
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 1

EdgeBooster: Edge-Assisted Real-time Image
Segmentation for the Mobile Web in WoT

Yakun Huang, Xiuquan Qiao, Pei Ren, Schahram Dustdar, Fellow, IEEE, and Junliang Chen

Abstract—Combining image segmentation with web technology
lays a good foundation for lightweight, cross-platform and perva-
sive Web AI applications, and further improves the capability of
Web of Things (WoT) applications. However, no matter whether
we use a WebRTC media server for advanced processing that
views camera inputs as a video stream, or transfer continuous
camera frames to the remote cloud for processing, we are
unable to obtain a satisfactory real-time experience due to high
resource consumption and unacceptable latency. In this paper,
we present EdgeBooster, a computational-efficient architecture
that leverages a common edge server to minimize the com-
munication costs, accelerates the camera frame segmentation,
and guarantees an acceptable segmentation accuracy with the
prior knowledge. EdgeBooster provides real-time segmentation
by developing parallel technology that enables segmentation on
slices of a camera frame and using pre-segmentation based
on superpixels to accelerate the graph-based segmentation. It
also introduces recent DNN-based segmentation results as the
prior knowledge to improve the performance of the graph-
based segmentation, especially in non-ideal scenes such as dark
light and weak contrast. Finally, it creates a pure front-end
segmentation that can provide continuous and stable services
for mobile users in unstable networks such as a weak network
or with an unstable edge server. The experimental results show
that EdgeBooster is able to achieve a considerable accuracy for
the mobile web, running at no less than 30 FPS in real scenes.

Index Terms—Mobile web, edge computing, image segmenta-
tion, WoT applications

I. INTRODUCTION

THE Web of Things (WoT) is a refinement of the Internet
of Things (IoT) to enable interoperability and usability

across heterogeneous IoT platforms and application domains,
which has been a W3C international standard proposal re-
cently [1], [2], [3]. Meanwhile, cross-platform web artificial
intelligence (AI) improves the capability for WoT applications,
expands application fields of WoT [4], [5], and is becoming
a promising research topic [6], [7]. Thus, it is necessary
and significant to develop AI-enabled WoT applications and
provide “Write Once, Run Anywhere” portability for various
IoT devices, rather than developing different applications for
each IoT platform. This also indicates that IoT applications
can be further enhanced by integrating smart things not only
into the network, but into the Web architecture. However,
limited by the weak computing capability of the Web and the

Y. Huang, X. Qiao, P. Ren and J. Chen are with State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China. E-mail:{ykhuang, qiaoxq, ren-
pei, chjl}@bupt.edu.cn.

S. Dustdar is with the Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria. E-mail:dustdar@dsg.tuwien.ac.at.

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

constrained resources of IoT devices, it is difficult to complete
the computationally intensive AI-enabled WoT applications.
Fortunately, mobile edge computing (MEC), as a basic infras-
tructure in the 5G era, can provide low-latency and powerful
services for computationally intensive WoT applications. As
shown in Fig. 1, we describe a typical scenario of employing
cross-platform web technology and MEC into IoT, which
lays a good foundation for lightweight, cross-platform and
pervasive Web AI applications. For example, traditional use
cases such as augmented reality [8], [9], medical image anal-
ysis [10], unmanned vehicles [11], security monitoring [12],
can be further enhanced by offloading heavy computations
to the edge server. In this paper, we take real-time image
segmentation, which provides indispensable sensing capability
and is the most core technology involved in scene analysis
[13], object detection [14], 3D reconstruction [15] etc., as
a typical illustration. We explore an edge-assisted real-time
system and expand the WoT application fields and influence
for ubiquitous end devices, also including IoT devices.

Image
Segmentation

Datacenter Web
Resource

Remote Cloud

Gateway

Gateway

WoT Server

KNX
/ECHONET

HTTP/WebSocket

Smart Home use case

Smart Factory use case
HTTP/WebSocket

DeviceNet/
Modbus

Smart Device Applications

Gaming
AR Apps.
3D Modeling
Social Apps.

HTTP/WebSocket
Unmanned Vehicles use case

…Camera&
Sensors

Healthcare use case

Medical image
segmentation

Service provider

HTTP/
WebSocket

HTTP/WebSocket

Fig. 1. Typical scenario of image segmentation & the ad-
vantage of employing cross-platform web technology in WoT
applications (i.e., using HTTP/WebSocket protocols to unify
and manage ubiquitous end devices).

To fluently execute real-time image segmentation on the
mobile web, which means that average frame processing rate
cannot be less than 30 FPS (frames per second). However,
most of existing approaches to image segmentation on the
mobile web take one of the following two approaches that
give an unsatisfactory experience. The first approach is to
obtain the video stream by leveraging the Web Real-Time
Communication, (WebRTC) API [16], and transfer it to a
remote media server for decoding, the video frame seg-
mentation, fusing segmentation information, re-encoding and
returning the processed video stream back to the mobile web

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 2

for rendering. A typical scenario is employing Kurento [17],
which is a WebRTC media server and a set of client APIs
for making the development of advanced video applications
for WWW simple, and providing advanced media processing
capabilities such as computer vision, or augmented reality.
However, this approach is limited by the network bandwidth
and the computing capability of the media server. Intensive
video stream computing increases the resource consumption of
the media server dramatically in a short period of time, which
results in the inability of the media server to handle large scale
requests from multiple users and even makes the media server
unavailable. In addition, although the mobile web achieves a
fluent video stream that fuses the segmentation results from the
media server, high network delay results in a drift phenomenon
between the received video stream and the real scene during
the rendering. The second approach directly obtains continu-
ous camera frames from the mobile web and executes image
segmentation either on the mobile web or transfers the camera
frames to the remote cloud for image segmentation, named
pure front-end method and cloud-assisted method respectively.
Limited by weak computing capability of the mobile web,
the pure front-end method can execute lightweight image
segmentation such as the threshold-based algorithm [18] at
no less than 30 FPS on the mobile web. However, since
this method only considers the grayscale feature of images
and ignores the spatial features, it is sensitive to noise and
not robust enough to achieve an acceptable accuracy in the
real scene. The cloud-assisted method can achieve acceptable
accuracy by transferring the camera frames to the remote
cloud for executing image segmentation algorithms such as
traditional computer vision algorithms [19], [20], DNN-based
algorithms [21] and semantic segmentation algorithms [22],
and then returning the segmentation result to the mobile web
for rendering. However, high transmission delay with a Round-
Trip Time (RTT) about 120 ms indicates that it is far from
meeting the real-time experience of no less than 30 FPS. In
addition, intensive computing of the graph-based algorithm
requires about 230 ms for image segmentation on a common
server with a six-core Intel processor of 2.9 GHz and 16 GB
RAM, let alone DNN-based algorithms that require dedicated
devices such as powerful GPUs.

With the rapid development of 5G network to address these
shortcomings, it is promising to consider the use of an edge-
assisted approach that has the benefit of low communication
costs compared to offloading computations to the remote
cloud, and relieves the burdens of the core network [23], [24].
Compared to those app-based applications that can offload
partial computations to the edge server to enable continuous
vision analytics on mobile devices and dedicated devices, the
mobile web application has to offload the entire computations
to the edge server due to the limited computing capability
of the mobile web [25], [26]. In addition, both app-based
and web applications require high performance edge server
with special hardware, such as GPUs for accelerating DNN
algorithms. Although we can deploy expensive GPU servers in
a special scene (e.g., an indoor stadium for holding activities),
it is not realistic for network service operators, such as China
Mobile and AT&T, to deploy high performance edge servers

for widely use when MEC is used as the basic infrastructure
in 5G. Thus, employing this kind of edge-assisted approach
to offload real-time image segmentation tasks from the mobile
web to common edge servers is still challenging for a number
of reasons, including the following:

• No edge-assisted framework is computational-efficient
for image segmentation between the mobile web and
common edge servers. JavaScript is the main way for im-
plementing mobile web applications, which provide weaker
computing capacity than app-based applications that are
directly executed on the mobile device. Thus, intensive
segmentation computation needs to be entirely offloaded
from the mobile web to the edge server. However, to the
best of our knowledge, there is no computational-efficient
framework and implementation for executing at least 30
FPS that is assisted with a common edge server.

• A common and economic edge server fails to provide
real-time segmentation of no less than 30 FPS for
continuous camera frames with existing approaches.
Since traditional graph-based segmentation requires about
230 ms on a common edge server, it is far from meeting
the real-time segmentation requirement of the mobile web.
And a common edge server without GPUs cannot support
the DNN-based segmentation, requiring about 400 ms for
a camera frame. Additionally, the edge server executes
segmentation task on a complete image that consumes much
time waiting for the computing resource. This indicates that
it is necessary to design an efficient segmentation algorithm
and advanced technology to accelerate the segmentation and
meet the real-time requirement of no less than 30 FPS on
a common edge server.

• Traditional image segmentation of the graph-based algo-
rithm performs poorly in non-ideal scenes such as dark
light and weak contrast. Even if we can design efficient
algorithms and advanced technologies for the graph-based
segmentation, it generally performs worse than the DNN-
based algorithm, especially in non-ideal environments [21],
[27]. In addition, there is no existing and available method
to dynamically adjust appropriate parameters for the graph-
based algorithm in real time. Although we are unable to
leverage DNN-based algorithms directly on a common edge
server for real-time segmentation, it is a good choice to
leverage recent DNN-based segmentation results as the
prior knowledge to provide appropriate parameters and
improve the performance of the graph-based segmentation
on a common edge server.

• How to provide continuous and stable services in un-
stable environments such as a weak network or an
unavailable edge server. Offloading computing tasks from
the mobile web to the edge server completely relies on
the high performance and reliability of the network and
the edge server. An unstable edge server will introduce a
short service failure when performing a service migration
or switching between edge servers, resulting in an uncon-
tinuous service and unsatisfactory experience. In addition,
this approach is also affected by the network status. This
indicates that existing edge-assisted offloading requires

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 3

highly reliable edge server and the network bandwidth.
Thus, it is significant to enhance the robustness and QoS
with a low bandwidth requirement approach for real-time
segmentation.

To address these concerns, we present EdgeBooster, an
edge-assisted architecture that leverages a common edge server
to minimize the communication costs, accelerates the frame
processing rate, and guarantees an acceptable segmentation
with prior knowledge of DNN-based segmentation. Comparing
with existing real-time image segmentation algorithms that
mainly directly utilize the underlying hardware such as GPUs
on end devices, and require a stable network environment,
this paper is the first to implement computationally heavy im-
age segmentation for resource-constrained and cross-platform
mobile web applications. Also, it aims to provide better
frame processing rate than traditional graph-based methods
with a real-time experience of no less than 30 FPS. Toward
this goal, we propose an acceleration technology by dividing
the frame into slices and developing parallel technology to
execute segmentation on these slices. To further accelerate the
segmentation of frame slices, we propose the pre-segmentation
based on superpixels to significantly reduce the complexity of
the graph-based segmentation. Second, we propose the use of
the most recent results of DNN-based segmentation to provide
appropriate parameters for improving the efficiency of graph-
based segmentation. More importantly, this DNN-based prior
knowledge can be used to correct the results at the frame slices
edge for parallel graph-based segmentation. Thus, we can
dynamically set reasonable parameters and improve the per-
formance for the parallel graph-based segmentation, especially
in a non-ideal environment. Last, we create a lightweight pure
front-end segmentation based on a marker-based watershed
algorithm, which uses the recent frame segmentation cache
as the marker information to set appropriate parameters for
improving the segmentation performance. This pure front-end
segmentation also contributes to providing continuous and
stable services for mobile users in a weak network or an
unstable edge server. The contributions of this work can be
summarized as follows:

• Proposing a computational-efficient framework and imple-
menting a real-time segmentation for continuous camera
frames between the mobile web and a common edge server
for the first time to meet the requirement of no less than
30 FPS.

• Developing a parallel technology that enables segmentation
on slices of a camera frame and designing an efficient
graph-based segmentation algorithm using superpixel pre-
segmentation to further accelerate the processing.

• Introducing recent DNN-based segmentation results as the
prior knowledge to improve the performance of graph-based
segmentation in a non-ideal environment.

• Creating a lightweight pure front-end segmentation to pro-
vide continuous and stable services in unstable environ-
ments such as a weak network or an unstable edge server.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the background of
image segmentation on the mobile web, present our obser-
vations from preliminary measurements, and discuss edge-
assisted computing offloading technology that motivates us.

A. Image Segmentation on the Mobile Web

0

2 0 0

4 0 0

1 2 0 0 0
1 4 0 0 0

W a t e r s h e d
 - C l o u d

 L a t e n c y
 B o u n d a r y R e c a l l

La
ten

cy
(m

s)

W a t e r s h e d
 - W e b

P l a n e R C N N
 - C l o u d

P l a n e R C N N
 - W e b

0

2 0

4 0

6 0

8 0

Bo
und

ary
 Re

cal
l (%

)

Fig. 2. Latency and boundary recall performance of watershed
segmentation and DNN-based segmentation.

The cross-platform mobile web brings advantages to the
user’s perception of the environment and the real world.
We conduct experiments for indoor scenes to measure the
latency and boundary recall to illustrate the current problem
of image segmentation on the mobile web with the same
deployment in Section IV. Fig. 2 presents the latency and
boundary recall performance of watershed segmentation and
DNN-based segmentation, which are executed on the mobile
web and remote cloud respectively. According to the results
in the figure, we observe that the watershed algorithm [28]
which is executed by OpenCV.js [29] on the mobile web
has high efficiency, while the segmentation performance is
poor, being seriously affected by the dynamic environment.
Executing PlaneRCNN [21], which is a DNN-based algorithm,
on the mobile web introduces high latency including model
transmission and inference. Thus, it is natural to offload the
computation to the cloud for efficient image segmentation due
to the unacceptable latency. However, transmission latency and
inference latency are still too high to be acceptable when faced
with continuous frames.

B. Edge-assisted Computing Offloading

We present typical scenarios and comparisons between
cloud computing and edge computing in Fig. 3. Our goal is
to achieve real-time image segmentation for the mobile web
while maintaining a satisfactory accuracy. Delay performance
in the bottom left of Fig. 3 shows that it is better to offload
the computation from the mobile web to the edge server due
to low communication costs. In this paper, we mainly focus
on providing a real-time image segmentation for the mobile
web by means of edge computing. We believe that a carefully
designed edge-assisted image segmentation will provide not
only a high accuracy but also a better response time.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 4

Base Station with
Edge Server

LANWAN
Edge Offloading

Cloud Offloading

Cloud

Fig. 3. Typical scenarios and comparisons between cloud
computing and edge computing.

III. DESIGN

EdgeBooster proposes a computational-efficient architecture
that leverages a common edge server to minimize the com-
munication costs, accelerate the segmentation, and maintain
an acceptable accuracy. EdgeBooster consists of three major
components as shown in Fig. 4.

(i) The booster is located at the edge server and uses
a parallel technology for the graph-based algorithm which
enables segmentation on slices of a frame, so that the camera
frame streaming and segmentation can be effectively pipelined
and computed in parallel.

(ii) The booster leverages the results of recent DNN-based
segmentation results as the prior knowledge to guide real-time
segmentation of a graph-based algorithm. This prior experi-
ence can not only improve the segmentation accuracy in non-
ideal environments such as dark light and weak contrast, but
also accelerate the efficiency of the graph-based segmentation
by providing reasonable parameters.

(iii) The controller that executes at the mobile web runs
a camera frame scheduling algorithm, deciding whether to
request the edge server for boosting segmentation processing
according to the network condition and the computing pressure
of the edge server. A pure front-end segmentation based on
marker-based watershed algorithm in JavaScript provides a
real-time segmentation when confronted with a weak network
or an unstable edge server.

To further improve the performance of segmentation for the
mobile web, we perform pre-processing such as encoding, and
image denoising on the camera frame obtained by the We-
bRTC API. Furthermore, the front-end Result Receiver module
caches the recent segmentation record from the booster, thus
providing a wealth of knowledge for corrections to achieve
more accurate results from the pure front-end segmentation.

Design goals and scope. The primary goal of EdgeBooster
is to minimize the processing latency of camera frames and
provide real-time segmentation while maintaining acceptable
accuracy under various complex environments between the
mobile web and a common edge server. We also limit the
scope of our design, noting the following non-goals:

1. Each image segmentation algorithm has a certain accu-
racy and performance on a specified device. This paper is
devoted to providing an acceptable image segmentation on
the mobile web in real time. Thus, improving the accuracy of
segmentation to be better than the state-of-the-art segmentation
is outside this work’s scope.

2. EdgeBooster is mainly used for real-time computation
using common edge servers deployed close to the mobile web
users, so the deployment and resource allocation of mobile
edge servers is beyond the scope of this paper.

3. In EdgeBooster deployment, we mainly consider Chrome,
Safari and other mainstream browsers that support WebAssem-
bly [30] and other common technologies. Due to compatibility
issues, we do not consider the application of EdgeBooster in
embedded mobile web browsers such as WeChat.

In the following, we describe EdgeBooster in detail, fol-
lowed by a description of how the pure front-end controller
makes decisions on processing a camera frame (Section A),
parallel processing for accelerating (Section B), and a real-
time graph-based segmentation algorithm that leverages the
prior knowledge from DNN-based segmentation (Section C).

A. The Controller and Pure Front-end Segmentation

Generally, the network status and the state of the edge server
which mobile web users are using are usually complex and
unstable, resulting in unsatisfactory service with low QoS.
We provide a controller and a pure front-end segmentation
that execute on the mobile web to ensure a real-time image
segmentation even in a weak network or with an unstable edge
server.

1) The Controller: On the premise of meeting the minimum
camera frame rate, the controller schedules a camera frame
that is segmented by the pure front-end segmentation or
the powerful backend segmentation, according to the current
network status and the computation status of the edge server.
We define F = {f1, f2, . . . , fn} as the sequence of camera
frames obtained via the WebRTC API. When the mobile
web user requests the web server for services, the controller
and the pure front-end segmentation that are implemented in
JavaScript are loaded to the mobile web. The current network
status N = {3G, 4G,WiFi} and computing status of the
backend server p = max{pcpu, pIO} are also acquired in
requests from the mobile web, where pcpu and pIO represent
the current CPU consumption and the IO consumption of the
edge server respectively.

Generally, the pure front-end should provide at least 30
FPS to ensure a fluent experience for mobile web users, thus
as our controller threshold to make the decision for each
camera frame. We describe the detailed scheduling process
of the controller in Algorithm 1 and present four situations in
Fig. 5 to further explain the function of the controller. Fig. 5
shows that when there are problems in the network conditions
or services of the edge server, the edge server cannot be
used to provide services to users. Especially in Fig. 5(c),
although the edge server can provide available service, the
network bandwidth is too low or the network failure occurs,
the network conditions at this time are far from being able
to support real-time frame transmission, which also causes a
surge in latency.

2) The pure front-end segmentation: The computing ca-
pability of the mobile web browser is weaker than mobile
devices or dedicated devices, because it mainly computes the
task through JavaScript and is hard to use the underlying
hardware such as GPU for acceleration. OpenCV.js [29] uses

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 5

Mobile Web Browser

Raw Frame

Pre-processing

Request
Sender

Content
Render

Camera

Outputs

Common Edge Server

Request Receiver

Result Sender

Request

Result

Graph-Based
Segmentation

DNN-based
Segmentation

Parallel processing

Booster

F F F F F F F F F..

D C C C S CD C C S..

G ..

..

..

..

..

..

..

..
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

F

..

G
R

..
30 Frames 30 Frames

F

D

G
R

..

..

..

Prior
Knowledge

Result Receiver

Booster recent
cache record

Front-end
Segmentation

Controller

Fig. 4. Overall workflow of EdgeBooster. We also show the segmentation pipeline in the right of the figure. The sequence
in gray scale represents the camera frames that are transferred to the edge server for segmentation. The sequence below in
color denotes the processing of the DNN-based algorithm, where D is the processing frame, and S is the results, and C is
the unprocessed frames. The bottom sequence denotes the processing of the graph-based algorithm, where G is the processing
frame and R is a result frame.

�a�Available network and edge server �b�Available network

�c�Available edge server �d�Unavailable network and edge server

Fig. 5. Four situations of the controller. The green and red dot-
ted lines indicate whether the network condition is available,
respectively. Similarly, green and red edge servers indicate
whether the current service is available, respectively. The
controller sets the pure front-end segmentation by default and
transfers camera frames to the edge server for segmentation
in unstable environments.

Algorithm 1: The controller algorithm
Input: Network bandwidth B, parallel channels C,

frame size T , minimum FPS threshold fthresh,
sever load pressure pcur, maximum overload
of the server IO pmax io, maximum overload
of the CPU pmax cpu, processing and response
latencies tserver, tresponse.

Output: Optimal execution result.
1 OptResult⇐ Front-end; // Default setting
2 pmax ⇐ max{pmax io, pmax cpu} ;
3 if pcur ≤ pmax then
4 tsend ⇐ T/(C ·B);
5 te ⇐ tsend + tserver + tresponse;
6 if te ≤ 1

fthresh
then

7 OptResult⇐ Booster;

8 return OptResult;

the WebAssembly [30] to optimize and compile the OpenCV
library from the traditional C++ platform to run smoothly
on the mobile web browser, which also provides a favorable
basis for solving the pure front-end segmentation algorithm.
Although traditional algorithms that are based on the region,
the threshold or the edge have fast segmentation efficiency,
they are not robust to ensure a satisfactory experience in a
complex environment such as dark light and weak contrast.
To achieve stable segmentation in a weak network or when

the edge server is not available, we propose a prior marker-
based watershed algorithm as the pure front-end segmentation
for the mobile web browser.

Transform
to gray

History Frame

Current Frame

Edge
operator
detection

Render
Results

On the Edge Server

Histogram
equalization

Prior-marker
watershed

Gaussian
denoising

On the Mobile Web

Prior knowledge of recent
Booster segmentation

 Maker information
cache

Fig. 6. The pure front-end segmentation.

We describe in detail the complete process of lightweight
pure front-end segmentation, which mainly includes prepro-
cessing, prior-marker generation, and real-time segmentation
in Fig. 6. OpenCV.js provides tools and tutorials to compile
our lightweight pure front-end algorithm from an efficient C++
script to JavaScript that executes on the mobile web browser
in real time.

B. Parallel Technology for Segmentation

We leverage robust booster segmentation at the edge server
and return the results to the mobile web. This process requires
camera frames to be transmitted from the mobile web to the
edge server frequently, such as at 30 frames per second. Our
test results show that the implementation of the graph-based
algorithm of the booster on a common edge server takes about
230 ms with pre-processing, encoding, transmission, decoding,
and segmentation, and returns the results to the mobile web.
However, the DNN-based algorithm, such as PlaneRCNN,
takes about 400 ms to process a camera frame. Therefore, it is
difficult to meet the latency requirement by serially calculating
a camera frame.

To improve the processing speed of camera frames and meet
the latency requirement, we consider the use of a parallel pro-
cessing technology which enables graph-based segmentation
on slices of a camera frame in Fig. 7. The principle of graph-
based segmentation is based on the similarity between pixels,

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 6

which have no computational dependency when dividing the
frame into slices and executing graph-based segmentation
independently. This makes it possible to apply parallel pro-
cessing to accelerate the entire segmentation. However, when
we merge these slices, the lack of computation of pixels to
slice edges may introduce the loss of the accuracy. We propose
the use of the prior knowledge of DNN-based segmentation
to correct these pixels at slice edges to maintain the accuracy.
We do not adopt the parallel processing for the DNN-based
segmentation for the following reasons: (1) The network
structure of PlaneRCNN for segmentation is different from
traditional CNNs, which is also difficult to be parallelized. (2)
DNN-based segmentation mainly provides prior knowledge
for graph-based segmentation instead of providing real-time
processing.

P E T D
Serial
Pipline

P E T D

Paralle Streaming Pipline

P E T D

P E T D

P E T D

Stream 1

Stream 2

Stream 3

Stream 4

P Preprocessing E Encoding
T Transmission

D Decoding
DNN-based Segmentation

BS
DS

BS1

BS2

BS3

Booster Segmentation

BS4
DS

Slice 1
Slice 2
Slice 3
Slice 4

DNN-based
Segmentation

Slice 1Slice 2
Slice 3Slice 4

BS 1
BS 2
BS 3
BS 4

Merging &
Tuning

DS BS

Fig. 7. Parallel processing technology for segmentation.

The booster segmentation deployed on the edge server
mainly uses a graph-based algorithm that uses prior knowledge
of the DNN-based segmentation. For the graph-based segmen-
tation, we can easily accelerate the segmentation by a parallel
processing in Fig. 7. We use multiple processes to process the
task flow, such as the frame decoding thread, the graph-based
segmentation thread, and the integration processing thread.
These processes cooperate with the front-end parallel stream to
form the completed parallel stream and accelerate the segmen-
tation. For the DNN-based segmentation, it receives the task
stream from the mobile web and combines the camera frames
slices into a completed frame via the slice number as the
input of the DNN-based segmentation. To better understand
the details of the parallel processing, we first describe how
to divide each frame into slices and number them. In each
frame of the mobile web, we divide it evenly into N small
pieces, where N is the number of parallel processing pipeline
(e.g. N = 4 in Fig. 7). Therefore, each frame slice can be
processed by an independent thread, which means the way
of the frame dividing such as horizontal or vertical dividing
has no effects on the independent processing. Then, once all
of processing threads have been completed the segmentation
of frame slice, the merging process mainly involves stitching
the frames together to form a complete camera frame based
on the frame number. However, the pixels at the slice edges
of the camera frame results in a loss of accuracy due to
the loss of computation with adjacent slices when compared
with processing the whole camera frame. Although we can
perform graph-based segmentation again for stitching edge, it
obviously increases the delay of frame processing. To ensure
the accuracy and avoid increasing the latency, we next describe
the use of the prior knowledge of DNN-based segmentation
to correct these pixels at slice edges.

C. Real-time Booster for Segmentation

A large number of existing DNN-based algorithms can
achieve high precision, and real-time segmentation can be
provided even in complex scenarios. However, these algo-
rithms typically need to be deployed on dedicated devices for
accelerating computations so that they can achieve accurate
and real-time segmentation. We propose a real-time booster
deployed on common servers that aims at faster segmentation
and acceptable accuracy in a real environment. The booster
combines the advantages of the graph-based algorithm such
as high efficiency, easy deployment, and no requirement for
special hardware computing resources, which also leverages
the prior knowledge of the DNN-based algorithm to further
improve the segmentation accuracy. We simply iterate through
the pixels at the edge of the slices stitching, which will be
corrected to the partitioned area that the pixels at the same
location as the pixels of DNN-based segmentation belong to.
The main reason is that the DNN-based segmentation of the
previous frame considers the global pixel information, and the
accuracy is better than graph-based segmentation.

Traditional graph-based algorithms treat each pixel in the
camera frame as a vertex of the graph, and the relationship
between pixels (e.g., grayscale and the distance) is regarded
as the edge of the graph. The minimum spanning tree method
in [19] is used to iteratively calculate the similarity between
pixels and gradually merge them to form segmented regions.
Because the algorithm iteratively calculates pixel points, it is
hard to achieve real-time segmentation for a high-resolution
camera frame. For example, it takes about 250 ms to calculate
a frame of 480*680 on a common edge server. To further
improve the efficiency and meet the real-time requirement,
we also propose in Fig. 8 a booster algorithm based on
superpixels for pre-segmentation consisting of superpixel pre-
segmentation, graph-based segmentation and merging the re-
sults of the frame slices.

DNN-based prior knowledge

ŏ ŏ ŏ

Slice 1

Slice N

prior
parameter

Edge prior
knowledge

History frame prior knowledge

Merging &
Tuning

SEEDS Graph-based
Segmentation

i Frameth

i-1 Frameth
History result of

Slice N

ŏ

i-29 FramethHistory result of
Slice 1

2 3

ŏ

Acquire
appropriate

Acquire
appropriate

1 prior
parameter

ŏ

DNN-based
Segmentation

Precise edge Info
of w

hole fram
e

Fig. 8. Booster segmentation at the edge server.

First, we use the slice segmentation result of the latest
historical frame as the prior knowledge to provide appropriate
parameter for SEEDS [31], which is a fast superpixel segmen-
tation algorithm. Then, the current superpixel edge is gradually
moved to find the same uniform color feature of pixels
inside the superpixel as possible so that the segmentation

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 7

can be executed quickly. Thus, we can perform the graph-
based segmentation on these superpixels instead of the initial
pixels so that the complexity of the segmentation algorithm
is significantly reduced. SEEDS chooses the energy objective
function E(s) to measure the value of the superpixel:

E(s) = H(s) + γG(s), (1)

where H(s) denotes the color of the superpixels and G(s) is
the shape of the superpixel boundaries. γ weighs the influence
of each term, and it is determined by the prior knowledge of
history frame segmentation. The detailed process of SEEDS
can be found in [31]. Last, to acquire further robust segmen-
tation, we leverage the DNN-based segmentation as the high-
level prior knowledge to guide the graph-based segmentation
once the camera frame has been segmented into superpixels
(i.e., acquire appropriate parameter from DNN-based segmen-
tation on (i−29th) frame).

Let G = (V,E) be an undirected graph with vertices vi ∈ V
representing superpixels, and edges (vi, vj) ∈ E are the pairs
of neighboring vertices. Each edge has a weight w(vi,vj) that
measures the dissimilarity between the two superpixels (e.g.,
the difference in intensity, color or other attributes). Based on
the definition of the above superpixel map G and the simplified
minimum spanning tree (MST) of G, we define the internal
difference of the segmentation region (SR) as Int(C), which
means the weight of the largest edge in the SR as follows.

Int(C) = max
e∈MST (SR,E)

w(e). (2)

For example, the difference between the maximum luminance
mean of different superpixels in the SR can be used as
the edge of the most dissimilar superpixel in the MST. We
also define the difference between two segmentation regions
SR1, SR2 ∈ V as Dif(SR1, SR2) to represent the minimum
edge connecting the two superpixel regions as follows.

Dif(SR1, SR2) = min
vi∈SR1,vj∈SR2,(vi,vj)∈E

w((vi, vj)), (3)

D(SR1,SR2) =

{
true if Dif(SR1, SR2)>MInt(SR1,SR2)

false otherwise
.

(4)

Where Dif(SR1, SR2) =∞ denotes that there is no edge
between SR1 and SR2. To determine if there is a boundary
between superpixel regions, we use a threshold function τ
to control the difference between two superpixel regions.
MInt denotes the minimum internal difference. The threshold
function is defined as τ(SR) = k/|SR|, where |SR| denotes
the size of SR, and the parameter k is mainly based on the
size of the frame and the prior knowledge of the DNN-based
segmentation, which is a dynamic adjustment without any
manual adjustment.

MInt(SR1, SR2) = min(Int(SR1) + τ(SR1),

Int(SR2) + τ(SR2)).
(5)

The workflow of the complete graph-based segmentation
method is as follows:

Step 1. Calculate the dissimilarity between each superpixel

region and the adjacent region in order from left to right, and
from top to bottom.

Step 2. Sort the edges connected by different superpixel
regions in the order of dissimilarity to obtain Eorder =
{e1, e2, . . . , eN} and select e1 as the initial edge.

Step 3. Merge the currently selected edge en ∈ Eorder with
e1. If the connected vertex (vi, vj) satisfies that vi and vj
do not belong to the same superpixel region, and that the
dissimilarity is not greater than the internal dissimilarity, then
turns to Step 4, otherwise turns to Step 5.

Step 4. Update the threshold and the number of superpixel
regions.

Step 5. If n ≤ N , the loop selects the next edge and goes
to Step 3.

Algorithm 2: Booster segmentation algorithm
Input: Current frame slices FS = {s1, s2, ..., sN},

recent segmentation result MatrixMaskc−1,
recent prior knowledge of DNN-based
segmentation pk.

Output: MatirxMaskc of the segmentation result.
1 for i from 1 to N do

/* executing seeds in parallel */
2 superpixels ⇐ parallelSEEDS(si,

MatrixMaskc−1);
/* executing Graph-basd

segmentation in parallel */
3 segSlic ⇐ parallelGraphSeg(superpixels, pk);
4 segSlicArray ⇐ segSlicArray.add(segSlic);

5 MatirxMaskc ⇐ frameSlicMerge(segSlic, pk);
6 return MatirxMaskc;

We present the detailed booster segmentation in Algorithm
2, mainly including superpixels segmentation, graph-based
segmentation and merging the segmentation results according
to the DNN-based prior knowledge.

IV. IMPLEMENTATION

In this section, we describe our implementation of Edge-
Booster, which is entirely based on the commom hardware
and customizd software.

A. Hardware Setup

This section describes the hardware platform we used to
deploy the EdgeBooster on the edge server. We use a regular
IBM server with a six-core Intel processor of 2.9 GHz and
16 GB RAM running Ubuntu 16.04 LTS that is deployed near
the base station. For the mobile device, we use a HUAWEI
Mate 9 smart phone that runs Android 8.0 executing Firefox
browser, which is equipped with an eight-core CPU (four cores
at 2.4 GHz and four cores at 1.8 GHz) and 4 GB RAM.
We also test EdgeBooster on other smart phones such as the
Samsung Galaxy S5 and 360 N7 Pro, and web browsers, such
as Chrome and Opera. Our system can work on any mobile
device equipped with a web browser. To acquire the prior
knowledge of the robust DNN-based segmentation, we train

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 8

the DNN network on the cloud server, which is equipped with
a fourteen-core Intel Xeon processor running at 2.0 GHz with
128 GB of RAM and dual GTX TITAN Xp GPU cards with
12 GB of RAM on each card.

B. Software Implementation
This section describes the software implementation of the

EdgeBooster across the mobile web to the edge server. The
entire software codebase consists of about 3000 lines of
Python code that implements Booster processing for the edge
server, along with about 1000 lines of JavaScript code for the
mobile web.

Mobile web side. Our implementation follows the design
in Fig. 4. We obtain camera frames by using getUserMedia()
of WebRTC API running at 60 FPS, and pre-processing the
frame using resize() and GaussianBlur() of OpenCV.js API.
We realize a JavaScript controller on the mobile web with
the parameters of the network state and the edge server state
using Network Information API and a packaged API that
monitors the available computing resources of the edge server.
To implement the parallel processing, we realize a frameSlice()
function to slice the camera frame and then we leverage
WebSocket API to create stable communication pipelines
between the mobile web browser and the edge server. The
Request Receiver module of the edge server can receive the
slices of camera frames and prepare the slices for the parallel
processing. For the pure front-end segmentation thread, we
realize our marker-based watershed algorithm API in C++ and
compile a lightweight OpenCV.js version that has the same
API of cv2.watershed(). For the Content Render module, we
color different regions according to the segmentation edge data
provided by the pure front-end segmentation or the Booster
segmentation, which is also implemented in JavaScript.

Edge server side. The edge server side implementation
contains three main modules: Request Receiver, Booster and
Result Sender. In the Request Receiver thread, the system
establishes the Socket connection with the mobile web, re-
ceives the frame slices, decodes the fame slices and then
merges the slices into a complete frame. We use Flask as
the web server framework that easily connects with the mo-
bile web using Socket API. Booster is the core module on
the edge server and provides a robust segmentation in real
time. It contains a parallel graph-based segmentation and a
DNN-based segmentation that provides prior knowledge for
the booster. The training and inference phase of the DNN-
based segmentation is implemented in PyTorch 0.4.0. For easy
deployment and use, we realize the graph-based segmentation
in Python with an opencv-python library. Note that our graph-
based segmentation includes a superpixel segmentation named
SEEDS and is guided by the prior knowledge of the segmen-
tation of the history camera frame. The Result Sender module
mainly returns segmentation results to the mobile web in a
JSON formation which is implemented in Python.

V. EVALUATION

In this section, we describe our experiments to serve two
purposes. First, we want to evaluate the segmentation ac-
curacy of EdgeBooster in complex environments compared

with benchmark methods. To the best of our knowledge,
we are the first to explore real-time image segmentation for
the mobile web with common edge severs. We benchmark
the EdgeBooster against the pure front-end segmentation that
executes on the mobile web and PlaneRCNN, a state-of-the-art
DNN-based segmentation algorithm, to indicate its advantages.
Second, we seek to understand the behavior of our Edge-
Booster as it affects the latency and resource consumption.
Note that we did not make an evaluation on using edge
compared to running the same application on the cloud or
a remote media server. This is because we have compared the
latency performance between the edge and the cloud in Section
II, and the results indicate that is impossible to use the cloud to
achieve the requirement of no less than 30 FPS for mobile web
applications. Our evaluations show that EdgeBooster achieves
a stable and acceptable performance in various environments.

A. Experiment Setup

We follow the setup and implementation described in Sec-
tion 4 to conduct experiments. We use two types of datasets
including the outdoor scene and the indoor scene for evaluating
EdgeBooster. KITTI [32] is a dataset for computer vision
algorithm evaluation in autopilot scenarios. In addition, we
also evaluate the EdgeBooster in real indoor scenes with
various conditions such as dark light, weak contrast, strong
texture etc.

...
...

Mobile Devices

Base Station with
Edge server

Core
Network

Remote
Cloud

Fig. 9. Topology of the network deployment.

In Fig. 9, we present the core network topology with an
average downlink bandwidth of 300 Mbps and an average
uplink bandwidth of 80 Mbps, which is in a real-world 5G
network at Beijing University of Posts and Telecommunica-
tions. A common server with a six-core Inter processor of
2.9 GHz and 16 GB RAM is deployed near base station.
The remote cloud is responsible for providing training DNN
models and the management of the edge servers. To acquire
stable network conditions such as for 3G, 4G and WiFi, we
use Wonder Shaper [33], which is a script that allows the
user to limit the bandwidth of network adapters, to control
the network conditions on the edge server. Besides, since
EdgeBooster’s performance is mainly affected by the downlink
bandwidth, we set average downlink bandwidth of 3G, 4G
and WiFi as 1.5Mbps, 12Mbps and 25Mbps respectively,
aiming to simulate the network in various scenarios. We set
the relevant parameters involved in EdgeBooster as following
fthresh = 30, C = 4 denotes the number of parallel channels,
pmax io = 60% and pmax cpu = 80%. We also extract raw
camera frames at 480*320 resolution from the camera of the
mobile phone for repeatable experiments. Then we can repeat
the same camera frames for multiple evaluation to acquire an
average value. All of the experiments strictly follow the same

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 9

workflow without any pre-processing and profiling on each
frame to ensure that they run in real-time as shown in Fig. 4.

B. Qualitative evaluations

In this section, we perform qualitative evaluations on the
pure front-end segmentation, our booster segmentation and the
state-of-the-art segmentation algorithm PlaneRCNN in outdoor
and indoor scenes. We sample four camera frames from KITTI
to evaluate the performance of the outdoor scene shown in
Fig. 10. For the evaluation of the indoor scene, we also use the
same sampling rule to collect four camera frames via WebRTC
from the real scene, as shown in Fig. 11.

Imput Frame Front-end Booster PlaneRCNN

Fig. 10. Segmentation of the outdoor scene.

Imput Frame Front-end Booster PlaneRCNN

Fig. 11. Segmentation of the indoor scene.

We can make three key observations based on these results
in Fig. 10. First, Booster’s segmentation is better than that
of the pure front-end algorithm, especially in the outdoor
scene with lots of small surfaces such as leaves of the tree.
Although booster is less effective than PlaneRCNN, the entire
processing latency cannot meet the real-time requirements
of the mobile web application. Second, we also analyze
the segmentation performance of the booster under various
conditions in indoor scenes, shown in Fig. 11. Compared to

the outdoor scene, the light and contrast of the indoor scene
is generally weaker. The results show that booster enables a
considerable segmentation while the pure front-end algorithm
cannot provide an acceptable segmentation when dealing with
lots of small surfaces. In addition, PlaneRCNN has the best
performance so that we use its recent segmentation results as
the prior knowledge to improve the performance of booster.
We also use this prior knowledge to correct the results of
the graph-based segmentation of booster. In summary, our
booster segmentation not only provides better performance
than the pure front-end segmentation, but also realizes real-
time segmentation on the mobile web.

C. Image Segmentation Accuracy

To further evaluate the accuracy performance of the Edge-
Booster’s segmentation in a real scene, we set the segmen-
tation results of PlaneRCNN of a DNN-based method as the
benchmark, the segmentation accuracy can be measured by
the degree of coincidence of the segmentation results among
PlaneRCNN and EdgeBooster. We conduct experiments on
the performance of the accuracy of various methods, also
including graph-based segmentation and pure front-end seg-
mentation. As shown in Fig. 12(a), we continuously test Edge-
Booster for 20 minutes in the indoor scene, and we measure
the accuracy of the current time by taking the average camera
frames segmentation accuracy in one second. We also illustrate
the effect of prior knowledge to improve segmentation by
comparing the EdgeBooster with the method that does not use
the prior knowledge (i.e., Non-Prior in Fig. 12(a)). Note that
we randomly change the network status every 3–5 minutes to
simulate the unstable network status.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 00
2 0

4 0
6 0

8 0
1 0 0

(b) C o m a p r i s o n s w i t h v a r i o u s m e t h o d s(a) A c c u r a c y i n v a i r o u s n e t w o r k s

F r a m e R a t e

N o n - P r i o r (C o i n c i d e n c e)E d g e B o o s t e r (C o i n c i d e n c e)

L a g p e r i o d

T e s t T i m e (s)

Co
inc

ide
nce

 (%
)

W i F i

3 G

4 G W i F i

3 G

0

2 0

4 0

6 0

8 0

1 0 0

 Fr
am

e R
ate

 (F
PS

)

0

2 0

4 0

6 0

8 0

1 0 0

Co
inc

ide
nce

 (%
)

 D N N - b a s e d
 E d g e B o o s t e r
 G r a p h - b a s e d
 P u r e f r o n t - e n d

Fig. 12. Performance of image segmentation in accuracy.

As shown in Fig. 12(a), the left Y-axis represents Edge-
Booster’s segmentation accuracy, as expressed by the percent-
age of the degree of coincidence between EdgeBooster and
PlaneRCNN. The right Y-axis represents the real-time frame
rate of EdgeBooster’s segmentation. We observe that Edge-
Booster significantly achieves real-time performance when the
average frame rate is not less than 30 FPS, and it shows an
accuracy similar to that of PlaneRCNN. For the poor network
condition, the pure front-end algorithm can still provide an
average segmentation accuracy for the mobile web user with
no less than 33%. Although it is difficult to achieve a similar
segmentation accuracy to that of PlaneRCNN and Booster, the
segmentation result is still acceptable, as shown in subsection

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 10

A of Section V. Note that the frame rate of such the pure front-
end segmentation has reached 50 FPS or higher. This indicates
that EdgeBooster for the first time provides mobile web users
with a real-time and stable image segmentation, even in an
unstable condition. Note that pure front-end segmentation
is to provide smooth and continuous services for a short
period of time under unstable conditions. Therefore, although
the accuracy is not considerable, it is significant to provide
continuous segmentation rather than immediately stopping
segmentation when it encounters a weak network.

In addition, we also compare the EdgeBooster, Graph-
based and pure front-end method with benchmark method
of DNN-based in the segmentation accuracy by randomly
collecting 1000 camera frames of indoor and outdoor sce-
narios in Fig. 12(b). We can see that when neglecting the
network condition and the complexity of segmentation al-
gorithm, EdgeBooster’s performance is closer to the DNN-
based method, and it also performs better than the Graph-
based and pure front-end methods. Although the average
segmentation accuracy of the EdgeBooster on 1000 random
frames is not better than the DNN-based method, we can see
that EdgeBooster’s segmentation is close to the DNN-based
method and has been effective from the previous qualitative
evaluations. Even the segmentation of EdgeBooster on some
frames is better than the DNN-based method, thereby being
able to support the applications in reality. Besides, since our
EdgeBooster’s motivation is to provide the real-time segmen-
tation for the resource-constrained and cross-platform mobile
web applications, it is more focused on how to efficiently and
stably provide continuous services for the mobile web on the
basis of ensuring the availability of segmentation accuracy.

D. Latency Performance

1) Latency performance in various networks: We describe
the latency performance from capturing the camera frame to
completing the entire process of segmentation in Fig. 13. We
can make two key observations based on these results. First,
the results show that EdgeBooster provides a real-time image
segmentation for the mobile web with an average latency of
35 ms. Concretely, under the network condition of 3G in
Fig. 13(b), EdgeBooster achieves an average processing la-
tency of 16 ms using the pure front-end segmentation, thereby
achieving the same frame processing speed as the mobile web
frame sampling frequency, and the points are more densely
displayed. However, for 4G and WiFi in Fig. 13 (c) and

Fig. 13(d), EdgeBooster leverages the edge-assisted Booster
to process the camera frame flow with an average latency
including transmission latency of 32 ms. Thus, it can handle 33
frames per second which is less than the sampling frequency
of the mobile web. We recommend that it is better to set the
sampling frequency of the mobile web as about 30 frames,
which guarantees that EdgeBooster can provide a stable real-
time segmentation algorithm of not less than 30 FPS. This also
indicates that our Booster algorithm, using edge-assisted and
parallel stream processing technology, can effectively improve
the performance of offloading computation from the mobile
web to a common edge server. Secondly, when the network
changes, EdgeBooster’s controller can adjust the computation
offloading mode according to the state of the network. Since
the frame processing rate of the pure front-end segmentation
in 3G is higher than that in 4G and WiFi, the frame processing
hysteresis is not felt back when the network is changed
from 3G to 4G/WiFi. Hence, we only show the result that
changes the network from WiFi/4G to 3G in Fig. 13(e) and
Fig. 13(f). We find that the controller fails to sense the network
and complete the computation offloading when the network
changes to the low frame processing rate from a high frame
processing rate. This is because the controller has a lag period
to change the segmentation from the robust booster to the pure
front-end segmentation.

Since the network bandwidth varies in reality, Edge-
Booster’s controller, which perceives dynamic changes of the
network in real time and dynamically adjusts the currently
offloading strategy based on the algorithm 1, requires pro-
viding efficient perception and decision-making computing
to reduce the lag period as much as possible. We use the
same testing platform and network settings in subsection
A and develop a controlled script to automatically change
the network bandwidth for Wonder Shaper to simulate a
dynamic network environment. When we use the controller
script to change the network bandwidth, it does not take
effect immediately. Thus, according to the testing results, we
set the minimum network change frequency, which means
how often the network bandwidth changes effectively, as 50
seconds ranging from 1.5Mbps to 25Mbps. We conduct exper-
iments to explore the latency, accuracy and offloading rate of
EdgeBooster under dynamic network bandwidths in Fig. 14.
Specifically, Fig. 14(a) and Fig. 14(b) show the performance
of EdgeBooster in different change frequencies when respec-
tively increasing or decreasing the network bandwidth between

1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 01 4
1 6
1 8
2 0
2 2
2 4

5 4 0 0 5 6 0 0 5 8 0 0 6 0 0 0
3 0
3 2
3 4
3 6
3 8
4 0

8 0 0 0 8 2 0 0 8 4 0 0 8 6 0 0
2 6
2 8
3 0
3 2
3 4
3 6

9 3 0 0 9 6 0 0
2 0
3 0
4 0

1 8 0 0 0 1 8 3 0 0 1 8 6 0 0 1 8 9 0 0
2 0
3 0
4 0La

ten
cy

(m
s)

(b) 3 G N e t w o r k

La
ten

cy
(m

s)

(c) 4 G N e t w o r k

La
ten

cy
(m

s)

(d) W i F i N e t w o r k

3 G

La
ten

cy
(m

s)

(e) F r o m W i F i t o 3 G

W i F i
3 G

L a g p e r i o d

4 G

La
ten

cy
(m

s)

(f) F r o m 4 G t o 3 G

L a g p e r i o d0
1 0
2 0
3 0
4 0

La
ten

cy
(m

s)

(a) L a t e n c y p e r f o r m a n c e
3 G 4 G W i F i

Fig. 13. Latency performance. The X-axis is the number of the frame, and the Y-axis is the entire latency required to process
the current frame. We sample the camera frames of 5 minutes in chronological order, where sampling frequency of the mobile
web is 60 frames per second. We also randomly change the network condition to simulate an unstable environment.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 11

1.5Mbps and 25Mbps with a variation range of 1Mbps. We
do not explore the performance under randomly increasing
or decreasing the bandwidth, because other situations can be
obtained by combining situations in Fig. 14(a) and Fig. 14(b).

0 5 1 0 1 5 2 0 2 5
1 5
3 0
4 5
6 0
7 5
9 0

0 5 1 0 1 5 2 0 2 53 0
4 5
6 0
7 5
9 0

0 5 1 0 1 5 2 0 2 5
0

2 0
4 0
6 0
8 0

1 0 0

La
ten

cy
(m

s)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

L a t e n c y p e r f o r m a n c e

Co
inc

ide
nce

 (%
)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

S e g m e n t a t i o n a c c u r a c y

Of
flo

adi
ng

rat
e (%

)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

O f f l o a d i n g r a t e

(a) Increase the network bandwidth from 1.5Mbps to 25Mbps

0 5 1 0 1 5 2 0 2 5
1 5
3 0
4 5
6 0
7 5
9 0

0 5 1 0 1 5 2 0 2 53 0
4 5
6 0
7 5
9 0

0 5 1 0 1 5 2 0 2 5
0

2 0
4 0
6 0
8 0

1 0 0

La
ten

cy
(m

s)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

L a t e n c y p e r f o r m a n c e

Co
inc

ide
nce

 (%
)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

S e g m e n t a t i o n a c c u r a c y
Of

flo
adi

ng
rat

e (%
)

T i m e (m i n)

 F r e q u e n c y - 3 0 s
 F r e q u e n c y - 1 m i n
 F r e q u e n c y - 2 m i n

O f f l o a d i n g r a t e

(b) Decrease the network bandwidth from 25Mbps to 1.5Mbps

Fig. 14. Behavior of EdgeBooster’s controller with different
change frequencies of network bandwidth.

We observe that: (1) When the network change frequency
is setting as 30 seconds, which is less than the minimum net-
work change frequency, we find that EdgeBooster’s controller
always perceives the initial bandwidth and does not change
the offloading strategy. This is because although the network
is constantly changing, Wonder Shaper has not yet taken
effect and has changed again, controlled script of the network
bandwidth has fallen into a loop, resulting in no changes
of EdgeBooster’s controller. (2) Once the network change
frequency exceeds the minimum change frequency, we can see
that EdgeBooster’s controller can perceive network changes
as the bandwidth increases and make offloading decisions in
time. Especially when the bandwidth increases to 5.5Mbps,
the controller starts to offload calculations to the edge server
to obtain more accurate service. However, when we increase
the bandwidth to about 20Mbps, EdgeBooster performs a small
climbing and in a stable state. A similar conclusion can also be
obtained in Fig. 14(b) when we gradually reduce the network
bandwidth from 25Mbps to 1.5Mbps. Although we do not
further verify more complex scenarios, such as simultaneously
increasing or decreasing the network bandwidth, the change
boundary in these scenarios is similar to a certain stage in
Fig. 14(a) or Fig. 14(b). Therefore, experimental results in
Fig. 14 illustrate that EdgeBooster’s controller can provide
stable services through continuous testing under different
network changing frequencies.

2) Latency comparisons: EdgeBooster provides a pure
front-end segmentation locally for a weak network condition
or with an unavailable edge server without offloading compu-
tations to the edge server. Thus, we present the latency com-
parisons between parallel Booster and non-parallel Booster
under 4G and WiFi in Fig. 15(a) and Fig. 15(b). We observe
that our parallel Booster can improve the frame processing
by 42% and 36% in 4G and WiFi respectively compared with
non-parallel frame processing. This acceleration of the parallel

Booster can effectively improve the frame processing for the
mobile web on a common edge server, which also makes it
possible to meet a real-time requirement on the mobile web. In
summary, performing a parallel technology on the edge server
is significant in making it possible to process continuous vision
tasks for the mobile web. It is a good choice to design parallel
technology for accelerating image segmentation on a common
edge server based on the above comparisons.

Then, we conduct experiments on the parallel Booster in
different network bandwidths range from 5Mbps to 25Mbps in
Fig. 15(c). We use the same experimental settings and methods
as described in the above experiments. When the bandwidth is
lower than 3Mbps, which is in the range of 3G network or in
a weak network condition, EdgeBooster’s controller will auto-
matically choose the pure front-end segmentation rather than
using the parallel Booster for real-time services. Hence, we are
not necessary to explore the latency performance of parallel
Booster in a weak network in Fig. 15(c). The results show that
the average frame processing latency of parallel Booster has
gradually decreased with the increase of network bandwidth,
performing a significant improvement. This illustrates that a
stable and high bandwidth can effectively improve the latency
performance when using parallel technology of Booster. More-
over, we can see that when the bandwidth increases to 20Mbps,
the parallel Booster has a slight increase as the bandwidth
continues to increase. This is because the network bandwidth
is no longer the bottleneck, and parallel technology of Booster
will provide more improvements as the network bandwidth
increases. Once the network bandwidth increases to 20 Mbps,
the edge server receives enough frames to give full play to
the parallel processing of Booster, improving throughput and
reducing average processing latency.

5 1 0 1 5 2 0 2 52 0

3 0

4 0

5 0

6 0

0
1 5
3 0
4 5
6 0
7 5

N e t w o r k b a n d w i d t h (M b p s) W i F i4 G3 G

La
ten

cy
(m

s)

(a) 4 G N e t w o r k

 P a r a l l e l
 N o n - p a r a l l e l

0

1 5

3 0

4 5

6 0

La
ten

cy
(m

s)

(b) W i F i N e t w o r k

 P a r a l l e l
 N o n - p a r a l l e l

0
5 0

1 0 0
1 5 0
2 0 0

La
ten

cy
(m

s)

(d) C o m p a r e d w i t h [3 4]

 E d g e B o o s t e r
 R e f e r e n c e [3 4]

 P a r a l l e l - B o o s t e r

La
ten

cy
(m

s)

(c) I m p r o v e m e n t s i n v a r i o u s n e t w o r k s
Fig. 15. Latency comparisons between parallel Booster and
non-parallel Booster in (a) and (b), the latency improvement
of parallel Booster with various networks in (c), and Edge-
Booster’s performance compared with reference [34] in (d).

To further illustrate the novelty and advantage compared
with edge-asssited framework for object detection in refer-
ence [34], we conduct the experiments in various network
conditions. We deploy PlaneRCNN to the same edge server
and perform the same segmentation task according to the
parallel inference method in [34]. Note that PlaneRCNN
has different network structure with typical CNNs which
used in [34], thus we only parallel the part of PlaneRCNN
that can be parallelized. Y-axis of Fig. 15(d) represents the
average processing latency to complete 100 camera frames.
We can see that EdgeBooster has lower and better latency
performance than that of reference [34], which means that

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 12

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
2 0
3 0
4 0
5 0
6 0
7 0

Av
era

ge
late

ncy
 (m

s)

B a n d w i d t h C o n s u m p t i o n (M b p s)

 B a s i c p u r e f r o n t - e n d
 E d g e B o o s t e r
 N o n - p a r a l l e l B o o s t e r

Fig. 16. Bandwidth consumption.

0 2 0 0 4 0 0 6 0 0 8 0 0
1 0

1 5

2 0

2 5

3 0

Re
sou

rce
 Us

age
 (%

)

T e s t T i m e (s)

 E d g e B o o s t e r
 N o n - p a r a l l e l B o o s t e r

Fig. 17. Resource consumption.

1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6
3 0

4 0

5 0

6 0

7 0 O n e c h a n n e l
 T w o c h a n n e l s
 T h r e e c h a n n e l s
 F o u r c h a n n e l s
 F i v e c h a n n e l s
 S i x c h a n n e l s
 S e v e n c h a n n e l s
 E i g h t c h a n n e l s

Av
era

ge
late

ncy
 in

 4G
 (m

s)

A v e r a g e C P U u s a g e (%)
Fig. 18. Analysis of parallel channels.

on a common edge server without GPU, the DNN parallel
inference technology in [34] cannot provide real-time frame
segmentation. In particular, we can only acquire an average
frame processing rate of about 11 FPS in WiFi by the method
in [34]. For EdgeBooster, it achieves a better performance by
applying the parallel technology to the graph-based segmenta-
tion, and guarantees the accuracy of graph-based segmentation
by leveraging the DNN-based prior knowledge which has been
illustrated in the above analysis. Besides, we observe that
the method of [34] is significantly influenced by the network
bandwidth, for instance, it performs an unacceptable frame
processing rate in 3G. EdgeBooster exhibits better latency in
3G than that in 4G and WiFi. This is mainly because we
provide a pure front-end segmentation on the mobile web to
improve the continuity and stability of the system in unstable
networks, which better illustrates the novelty and superiority
of EdgeBooster compared with reference [34].

E. Bandwidth Consumption

We conduct experiments to measure the bandwidth con-
sumption of three approaches (the pure front-end, parallel
Booster, non-parallel booster) for image segmentation. We
analyze the average segmentation latency and the bandwidth
consumption of three approaches. To show how the average
latency changes with the bandwidth consumption, Fig. 16
compares three approaches. For the same bandwidth con-
sumption, our parallel Booster approach can achieve a lower
segmentation latency than the non-parallel approach. Though
the pure front-end approach can achieve the lowest latency
without any bandwidth consumption, its accuracy is worse
than other methods. Compared with the non-parallel method,
our system reduces the bandwidth consumption by 53% while
keeping the accuracy unchanged.

F. Resource Consumption

Since the pure front-end segmentation is a lightweight
algorithm that requires a small amount of computation, our
system only consumes few of the computation resources of
the mobile device when the network status is not good or the
server load is too high. Thus, we mainly consider the resource
consumption of EdgeBooster when it offloads the entire com-
putations from the mobile web to the edge server in good
conditions. To monitor the continuous resource consumption
such as the CPU usage, we use the mpstat [35], which is
command line software used in Linux to collect CPU statistics

(e.g., usage, user time, and idle time). Fig. 17 shows the raw
resource usage traces for 15 minutes. The results show that
our system requires 17% of the CPU resource, which is higher
than the non-parallel processing value of about 13% with four
parallel channels. Thus, it is acceptable for EdgeBooster to
consume few resources for parallel processing to acquire a
real-time continuous frame process for the mobile web. We
also explore the impact of the number of parallel channels
(the number of slices of the camera frame) on the resource
consumption of the edge server in Fig. 18. The results show
that although we increase the parallel channels, there is no
linear improvement for the image segmentation of the mobile
web due to the system overhead. Our experimental results
show that three to five parallel channels can satisfy the real-
time image segmentation for the mobile web.

VI. RELATED WORKS

Image segmentation. Traditional image segmentation ap-
proaches can be classified into those based on the threshold
[18], the edge detection [36], the region [37], etc. They all
use the low-level semantic information including the color,
the texture and the shape of the image pixel, which are not
good enough when encountering complex scenes. In addition,
graph-based methods view the image segmentation as a vertex
partition problem [19]. The spectral clustering methods con-
struct a Laplacian matrix of the original image to solve the
pre-background separation of the image[38], [39]. Although
these approaches achieve a better segmentation than traditional
methods, they have a high cost in time complexity which
cannot be real-time for the mobile web.

Deep learning. In recent years, with the great success of
deep learning technology in image classification, its ability
to extract high-level semantic information largely solves the
problem of missing semantic information in traditional image
segmentation methods. FCN (Fully Convolutional Network)
[40] is the first work that leverages deep learning into image
segmentation and designs an end-to-end fullly convolutional
network for pixel-by-pixel classification. DeepLab[41] adds
fully connected CRFs at the end of the FCN frame to make
segmentation more accurate. Besides, U-Net [42], SegNet
[43], SSD [44], Faster R-CNN [45], [46], and Mask R-
CNN [47] provide the image segmentation with abundant
semantic information and a faster segmentation speed. In this
paper, we use PlaneRCNN as our edge-assisted DNN-based

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 13

segmentation method, which provides prior knowledge for our
Booster segmentation.

Mobile computing offloading. Offloading computation
from the mobile web to the cloud or the edge server is a
considerable way to enable continuous vision tasks [34], [25],
[26], [48], [49], [50]. [34] designs a system that employs low-
latency offloading techniques and uses a fast object tracking
method to maintain detection accuracy for an AR/MR system
running at 60 FPS. DeepDecision [25] provides a dynamic of-
floading based on the network conditions and decides whether
to offload the task to the edge. Lavea [26] designs an intelligent
framework that provides low-latency video stream analytics
leveraging the edge computing platform. Most of these works
aim at the mobile device that is more powerful than the
mobile web, which focus more on improving the latency and
accuracy performance between the mobile web and common
edge server.

VII. DISCUSSION

With the maturity of the W3C’s WoT standard, the Web
will become an important cross-platform application providing
platform for the Internet of Things. To this end, we discuss the
impacts of EdgeBooster on the mobile web, the generalizabil-
ity, and some limitations. First, to the best of our knowledge,
EdgeBooster is the first framework that leverages the edge
server to provide real-time image segmentation with no less
than 30 FPS on the mobile web in complex scenes. This
has the advantage of low communication costs compared to
offloading computations to the remote cloud and providing
parallel technology for Booster to accelerate segmentation.
Second, in this work, we mainly implement real-time image
segmentation in leveraging our edge-assisted framework. Since
the core contribution of the edge-assisted framework is to
provide the mobile web with a real-time processing capacity
for dealing with continuous camera frames, this real-time
framework can be applied into other continuous vision tasks,
such as tracking or object detection for the mobile web. Third,
EdgeBooster mainly performs traditional image segmentation
based on the pixel information of a single camera frame,
without considering the semantic information and other useful
sensor data such as IMU data. Thus, our segmentation results
lack an understanding of the semantic information, especially
for the outdoor scenario, which needs to be considered. In
future research, we plan to find ways to consider the use of
the semantic information of the camera frame and IMU data
to achieve a real-time semantic segmentation based on our
edge-assisted framework.

VIII. CONCLUSION

In this work, we proposed EdgeBooster, a practical frame-
work that leverages common edge servers to minimize the
communication costs, accelerates the camera frame segmen-
tation, and guarantees an acceptable segmentation accuracy.
For the purpose of obtaining fluently real-time segmentation
on the mobile web, EdgeBooster provides a real-time booster
for segmentation developing a parallel technology that enables
booster segmentation on slices of a camera frame and using

a superpixel pre-segmentation to further accelerate the pro-
cessing. It also introduces robust DNN-based segmentation
results as the prior knowledge to improve the performance
of the graph-based algorithm, especially in non-ideal scenes
such as dark light and weak contrast. It also creates a pure
front-end segmentation algorithm to provide continuous and
stable services for mobile users in unstable environments.
Our evaluation indicates that EdgeBooster is able to achieve
acceptable segmentation accuracy for the mobile web, running
at no less than 30 FPS in various scenes.

ACKNOWLEDGMENT

This research was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 61671081,
in part by the National Key R&D Program of China under
Grant 2018YFE0205503, in part by the Funds for Inter-
national Cooperation and Exchange of NSFC under Grant
61720106007, in part by the 111 Project under Grant B18008,
in part by the Fundamental Research Funds for the Cen-
tral Universities under Grant 2018XKJC01, and in part by
the BUPT Excellent Ph.D. Students Foundation under Grant
CX2019135.

REFERENCES

[1] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in 2010 Internet of Things (IOT). IEEE, 2010,
pp. 1–8.

[2] “Web of things (wot) architecture,” 2019, https://www.w3.org/TR/wot-
architecture/.

[3] F. Antoniazzi and F. Viola, “Building the semantic web of things through
a dynamic ontology,” IEEE Internet of Things Journal, vol. 6, no. 6, pp.
10 560–10 579, 2019.

[4] “Web of things (wot),” 2019, https://www.w3.org/WoT/.
[5] M. Noura, A. Gyrard, S. Heil, and M. Gaedke, “Automatic knowledge

extraction to build semantic web of things applications,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 8447–8454, 2019.

[6] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A lightweight
collaborative recognition system with binary convolutional neural net-
work for mobile web augmented reality,” in 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE,
2019, pp. 1497–1506.

[7] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for web ar with
mobile edge computing,” IEEE Internet Computing, vol. 22, no. 4, pp.
46–55, 2018.

[8] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651–666, 2019.

[9] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, and J. Chen, “Mobile
web augmented reality in 5g and beyond: Challenges, opportunities, and
future directions,” China Communications, vol. 16, no. 9, pp. 141–154.

[10] A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca,
“Data augmentation using learned transformations for one-shot medi-
cal image segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8543–8553.

[11] Y. Li, B. Peng, L. He, K. Fan, and L. Tong, “Road segmentation
of unmanned aerial vehicle remote sensing images using adversarial
network with multiscale context aggregation,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

[12] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, “Reinforcement
cutting-agent learning for video object segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9080–9089.

[13] G. Tsai, C. Xu, J. Liu, and B. Kuipers, “Real-time indoor scene
understanding using bayesian filtering with motion cues.” in ICCV, 2011,
pp. 121–128.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014, pp. 580–587.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 14

[15] A.-L. Chauve, P. Labatut, and J.-P. Pons, “Robust piecewise-planar 3d
reconstruction and completion from large-scale unstructured point data,”
in 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 2010, pp. 1261–1268.

[16] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology
overview and signaling solution design and implementation,” in 2015
38th International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics. IEEE, 2015, pp. 1006–1009.

[17] L. López, M. Parı́s, S. Carot, B. Garcı́a, M. Gallego, F. Gortázar,
R. Benı́tez, J. A. Santos, D. Fernández, R. T. Vlad et al., “Kurento:
the webrtc modular media server,” in Proceedings of the 24th ACM
international conference on Multimedia. ACM, 2016, pp. 1187–1191.

[18] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[19] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International journal of computer vision, vol. 59, no. 2,
pp. 167–181, 2004.

[20] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient nd image
segmentation,” International journal of computer vision, vol. 70, no. 2,
pp. 109–131, 2006.

[21] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “Planercnn: 3d plane
detection and reconstruction from a single image,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 4450–4459.

[22] Y. Xian, S. Choudhury, Y. He, B. Schiele, and Z. Akata, “Semantic
projection network for zero-and few-label semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8256–8265.

[23] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[24] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[25] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[26] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[27] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa, “Planenet:
Piece-wise planar reconstruction from a single rgb image,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2579–2588.

[28] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, no. 6, pp. 583–598, 1991.

[29] S. Taheri, A. Vedienbaum, A. Nicolau, N. Hu, and M. R. Haghighat,
“Opencv. js: Computer vision processing for the open web platform,” in
Proceedings of the 9th ACM Multimedia Systems Conference. ACM,
2018, pp. 478–483.

[30] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in ACM SIGPLAN Notices, vol. 52, no. 6.
ACM, 2017, pp. 185–200.

[31] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “Seeds:
Superpixels extracted via energy-driven sampling,” International Journal
of Computer Vision, vol. 111, no. 3, pp. 298–314, 2015.

[32] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC
2013). IEEE, 2013, pp. 1693–1700.

[33] “Wonder shaper,” 2017, https://github.com/magnific0/wondershaper.
[34] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-

tion for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1–16.

[35] X. Song, H. Chen, B. Zang, X. SONG, H. CHEN, and B. ZANG, “Char-
acterizing the performance and scalability of many-core applications
on virtualized platforms,” Parallel Processing Institute Technical Report
Number: FDUPPITR-2010, vol. 2, 2010.

[36] S. Lakshmi, D. V. Sankaranarayanan et al., “A study of edge detection
techniques for segmentation computing approaches,” IJCA Special Issue
on “Computer Aided Soft Computing Techniques for Imaging and
Biomedical Applications” CASCT, pp. 35–40, 2010.

[37] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 16, no. 6, pp. 641–
647, 1994.

[38] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, no. 11, pp.
1101–1113, 1993.

[39] Z. Li and J. Chen, “Superpixel segmentation using linear spectral
clustering,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1356–1363.

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[41] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” pp. 234–241, 2015.

[43] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for
scene understanding,” arXiv preprint arXiv:1511.02680, 2015.

[44] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” european conference
on computer vision, pp. 21–37, 2016.

[45] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[47] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask r-cnn,” arXiv:
Computer Vision and Pattern Recognition, 2017.

[48] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed dnn collaborative computing approach for mobile
web augmented reality in 5g networks,” IEEE Network, vol. 34, no. 2,
pp. 254–261, 2020.

[49] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen,
“Deepadapter: A collaborative deep learning framework for the mobile
web using context-aware network pruning,” in IEEE Conference on
Computer Communications. IEEE, 2020, pp. 834–843.

[50] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 2018, pp. 253–266.

Yakun Huang is currently working toward the Ph.D.
degree at the Network Service Foundation Research
Center, State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications, Beijing, China. His cur-
rent research interests include mobile computing,
distributed systems, machine learning, augmented
reality, edge computing, and 5G networks.

Xiuquan Qiao is currently a Full Professor with
the Beijing University of Posts and Telecommunica-
tions, Beijing, China, where he is also the Deputy
Director of the Network Service Foundation Re-
search Center, State Key Laboratory of Networking
and Switching Technology. He has authored or co-
authored over 60 technical papers in international
journals and at conferences, including the IEEE
Communications Magazine, Proceedings of IEEE,
Computer Networks, IEEE Internet Computing, the
IEEE TRANSACTIONS ON AUTOMATION SCI-

ENCE AND ENGINEERING, and the ACM SIGCOMM Computer Com-
munication Review. His current research interests include the future Internet,
services computing, computer vision, distributed deep learning, augmented
reality, virtual reality, and 5G networks. Dr. Qiao was a recipient of the
Beijing Nova Program in 2008 and the First Prize of the 13th Beijing Youth
Outstanding Science and Technology Paper Award in 2016. He served as the
associate editor for the Computing (Springer) and the editor board of China
Communications Magazine.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3038689, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2020 15

Pei Ren is currently working toward the Ph.D.
degree at the Network Service Foundation Research
Center, State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications, Beijing, China. His cur-
rent research interests include the future Internet
architecture, services computing, computer vision,
distributed deep learning, machine learning, aug-
mented reality, edge computing, and 5G networks.

Schahram Dustdar (Fellow, IEEE) was an Hon-
orary Professor of Information Systems at the
Department of Computing Science, University of
Groningen, Groningen, The Netherlands, from 2004
to 2010. From 2016 to 2017, he was a Visiting
Professor at the University of Sevilla, Sevilla, Spain.
In 2017, he was a Visiting Professor at the University
of California at Berkeley, Berkeley, CA, USA. He is
currently a Professor of Computer Science with the
Distributed Systems Group, Technische Universität
Wien, Vienna, Austria. Dr. Dustdar was an elected

member of the Academy of Europe, where he is the Chairman of the Infor-
matics Section. He was a recipient of the ACM Distinguished Scientist Award
in 2009, the IBM Faculty Award in 2012, and the IEEE TCSVC Outstanding
Leadership Award for outstanding leadership in services computing in 2018.
He is the Co-Editor-in-Chief of the ACM Transactions on Internet of Things
and the Editor-in-Chief of Computing (Springer). He is also an Associate
Editor of the IEEE TRANSACTIONS ON SERVICES COMPUTING, the
IEEE TRANSACTIONS ON CLOUD COMPUTING, the ACM Transactions
on the Web, and the ACM Transactions on Internet Technology. He serves
on the Editorial Board of IEEE INTERNET COMPUTING and the IEEE
Computer Magazine.

Junliang Chen received the B.S. degree in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 1955, and the Ph.D. degree in
electrical engineering from the Moscow Institute of
Radio Engineering, Moscow, Russia, in 1961. He
has been with the Beijing University of Posts and
Telecommunications (BUPT), Beijing, China, since
1955, where he is currently the Chairman and a
Professor with the Research Institute of Network-
ing and Switching Technology. His current research
interests include communication networks and next-

generation service creation technology. Dr. Chen was elected as a member
of the Chinese Academy of Sciences in 1991 and a member of the Chinese
Academy of Engineering in 1994 for his contributions to fault diagnosis in
stored program control exchange. He received the First, Second, and Third
prizes of the National Scientific and Technological Progess Award in 1988,
2004 and 1999 respectively.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 18,2020 at 13:24:09 UTC from IEEE Xplore. Restrictions apply.

