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Abstract—Multi-user mobile Augmented Reality (AR) has been successfully used in various fields as a novel visual interaction
technology. But current mainstream wearable device-based and app-based solutions are still facing cross-platform, real-time
communication, and intensive computing requirements. Mobile Web technology is envisioned to be a promising supporting technology
for cross-platform application of mobile AR especially in 5G networks, which provide pervasive communication and computing
resources thereby forming a formidable framework for the practical application of multi-user mobile Web AR. However, the problem of
how to use these new techniques properly to achieve efficient communication and computing collaboration is obviously paramount in
order for multi-user mobile Web AR to be realized in 5G networks. In this article, we propose the first edge-assisted multi-user
collaborative framework for mobile Web AR in the 5G era. Firstly, we propose a heuristic mechanism BA-CPP for efficient
communication planning, which allows multi-user interaction synchronization to be achieved. Secondly, we introduce a motion-aware
key frame selection mechanism called Mo-KFP to optimize the computational efficiency of the edge system, and simultaneously
alleviate the initialization problem by collaborating with nearby mobile devices using the Device-to-Device (D2D) communication
technique. Experiments are conducted in a real-world 5G network, and the results demonstrate the superiority of our proposed
collaborative framework.
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1 INTRODUCTION

A S an innovative visual interaction paradigm, multi-
user collaborative mobile Augmented Reality (AR) [1],

[2], [3] demonstrates tremendous potential for application
in various fields, for example, education, entertainment,
design, and maintenance [4], [5], [6], [7]. It is clear that
when all users are gathered into one “augmented world”,
more interesting and efficient applications become possible.
This has now become a topic of great research interest, and
has received considerable attention from Google, Apple, and
other companies [8], [9], [10], [11].

Achieving the full promise of multi-user mobile AR
involves the following key aspects: (1) Cross-platform re-
quirement. All users should be able to interact with other
AR subscribers via any access mode such as AR glasses
and smartphones. (2) Efficient communication requirement. AR
is a latency-sensitive application, and all interactions in
the AR world need to be efficiently synchronized with all
subscribers in real time. (3) Economical computing requirement.
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Mobile platforms with limited computing capability cannot
afford to carry out complex AR computations. When addi-
tional computing resources are used for assistance, attention
also needs to be paid to the offloading efficiency.

However, current mainstream multi-user mobile AR
solutions still facing serious problems: (1) Restricted
cross-platform experience. Both wearable device-based (e.g.,
HoloLens 2, Spatial AR, and Magic Leap) and app-based
(e.g., ARCore and ARKit) schemes suffer from cross-
platform issues. In particular, AR subscribers can only in-
teract with others using the same type of equipment, the
same operating system, the same AR SDK, or even the same
dedicated app, factors which significantly hamper its large-
scale applications. (2) Inefficient multi-user communication. All
AR service subscribers rely on the cloud-based services to
communicate with each other by broadcasting messages via
established links with the cloud. Besides increased commu-
nication latency, intensive data transmission also consumes
a large amount of bandwidth resources (especially wire-
less access networks), resulting in increased communication
costs, as illustrated in Figure 1(a). Meanwhile, the use of
unstable links means that there is no guarantee of persistent
communication over a deteriorated wireless channel. (3)
Unsatisfactory offloading efficiency. Complex AR computations
are typically offloaded to the cloud for acceleration [12], [13].
However, existing motion-agnostic offloading approaches
will cause high cloud computing costs while satisfying
the User eXperience (UX). In detail, the lack of perception
of user behavior causes inefficient computing, and thus
unsatisfactory offloading efficiency. Moreover, this also in-
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troduces additional communication, which in turn leads to
high initialization time1 [14], [15].

anchors

(a) Cloud-based multi-user mo-
bile Web AR in current network.

Edge Assistance1

D2D Assistance2

anchors

anchors

(b) Edge-assisted multi-user mobile
Web AR in upcoming 5G Era.

Fig. 1. Overview of multi-user mobile Web AR architecture.

Mobile Web technology provides a lightweight, cross-
platform service provisioning approach, greatly attracted
the attention of World Wide Web Consortium (W3C), espe-
cially Immersive Web Working Group, to actively promote
Web-based mobile AR [16], [17], and is thus envisioned as
one of the promising supporting technologies [18]. Mean-
while, the emerging 5G networks appear to be able to pro-
vide the low latency communication and ubiquitous com-
puting support for the development of multi-user mobile
Web AR, thus show great potential in terms of addressing
the above concerns [19].

Specifically, all users can easily interact with others via
the mobile Web platform. And both the computations and
interactions can be assisted by the edge server and nearby
mobile devices for computation acceleration and message
forwarding by using the mobile edge computing [20] and
Device-to-Device (D2D) [21] communication techniques in
5G networks [22], as illustrated in Figure 1(b). Compared
to the cloud-based AR service provisioning, each user will
have multiple choices, whether for multi-user communica-
tion or computational assistance, in 5G networks. Employ-
ing these new techniques in multi-user mobile Web AR over
the cloud, the edge server, and end devices is therefore still
challenging, as follows:

• The limitation of existing multi-user communication
approach is rooted in the constraint that message
synchronization between all users relies solely on
the cloud for forwarding. No edge-assisted2 multi-
user communication framework is currently practi-
cal for mobile Web AR in 5G networks. The first
challenge therefore lies in designing an efficient de-
centralized communication scheme for message for-
warding. One straightforward approach is to adopt
a mesh topology among all edge nodes to broadcast
messages; however, this obviously involves a waste
of network resources.

• Furthermore, communication planning is also diffi-
cult. Since more paths (i.e., edge server-based and

1. The initialization time is defined as the duration the user waits
from sending the first video frame to receiving the response.

2. The “edge” here refers to all the computing and communication
resources between the data source (i.e., AR service subscriber) and the
cloud, including edge servers and nearby mobile devices [20] in our
Web-based multi-user mobile AR scenario. For simplicity, both the edge
server and nearby mobile device are referred to as “edge nodes” when
there is no confusion.

D2D-based forwarding) are available, we need to
consider not only end-to-end latency but also mobile
energy consumption and public spectrum resource
occupation, which are two important concerns for
users and Internet service providers. The system also
needs to cope with dynamic changes in the network.

• Feature extraction and object recognition are two key
components in mobile AR applications. Considering
the limited computing capability of the mobile Web
browsers, these complex computations are typically
offloaded to the back-ends, while the end-users only
perform lightweight computations locally, such as
image pre-processing and object tracking [?]. Due
to the loss of feature points caused by object track-
ing algorithm, intermittent key frame3 selection is
therefore adopted for error correction [15]. Tracking
performance in AR is closely related to the user
movement, but existing offloading schemes (more
accurately, periodic and threshold-based key frame
selection schemes) are all motion-agnostic, which
suffer from the inefficient computation. An adaptive
motion-aware key frame selection is thus necessary
but also challenging since recognizing the user’s
movement behavior based on the isolated video
frame is difficult.

• Moreover, the complex feature extraction and object
recognition computations and additional commu-
nication also result in increased initialization time
thus degrades the UX when adopting the offload-
ing mechanism. Adopting lightweight algorithms on
the edge server is a simple but practical solution,
however, it will obviously face the problem of low
tracking performance, which is a trade-off of speed
and accuracy. Therefore, designing a D2D-assisted
strategy to address the initialization problem is thus
recommended by collaborating nearby mobile de-
vices, although this is challenging.

To address these concerns, we introduce Edge AR X5,
a framework that allows the collaboration of computing
and communication resources to enable high-quality ser-
vice provisioning for multi-user mobile Web AR systems.
Edge AR X5 has an improved centralized communication
mechanism that uses heterogeneous networking technolo-
gies for multi-user message synchronization, and allows for
dynamic collaboration between the computing resources of
an edge server and nearby devices. More specifically, we
first propose a hybrid communication scheme for message
synchronization in multi-user mobile Web AR applications.
A heuristic communication planning algorithm is also pro-
posed to generate communication solutions dynamically,
based on the network context and the requirements of users
and Internet service providers. For adaptive key frame selec-
tion, we employ a prediction-based motion-aware runtime
scheduler, which selects the key frame based on the user’s
mobility to ensure accurate object tracking, and which also
achieves computational cost savings as redundant computa-
tions are avoided. Furthermore, we introduce a D2D-based
supplementary feature extraction mechanism to alleviate

3. A key frame refers to a video frame that needs to be uploaded to
the back-end server for feature extraction and object recognition.
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the service initialization problem. In this way, Edge AR X5
provides an efficient multi-user mobile Web AR solution for
both users and service providers.

Our experiments were conducted at Beijing University of
Posts and Telecommunications (one of the places that have
achieved full 5G coverage in Beijing, P.R. China) using three
Huawei Mate 20 X (5G) smartphones. For performance eval-
uation purposes, we developed a multi-user AR application
on the mobile Web platform, in which users can control their
“augmented” 3D characters to interact with others in the
activated “augmented world”.

The results of our experiments indicate that Edge AR
X5 enables not only dynamic communication planning but
also efficient key frame selection. Our proposed multi-
user communication mechanism BA-CPP gives improve-
ments of 35.51%, 85.61%, and 26.19% in communication effi-
ciency compared with the edge-based, D2D-based, and ran-
dom communication solution, respectively. The proposed
motion-aware key frame selection mechanism Mo-KFP also
achieves efficiency improvements of 54.69% and 14.09% in
feature extraction-tracking compared with the periodic and
threshold-based selection mechanisms, respectively.

The contributions of this study summarized as follows:

• To the best of our knowledge, Edge AR X5 represents
the first collaborative framework for mobile Web AR
that enables multi-user interaction in 5G networks.

• We propose a heuristic multi-user communication
planning mechanism called BA-CPP to ensure the in-
teractions synchronization quality of AR subscribers.

• We provide a prediction-based approach called Mo-
KFP for key frame selection based on information
on the AR subscriber’s movement. Moreover, a D2D-
based composite solution is introduced to address
the initialization problem.

• For demonstration purposes, we develop a multi-
user mobile Web AR application called Panda Be-
trayal and examine the performance in real-world 5G
networks operated by China Unicom.

The reminder of this paper is organized as follows. Sec-
tion 2 reviews background and motivations on AR service
provisioning. Section 3 describes the proposed Edge AR X5
system architecture. Section 4 gives details on multi-user
communication solution design. Section 5 presents the edge-
assisted collaborative computing design. Section 6 evaluates
the performance of Edge AR X5. Section 7 outlines avenues
for future research. Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

Although AR has been around since 1997 [23], following
improvements in the computing capability of user devices
and the development of mobile networking, this interactive
computer vision technology has now undergone revolution-
ary changes in portability and mobility.

2.1 On-Device Mobile AR
One of the most important reasons for the phenomenal
growth of on-device mobile AR is the continuous improve-
ments in the computing capabilities of mobile devices [24].
For example, the launch of Pokémon GO in 2016 provides

many people their first-hand experience with interactive
multi-user AR on a mobile phone without additional equip-
ment, which has attracted extensive interest in on-device
mobile AR. According to reports [25], its downloads reached
500 millions in just two months after its first public release,
involving more than 100 countries around the world. But
from the technical perspective, Pokémon GO adopted GPS
for user location tracking, which suffered from the low-
precision positioning problem inherent from civilian grade
GPS, in addition to other technical issues such as server
overload, overtop mobile energy consumption, and so forth.
To improve the user experience in the AR applications,
vision-based solutions (including marker-based and mark-
erless methods) are being adopted by more and more AR
applications [18]. Since then, many other efforts have been
made in this field, such as ARCore and ARKit, released by
Google and Apple, respectively, which have significantly
simplified the development of AR applications [26]. How-
ever, users need to download and install a specific applica-
tion in advance to experience the AR service.

In contrast, the emergence of Web-based mobile AR4

provides a flexible method of service provisioning. Users
can enjoy the AR experience anytime, anywhere, by access-
ing a pre-defined URL. This Web-based implementation is
envisioned as a promising solution for the large-scale appli-
cation of AR technology. In addition to industry, standards
organizations are also showing great enthusiasm for this
Web-based mobile AR [17].

In this work, we aim to solve the problem of multi-
user interaction in mobile Web AR applications. Based on
the new features and technologies of 5G networks, we
will optimize multi-user communication and collaborative
computing modes to promote the on-device mobile AR.

2.2 Cloud-Assisted Mobile Web AR
Unlike self-contained implementations [24], a cloud-assisted
solution provides not only computation acceleration but
also opportunities for multi-user interaction by using the
global anchor mechanism, and is thus seen as a promising
approach for mobile AR, and particular mobile Web AR.

2.2.1 Cloud-Assisted Computation Offloading

Computation
Offloading

Annotation
Rendering

Device
Camera

Device
ScreenAugmented Reality Application

Frame Pre-
Processing

Feature
Extraction

Object
Recognition

Template
Matching

Object
Tracking

1

2

3

4 5

Fig. 2. Typical cloud-assisted mobile web AR pipeline.

4. Here we mainly focus on the visual-based AR implementation.
Although several factors can be leveraged for object tracking, such as
motion sensors, GPS, IMU, and compass, the visual-based solutions can
also provide relevant semantic information at the same time.
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Fig. 3. Overview of the Edge AR X5 framework for multi-user mobile Web AR.

The outsourcing of computationally intensive tasks to
the cloud (e.g., a remote cloud in current 4G LET net-
works) can usually provide a better AR experience [12]
compared with the aforementioned on-device solutions. A
typical cloud-assisted mobile Web AR pipeline is illustrated
in Figure 2. Captured video frames are first processed
(e.g., by downscaling and graying) on the mobile user’s
Web browser, and are then transmitted to the cloud for
feature extraction and object recognition. Following this, the
recognized result will be returned to the client to perform
template matching for position and orientation estimation,
which then will be used as the initial input for object track-
ing. Finally, the “augmented” contents are rendered and
displayed to AR subscribers via the mobile Web browser.

To avoid frequent feature extraction and object recogni-
tion, which are time-consuming processes, object tracking is
usually adopted for frame-by-frame pose estimation. Thus,
the client only needs to intermittently select video frames
to send to the cloud for further processing (i.e., tracking
error correction). Key frame selection is therefore one of the
most basic components of cloud-assisted mobile Web AR;
however, unlike traditional mechanisms [27], [28] that need
to analyze all the video frames in advance, AR applications
require online key frame selection.

Current mainstream key frame selection approaches in
mobile AR applications generally select video frames either
periodically or based on a pre-defined threshold (e.g., the
number of trackable key points) [15]. These straightforward
approaches are obviously inefficient, and thus cause UX
degradation, and we therefore propose a prediction-based
movement-aware key frame selection approach to improve
computational efficiency.

2.2.2 Cloud-Assisted Multi-User Interaction
In addition to the offloading of AR computations, the cloud
can also assist in multi-user interaction. Here, we take
WebARonARCore as an example, in which AR subscribers
can use the anchor to interact with others in the same
“augmented world”, and all anchor information is stored
in the cloud [29]. When other users are at a specific location,
the augmented contents will be activated; the users can

then interact with these contents easily, and all of these
interactions can also be synchronized to the cloud. However,
the problem of unstable communication between mobile
users and cloud cannot be ignored.

2.3 Web-Based Mobile AR in the 5G Era
The emerging 5G networks are promising communication
solutions for providing a better UX for mobile AR applica-
tions, and especially mobile Web AR [30]. Specifically, their
low latency and high bandwidth communication features
can achieve more efficient data transmission [31]. Moreover,
the introduction of the edge servers enables AR service
provisioning (e.g., location-based image retrieval and com-
puting service) that is closer to users [32], and the D2D com-
munication technology provides more choices for message
synchronization [33] and collaborative computing.

In this work, we make full use of the features of 5G
networks, where mobile devices not only enjoy the advan-
tages of high-bandwidth and low-latency mobile network
performance, but also leverage the mobile edge computing
mechanisms and D2D communication technology to further
reduce the consumption of public spectrum resource, and
to enable mobile Web AR technology, one of the main
contributions of our paper.

3 OVERVIEW OF EDGE AR X5
The architecture of the Edge AR X5 framework is illustrated
in Figure 3. In this scheme, mobile Web AR subscribers
collaborate with the back-ends to facilitate multi-user in-
teraction. We will discuss this aspect separately from the
communication and computing schemes.

3.1 Multi-User Communication Phase
Unique to this Web-based multi-user mobile AR application
is the fact that subscribers can easily enjoy an AR experience
with others simply by accessing a pre-defined URL. When
they enter the agreed room, the communication request is
invoked, and all the mobile devices are then connected via
WebRTC communication links, based on the D2D technique.
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Their interactions will be passed to others via a WebRTC
data channel API [34]. At this point, all AR subscribers have
entered the same “augmented world”.

Potentially, each client can connect to all other mobile
devices and the edge server, which form a mesh network
topology. To optimize message synchronization, a commu-
nication planning thread is maintained on the edge server to
periodically specify the message forwarding paths, based on
the observed contextual information, and the new commu-
nication “map” then will be distributed to all subscribers.
For this purpose, each Web client maintains a performance
monitoring thread to periodically report network connec-
tivity (including latency and bandwidth to all edge nodes)
and computing capability. The user’s location information
is also collected for location-based service provisioning, as
discussed below. Moreover, the cloud is responsible for the
management of edge servers, such as resource allocation,
service deployment, data analysis, etc. [35]

Once the communication links between edge nodes are
established, all users can start sharing their interactions.
Meanwhile, these interactions (i.e., operations in the virtual
environment) will be recorded in the edge server in a
chronological order and synchronized to the cloud server to
ensure data persistence and system reliability as illustrated
in Figure 3. In detail, when a new user joins, they can
directly obtain the latest status of the virtual model from
the interactive database. If the user leaves or the D2D link
is disconnected, all the involved mobile devices will be
temporarily taken over by the edge server and the com-
munication “map” will be regenerated. Benefiting from the
synchronization of the interactions between the edge server
and the cloud server, even if the service deployed on the
edge temporarily fails, its continuity can be guaranteed.

3.2 Collaborative Computing Phase

When the user activates a webcam on a smartphone and
captures the first video frame, a computing request is then
generated. Typically, image pre-processing, object tracking,
and annotation rendering, which have a low computational
burden, are carried out in the mobile Web browser, while
feature extraction is performed using the computing re-
sources of the edge server.

3.2.1 Edge-Assisted Service Provisioning

Edge servers are typically deployed as a supplement to the
remote cloud in terms of computing and storage capability.

• The pre-processed frames are selected based on our
proposed motion-aware runtime scheduler Mo-KFP,
and they are then transmitted to the edge server
for feature extraction. Object recognition (i.e., image
retrieval) is then performed based on the obtained
feature points. Finally, the recognition result is sent
as feedback to the client for further processing.

• Besides edge-assisted computing service, the edge
servers can also provide location-based service. In

the edge cloud service, the VLAD5 extracted features
of all reference images are organized into location
lists based on their location information, which is
represented by the ID of the edge server to which
these images will be served. The edge server there-
fore only needs to maintain a part of the retrieval
database to help reduce the search space during the
retrieval process, improving the real-time recognition
efficiency and accuracy. Management of this dis-
tributed database is carried out in the cloud server.

3.2.2 Have You Asked Your Neighbors
Due to the problem of initialization performance degrada-
tion caused by computation offloading, the client needs to
leverage the computing resources of nearby mobile devices
for lightweight feature extraction, in order to optimize the
initialization process.

The first video frame is transmitted to the edge server
for feature extraction using not only complex SIFT algo-
rithm [39] but also lightweight ORB algorithm [40]. Before
receiving the SIFT-based response to the first frame from
the edge server, subsequent video frames are also selected
and intermittently transmitted to a specific nearby mobile
device, for lightweight feature extraction after receiving the
ORB-based response from the edge server.

Note that this D2D-assisted scheme will significantly
reduce the computational cost of the back-ends, and the se-
lection of the nearby device is performed on the edge server
based on the computing capability of the mobile devices,
which is collected during the performance monitoring.

3.3 Edge AR X5 Pipeline
For clarity, we describe the processing pipeline of Edge AR
X5 here. The request is processed using the following steps:

• AR subscribers request service by accessing a pre-
defined URL using their mobile Web browser.
/* Stage 1: Establishment of communication */

• All participants periodically (for example, every 15
seconds) activate the performance monitoring mod-
ule, and the results will be reported to the edge
server only when the detected change in Web com-
puting capability or network communication perfor-
mance exceeds a certain threshold6.

• Once the edge server receives the updated context
information, the communication planning module
will be activated and generates a new ”map” then
distributes the results to all AR service subscribers.

5. To achieve efficient retrieval, all the local features of the reference
images obtained through SIFT or ORB algorithms will be encoded to the
k-dimensional Vector of Locally Aggregated Descriptors (VLAD) [36]
features in advance. In addition, Bag of Features (BoF) [37] and Fisher
Vector (FV) [38] algorithms can also be used for local feature coding.
We adopt VLAD considering its low computational burden compared
to BoF and the smaller codebook and higher accuracy compared to FV.
Note that the codebook is first learned using the k-means algorithm
and the retrieval accuracy is related to the value of k.

6. In a dynamic environment where users move around, the network
performance between edge nodes will obviously change dynamically.
But each user still decides whether to upload the detected results to
the edge server according to the changes in network performance.
The edge server invokes the planning algorithm to generate a new
communication solution after receives the updated context information.
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Since all mobile devices have a Socket.IO-based link
with the edge server, it is thus easy to broadcast the
communication configuration messages to all users.
/* Stage 2.1: Edge-assisted service provisioning */

• The client then activates the webcam, selects key
frames using the proposed Mo-KFP approach, and
sends them to the edge server for feature extraction
and object recognition.
/* Stage 2.2: D2D-based initialization */

• Meanwhile, the previous video frames are processed
on nearby mobile devices (via D2D communication
channels) for lightweight feature extraction.

• Finally, the client continues the subsequent AR pro-
cesses based on the feature points obtained.

An edge server is overloaded when it experiences heavy
traffics. When the edge server is overloaded, the feature
extraction algorithm SIFT will be temporarily replaced by
ORB to ensure that basic services will not be interrupted,
for the following two reasons. First, compared with SIFT,
the ORB algorithm is more efficient and requires fewer
computing resources, which can alleviate the computational
burden of feature extraction on the edge server. Second, the
ORB-based features take up less storage space (the SIFT
descriptor is 128 dimensions, while it is only 32 dimensions
for ORB), which will also effectively alleviate the pressure
of data transmission on the edge network. However, since
fewer feature points are extracted, the potential problem
caused by replacing to ORB algorithm is the degradation of
tracking performance, which is a trade-off between accuracy
and efficiency.

4 MULTI-USER COMMUNICATION DESIGN

The establishment of communication forms a basis for AR
subscribers to interact with others. An efficient communi-
cation “map” is therefore extremely important. In this sec-
tion, we analyze the necessity of communication planning
and formulate the planning problem in a heterogeneous
communication environment. Then the proposed adaptive
communication planning algorithm is presented.

4.1 Why Communication Planning is Needed
One of the most important reasons for adopting dynamic
communication planning is to cope with frequent changes
in the mobile network, in order to provide optimal message
forwarding options. In particular, subscribers are sensitive
to interactive latency and mobile energy consumption, and
different communication options can have a large impact on
application performance, and thus UX.

User B

User C

X0,1

User A

X0,2

X0,3

X1,2

X1,3

X2,3

Edge Server

User B

User C

X0,1

User A

X0,2

X0,3

X1,2

X1,3

X2,3

Edge Server

(a) D2D-based comm.

User B

User C

X0,1

User A

X0,2

X0,3

X1,2

X1,3

X2,3

Edge Server

(b) Centralized comm.

Fig. 4. Two methods of multi-user communication in 5G era.

Mobile users now have more ways to forward their
interactive information in 5G networks, which is a com-
pletely different approach from the cloud-based forwarding

mechanism in current 4G LTE networks. More specifically,
the user’s interactions regarding virtual content in the “aug-
mented world” can be synchronized to all participants in the
following two ways, as illustrated in Figure 4.

• D2D-based forwarding: the user’s interactions can be
directly or indirectly forwarded to other participants
via the established D2D communication links, in one
or more forwarding hops.

• Centralized forwarding: all users have also estab-
lished connections with the edge server, the interac-
tions can be forwarded by the network edge server.

The communication “map” is finally obtained by selectively
combining these two communication options.

Note that the edge server provides opportunities for
message forwarding, but is likely to consume more public
spectrum resources than the D2D-based communication in
5G networks. Since each different communication solution
will result in different latency and mobile energy consump-
tion (from the mobile user’s perspective) as well as a differ-
ent occupation of public spectrum resources (from Internet
service provider’s perspective), our aim is to find the lowest
cost communication “map”, in order to jointly optimize the
above metrics and improve the communication efficiency.

4.2 Formulation of the Planning Problem
As mentioned above, our main areas of focus in this study
are: (1) communication latency; (2) mobile energy consump-
tion; and (3) public network spectrum occupancy. Given a
hybrid mesh topology with one edge server and n mobile
users, the problem can be defined as follows:

min
X

F (X) = (Tglobal(X), Emobi(X), Sedge(X)). (1)

Here, we denote by X the obtained global communication
“map”, Xi,j ∈ {0, 1}, and i ∈ [0, n− 1], j ∈ [1, n]. More
specifically,Xi,j = 1 indicates that nodes i and j are directly
connected, and vice versa. We use subscript 0 to represent
the edge server, and thus X0,j indicates the connection
status between the given edge server and mobile device j.
Remarkably, Xi,j will be 0 if i = j. And X represents all the
potential communication solutions.

X = {X0,1, X0,2, ..., X0,n︸ ︷︷ ︸
Centralized Connections

, X1,2, X1,3, ..., Xi,j , ..., Xn−1,n︸ ︷︷ ︸
D2D Connections

}

The motivation for communication planning is to jointly
optimize both the communication experience and efficiency,
based on the observed (one-way) network latency L and
bandwidth B during the subscribers’ interactions. In more
detail, L records the communication latency of each link,
which has size n(n+ 1)/2. Considering the uplink and
downlink bandwidth between the mobile device and the
edge server, the size of B is therefore n(n− 1)/2 + 2n. More
details on these optimization objectives are discussed below.

4.2.1 Objective 1: Communication Latency
Although message forwarding in the network is carried out
in parallel, we cannot directly regard the longest path of the
undirected graph constructed by the obtained communica-
tion “map” as the time required to synchronize the user’s
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interactions with all other participants. Here, we present a
simplified example for illustration purposes (see Figure 4)
with two communication modes (i.e., X0,1+X0,2+X0,3 and
X0,1 +X0,3 +X1,2) for which the message synchronization
time is l1 + l3 (l2 < l3 and l1 + l3 > l4).

The network latencies of the links X0,1, X0,2, X0,3, and
X1,2 are l1, l2, l3, and l4, respectively. Assuming l2 < l4, in
the second communication scenario, user B needs to wait
longer, i.e., l4 − l2, to receive the message sent by user A
(here, we consider only the communication latency).

The addition of a higher-latency link will greatly de-
grade the user’s communication experience. From a global
perspective, the communication latency in this problem is
therefore defined as

Tglobal(X) =
n−1∑
i=0

n∑
j=1

Li,j ·Xi,j (Li,j ∈ L). (2)

4.2.2 Objective 2: Mobile Energy Consumption

Different communication modes will give rise to different
energy consumption for mobile devices. For a given com-
munication decision X, the mobile energy consumption is
therefore given by

Emobi(X) =
n∑

j=1

E5G
0,j ·X0,j +

n−1∑
i=1

n∑
j=1

ED2D
i,j ·Xi,j . (3)

Specifically, each centralized communication link is not only
responsible for sending (upload) an AR subscriber’s inter-
actions but also for receiving (download) messages from the
other n− 1 participants, the per link communication energy
consumption is therefore defined asE5G

i,j = PU
5G+(n−1)·PD

5G,
here PU

5G and PD
5G are the energy consumption of upload and

download respectively; while a D2D-based communication
link only needs to transmit (including send and receive)
messages between two mobile devices, the energy consump-
tion for communication is thus ED2D

i,j = 2·PD2D. In detail, we
denote by P = ϕ·r+θ the transmission power, where r (i.e.,
Bi,j ∈ B) is the available data rate. The parameters ϕ and θ
for P in 5G mobile networks are 65/6.5 (uplink/downlink)
mW/Mbps and 11475.97 mW, and 283.17 mW/Mbps and
132.86 mW in D2D networks, respectively [41].

4.2.3 Objective 3: Public Network Spectrum Occupancy

D2D-based communication can effectively reduce the oc-
cupation of public network spectrum resources, which is
important for Internet service providers. In this problem, we
associate the network spectrum occupancy with the number
of communication links established between mobile devices
and the edge server. It is therefore defined as follows:

Sedge(X) =
n∑

j=1

X0,j . (4)

In addition to synchronizing messages between AR par-
ticipants, all interactions also need to be saved to the edge
and cloud servers, thereby allowing newly added users to
be updated on the latest state of the “augmented world”.
Therefore, we also need to guarantee Sedge(X) ≥ 1, that is,
at least one mobile user connects to the edge server.

4.3 Multi-User Communication Planning

In this part, we first analyze this planning problem, and then
present our proposed multi-user communication planning
algorithm BA-CPP in more detail.

4.3.1 A Heuristic Planning Approach is Needed

Theoretically, for a mesh topology network consisting of
m nodes, there will be m(m − 1)/2 communication links
in total. Each link has two statuses, selected and ignored,
meaning that the size of solution space of the communi-
cation “map” therefore will be 2m(m−1)/2. To obtain the
optimal solution, the time complexity is thus O(am). Given
the huge search space, a heuristic algorithm is therefore
recommended for addressing these challenges.

Meanwhile,a lightweight approach is also necessary to
quickly update the communication “map” to cope with
dynamic changes in the mobile network. Although the
improvement in the speed of decision making will result
in a loss of decision accuracy, this is a trade-off that must
be made. In this problem, the communication “map” is
periodically updated, and although the optimal result some-
times cannot be produced, this approach can still provide
subscribers with a good communication experience overall.

Based on the above discussion, we adopt a fast com-
munication planning method based on the Beetle Antennae
Search (BAS) algorithm [42] to provide AR subscribers with
a high-quality communication service, as described below.

4.3.2 TOPSIS-Based Evaluation Approach

During the communication “map” searching phase, we
first need to evaluate the quality of the obtained solution.
Here we adopt the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [43] for evaluation
purposes. More specifically, by selecting the positive ideal
point S+ = {S1

max, S
2
max, S

3
max} and the negative ideal point

S− = {S1
min, S

2
min, S

3
min}, the quality of the obtained “map”

is evaluated according to its distance from the positive ideal
point. The problem can therefore be formulated as

min
X

F ′(X) =α ·
Tglobal(X)− S1

max

S1
min − S1

max

+ β · Emobi(X)− S2
max

S2
min − S2

max

+ γ ·
Sedge(X)− S3

max

S3
min − S3

max

.

(5)
Here we denote by S1

max and S1
min the shortest and longest

times required to synchronize the user’s interaction, respec-
tively, and by S2

max and S2
min the minimum and maximum

mobile energies consumed for communication, respectively.
These four ideal values can be obtained by applying the
Minimum Spanning Tree (MST) algorithm. When only one
mobile device is connected to the edge server, the spectrum
occupation is S3

max = 1, while in the case where all mobile
devices are connected to the edge server, S3

max = n, that is,
the edge server provides the forwarding service for all AR
subscribers. The weighting factors α, β, and γ are used to
balance the importance of communication latency, mobile
energy consumption, and network spectrum occupancy in
this problem, respectively.
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4.3.3 BA-CPP: BAS-Based Communication Planning
Due to the particularities of our problem, the newly devel-
oped BAS algorithm is appropriate. This was first proposed
in 2018 and can achieve faster searching than other heuris-
tic algorithms (e.g., particle swarm optimization [44] and
genetic algorithm [45]) for optimization problems.

The BAS algorithm was inspired by the searching and
detecting behavior of longhorn beetles. A beetle explores an
unknown environment by randomly searching, and its two
antennae are defined as xt

r = xt + dt · ~b (right antenna)
and xt

l = xt − dt · ~b (left antenna). In detail, xt denotes
the current position of the beetle, dt the sensing length, and
~b the randomly generated searching direction. And in the
detecting phase, the beetle updates its position based on
the sensed odor concentration (i.e., fitness value) using the
antennae. The detailed odor detection behavior is given by
xt = xt−1 + δt · ~b · sign(f(xr) − f(xl)), where δt is the
searching step size and f(·) is the fitness function. Based on
the discussion above, we propose the multi-user communi-
cation planning approach described by Algorithm 1.

Algorithm 1 BAS-Based Communication Planning
Input:

Network features: B (bandwidth) and L (latency);
Ideal points: S+ (positive) and S− (negative);
BAS parameters: P ′ (penalty factor), δ, and N .

Output:
Optimal multi-user communication solution: X .

1: Initialize the position xt and direction ~b of the beetle
2: for epoch = 1 to N do
3: Environment search with antennae: xt

r and xt
l

4: /* Restrictions on the detecting phase */
5: if

∑
X0,j = 0 then Cond1 ← 1 . Restriction (1)

6: if
∑
Xi,j 6= n− 1 then Cond2 ← 1 . Restriction (2)

7: for e = 1 to n do
8: Set X0,e and Xe,j to 0 then obtain X ′

9: if Tglobal(X) =
∑
Li,j ·X ′i,j then

10: Set Cond3 ← 1 and Break . Restriction (3)
11: end if
12: end for
13: /* Communication “map” punishment */
14: if Cond1 + Cond2 + Cond3 > 0 then
15: F ′′(X) = F ′(X) + P ′

16: end if
17: Update beetle’s position xt+1 with random direction
18: end for
19: return argminF ′′(x)

Our proposed approach BA-CPP further improved the
BAS-based heuristic approach for communication planning
by combining multi-user interaction prior knowledge, that
is, the Restriction 1, 2, and 3 in Algorithm 1, through mobile
Web AR-based adaption for interaction synchronization.
This enhancement improves the algorithm efficiency by
guaranteeing that all subscribers are connected by the short-
est path. Based on our experiments, the straightforward
use of BAS will lead to an unsatisfactory problem solving
process because it is more easily being trapped into local
optimum and produce unsatisfactory results because all
users tend to forward their interactions using edge server,

thus forming a star topology, which ignores the advantages
of D2D communication.

We summarize the restrictions introduced as follows:

• Restriction 1. At least one mobile device needs to
be connected to the edge server to upload all AR
subscribers’ interactions for synchronization.

• Restriction 2. In the case of n communication nodes
(including the edge server), the obtained communi-
cation “map” needs n− 1 communication links.

• Restriction 3. The generated communication solution
must avoid loop to ensure that all edge nodes can
communicate with each other based on Restriction 2.

Finally, after a certain number of iterations, the beetle
will return the search result (i.e., its current position), and
the communication “map” is then distributed to all users.

4.3.4 Grouping-Based Path Planning
A unique feature of this Web-based mobile AR solution
is that subscribers no longer need to download the spe-
cific apps in advance to experience the augmented virtual
services, that is, the Web technology eliminates the per-
formance differences in AR interaction mechanisms due
to heterogeneous mobile devices, users can enjoy the AR
experience anytime and anywhere by simply using a pre-
defined URL, which holds the potential to promote the
application of mobile AR on a large scale.

Although the proposed communication planning algo-
rithm BA-CPP promises efficient problem-solving capability,
when the number of subscribers increases excessively, the
path planning remains a challenging problem. For example,
when there are 10 edge nodes requesting communication, a
total of 45 communication paths are available; then when the
edge nodes are increased to 30, the number of communica-
tion paths will increase to 465. The increase in the dimension
of the solution space reflects the complexity of the problem,
making efficient optimization more challenging. Not only
does the time required for the problem-solving increase, but
also it is more easily being trapped into local optimum.

Algorithm 2 Grouping-Based Path Planning
Input:

Network features: B (bandwidth) and L (latency);
Ideal points: S+ (positive) and S− (negative);
BAS parameters: P ′ (penalty factor), δ, and N ;
Mobile user collection M and location information P.

Output:
Optimal multi-user communication solution: X .

1: Mobile user grouping using cluster analysis
2: for i = 1 to K do . Parallel processing
3: Xi = BA-CPP(Gi,Bi,Li, S

+, S−, P ′, δ,N)
4: end for
5: return X = {X1,X2, . . . ,XK}

To address the challenge of efficient large-scale commu-
nication planning, we adopt a grouping-based path plan-
ning mechanism, as described by Algorithm 2. n mobile ser-
vice subscribers are divided into K communication groups,
G = {G1, G2, . . . , GK}, based on their location information
using cluster analysis. All groups use the BA-CPP algorithm
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in parallel to obtain their in-group communication “map”,
and all interactions are forwarded by the edge server be-
tween groups. Remarkably, the granularity of the grouping
depends on the cost of network spectrum resources and the
service provider’s pre-defined requirements for communi-
cation path update frequency. The more groups, the more
spectrum resources are occupied (for K groups, the system
network spectrum occupancy S3

max is K), but the faster the
communication planning process for each group.

An alternative is to orchestrate the computing resources
adaptively in order to support highly concurrent user re-
quests, which has been widely studied in both cloud com-
puting scenarios [46] and mobile edge computing scenar-
ios [32]. However, such cloud based solutions are comple-
mentary and will be one item in our further research agenda.

5 COLLABORATIVE COMPUTING DESIGN

Both the edge server and the nearby mobile devices provide
opportunities for collaborative computing. In this section,
we propose a motion-aware runtime scheduler for adaptive
key frame selection. Moreover, by coordinating local and
nearby computing resources, a supplementary feature ex-
traction mechanism is also designed.

5.1 Collaboration with Edge Server:
Key Frame Selection

Object tracking through continuous feature extraction will
face enormous challenges for its practical application. By
combining feature extraction and lightweight object track-
ing algorithms together, it will therefore be a compromise
but practical solution, which currently has been adopted by
many mobile Web AR implementations.

5.1.1 Key Frame is Not Key

The intermittent feature extraction not only provides a
means of tracking error correction (since the number of
traceable feature points will decrease due to the user’s
movement during the object tracking process) but also
achieves savings in terms of computational cost (since it
avoids massive feature extraction requests, which are typical
computation-intensive tasks). The question then arises as to
which frames should be selected as key frames.
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(b) Threshold-based key frame selection scheme.

Fig. 5. Mainstream approaches for key frame selection.

Note that in AR applications, the homography matrix,
that is, the transformation relation between two frames,
can be obtained by analyzing the corresponding matched
feature point pairs, which is used to update the virtual
model. The more matching point pairs, the more accurate
the homography matrix is, and thus the more exact the
virtual model can be updated, thereby improving the UX.
Therefore, it would be better if enough feature points can
be obtained. For simplicity but without losing accuracy,
we use the number of detected feature points to assess
the service quality. And the threshold here refers to the
minimum number of feature points that can be tracked by
the K–L optical flow algorithm on the mobile device which
is pre-defined by the application service provider according
to the characteristics of reference images and specific service
requirements. When the number of traceable feature points
is less than the pre-defined threshold, the feature extraction
process will be activated again.

Current mobile Web AR implementations select the key
frames periodically (i.e., at regular intervals, for example,
the first video frame per second) or based on the number
of trackable key points (i.e., by setting a specific threshold),
and these are the two most common approaches for key
frame selection. However, the following reasons prompted
us to develop a new key frame selection mechanism.

Both of the aforementioned approaches suffer from in-
herent weaknesses, as illustrated in Figure 5. Specifically,
the first method is a periodic key frame selection mecha-
nism, and obviously it cannot meet the requirements for
timely correction of tracking errors caused by dynamic
changes in the user’s Field of View (FoV). In cases where
the user moves fast, the number of feature points that can
be tracked will decrease sharply; this means that accurate
object tracking cannot be guaranteed, thereby reducing the
experience of mobile Web AR subscribers (or the service
continuity perceived by users). In contrast, when the user
moves slowly or stays still, this mechanism will cause re-
dundant computation. Since the current number of trackable
feature points is sufficient to provide accurate tracking, the
feature extraction request is unnecessary, although it is still
activated (this key frame is therefore not a real “key” frame).
In the second type, the threshold-based key frame selection
mechanism, unpredictable user movements pose a dilemma
in terms of threshold setting. If the user moves fast but
the threshold (i.e., the minimum number of feature points
needed to perform accurate object tracking) is low, then
when the number of trackable feature points reaches the
threshold, the video frame at that moment will be selected
as a key frame and transmitted to the back-end for feature
extraction. From this point on, however, it will be impossible
to provide stable object tracking, and the service will even
be interrupted, which will greatly decrease the UX. On the
other hand, when the threshold is high but the user moves
slowly, performing feature extraction will not be necessary,
resulting in a waste of computing resources. This is because
the current number of trackable feature points are sufficient
to guarantee the quality of the tracking service. One naive
approach is to set the threshold higher when the user moves
faster, and vice versa; however, identifying the user’s state
of motion is not easy, since each video frame is isolated.
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5.1.2 Motion-Aware Runtime Scheduler Mo-KFP
Based on the discussion above, a context-aware key frame
selection mechanism is therefore recommended that not
only guarantees the quality of the object tracking ser-
vice (from the user’s perspective) but also avoids the
waste of computing resources (from the application service
provider’s perspective).

More specifically, the selection of key frames is based on
an analysis of the user’s continuous movement. By monitor-
ing the number of feature points that can be tracked in real
time, we can therefore indirectly obtain information on the
user’s movement. We then use the pre-defined threshold as
the baseline, combined with the time required for back-end
processing (including the time required for round-trip data
transmission), to infer which video frame should be selected
as the real “key” frame.
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Fig. 6. Motion-aware key frame selection approach Mo-KFP.

A simplified example is illustrated in Figure 6. Here we
present the details of the key frame selection mechanism in
two scenarios where the user’s movement is different.

1. At time T F
1 and T S

1 (we use superscripts F and S to
indicate the two states of the user’s movement, that
is, fast and slow, respectively), the user receives the
extracted feature points, and then starts to perform
object tracking locally.

2. Within a given period of time (e.g., from T1 to T2), we
first record information on the user’s movement (in-
cluding the frame timestamp and the corresponding
number of trackable feature points, using the Lucas-
kanade (L–K) optical flow algorithm [47]).

3. The edge server analyzes the movement records, and
then the key frame prediction model (i.e., the motion-
aware runtime scheduler) is obtained.

4. Following this, we can therefore predict when the
number of trackable feature points will decrease to
the pre-defined threshold given the current state of
movement (i.e., T4 in Figure 6).

5. Finally, based on the time required for cloud process-
ing (i.e., T4 − T3), the key frame can be selected.

Ideally, when the number of feature points that can be
tracked decreases to the threshold, the client will receive the
extracted features of the newly selected key frame.

Regardless of whether the user moves fast or slowly,
there are still sufficient feature points to support accurate
object tracking using our proposed key frame selection
mechanism during the period in which the user has re-
quested feature extraction but has not yet received the
result (i.e., the period from T3 to T4). In the case of fast
user movement, our proposed scheduler can transmit video
frames to the back-end server for feature extraction in a
timely manner, thus satisfying the user’s requirements for
accurate object tracking. When the user moves slowly, it can

also reduce the frequency of feature extraction accordingly,
which can improve the utilization of system resources.

However, predicting user movement is difficult. More
specifically, model-based approaches need to specify the
movement pattern in advance for curve fitting, such as lin-
ear and polynomial regressions. While for irregular move-
ment by the user, it is impossible to define a specific model
that is suitable for all cases.

For addressing this time series problem, there are cur-
rently two mainstream solutions worth considering, that is,
statistical methods and machine learning-based methods.
The latter solution, e.g., Recurrent Neural Network (RNN),
has achieved remarkable prediction accuracy improvements
in recent years, but it cannot be ignored that these methods
require large amounts of data for neural network training;
meanwhile, due to their high computational complexity,
running RNNs on a device without GPU will take longer
and thus cannot meet the fast prediction of key frames in AR
applications. In contrast, Autoregressive Integrated Moving
Average (ARIMA) [48] as a linear regression-based method,
is more suitable for single-step or short-term prediction and
is a statistical method with satisfactory performance [49].
In the meantime, the automatic optimal model search will
also simplifies the process of key frame selection, and thus
can adaptively deal with various types of user movement.
And its fast predictions (tens of milliseconds) enable online
selection to be used. Considering the above reasons, here we
adopt ARIMA for the key frame selection.

Moreover, based on our observations, here we adopt a
compound prediction mechanism for key frame selection:

• When the number of trackable feature points pre-
dicted by Mo-KFP is constant, this indicates that the
user tends to be stable, then we will predict again by
increasing the number of user’s movement records.

• When the predicted key frame is farther away from
the current video frame, we use the logistic regres-
sion result as the final predicted result, in order
to avoid prediction error. Our experiments indicate
that logistic regression performs better than linear or
polynomial regression (see Section 6).

• When the predicted key frame is closer to the current
frame (i.e., the last frame in the records uploaded
by the user), considering the time required for data
analysis and transmission, we adopt the video frame
at the moment the user receives the response as the
key frame for feature extraction.

5.2 Collaboration With Nearby Mobile Devices:
Service Initialization Optimization

In addition to edge server assisted collaborative computing,
mobile devices near to the user can also provide computa-
tional assistance via the D2D communication technique in
5G networks, thus making collaboration between various
distributed computing resources more flexible. In this sec-
tion, we describe the collaboration between the computing
resources of the user device and nearby mobile devices to
address the AR service initialization problem.

5.2.1 Occurrence of the Initialization Problem
More complex feature extraction algorithms can always
achieve more accurate object recognition and tracking; how-
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ever, they will incur longer processing times (for clarity, we
briefly compare the performance of several feature extrac-
tion algorithms in Table 1, all images are pre-processed to
have equal length and width), thus causing service initial-
ization problems. In this case, the user needs to wait for a
significant amount of time to receive the processing result
after capturing the first frame, which degrades the UX.

TABLE 1
Comparison between different feature extraction algorithms

Feature Extraction
Algorithms [50]

Features Detected Processing Time (ms)
300× 500× 800× 300× 500× 800×

SIFT (2004) 893 1415 1994 24.63 56.07 142.13
SURF (2008) 1354 2156 3526 53.86 145.96 337.69
ORB (2011) 461 469 471 5.17 8.49 14.91

BRISK (2011) 1566 2683 3989 11.67 17.93 24.78
AKAZE (2013) 436 829 1451 15.76 38.51 97.27

One straightforward approach is to reduce the accuracy
requirements of the object recognition and tracking service
in exchange for a faster service response, thereby short-
ening the initialization time for the AR service. Although
lightweight feature extraction algorithms have tremendous
advantages in terms of processing time (i.e., computational
complexity), their drawbacks are also obvious. Fewer fea-
ture points makes it difficult to provide a high-quality object
tracking service, thereby leading to frequent feature extrac-
tion, as illustrated in Figure 7. Due to the serial execution of
feature extraction and object tracking, regardless of whether
the user performs feature extraction locally or on the back-
end servers, the problem of object tracking performance
degradation during the time period from T2 to T3 and from
T4 to T5 cannot be avoided.

The First
Video Frame

Long Initialization Problem (SIFT-based Feature Extraction and Recognition)

ORB-based
Initialization

T 1 T 2 T 3 T 4 T 5

Object
Tracking

Tracking 
Performance 
Degradation

Object
Tracking

Feature Extraction Feature Extraction

Tracking 
Performance 
Degradation

Fig. 7. Feature extraction and tracking during initialization.

5.2.2 D2D-Enhanced Feature Extraction Mechanism

To avoid service initialization performance degradation as
mentioned above, we propose a composite feature extrac-
tion and object tracking mechanism based on orchestrating
the computing resources of the user device and nearby
mobile devices using the D2D communication technique
in 5G networks. In this scheme, the user device performs
object tracking based on the L–K optical flow algorithm,
and the nearby devices assist the client in feature extraction,
thereby parallelizing the AR service provisioning and thus
optimizing the initialization performance.
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Fig. 8. D2D-enhanced feature extraction mechanism.

A simplified example is illustrated in Figure 8. At time
T1, the client receives the ORB-based recognition result from
the back-end server, and then activates the tracking service.
At the same time, the client transmits the current video
frame to a specific nearby mobile device to perform fea-
ture extraction. Assuming the client receives the extracted
features at time T

′

1, this result is then used to update the
reference feature points for the next object tracking stage.
Similarly, the video frame at T

′

1 will be transmitted to a
nearby mobile device via the D2D channel for feature ex-
traction. In this way, mobile devices can be effectively com-
bined to provide collaborative computing for performance
optimization. Note that the selection of candidate mobile
devices is primarily based on response latency; the mobile
device with the shortest communication and computing
latency will be selected as an auxiliary device.

Algorithm 3 Auxiliary Nearby Mobile Device Selection
Input:

Client capability Cs and feature extraction time ts;
Latency of D2D communication links L′;
Nearby Mobile devices H (Hi ∈ H) with computing
capability C (Ci ∈ C).

Output:
The auxiliary nearby mobile device: Hx.

1: for each nearby device Hi connected to the client do
2: Pi ← ts × Cs/Ci . Feature extraction latency
3: T ′i ← Pi + L′i . Response latency
4: end for
5: return argminT ′i . Greedy approach for selection

This composite scheme was adopted for the following
reasons: (1) Assigning the feature extraction described above
to the edge server introduces an additional computational
burden, and data transmission will also cause the occupa-
tion of public network spectrum resources; (2) The comput-
ing capability of current mobile devices (even mobile Web
browsers) is sufficient to complete lightweight feature ex-
traction, and D2D-based communication provides another
effective solution for data transmission.

6 EVALUATION OF THE EDGE AR X5
For performance evaluation, we developed a multi-user
mobile Web AR application called Panda Betrayal, and
conducted experiments using real-world 5G networks. In
this section, we describe the experimental setup, and present
an evaluation of the proposed collaborative communication
and computing mechanisms.

6.1 Experimental Setup
The experiments were conducted in a real-world 5G net-
work at Beijing University of Posts and Telecommunica-
tions, where full 5G coverage has been achieved in Bei-
jing, P.R. China. The experimental network environment is
illustrated in Figure 9. And three Huawei Mate 20 X (5G)
smartphones were interconnected via the D2D (Wi-Fi Di-
rect) communication technique. The distance between users
was about 1∼3 meters, the bandwidth of the D2D com-
munication links was 85∼150 Mbps, and the latency was
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5∼25 ms. Moreover, the communication latency between
the mobile device and edge platform was 10∼20 ms, and
the uplink and downlink bandwidths were 100∼150 Mbps
and 600∼700 Mbps, respectively.

Application 
Service Provider

Core 
Networks

Edge Server

Convergence 
Platform

D2D communication

OPtical Fiber

Fig. 9. Experimental 5G network environment.

All users accessed the AR application through the mobile
Chrome browser. The 5G base station first transmitted all
received signals via an optical fiber to the convergence
platform, then to the edge platform and to the cloud. The
convergence platform provided edge platform accessibility
for all 5G base stations within 5 kilometers.

Note that to improve computation efficiency, our ap-
proach maximizes the offloading of the computations to
either mobile device or its edge server. When the nearby
mobile device can take part of computations while satisfying
the user experience, our approach chooses to offloading to
the device. But if the neighborhood mobile devices are not
available, we naturally choose the edge server for offload-
ing. Given this offloading design is straightforward in our
system, we omit the discussion in the paper.

6.2 Performance Evaluation
In this evaluation of the Edge AR X5 system, we will analyze
the proposed BA-CPP and Mo-KFP mechanisms, which
are used in Edge AR X5 for collaborative communication
and computing, respectively, since these are the two most
important issues, as mentioned earlier.

6.2.1 Multi-User Communication Analysis
In addition to a communication scenario involving 3 mobile
users, we also compare the communication efficiency in
scenarios with 5 and 10 AR subscribers for generalization.

One of the most important advantages of the BAS al-
gorithm is its efficient search capability. Here, we analyze
the communication planning performance of our proposed
BA-CPP mechanism. As discussed earlier, the weighting
factors α, β, and γ are used to balance the importance of the
communication latency, mobile energy consumption, and
spectrum occupancy in cost function, respectively.

A good communication “map” can be found after about
100 iterations in scenario with 3 mobile users, as illustrated
in Figure 10. For scenarios in which 5 or 10 mobile users
communicate typically requires a high number of search
iterations to obtain a good solution due to the exponential
increase in the search space. But the BAS algorithm only
compares the detected odor concentration (i.e., fitness value)
of its antennae at each iteration, time complexity of the
algorithm is thus O(2m), which does not impose a huge
computational burden on the system.

For the purposes of performance evaluation, we compare
our proposed solution with the other three mechanisms, as
follows: (1) All-Edge, in which the edge platform broadcasts
all AR subscribers’ interactions; (2) All-D2D, in which all

mobile users communicate via the D2D technique, and we
randomly select one user to synchronize interactions with
the edge server; and (3) Random, in which the communica-
tion “map” is generated randomly.

TABLE 2
A brief summary of the number of trackable feature points in different

movement scenarios

Movement Fast Movement (Move-1)
Frame No. 1 10 20 30 40 50 60 70 80 90

SIFT 354 329 273 232 209 178 161 157 155 155
SURF 468 407 317 264 225 185 161 153 149 146
ORB 406 360 280 242 191 147 118 114 112 109

BRISK 673 589 479 402 354 298 268 262 259 255
AKAZE 324 268 223 187 164 141 136 134 134 133

Movement Camera Rotation (Move-2)
Frame No. 1 10 20 30 40 50 60 70 80 90

SIFT 544 521 467 457 430 387 375 324 303 281
SURF 797 655 563 548 498 456 425 369 349 320
ORB 500 492 445 439 401 369 331 245 213 170

BRISK 943 910 815 803 749 667 636 566 546 511
AKAZE 426 406 362 352 332 301 286 247 234 211

Movement Forward and Backward Scaling (Move-3)
Frame No. 1 10 20 30 40 50 60 70 80 90

SIFT 594 587 518 516 515 500 475 461 453 452
SURF 915 782 600 583 581 560 532 509 500 498
ORB 500 500 468 468 467 453 436 394 393 389

BRISK 941 941 858 845 843 816 786 756 739 732
AKAZE 471 464 412 407 405 388 363 342 336 336

Movement Camera Tile (Move-4)
Frame No. 1 10 20 30 40 50 60 70 80 90

SIFT 951 927 916 915 911 894 894 894 894 816
SURF 1282 1196 1149 1117 1109 1044 1036 1020 1020 912
ORB 500 500 494 494 494 478 478 478 478 435

BRISK 1550 1547 1534 1529 1524 1474 1474 1474 1474 1362
AKAZE 838 832 821 812 809 776 774 772 771 705

The experimental results demonstrated that our ap-
proach performs better than the other solutions (here we
adopt the same weighting factors as an example, i.e., α =
β = γ = 0.3), as illustrated in Figure 11. In particular, the
performance of our approach is similar to that of the All-
D2D mechanism, but the better choice of communication
links between mobile devices and the edge server provides
lower communication latency and mobile energy consump-
tion, that is, an improvement of about 35.51%, 85.61%, and
26.19% for the three communication scenarios, respectively.
Since the BA-CPP and All-D2D mechanisms have only one
mobile device connected to the edge server, the spectrum
occupancy is therefore zero (i.e., at the positive ideal point).
The most significant difference is that our approach is able
to choose the most efficient communication link from the
edge-based and D2D-based alternatives. Note that the final
value of the fitness function is related to network delay
and bandwidth. Because these network attributes in the
experiments are randomly generated within a certain range,
the final value therefore will not show a certain trend in the
communication scenario with different numbers of users.

6.2.2 Motion-Aware Key Frame Selection Analysis
A unique feature of our key frame selection approach is that
it can predict the video frames that need to be offloaded
to the back-end for feature extraction based on the user’s
movement. For a comprehensive comparison, we analyzed
four different user behaviors (i.e., changes in FoV): (1) fast
movement; (2) camera rotation; (3) forward and backward
scaling; and (4) camera tilt, and we recorded the number of
feature points that could be tracked by the K–L optical flow
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(b) Communication between five users.
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(c) Communication between ten users.

Fig. 10. Communication “map” searching and performance comparison for different multi-user scenarios.
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Fig. 11. Performance comparison for multi-user communication.

algorithm over three seconds (90 video frames in total). A
brief summary is given in Table 2.

TABLE 3
Detailed key frame prediction results comparison

Target Mo-KFP Logistic Polynomial Linear
KPN FID KPN FID KPN FID KPN FID KPN

M
ov

e-
1

SIFT 157 48 178 50 178 51 178 42 208
SURF 155 45 222 46 221 53 184 41 224
ORB 115 52 146 52 146 63 116 46 188

BRISK 157 56 270 43 353 51 297 42 353
AKAZE 134 41 164 48 142 48 142 40 164

M
ov

e-
2

SIFT 338 70 324 51 387 66 364 58 375
SURF 381 79 351 71 364 48 463 40 498
ORB 270 82 183 N/A – N/A – 82 183

BRISK 588 74 560 41 725 68 570 59 635
AKAZE 260 66 276 58 286 63 279 55 294

M
ov

e-
3

SIFT 461 64 463 N/A – 38 516 37 516
SURF 510 63 512 32 582 31 582 N/A –
ORB 394 89 389 N/A – 65 395 60 436

BRISK 758 58 438 68 758 44 817 42 832
AKAZE 342 71 341 49 388 48 388 45 388

M
ov

e-
4

SIFT 894 61 894 66 894 35 915 35 915
SURF 1024 46 1049 72 1020 42 1101 40 1109
ORB 478 57 478 59 478 61 478 60 478

BRISK 1474 65 1474 65 1474 83 1473 82 1474
AKAZE 772 74 773 N/A – 71 772 70 772

Normalized Accuracy 100% 88.39% 72.74% 57.31%

To verify the effectiveness of our proposed key frame se-
lection mechanism Mo-KFP, we analyzed the data obtained
and manually labeled the target key frame (the 65th video
frame) as the ground truth. We then predicted the key frame
(i.e., FID) based on the recorded number of trackable feature
points (i.e., KPN) at the 65th frame, for different types of
user movement. The prediction results and normalized pre-
diction accuracy are presented in Table 3. It can be seen that
our proposed ARIMA-based key frame selection mechanism
performs more accurately than the other linear, polynomial,
and logistic regression-based methods. Specifically, Mo-KFP

achieves average improvements in prediction accuracy of
41.32% (linear), 25.52% (polynomial), and 15.48% (logistic).

More accurate predictions will obviously lead to higher
computational efficiency. Although the prediction error ex-
ists, the advantage of our proposed Mo-KFP is that it can
balance the user experience and computational costs simul-
taneously. Specifically, our Mo-KFP mechanism can provide
better tracking performance with a low offloading frequency
compared with the previous periodic and threshold-based
key frame selection mechanisms.
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(b) Camera rotation.
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(c) Forward & backward scaling.
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Fig. 12. Comparison of feature extraction-and-tracking efficiency.

In detail, we summarize the feature extraction-and-
tracking efficiency, which is defined as the ratio of the
average number of trackable feature points to the number
of selected key frames, over a period of time, as illus-
trated in Figure 12. Our approach achieves the best feature
extraction-and-tracking efficiency, with average improve-
ments of 39.67%/1.21%, 60.39%/20.88%, 70.98%/24.92%,
63.39%/22.73%, and 39.05%/0.69% compared with the
above two key frame selection mechanisms, for five fea-
ture extraction algorithms (SIFT, SURF, ORB, BRISK, and
AKAZE, respectively).

6.3 Application Implementation
We implemented a multi-user online game called Panda
Betrayal (see Figure 13) for mobile Web AR as an example,
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in which all users could access the AR application through
a pre-defined URL. When the user targeted a specific tem-
plate image (e.g., poster), the “augmented world” will be
activated and presented to the user. In addition to mobile
Web browsers, this link can also be embedded into many
other applications such as Facebook, Twitter, WeChat, etc.

+Y

+Z

+X

Non-Player 

Character

(a) Master Shifu view.

+Y

+Z

+X

(b) Master Monkey view.

+Y

+Z

+X

(c) Master Tigress view.

Fig. 13. Multi-user mobile Web AR application Panda Betrayal.

Specifically, all mobile devices connect to the edge server
using Socket.IO technology. The edge server generates and
maintains the communication “map”, which is a JavaScript
object that holds all link information. When the monitored
context (see Figure 3) is updated, the new “map” will be
packaged into JSON format7 and delivered to all the mobile
devices. Once the connection is established, the mobile
device starts to monitor user operations in real-time, and
update the virtual model accordingly, these operations will
also be forwarded to other participants, simultaneously;
when received operations from others, this JSON document
will first be parsed into a JavaScript object and then used
to update the virtual model. In Panda Betrayal, each player
triggers the attack event by clicking the button on the right
of the screen and controls the movement of their respective
characters (i.e., Shifu, Monkey, and Tigress) using the direc-
tional pad to avoid the non-player character’s attack. The
three players will collaborate to defeat the betrayer (Panda).
Remarkably, the scale of the virtual scene can change with
the distance between the user and the augmented target (the
poster in Panda Betrayal) or can be manually set by the user.

Here, we take the SIFT and ORB algorithms as an exam-
ple of the AR service initialization problem described above.
The edge server performs the feature extraction and image
retrieval (100 templates) processes, taking on average 450
ms and 180 ms (including transmission latency) for the SIFT
and ORB algorithms, respectively. Our proposed solution
can therefore effectively improve the initialization time by
about 60% (although the number of feature points that can

7. JSON as a lightweight data exchange format, can effectively im-
prove network transmission efficiency and thus reduce the burden of
data transmission on the network. In the case of 10 communication
nodes, the generated JSON document is only 1.053 kilobytes.
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Fig. 14. Edge-assisted image (500×500 pixels) retrieval.

be tracked is reduced by 22.31% compared to the SIFT
algorithm). D2D-based ORB feature extraction takes approx-
imately 200 ms. Also user’s different movement states will
affect the initialization performance. For the aforementioned
four movement scenarios, the number of trackable feature
points can be increased by about 5.2‰ at the same time,
when compared to the scenario without D2D assistance.
Note that in different user movement and feature extraction
algorithms, our approach will achieve different application
performance improvement.

In addition to the communication and computing ad-
vantages that the 5G network offers, another inherent fea-
ture of the network edge server is the ability to provide
location-based service as discussed in Section 3. Owing to
the close correlation of the augmented targets and spatial
geological location, for example, when the subscriber is
located in Beijing, P.R. China, the augmented target may
be Tian’anmen Rostrum, and it will not be the Statue of
Liberty in the United States. By referring to the location
information of the user, the search space of the reference
images (i.e., retrieval database) can be effectively reduced
using locality information. Here we compared the retrieval
latency and the Top-1 retrieval accuracy under the different
number of reference images as illustrated in Figure 14 for
demonstration purpose. Obviously, the location-based ref-
erence image filtering mechanism can simultaneously and
effectively improve the retrieval speed and accuracy.

7 DISCUSSION

In this paper, we have presented the first multi-user col-
laborative framework for mobile Web AR in 5G networks.
By coordinating pervasive communication and computing
resources, we have been able to significantly improve the
UX of mobile Web AR applications.

However, there are still many challenges to address in
the field of Web-based mobile AR.

On-Web AI Service. The improvement in the computing
capability of mobile Web browsers have made it increas-
ingly possible to carry out part of complex computations
locally [51]. Meanwhile, deep neural network-based feature
extraction and object tracking techniques, such as LIFT [52]
and FlowNet [53], offer better performance than traditional
computer vision techniques. But considering the computa-
tional complexity and the size of the DNN models, it is
currently impossible to apply them directly to a mobile Web
browser, especially built-in browsers [54].

Multi-Edge Collaboration AI. For demonstration purposes,
only one edge server was used in this work to assist AR
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subscribers, but considering the mobility of users, a flexible
edge server collaboration (e.g., service migration and mobil-
ity management) is also worth considering [32].

5G-Enabled Networking AI. In addition to the computing
and communication techniques mentioned here, network
slicing [55] can also be used as a support networking
technology under 5G networks, thus enabling perform in-
telligent network resource scheduling based on different
network services, providing further opportunities for im-
provements in the UX of mobile Web AR.

8 CONCLUSIONS

Web-based multi-user mobile AR can be used to achieve a
lightweight and cross-platform solution that is a promising
research direction for various applications. The emergence
of 5G networks has introduced both opportunities and
challenges, especially for multi-user communication and
computation outsourcing. In this paper, we propose a col-
laborative framework called Edge AR X5 that provides a
better UX by coordinating pervasive communication and
computing resources. Specifically, we proposed the BA-CPP
mechanism for multi-user communication planning, which
balances the requirements of users and Internet service
providers. We also proposed a motion-aware key frame
selection mechanism called Mo-KFP, which improves the
computational efficiency of the system and allows collab-
oration between the computing resources of nearby mobile
devices via the D2D technique to addressing the issue of
a long initialization times. Experiments were conducted on
real-world 5G networks and demonstrated the effectiveness
of our proposed collaborative multi-user mobile Web AR
framework. Our current efforts represent a preliminary at-
tempt towards the multi-user mobile Web AR in the 5G
era, and there is a pressing need for joint efforts between
academia and industry to promote this technology.
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