orchestration for mul-
tiple hypervisors. Gopalan et al. [6] introduced the span
virtualization, which allows multiple hypervisors to control
the memory of guest’s OS concurrently. Still, this orches-
tration is on a single host. Fecade et al. [7] orchestrated
multiple hypervisors in mobile cloud computing. They used
a Bayes-based classifier to predict failures in hypervisor and
to prevent VM failures by migrating them to another host.
However, the authors verified their approach with simula-
tion, without real implementation and without considering
the network latency.

Pre-fetching is a commonly used technique in memory
management. Ren et al. [8] introduced an asynchronous
pre-fetching mechanism to speculatively pre-fetch the dirty
pages from a primary VM on a secondary VM on another
host without disrupting its execution. While this algorithm
shortens the sequential dependency when VM checkpoints
are generated and transmitted to a VM on another host, still,
it uses one-to-one mapping between the primary and sec-
ondary VMs without considering memory access patterns
from other VM-siblings.

3 INTER-HYPERVISOR ORCHESTRATION PLAT-
FORM

3.1 Terminology
Before diving into details, we explain the used terminology.
Let VM11, VM12, and VM31 denote three VMs hosted on
two hosts (Host1 and Host3), as presented in Fig. 1, such
that the first index identifies the host, while the second
one determines the VM on that host. For example, VM12

represents the second VM hosted on Host1. Let all VMs are
a part of horizontal scaling, which means they run the same
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Fig. 1. Definition of VM-cluster and VM-siblings (VM-leader and slack-
VMs).

application, either for different input data or serve requests
generated by different users.

Definition 1 (VM-cluster). A VM-cluster is a set of VMs that
are scaled horizontally and usually deployed across multiple hosts.

For example, Fig. 1 illustrates a part of a data center,
where VMs are grouped in: VM-cluster1 with three VM-
siblings, while VM-cluster2 and VM-cluster3 with four.
Each VM-sibling runs the same application, which is scaled
horizontally across three hosts.

Definition 2 (Specific VMs within a VM-cluster). A VM-leader
is the fastest VM-sibling that leads the execution within one VM-
cluster. Slack-VMs are all other VM-siblings that perform slower
than the VM-leader within a specific VM-cluster.

Each VM-cluster identifies a single VM-leader at each
point of time, while all the other VM-siblings are slack-VMs.
However, these roles may change in time for a specific VM.

Without losing generality, we assume a heterogeneous
environment where the VMs and hosts perform at different
speeds. Fig. 1 presents that VM11, VM32 and VM14 are
VM leaders of the corresponding VM-clusters 1, 2 and 3.
For example, besides the VM leader VM11, the VM-cluster1
contains also other VM-siblings (slack-VMs including VM12

and VM31).

3.2 The platform architecture
The inter-hypervisor platform orchestrates hypervisors of a
group of horizontally-scaled VM-clusters, as presented in
Fig. 2. To orchestrate VM-siblings in the horizontal scaling,
the first step of the orchestrator is to classify all VMs in VM-
clusters according to the information from the cloud con-
troller. Further on, the orchestrator communicates with the
agents on each host to gather the necessary access data that
caused page faults for each hosted VM-sibling. Finally, the
orchestrator detects patterns in the page faults to determine
the VM-leader of each VM-cluster, whose behavior will be
used later for prediction and pre-fetching the memory pages
of the slack-VMs.

The proposed inter-hypervisor orchestration platform
consists of two main processes: i) a bottom-up data collection
and management, and ii) a top-down control process. This
paradigm is particularly suitable for concurrent manage-
ment of these two processes. For example, hypervisors can
manage VMs on the same host, while our orchestrator sup-
ports global views of VM-clusters, combining and analyzing
data of all VM-siblings of a single VM-cluster scattered on
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Fig. 2. Design of the inter-hypervisor orchestration platform.

different hosts. On the other side, the top-down control
process allows flooding the information about pre-fetching
memory pages that already generated page faults at the VM-
leader, thereby reducing the page faults ratio for the slack-
VMs and significantly improving their performance.

The orchestration platform consists of five modules:
classifier, collector and predictor within the central part of the
orchestrator, together with profiler and pre-fetcher distributed
on each host. Since the orchestrator collects data about page
faults from profilers and sends the predicted memory pages
for all hosted VMs back to pre-fetchers hosted on multiple
hosts, the modules of the orchestrator should be deployed
on servers with a higher bandwidth and a small network
diameter to the orchestrated hosts. Our approach with the
centralized orchestrator and distributed profilers does not
require a direct communication between VMs’ operating
systems.

The orchestrator will have access to memory usage info
for all orhestrated VMs, which may open security and pri-
vacy risks. In order to mitigate such risks, the profiler sends
anonymized data that do not contain information about the
owners of the VMs, their addresses, or credentials.

The orchestrator is only a logical representation and
any of its three modules may be hosted on a separate
server. Moreover, the modules may be containerized and
managed with Kubernetes for higher scalability. The orches-
trator implementation is not affected by the existing cloud
infrastructure as it works on a lower (hypervisor) level.

3.2.1 Classifier

The classifier groups all VMs in VM-clusters, such that
each VM member of horizontal scaling becomes a VM-
sibling within a specific VM-cluster. Clustering is a dynamic
process in the cloud ecosystem regularly performed by the
classifier, where VMs are instantiated, replicated, migrated
to another host and terminated. The classifier can be ex-
tended to cluster VMs that are not a part of horizontal
scaling or VM-clusters without VM-leader, if they have a
similar memory access pattern [9].
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3.2.2 Profiler
Each host deploys a profiler that communicates with the
local hypervisor to collect data about page faults and swap-
ping for each hosted VM, and sends it to the collector within
the centralized orchestrator. The profiler can be built based
on iBalloon [10], which provides efficient intra-hypervisor
VM memory balancing within a consolidated host. iBalloon
runs a lightweight monitoring process (daemon) in each VM
of the host that gathers information about its memory uti-
lization. This technique improves the overall performance
for memory-intensive applications with less than 5% CPU
overhead trade-off, compensated due to the CPU under-
utilization compared to the main memory.

3.2.3 Collector
The collector is a simple module that gathers the data from
all profilers in a single and persistent centralized knowledge
base, which contains memory access data of all VM-siblings
within each VM-cluster. The main challenge of the collector
is to determine the size and length of historical data con-
sidered by the predictor. Accordingly, the collector splits the
received data into hot and cold parts. The predictor uses the
hot part to determine the memory pages to be pre-fetched at
VM-siblings, while the cold part helps strategic planning of
future data center design and maintenance through offline
analysis. Extending the iBalloon, one can run a daemon that
collects all data from each host’s memory profiler. Although
the concept of cold and hot memory pages [11] provides
performance overhead, we can still use this concept to
reduce the memory access interception.

3.2.4 Predictor
The predictor is the brain of the orchestrator that exploits
the collected data of the knowledge-base. It possibly uses
machine learning-based techniques (beyond the scope for
this article) to predict the memory page accesses for each
VM-sibling within a VM-cluster. Since the cloud environ-
ment is a heterogeneous one, both the VM type and the
underlying host computation resources (CPU, RAM) must
be considered by the predictor to further improve the
prediction accuracy. The centralized predictor can exploit
data for memory access patterns of all VM-siblings within a
VM-cluster, regardless whether they are hosted on a single
host or scattered across several hosts. With this knowledge,
the predictor can estimate more accurately which mem-
ory pages will be accessed by slack-VMs and inform the
pre-fetchers and hypervisors accordingly to pre-fetch those
memory pages into guest main memory.

3.2.5 Pre-fetcher
The predictor submits the information to the pre-fetcher on
each host to initiate pre-fetching of memory pages from
local disks to all locally hosted VMs. The pre-fetcher issues a
command to the Hypervisor to pre-fetch (swap-in) a memory
page into each VM to reduce the memory page fault.

4 PLATFORM PROTOTYPE IMPLEMENTATION AND
EVALUATION

We implemented three modules (the classifier, profiler and
pre-fetcher) to investigate the effectiveness of the orches-
tration platform for data collection. The goal of the initial

figures/Prototype.pdf

Fig. 3. Platform prototype implementation

platform prototype was to evaluate how many memory
page faults can be generated, profiled and transferred to the
collector, both for traditional and virtual environment.

4.1 Platform prototype implementation

Fig. 3 presents the implementation of our platform proto-
type. We deploy the profiler on two hosts, each installed
with XenServer (v7.6.0) and Ubuntu 16.04.6 amd64. The
hosts (quad-core CPU, 4GB RAM, SSD) are connected using
NAT and 1Gbps network. Each host administers a VM-pool
Host 0x/dom0x and each VM gets a VMID, which is used to
specify it as a source of transferred data in the profiler. The
collector and the classifier are deployed on the orchestrator,
which has 6GiB RAM and is also installed with the same
Ubuntu.

We used SysBench benchmark tool to generate intensive
memory allocation and page faults in Ubuntu with a single
thread, which generated a total of 100GiB memory blocked
in blocks of 1MB each:

sysbench --num-threads=1 --test = memory --memory-
block-size = 1M --memory-total-size=100G run

Generated page faults were profiled by systemtap, which
was extended to submit the VMID. The following listing
presents an entry from the page fault, and shows when
(including microseconds) and on which host a process gen-
erated a page fault, which could be either write (w) or read
(r). Additionally, we submit the type of the page fault, i.e.,
minor or major. The size of each entry was always the same
(51B).

ID : Timestamp : PID : f a u l t a d d r e s s : f a u l t a c c e s s : kind : f a u l t t i m e
1 :1591116972164574 :30134 :140013325101104d :w: minor : 1

For sending the profiled data, we used Apache Kafka
(v2.2.0) and Zookeeper configured with default ports and
JDK (1.8.0) on all brokers in the system. Systemtap sends
data to the Kafka producer at Host 0x/dom0x, which is
collected by the Kafka consumer at the collector. Finally, the
collected stream data was stored in a file and the collector
(written in C) writes it in MySQL. The classifier specifies
VMIDs and groups them in a VM-cluster. Our current
classifier prototype uses only one VM-cluster as we measure
the data transfer rate.

4.2 Evaluation

We conducted two groups of experiments. The first group of
experiments was intended to investigate the cap varying the
number of sources (VMs and hosts), i.e., how many entries
the platform prototype is able to generate and send them
to the collector without using the profiler systemtap. The
second group of experiments determined the overhead of
introducing the profiler, which resulted in lower number
of records that were collected in real-time. We run each
experiment in two different environments (bare metal and
virtual). We denote experiments as B1, B1P, B2, B2P, V1, V2,
and V1P, where B and V denote the environment (bare metal
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Experiment Average throughput (·106/sec)
B1 17
B1P 0.25
B2 12
B2P 0.25
V1 8.5
V1P 0.078
V2 0.25

TABLE 1
Results of the evaluation. Presented number for the throughput shows

the million of entries received by the collector per second.

or virtual), 1 or 2 sources (VMs or hosts), and P denotes
experiments with the profiler.

Table 1 presents the achieved throughput of each exper-
iment. We observe that sending data without the profiler
achieved 17 million entries/s for one node as a source,
which is the maximum from all experiments since we used
only one node. Introducing another node (B2) reduced the
throughput to 12 million entries/s. On the other side, the
profiler (B1P) reduces the throughput to 250,000 entries/s
with one node and is stable even with two nodes because
the streaming cap of 17million entries/s is not reached.

Virtual environment reduced the throughput by half for
the experiment with one VM compared to the equivalent B1
and 3.2 times with the profiler. An interesting observation
is the higher deviance in the virtual environment.

4.3 Discussion
Since the memory access time at the host is around 50 ns
[12], we estimate around 20 million memory accesses/s if
all accesses are page hits, without any page misses and
swaps. However, we are mostly interested in TLB misses
and page faults, which happen in a range between 0.1− 1%
[12]. This leads to a maximum number of 200,000 records/s
that need to be stored and processed. We assume the worst
case where all TLB misses are also page table misses (page
faults), which is opposite to the write count disparity fea-
ture. On the other side, the total number of memory pages
is usually smaller than 200,000, as the legacy page size of
4 kB is nowadays abandoned to reduce the TLB misses.
More precisely, all modern CPU architectures and operating
systems support memory page size of 2MB, while some
even in the range of GiB. In a virtual environment, extended
page table (EPT) faults are handled within 2.4µs.

We selected the current state-of-the-art streaming plat-
forms to evaluate the feasibility of the new proposed plat-
form, such as Apache Kafka, which can handle at each
profiler up to 800,000 of 100B-long messages per second,
regardless of the data size (even up to 1.4TB). Our platform
achieved the maximal throughput of 17million entries/s,
51B each.

Although the profiler can collect and update the page
faults at each host, Zhang et al. [13] specify a hybrid
hardware and software tracing mechanism to collect and
profile last-level TLB misses, up to cache line granularity
of 64B. Moreover, another challenge is to collect data from
all profilers to the central orchestrator. For example, for a
network overhead of only 1% in 1Gibit s−1, we can submit
1,300 records, 100B each. Although profilers can group
several messages into a few larger ones to reduce the packet

header overhead, the total bandwidth remains in a similar
range.

Let’s analyze the price to be paid to achieve increased
performance. At each host, the platform runs both Kafka to
utilize a portion of computing resources. While the CPU
is usually underutilized in data centers, the memory is
often a bottleneck. Additionally, there is a small network
overhead depending on the number of pages transmitted.
This bottleneck is visible when more nodes or VMs are used
(see Table 1).

5 FURTHER IMPLEMENTATION CHALLENGES

5.1 Network Overheads

The designers and programmers must consider the network
latency and bandwidth that also impact the quality of the
gathered data. Another challenge is the network hetero-
geneity, especially its latency, as hosts can be connected
through a single physical switch, while others through
several with higher latency. Recent high-speed and high-
throughput memory and network, such as byte-addressable
Non-Volatile Memory express (NVMe) over fabrics (NVMf)
reported negligible application performance degradation
[14]. For example, the latest networking generates very low
latency of only 1µs and a very high bandwidth up to
200Gibit s−1 [15]. These trends in the networking allow
possibilities for broader dynamic memory page manage-
ment through the network and make our orchestration
platform feasible.

5.2 Prediction implementation challenges

The amount of data analyzed by the prediction process
impacts its performance. For example, a large history of
records has less impact over the current memory accesses
due to many context switches that may happen in the
meantime. On the other side, considering a small amount
of historical records may not be enough as a slack-VM
may perform much worse than the VM-leader and, thus,
a memory access pattern cannot be detected or valid for this
particular case.

The predictor must propose the pages to swap to the
disk and avoid being pre-fetched to the other VM-siblings.
Various application types can also show different behavior.

The behavior of each VM fluctuates due to cloud perfor-
mance instability [16] and therefore, there is no simple and
appropriate function for modelling variations in memory
page accesses of a VM. Nevertheless, we exploit the fact
that caches and memory paging are not directly mapped
but associative, which means that even a relaxed prediction
performance still diminishes the memory page fault rate.

The prediction accuracy is affected by other VMs of
other VM-clusters running other jobs on the same host. For
example, VM13, VM14, and VM15, which share the same
Host 1 memory with VM11 and VM12, will affect their
memory access and page faults (see Fig 1). This may make
the prediction of VM31 page access less accurate based
on VM11’s access pattern. This problem is analyzed by
Nemati et al. [9]. They introduced inter- and intra-cluster
similarity metrics to discover distinct groups of workloads
with negligible CPU and memory overhead.
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The inter-hypervisor orchestrator needs to predict a vec-
tor of memory page accesses for each VM-sibling, as follows:

• Characterize the VM-cluster using a set of parame-
ters that reflect the memory pages accesses for each
VM-sibling [9].

• Estimate the memory access of each VM-leader and
use it for VM-siblings. Additionally, considering the
heuristics with the write count disparity, only a few
and frequently updated memory pages could reduce
page faults even more [17].

• Experimentally evaluate the various machine learn-
ing methods (including Random Forest or similar)
considering the tradeoff among latency and resource
utilization overhead versus performance.

5.3 Pre-fetching challenges
Modern operating systems and hypervisors support mem-
ory pages of various size, such as small (4KiB), medium
(2MiB), and even large of up to 1GiB. While such plethora
of heterogeneous memory page sizes may improve the
performance [18], it may convolute both prediction and
pre-fetching. For example, memory access pattern of a VM-
leader that uses memory pages of medium size differs from
the access pattern of slack-VMs that use small sized ones.

On the other side, write memory accesses on VM-leaders
may be logged by the hardware using the Page-Modification
Logging [19] on commodity Intel processors. This hardware-
assisted enhancement allows the hypervisor to monitor the
modified (dirty) memory pages directly while running VMs,
thereby distinguishing the “write-hot” and ”write-cold”
memory pages in real-time.

6 CONCLUSION AND FUTURE WORK

We have introduced a platform that enhances the memory
page management techniques to reduce the page faults
and increase the performance of virtualized data centers
based on an inter-hypervisor (inter-host) approach. State-
of-the-art techniques implemented in today’s virtualized
environments include host-based pre-fetching and memory
swapping concepts. Currently, these approaches are imple-
mented for a single host and cannot be exploited for VMs
spread over different hosts.

The inter-host orchestration platform has a potential
to open up new research directions in cloud data center
memory management. Our approach enhances the mem-
ory page management implemented for an intra-hypervisor
solution by an inter-hypervisor platform, as a more efficient
dynamic technique intended for cloud data centers. It can be
efficiently implemented for VMs running an application that
implements large horizontal scaling among different hosts.

The basic principle of the new proposed approach for the
inter-hypervisor orchestration platform is to detect memory
access patterns that generate page faults within VMs hosted
on different hosts. Exploiting the patterns in gathered data,
the orchestrator may predict which memory pages will
be accessed in the near future and, therefore, may avoid
generating page faults at the other VMs (slack-VMs).

The platform prototype was developed including the
three modules classifier, profiler, and collector. The initial

evaluation showed the effectiveness of the platform to
collect generated entries about page-faults with a maxi-
mal throughput of 17million entries/s. Although the ini-
tial prototype of the profiler reduced the throughput to
250,000 entries/s of a host, still the platform prototype was
able to reach the estimated 200,000page faults/s [12], even
with a low power hosts and 1Gibit s−1 network.

We are currently working in the PRE-FETCH project
on implementation of the other two modules the predic-
tor and pre-fetcher and will investigate the effectiveness
of the overall inter-host orchestration platform. The initial
experiments with the Random Forest predictor showed a
promising accuracy.
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