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AbstrAct
Web-based DNNs provide accurate object rec-

ognition to the mobile Web AR, which is newly 
emerging as a lightweight mobile AR solution. Web-
based DNNs are attracting a great deal of attention. 
However, balancing the UX against the computing 
cost for DNN-based object recognition on the Web 
is difficult for both self-contained and cloud-based 
offloading approaches, as it is a latency-sensitive 
service but also has high requirements in terms of 
computing and networking abilities. Fortunately, the 
emerging 5G networks promise not only bandwidth 
and latency improvement but also the pervasive 
deployment of edge servers which are closer to the 
users. In this article, we propose the first edge-based 
collaborative object recognition solution for mobile 
Web AR in the 5G era. First, we explore the fine-
grained and adaptive DNN partitioning for the col-
laboration between the cloud, the edge, and the 
mobile Web browser. Second, we propose a differ-
entiated DNN computation scheduling approach 
specially designed for the edge platform. On one 
hand, performing part of DNN computations on 
mobile Web without decreasing the UX (i.e., keep 
response latency below a specific threshold) will 
effectively reduce the computing cost of the cloud 
system; on the other hand, performing the remain-
ing DNN computations on the cloud (including 
remote and edge cloud) will also improve the infer-
ence latency and thus UX when compared to the 
self-contained solution. Obviously, our collaborative 
solution will balance the interests of both users and 
service providers. Experiments have been conduct-
ed in an actually deployed 5G trial network, and the 
results show the superiority of our proposed collab-
orative solution.

IntroductIon
Mobile Web AR [1] is a lightweight implementation 
to provide an immersive experience on a mobile 
device. It enables cross-platform service provisioning 
that is challenging for the mainstream App-based 
implementations. Now it is seen as one of the most 
promising solutions for mobile AR. Recently, it has 
attracted a great deal of interest for its widespread 
application, such as HoloLeo Studios AR.js, Google 
WebARonARKit and WebARonARCore, Mozilla 
WebXR Viewer, and Tencent TBS AR.

Various components collaborate in the devel-
opment of mobile Web AR. Object recognition is 

one of the most important, as it provides the key 
for subscribers to enter the mixed-reality world. 
Accurate and real-time recognition is therefore 
particularly required. Fortunately, deep learning 
techniques have emerged, with a surprising fea-
ture extraction capability. However, the domi-
nant Web-based DNN implementations still face 
severe challenges for their practical application:
• Self-contained methods (e.g., TensorFlow.js 

and Keras.js) perform recognition inference 
on the Web, but all suffer from an unac-
ceptable response delay due to the limited 
computing capability of the mobile Web 
browser (especially the built-in browsers in 
mobile Apps). Although there are already 
some lightweight approaches for inference 
acceleration, satisfactory recognition accura-
cy cannot be achieved at the same time.

• Cloud-based offloading methods leverage 
the resources of a remote central site for 
accurate object recognition. But these meth-
ods also have their inherent flaws: 

•The UX is degraded by wireless net-
work fluctuations during continual 
long-distance data transmission.
•There are also serious increases in the 
computing cost in the cases of high 
concurrent.

Offloading the DNN computations to the net-
work edge seems a promising method [2], espe-
cially in the upcoming 5G networks [3] due to the 
pervasive deployment of edge servers, which will 
provide supplementary computing and storage 
resources for subscribers close to the access points.

Why collAborAtIon Is needed
Placing the DNN computations on edge servers 
is obviously able to provide accurate and real-
time recognition services. Nevertheless, the edge-
based collaborative method is still recommended 
for the following reasons.

Push from Service Providers: AR is a specific 
type of computation-intensive and data-intensive 
application. When faced with the ever-increasing 
computing cost, service providers are sorely in 
need of new approaches for cost saving. The idle 
computing resources on the end user’s device 
have again gained attention.

Pull from End Users: With the continuous 
improvement of mobile devices, end users prefer 
to execute computations locally, not only for a 
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better experience (because it reduces the impact 
of data transmission on the applications) but also 
to protect their privacy.

By combining the advantages of all parties 
(namely, the mobile Web browser, the network 
edge, and the cloud server), an edge-computing 
based collaborative approach will undoubtedly be 
favored by users and service providers.

FIne-GrAIned And AdAptIve dnn pArtItIonInG
However, current collaborative methods [4, 5] 
are designed for collaboration between the user 
device and the cloud based on a single partition-
ing point. Apparently, the collaboration between 
three distributed platforms will be more com-
plex. Although there have been some preliminary 
attempts at edge-based distributed DNN [6], these 
methods currently cannot deal with complex and 
varying situations due to their coarse-grained parti-
tioning and lack of dynamic adaptability.

To this end, we propose the first fine-grained 
and adaptive collaboration mechanism for DNN-
based object recognition on the mobile Web in 
5G networks. Specifically, we analyze the char-
acteristics of each layer in DNN, then obtain the 
inference latency and energy consumption pre-
diction models. By considering the capability of 
the computing platforms and the mobile network 
performance, the proposed mechanism therefore 
enables adaptive DNN computation partitioning. 
Consequently, the DNN will be divided into several 
parts dynamically, and the computation-intensive 
parts are more likely be offloaded to the cloud so 
as to accelerate the process of inference, while 
others will be assigned to the end users, which 
achieves not only a cost saving for the service pro-
vider but also privacy protection for the users.

dIFFerentIAted dnn computAtIon schedulInG
Features learned at early layers in the DNN can 
provide credible recognition for simple samples, 
therefore an early exit mechanism will further accel-
erate the recognition inference [7]. When the server 
receives multiple DNN computing requests, a prior-
ity-based scheduling policy will be recommended. 
Especially since the network edge is a supplementa-
ry computing platform, and the resources are more 
precious, an appropriate scheduling approach can 
effectively improve the utilization of the resources, 
and thus system efficiency.

However, most of the current priority-based 
approaches are only concerned with one aspect 
of the problem, which lacks the consideration of 
the balance between time cost and benefits. An 
efficiency-based scheduling approach is therefore 
demanded, which considers the per-layer feature 
extraction capability and inference latency simul-
taneously, then assigns higher priority to DNN 
computing requests with higher efficiency. To the 
best of our knowledge, the proposed differentiat-
ed computation scheduling approach is also the  
first priority-based approach for the edge platform 
at DNN layer granularity.

edGe-AssIsted dIstrIbuted dnn collAborAtIon
Edge-computing based collaboration promises an 
efficient computing paradigm with both oppor-
tunities and challenges for Web-based mobile 
applications. In this article, we present a complete 
edge-computing based collaborative object rec-

ognition solution for mobile Web AR to address 
the following two questions:
• How can one apply distributed DNN to an 

edge-based collaborative scenario in an 
adaptive manner?

• How can one optimize the computational 
efficiency of the edge platform based on the 
characteristics of DNN?
The exploration of this new computing para-

digm aims to encourage new ideas and insights 
for in-depth study in the upcoming 5G era. Fur-
thermore, this paradigm is proposed not only for 
mobile Web AR but also for a broad mobile appli-
cation area that may benefit from this edge-com-
puting based collaborative solution.

stAte oF the Art In mobIle Web Ar
Although the first AR browser was introduced 
as early as 2001 [8], the Web-based mobile AR 
implementation, which promises a large scale ser-
vice delivery, did not again receive attention until 
2017, when AR.js emerged due to improvements 
in computing and networking.

overAll ArchItecture
A typical processing mechanism for mobile Web 
AR is illustrated in Fig. 1. The sensors, such as 
camera and gyroscope, are used to continually 
collect user ambient information for real-world 
perception and interaction analysis. Then the “aug-
mented” contents will be rendered on the screen 
and presented to the mobile users. Unique to this 
Web-based mobile AR is that with the help of a 
computation offloading approach, it easily breaks 
through the limit of inefficient computing on the 
mobile Web browser, and thus facilitates its large-
scale application as a lightweight mobile AR solu-
tion especially on the upcoming 5G networks.

dnn-bAsed object recoGnItIon on the mobIle Web
There are already many companies, such as Goo-
gle and Microsoft, which have released their solu-
tions for DNN-based recognition on the mobile 
Web. However, these approaches face the follow-
ing challenges in practical application.

DNN Model Size: Unlike App-based solutions, 
every time the user experiences a mobile Web AR 
application, the DNN model needs to be re-down-
loaded. Although the data transmission in 5G 
networks will no longer be a performance bottle-
neck, the loading of DNN models for mobile Web 
browsers is still difficult. The compression of the 
DNN model is the major emerging approach for 

FIGURE 1. Typical mobile Web AR process.
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inference acceleration, but the flaws are also obvi-
ous: serious reduction of recognition accuracy.

Inference Latency: In addition to the inherent 
limitations of the mobile Web browser, the process-
ing mechanism of JavaScript is another reason for 
inefficient computing. Current Web-based DNN 
inference solutions are basically unable to meet the 
real-time requirements of AR applications while pro-
viding satisfactory recognition accuracy. Although 
there are now emerging some advanced Web tech-
nologies, such as WebAssembly and Web Workers, 
time is still needed for their wide support.

The upcoming 5G networks provide another 
promising approach for Web-based mobile AR 
service to offload DNN computations to the edge 
or remote cloud where more powerful comput-
ing resources are available. Without the limitation 
of network transmission, this will be a practical 
approach for large-scale application of mobile 
Web AR by performing object recognition in a 
collaborative manner.

elAstIc dnn InFerence collAborAtIon
In this section, we first study the characteristics of 
the DNN layers, then introduce the core compo-
nents of the collaboration mechanism for DNN-
based object recognition in the distributed scenario.

dnn lAyer chArActerIstIcs AnAlysIs
The first requirement for achieving a fine-grained 
DNN computation partitioning is an in-depth 
study of the per-layer characteristics. Here, we 
discuss the proposed DNN inference latency and 
energy consumption prediction models, which 
are designed at the neural layer granularity.

Obviously, the computing capability has a 
close bearing on DNN inference performance. 
Therefore, our aim is to explore a conversion 
approach, which can directly obtain the inference 
performance for any DNN layers according to the 
capability of the mobile device.

To overcome the computational heterogeneity 
of mobile devices and servers, we take the cloud 
server as a standardized computing platform and 
use that as criteria for converting the computing 
capability of all mobile devices. Specifically, we 
investigated more than 20 mobile devices and 
suggested the following conversion relationship: 
standard mobile capability = 0.38  mobile com-
puting capability + 0.065.

Moreover, besides the AlexNet and VGGNet, 
we also study the compression DNN networks 

(e.g., MobileNet and ShuffleNet). Note that we 
focus on the per-layer input and/or output rather 
than the DNN layer structure when constructing 
the conversion relationship, which therefore can 
fit all types of neural network architectures.

Specifically, the DNN performance prediction 
models are obtained by collecting the inference 
latency and energy consumption of different 
DNN layers with randomly sampled 1000 images 
from the dataset (Table 1). We compared three 
regression methods and observed that linear 
regression method has a lower prediction error 
for the randomly sampled 300 images than logis-
tic and polynomial methods. The obtained predic-
tion models are detailed below:
• For convolution, pooling, and fully-connected 

layers, the regression models of both DNN 
inference latency and energy consumption 
can be expressed as: predicted value = capa-
bility scale  (a  input + b  output + g).

• ReLU and normalization layers have fewer 
configurable parameters compared to the 
aforementioned three DNN layers. We only 
use capability scale and input feature size as 
the regression model variables, that is, predict-
ed value = capability scale  (a  input + g).
Note that the capability scale is the ratio of the 

standard mobile capability to standardized com-
puting platform capability, and only the mobile 
energy consumption is considered; we use Battery 
Historian to inspect the battery status of devices.

Consequently, the proposed prediction mod-
els will provide the fundamental basis for the 
fine-grained and adaptive DNN computation par-
titioning. Moreover, they can also be applied to 
other DNN architectures for evaluation as a gen-
eralized solution without the execution in advance.

AdAptIve dnn computAtIon pArtItIonInG pIpelIne
To facilitate collaborative object recognition in the 
distributed scenario, a DNN computation partition-
ing approach is required. Further, a context-aware 
mechanism enables adaptive partitioning between 
heterogeneous computing platforms, something 
which is completely necessary for achieving elastic 
collaboration. In more detail, a dynamic approach 
can effectively reduce the computing cost, since 
some of the DNN computations will be completed 
on the user device, while ensuring the quality of 
service by assigning computation-intensive parts to 
the edge or remote cloud, which accelerates the 
DNN inference process. It then provides a win-win 
service provisioning solution for Web-based mobile 
AR applications in 5G and beyond.

Based on these observations, we present an 
adaptive collaboration pipeline as shown in Fig. 
2. Specifically, the computing and networking 
performance (including the bandwidth and the 
end-to-end latency) are collected to the cloud 
periodically by the performance monitoring 
part. Another important component is the deci-
sion-making system, which considers the collected 
context information and the DNN layer character-
istics for the adaptive partitioning. As a result, the 
given DNN computations will be dynamically par-
titioned into several parts, then delivered to the 
distributed computing platforms for processing. 
Note that to carry out recognition inference on 
the mobile Web browser, it first needs to convert 
DNN models into the WebAssembly format. This 

TABLE 1. Parameters for the DNN Performance Prediction Models.

Layer 
type

Inference latency models Energy consumption models

al bl gl ae be ge

Conv 6.240e–5 1.074e–4 –1.938e+0 9.240e–7 1.874e–6 3.810e–2

ReLU 1.534e–5 — 4.844e–1 1.435e–6 — 2.881e–1

Pooling 1.136e–5 1.313e–6 –1.695e+0 1.410e–6 1.312e–7 3.572e–1

Norm 5.182e–5 — 6.497e–1 5.187e–6 — 5.991e–1

FC 9.163e–5 3.990e–4 1.172e+0 9.213e–6 4.012e–5 1.125e+0

* We use l and e as subscripts to identify a, b, and g in DNN inference latency and energy 
consumption prediction models, respectively.
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operation is performed on the edge server, which 
avoids the redundant storage of DNN models in 
the cloud and also alleviates the consumption of 
network resources caused by downloading the 
model from the cloud to the mobile Web users.

A well-executed collaborative process is more 
likely to offload computation-intensive parts in 
DNN to the cloud, so as to accelerate the infer-
ence process, while assigning others to be com-
pleted on the mobile Web browser, which will 
alleviate the computational burden on the service 
provider. But in the case of network fl uctuations, 
on-device processing may achieve a better UX as 
it avoids any unacceptable transmission latency 
caused by off loading the DNN computations.

elAstIc pArtItIonInG AlGorIthm
For optimal performance of the DNN inference 
(either in terms of latency or energy consump-
tion), current collaborative solutions leverage the 
enumeration approach to find the best compu-
tation partitioning point. However, each DNN 
layer is isolated. These approaches will apparent-
ly be inefficient and inflexible in an edge-based 
collaborative computing scenario because of 
the explosive growth in the decision space for a 
fine-grained partitioning. For example, there are 
only eight neural layers in AlexNet but there will 
be 6561 partitioning decisions when distributing 
these DNN computations among the cloud, net-
work edge, and mobile Web browser.

Obviously, it will result in an unacceptable cost 
for orchestrating the DNN computations by using 
straightforward approaches. The newly emerging 
Reinforcement Learning (RL) method shows the 
effectiveness and potential for decision making 
and therefore provide us a new perspective for 
DNN computation partitioning. We therefore pro-
pose a deep reinforcement learning-based dis-
tributed DNN collaboration algorithm. The three 
core components in our approach are discussed:
• State consists of the DNN inference laten-

cy and mobile energy consumption at each 
time frame.

• Action refers to the specifi c partitioning deci-
sion at layer granularity for the DNN compu-
tations.

• Reward is defi ned as – (T +  · E ), we denote 
by T the response latency and by E the 
mobile energy consumption.

However, with large state and action spac-
es, the value-based RL methods, such as Deep 
Q-Network, are all failed in our system. For this 
reason, we propose a Deep Deterministic Policy 
Gradient [9] based DNN computation partition-
ing approach, a policy-based RL method which 
outputs the probability of the actions directly 
according to the observed state information. The 
design details are as follows:
• The Actor and Critic networks are all 

designed with one hidden layer (i.e., ful-
ly-connected layer), which consists of 50 and 
30 neurons, respectively.

• We adopt the Sigmoid activation function in 
the Actor network then use the piecewise 
function to convert successive values into a 
discrete action.

• The weighting factor  in the reward func-
tion is designed to adjust the latency-ener-
gy trade-off. Specifically, service providers 
can set  by adjusting the upper bound of 
latency and energy according to diff erent AR 
application requirements. In detail, the upper 
bounds of latency and energy are Tu and Eu, 
if the “contribution” rate of latency and ener-
gy cost in reward is set to ϕ:, then  can be 
expressed as ϕ · Tu/ · Eu.
In practical applications, both training and 

execution of our proposed DNN partitioning 
approach are completed in the cloud. The agent 
generates actions based on the observed state 
then receives the reward at each time-step; mean-
while, the Actor and Critic networks will also be 
updated in the training phase. Since the network 
training is an iterative process with many steps in 
each episode, the computational complexity of 
these updates is therefore O(mn).

Here the training process was set to 200 
episodes, with each corresponding to 200 time-
steps. Signifi cantly, diff erent application scenarios 
(including diff erent DNN architectures and data-
sets) will obviously result in diff erent convergence. 
It is therefore necessary to re-train the RL-based 
DNN computation partitioning agent for each 
application scenario. But all the training process-
es are completed in the cloud, where there are 
sufficient computing resources. By adopting an 
online learning mechanism, all the performance 
of decisions will feedback to the cloud, which will 
help to improve its eff ectiveness and practicabili-

FIGURE 2. DNN computation partitioning pipeline in the collaborative scenario. The computing and networking performance is period-
ically collected in Step 1. And the pre-trained branchy DNN model will be partitioned into several parts based on the partitioning 
decision, then delivered to the network edge and mobile Web users in Step 2. Finally, the recognition process will be completed in 
a collaborative manner between the distributed computing platforms.
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ty. Moreover, a variety of acceleration approach-
es [10] are also available to achieve more efficient 
training. Considering the simple architecture of 
the Actor network, it will take only a short time to 
generate an action in the execution phase.

dIFFerentIAlly computAtIon schedulInG
In this section, we discuss a priority-based compu-
tation scheduling policy for the sake of improving 
the performance of mobile Web AR application 
from the edge perspective.

Why dIFFerentIAtIon Is needed
Many efforts have demonstrated that deeper neu-
ral networks are often able to handle more com-
plex inputs, but the features learned at early layers 
are already sufficient for recognition of simple 
samples [7]. The adoption of an early exit mech-
anism (Fig. 3) can easily accelerate the inference 
process of the DNN since the subsequent compu-
tations no longer need to be executed.

On the other hand, resources are more pre-
cious on the network edge, which acts only as 
a supplementary computing platform. To maxi-
mize the utilization of edge resources, an in-depth 
study of the DNN computation scheduling mech-
anism is therefore also needed.

dnn computAtIon schedulInG polIcy
When there are n DNN computations waiting 
to be processed, and each with different feature 
extraction efficiency Capi = Ri/Ti, i ∈ [1, n]. Here 
we denote by Ri = Ei/D the recognition accuracy 
(the number of samples that can be accurately 
recognized by the current DNN block is Ei, and 
the total number of samples is D), and by Ti and 

Wi the DNN inference and waiting time. Our 
objective is to find a scheduling result to mini-
mize the weighted processing time of the DNN 
computations on the edge: minSn

i=1(Ti + Wi)/Capi. 
Remarkably, the waiting time cannot exceed a 
certain threshold, that is, Wi ≤ m · Ti, thereby pre-
venting starvation.

In detail, our proposed scheduling policy con-
sists of the following three steps:
• First, when two or more consecutive DNN 

layers from the same user are assigned to be 
completed on the network edge, they will be 
regarded as an integrated DNN block. The 
feature extraction efficiency of this block is 
the average of all included DNN layers.

• Then, the priority of the DNN layer or 
block is assigned according to their feature 
extraction efficiency. The edge server main-
tains a dynamic priority queue; DNN compu-
tations will be executed in order of priority.

• Finally, for the incoming two or more DNN 
layers or blocks, if they have the same fea-
ture extraction efficiency, the first arrived 
DNN computing request will also be served 
first by the edge server.
Note that because of the layer-wise structure 

and data dependency between successive layers, 
for disconnected layers that are assigned to the 
edge node, the subsequent layers will be activat-
ed only when the previous DNN computation has 
finished, then the intermediate result will be trans-
ferred to the edge server for further processing.

Obviously, by assigning a higher priority to 
DNN layers that have more powerful feature 
extraction efficiency, it can effectively reduce 
the overall waiting time of the system, and thus 
improve the resource utilization.

perFormAnce evAluAtIon
In this section, we present the experimental set-
ting, and then detail the experimental results.

experImentAl settInG
For demonstration purposes, we developed an 
AR-based instance retrieval and recommenda-
tion application as shown in Fig. 4b. By accessing 
the pre-defined URL, the relevant “augmented” 
information will be presented to users when they 
target a specific instance.

Mobile Network Performance: The experi-
ments were conducted in an actually deployed 
5G trial network supported by China Mobile 
Communications Group Beijing Co., Ltd. and 
Huawei Technologies Co., Ltd. The mobile device 
connects to the Internet via Customer Premise 
Equipment (CPE), and edge servers are deployed 
at the 5G base station to provide object recogni-
tion services. Specifically, the bandwidth (uplink/
downlink) between the mobile device, network 
edge, and cloud is about 76.1/382.4 Mb/s and 
73.3/542.3 Mb/s, and the end-to-end latency is 
about 8.76 ms and 27.04 ms.

Benchmark of Service Provisioning and Sched-
uling Approaches: For comprehensive compari-
son, we studied three kinds of service provisioning 
approaches. The self-contained approach per-
forms all the DNN computations on the mobile 
Web browser. The cloud-based approach includes 
the remote and edge cloud-based ones. For the 
collaborative solution, we compare our proposed 

FIGURE 3. An example of the early exit mechanism for branch-based AlexNet on 
CIFAR-10. Early exit threshold is set to 1e-7. When the recognition accu-
racy exceeds the threshold, then the result will return to the users directly. 
Apparently, the number of samples exit from side branches is different 
because of the different feature extraction capability of DNN layers.
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approach with two existing collaborative approach-
es, Neurosurgeon and MAUI, the data-centric and 
control-centric approaches, respectively. But both 
approaches tend to off load DNN computations to 
the cloud due to the low communication cost in 
5G networks, and therefore, they are all degrad-
ed into the cloud-based methods. To verify the 
effectiveness of our proposed scheduling policy, 
we also carry out a comparison with the follow-
ing three basic scheduling approaches: First Come 
First Service (FCFS); Highest Value First (HVF); and 
Shortest Job First (SJF). The HVF and SJF approach-
es assign higher priority to DNN computations 
with the higher feature extraction capability and 
shorter processing time, which are the two import-
ant factors that aff ect system effi  ciency.

Benchmark of DNN Architecture: For the fine-
grained computation partitioning and scheduling, 
the DNN architectures need to be re-designed with 
multiple side branches. We adopted AlexNet, VGG-
Net-16, ResNet-32, and MobileNet-v1 in the experi-
ments for demonstration purpose, and then re-trained 
them on CIFAR-10 and CIFAR-100 datasets.

experImentAl results
In this section, we present the comparison results 
to demonstrate the performance enhancement of 
our proposals against the benchmark approaches.

Performance Comparison of Service Provi-
sioning Approaches: We proposed an edge-as-
sisted collaborative approach to balance the 
interests of both users and service providers as 
mentioned earlier. The balance rate, which is 
defined as the difference between normalized 
cloud computing cost saving and normalized 
inference latency improvement, is therefore an 
important metric for the system performance eval-
uation. Moreover, mobile energy consumption is 
also considered in our experiment. The distribu-
tion of the DNN computations between the cloud 
server, the network edge, and mobile user were 
as follows according to the obtained partitioning 
results: 0.09/0.17/0.74 (AlexNet), 0.02/0.84/0.14 

(VGGNet-16), 0.31/0.32/0.37 (ResNet-32), and 
0.21/0.47/0.32 (MobileNet-v1).

As illustrated in Fig. 5, our proposed approach 
achieves a lower balance rate (absolute value) in all 
the three scenarios, which indicates that the inter-
ests of both users and service providers can be bet-
ter satisfi ed. Specifi cally, our approach brings not 
only an improvement in the latency by about 39.75 
percent on average compared with the self-con-
tained approach, but also an almost 48.11 percent 
cloud computing cost savings compared with the 
remote cloud-based approaches. By adopting the 
collaborative mechanism, part of DNN computa-
tions will be off loaded to the cloud for processing. 
Although users need to pay the cost of communi-
cation additionally, the energy consumption by the 
mobile device can still be reduced signifi cantly: it is 
about 70 percent on average compared with the 
self-contained approach in our experiment.

Performance Comparison of Scheduling 
Approaches: To demonstrate the improvement 
of edge system performance, we evaluate our 
scheduling approach from the following two 
aspects: average valid waiting time (i.e., (S waiting 
time  value)/layer number) and system effi  cien-
cy (i.e., (S value/response time)/layer number). 
We denote by value the probability that the DNN 
layer can provide a credible recognition result for 
a given input. The response time includes waiting 
time and processing time.

The experimental results are illustrated in Fig. 
5, which compares the two metrics for different 
lengths of request queue, from 100 to 1000. The 
DNN computation requests are generated random-
ly at layer granularity, and our proposed approach 
can reduce the average valid waiting time signifi-
cantly by about 56.91 percent, 21.94 percent, and 
33.82 percent compared with the FIFO, SJF, and 
HVF, respectively. Moreover, the system effi  ciency 
will also be improved: about 5.28, 0.81, and 
0.35 value increase per unit time on average. Dif-
ferent DNN partitioning results will lead to diff erent 
performance improvements. The shorter the aver-

FIGURE 4. In edge-assisted DNN collaborative computing scenario, mobile user (Huawei Mate 10) connects to the cloud (AliCloud, 
Ubuntu 16.04, Intel Xeon E5-2683 v3) via Customer Premise Equipment (CPE), the edge server (Ubuntu 16.04, Intel Xeon E5-2600 
v2) is deployed at the 5G base station in China Mobile Research Institute (CMRI) in Beijing. Compared with the cloud-based com-
puting scenario, our proposed edge-assisted collaborative approach provides users with computing service at a close distance, 
which will signifi cantly reduce the increase in response time due to the data transmission between the edge server and the cloud, 
that is, Pedge · L2, we denote by Pedge the DNN computations that are assigned to the edge server, and by L2 the end-to-end latency 
between 5G based station and the cloud. Remarkably, diff erent communication costs are caused by diff erent DNN computation 
partitioning schemes. Moreover, we developed an AR-based instance retrieval and recommendation application for demonstration. 
Mobile users only need to access the pre-defi ned URL and target a specifi c object, such as apples, to experience the AR services.
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age waiting time, the better the UX, also the more 
efficient the system will be.

dIscussIon
By arranging for a collaboration between hetero-
geneous computing resources, both the DNN 
inference latency and mobile energy consump-
tion can be improved for object recognition in 
mobile Web AR applications. More generally, 
this collaborative approach can also benefit other 
mobile Web applications, as it provides a win-win 
solution for both users and service providers in 
5G networks.

However, all these efforts currently are prelimi-
nary attempts at collaborative service provisioning 
for DNN-based object recognition in mobile Web 
AR with the help of the “edge,” and much work 
remains to be done:

•Branchy DNN was proposed for fast inference 
via early exits [11]. In the training phase, the goal is 
to minimize the weighted sum of the loss of each 
exit branch, and meanwhile, the proper exit thresh-
old is determined iteratively, which is a time-con-
suming process. Note that the cost for training 
such branchy DNN depends on the complexity of 
the structure and the number of added branches. 
Currently, it is trained on the cloud in advance, and 
the architecture of side branches is also designed 
manually. But more efficient DNN architecture 
design and training need further attention. 

On one hand, by using the distributed deep 
learning [12] techniques, it can easily accelerate 
the training process with the help of more power-
ful computing resources; and on the other, more 
efficient branchy DNNs can be obtained benefit-
ting from the emerging neural architecture search 
[13] techniques. 

•In general, edge servers are deployed in a hier-
archical structure, and the deployment of services 
on the edge platform depends on centralized man-
agement. While considering the user mobility sce-
narios, if the corresponding edge server is unable to 
complete the requests, then they will be forwarded 
directly to the upper edge platforms for execution. 
Meanwhile, the cloud can also dynamically adjust 
the deployment of services at the network edges 
according to the user mobility [14]. And in case the 
edge server is overloaded, by collaborating with the 
nearby servers, it can effectively balance the com-
putational pressure of the edge system. Specifically, 
by having the multiple edges collaborate, the quality 
of service and the system efficiency could be fur-
ther improved, and many efforts have been devot-
ed to this field [15]. Moreover, many edge systems 
have also been proposed by industry, such as AWS 
Greengrass and Huawei KubeEdge, which provide 
good support for collaborative service provision and 
mobility management.

conclusIon
Web-based mobile AR as a lightweight and 
cross-platform solution brings opportunities for the 
large-scale application of AR as well as challenges. 
Compared to the self-contained and cloud-based 
or edge-based offloading approaches to recognize 
objects in AR applications, a collaborative solution is 
more desirable in 5G networks as it can balance the 
interests of both users and services providers. Spe-
cifically, assigning computation-intensive parts to the 
cloud accelerates the DNN inference, while placing 

FIGURE 5. The performance comparison of DNN-based recognition service pro-
visioning and scheduling approaches: a) Individual response time compari-
son of service provisioning approaches. M-1, M-2, M-3, and M-4 represent 
self-contained approach, edge cloudbased approach, remote cloud-based 
approach, and our proposed collaborative approach, respectively; b) Bal-
ance rate comparison of service provisioning approaches. A Higher com-
puting cost or longer inference latency will all lead to system imbalance. 
Specifically, the more DNN computations the cloud undertakes, the shorter 
the inference latency and thus the higher the balance rate, and vice versa. 
The self-contained approach performs all the DNN computations on the 
mobile Web browser, the normalized cloud computing cost saving is 1, 
however, the normalized inference latency improvement is 0, the balance 
rate is thus 1; c) Average valid waiting time comparison of scheduling 
approaches; d) System efficiency comparison of scheduling approaches.
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other parts on the user device reduces the cloud 
computing cost. In this article, an edge-assisted dis-
tributed DNN collaborative computing approach 
has been discussed to improve the mobile Web AR 
applications in 5G networks. The evaluation results 
show that our proposals can balance the interests of 
both users and service providers. Finally, we present-
ed a discussion of future research topics.
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