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Abstract—Multi-access Edge Computing (MEC) is booming as a promising paradigm to push the computation and communication
resources from cloud to the network edge to provide services and to perform computations. With container technologies, mobile
devices with small memory footprint can run composite microservice-based applications without time-consuming backbone. Service
placement at the edge is of importance to put MEC from theory into practice. However, current state-of-the-art research does not
sufficiently take the composite property of services into consideration. Besides, although Kubernetes has certain abilities to heal
container failures, high availability cannot be ensured due to heterogeneity and variability of edge sites. To deal with these problems,
we propose a distributed redundant placement framework SAA-RP and a GA-based Server Selection (GASS) algorithm for
microservice-based applications with sequential combinatorial structure. We formulate a stochastic optimization problem with the
uncertainty of microservice request considered, and then decide for each microservice, how it should be deployed and with how many
instances as well as on which edge sites to place them. Benchmark policies are implemented in two scenarios, where redundancy is
allowed and not, respectively. Numerical results based on a real-world dataset verify that GASS significantly outperforms all the
benchmark policies.

Index Terms—Redundancy, Service Placement, Multi-access Edge Computing, Composite Service, Sample Average Approximation.
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1 INTRODUCTION

NOWADAYS, mobile applications are becoming more
and more computation-intensive, location-aware, and

delay-sensitive, which puts a great pressure on the tradi-
tional Cloud Computing paradigm to guarantee the Quality
of Service (QoS) [1]. To address the challenge, Multi-access
Edge Computing (MEC) was proposed to provide services
and to perform computations at the network edge without
time-consuming backbone transmission, so as to enable fast
responses for mobile devices [2] [3] [4].

MEC offers not only the development on the network
architecture, but also the innovation in service patterns.
Considering that small-scale data-centers can be deployed
near cellular tower sites, there are exciting possibilities that
microservice-based applications can be delivered to mobile
devices without backbone transmission, in virtue of setting
up a unified service provision platform. Container technolo-
gies, represented by Docker [5], and its dominant orchestra-
tion and maintenance tool, Kubernetes [6], are becoming the
mainstream solution for packaging, deploying, maintaining,
and healing applications. Each microservice decoupled from
the application can be packaged as a Docker image and each
microservice instance is a Docker container. Here we take
Kubernetes for example. Kubernetes is naturally suitable for
building cloud-native applications by leveraging the benefits
of the distributed edge because it can hide the complexity of
microservice orchestration while managing their availability
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with lightweight Virtual Machines (VMs), which greatly mo-
tivates Application Service Providers (ASPs) to participate
in service provision within the access and core networks.

Service deployment from ASPs is the carrier of service
provision, which touches on where to place the services and
how to deploy their instances. In the last two years, there
exist works study the placement at the network edge from
the perspective of Quality of Experience (QoE) of end users
or the budget of ASPs [7] [8] [9] [10] [11] [12] [13]. However,
those works commonly have two limitations. Firstly, the to-
be-deployed service only be studied in an atomic way. It is
often treated as a single abstract function with given input
and output data size. Time series or composition property
of services are not fully taken into consideration. Secondly,
high availability of deployed service is not carefully studied.
Due to the heterogeneity of edge sites, such as different CPU
cycle frequency and memory footprint, varying background
load, transient network interrupts and so on, the service
provision platform might face greatly slowdowns or even
runtime crash. However, the default assignment, deploy-
ment, and management of containers does not fully take the
heterogeneity in both physical and virtualized nodes into
consideration. Besides, the healing capability of Kubernetes
is principally monitoring the status of containers, pods,
and nodes and timely restarting the failures, which is not
enough for high availability. Vayghan et al. find that in the
specific test environment, when the pod failure happens, the
outage time of the corresponding service could be dozens
of seconds. When node failure happens, the outage time
could be dozens of minutes [14] [15]. Therefore, with the
vanilla version of Kubernetes, high availability might not
be ensured, especially for the latency-critical cloud-native
applications. Besides, one microservice could have several
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alternative execution solutions. For example, electronic pay-
ment, as a microservice of a composite service, can be
executed by PayPal, WeChat Pay, and AliPay1. In this paper,
let us call them candidates (of microservices). This status quo
complicates the placement problem further. Because it is the
instances of candidates that need to be placed, which greatly
scales up the problem.

In order to solve the above problems, we propose a dis-
tributed redundant placement framework, i.e., Sample Av-
erage Approximation-based Redundancy Placement (SAA-
RP), for a microservice-based applications with sequential
combinatorial structure. For this application, if all of the
candidates are placed on one edge site, network congestion
is inevitable. Therefore, we adopt a distributed placement
scheme, which is naturally suitable for the distributed edge.
Redundancy is the core of SAA-RP, which allows that one
candidate to be dispatched to multiple edge sites. By creat-
ing multiple candidate instances, it boosts a faster response
to service requests. To be specific, it alleviates the risk of a
long delay incurred when a candidate is assigned to only
one edge site. With one candidate deployed on more than
one edge site, requests from different end users at different
locations can be balanced, so as to ensure the high availabil-
ity of service and the robustness of the provision platform.
Actually, performance of redundancy has been extensively
studied under various system models and assumptions,
such as the Redundancy-d model, the (n, k) system, and
the S&X model [16]. However, which kind of candidate
requires redundancy and how many instances should be
deployed cannot be decided if out of a concrete situation.
Currently, the main strategy of job redundancy usually
releases the resource occupancy after completion, which
is not befitting for geographically distributed edge sites.
This is because service requests are continuously gener-
ated from different end users. The destruction of candidate
instances have to be created again, which will certainly
lead to the delay in service responses. Besides, redundancy
is not always a win and might be dangerous sometimes,
since practical studies have shown that creating too many
instances can lead to unacceptably high response times and
even instability [16].

As a result, we do not release the candidate instances
but periodically update them based on the observations of
service demand status during that period. Specifically, we
derive expressions to decide each candidate should be dis-
patched with how many instances and which edge sites to
place them. By collecting user requests for different service
composition schemes, we model the distributed redundant
placement as a stochastic discrete optimization problem
and approximate the expected value through Monte Carlo
sampling. During each sampling, we solve the determinis-
tic problem based on an efficient evolutionary algorithm.
Performance analysis and numerical results are provided
to verify its practicability. Our main contributions are as
follows.

1) We model the distributed placement scenario at the
edge for general microservice-based chained appli-
cations and design a distributed redundant place-

1. Both Alipay and WeChat Pay are third-party mobile and online
payment platforms, established in China.

Fig. 1. A typical scenario for a pre-5G HetNet.

ment framework SAA-RP. SAA-RP can decide each
candidate should be dispatched with how many
instances and which edge sites to placement them.
It makes up with the shortcoming of the default
scheduler of Kubernetes, i.e. kube-scheduler
[17], when encountering the MEC.

2) We take both the uncertainty of end users’ service
requests and the heterogeneity of edge sites into
consideration and formulate a stochastic optimiza-
tion problem. Based on the long-term observation
on end users’ service requests, we approximate the
stochastic problem by sampling and averaging.

3) Simulations are conducted based on the real-world
EUA Dataset [18]. We also provide the performance
analysis on algorithm optimality and convergence
rate. The numerical results verify the practicability
and superiority of our algorithm, compared with
several typical benchmark policies.

The organization of this paper is as follows. Section 2
demonstrates the motivation scenario. Section 3 introduces
the system model and formulates a stochastic optimization
problem. The SAA-RP framework is proposed in Section 4
and its performance analysis is conducted in Section 5. We
show the simulation results in Section 6. In Section 7, we
review related works on service placement at the edge and
typical redundancy models. Section 8 concludes this paper.

2 MOTIVATION SCENARIOS

2.1 The Heterogeneous Network

Let us consider a typical scenario for the pre-5G Hetero-
geneous Network (HetNet), which is the physical foun-
dation of redundant service placement at the edge. As
demonstrated in Fig. 1, for a given region, the wireless
infrastructure of the access network can be simplified into
a Macro Base Station (MBS) and several Small-cell Base
Stations (SBSs). The MBS is indispensable in any HetNet to
provide ubiquitous coverage and support capacity, whose
cell radius ranges from 8km to 30km. The SBSs, includ-
ing femtocells, micro cells, and pico cells, are part of the
network densification for densely populated urban areas.
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Without loss of generality, WiFi access points, routers, and
gateways are viewed as SBSs for simplification. Their cell
radius ranges from 0.01km to 2km. The SBSs can be logically
interconnected to transfer signaling, broadcast message, and
select routes. It might be too luxurious if all SBSs are fully
interconnected, and not necessarily achievable if they are
set up by different Mobile Telecom Carriers (MTCs)2, but
we reasonably assume that each SBS is mutually reachable
to formulate an undirected connected graph. This can be seen
in Fig. 1. Each SBS has a corresponding small-scale data-
center attached for the deployment of microservices and the
allocating of resources.

In this scenario, end users with their mobile devices can
move arbitrarily within a certain range. For example, end
users work within a building or rest at home. In this case,
the connected SBS of each end user does not change.

2.2 Response Time of Microservices
A microservice-based application consists of multiple mi-
croservices. Each microservice can be executed by many
available candidates. Take an arbitrary e-commerce appli-
cation as an example. When we shop on a client browser,
we firstly search the items we want, which can be real-
ized by many site search APIs. Secondly, we add them
to the cart and pay for them. The electronic payment can
be accomplished by Alipay, WeChat Pay, or PayPal by
invoking their APIs. After that, we can review and rate for
those purchased items. In this example, each microservice
is focused on single business capability. In addition, the
considered application might have complex compositional
structures and complex correlations between the fore-and-
aft candidates because of bundle sales. For example, when
we are shopping on Taobao3, only Alipay is supported for
online payment. The application in the above example has
a linear structure. As a beginning, this paper only cares
about the sequentially composed application. In practice, a
general directed acyclic graph (DAG) can be decomposed
into several linear chains by applying Flow Decomposition
Theorem (located in Chapter 03) [19]. We leave the extension
to future work.

The pre-5G HetNet allows SBSs to share a mobile service
provision platform, where user configurations and contex-
tual information can be uniformly managed [20]. As we
have mentioned before, the unified platform can be imple-
mented by Kubernetes. In our scenario, each mobile device
sends its service request to the nearest SBS for the strongest
signal of the established link. However, if there are no SBSs
accessible, the request has to be responded by the MBS and
processed by cloud data-centers. All the possibilities of the
response status of the first microservice is discussed below.

1) The requested candidate is deployed at the chosen
SBS. It will be processed by this SBS instantly.

2) The requested candidate is not deployed at the
nearest SBS but accessible on other SBSs, which
leads to multi-hop transfers between the SBSs until
the request is responded by another SBS. That is,

2. Whether SBSs are logically connected comes down to their IP
segments.

3. Taobao is the world’s biggest e-commerce website, established in
China.

App with 4 microservices

: the 1st composite scheme

: the 2nd composite scheme
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Fig. 2. Two service composition schemes for a 4-microservice app.
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Fig. 3. The placement of each candidates on the HetNet.

the request will route through the HetNet until it
is responded by an SBS who deploys the required
candidate.

3) The requested candidate is not deployed on any
SBSs in the HetNet. It can only be processed by
cloud through backbone transmission.

For the subsequent microservices, the response status
also faces many possibilities:

1) The previous candidate is processed by an SBS.
Under this circumstance, for candidate of this mi-
croservice, if its instance can be found in the HetNet,
multi-hop transfer is required. Otherwise, it has to
be processed by cloud.

2) The previous candidate is processed by cloud. Un-
der this circumstance, the candidates of subsequent
microservices should always be responded by cloud
without unnecessary backhaul.

Our job is to find an optimal redundant placement policy
with the trade-offs between resource occupation and re-
sponse time considered. We should know which candidates
who might as well be redundant and where to deploy them.

2.3 A Working Example
This subsection describes a small-scale working example.

Microservices and Candidates: Fig. 2 demonstrates a
chained application constitutive of four microservices. Each
microservice has 2, 1, 2, and 2 candidates, respectively. The
first service composition scheme is c11 → c21 → c31 → c42,
and the second service composition scheme is c12 → c21 →
c32 → c41. In practice, the composition scheme is decided
by the daily usage habits of end users. It might be strongly
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biased. Besides, because of bundle sales, part of the compo-
sition might be fixed. We will describe the composition in
terms of a joint probability distribution in Subsection 3.1.

Service Placement of Instances: In Fig. 3, the undirected
connected graph consists of 6 SBSs. The number tagged
inside each SBS is its maximum number of placeable can-
didates. For example, SBS2 can be placed at most 4 can-
didates. This constraint exists because the edge sites have
very limited computation and storage resources, compared
with cloud data-centers. The squares beside each SBS are
the deployed candidates. For example, SBS1 deploys two
candidates, c11 and c21. Notice that because of the redun-
dancy mechanism, the same candidate can be deployed on
multiple SBSs. For example, c21 is dispatched to both SBS1
and SBS2.

Fig. 3 also demonstrates two mobile devices, MD1 and
MD2, which are located beside SBS1 and SBS5, respectively.
It means that the SBSs closest to MD1 and MD2 are SBS1
and SBS5, respectively. As we have already mentioned in
Subsection 2.2, the service request of each mobile device is
responded by the nearest SBS. Thus, for MD1 and MD2,
SBS1 and SBS5 are the corresponding SBS for responding,
respectively.

Response Time Calculation: We assume that the service
composition scheme of MD1 is the red one in Fig. 2, and
MD2’s is the blue one. The number tagged inside each
candidate is the executing sequence. Let us take a closer
look at MD1.

1) c11: Because c11 is deployed on SBS1, the response
time of c11 is equal to the sum of the expenditure of
time on wireless access between MD1 and SBS1 and
the processing time of c11 on SBS1.

2) c21: Because c21 can also be found on SBS1, the
expenditure time is zero. The response time of c21
consists of only the processing time of c21 on SBS1.

3) c31: c31 can only be found on SBS2, thus the ex-
penditure time of it is equal to the routing time
from SBS1 to SBS2. In this paper, we assume that
the routing between two nodes always selects the
nearest path in the undirected graph. Thus, only one
hop is required (SBS1 → SBS2). Thus, the response
time of c31 consists of the routing time from SBS1 to
SBS2 and the processing time of c31 on SBS2.

4) c42: c42 can only be found on SBS6. Thus, the ex-
penditure requires 2 hops (SBS2 → SBS4 → SBS6
or SBS2→ SBS5→ SBS6). Finally, the output of c42
need to be transferred back to MD1 via SBS1. The
nearest path from SBS6 to SBS1 requires 3 hops.
There are three alternatives: (i) SBS6 → SBS4 →
SBS2→ SBS1 or (ii) SBS6→ SBS5→ SBS2→ SBS1
or (iii) SBS6 → SBS5 → SBS3 → SBS1. Thus, the
response time of c42 consists of the routing time
from SBS2 to SBS6, the processing time of c42 on
SBS6, the routing time from SBS6 to SBS1, and the
wireless transmission time from SBS1 to MD1.

The response time of the 1st composition scheme is the
sum of the response time of c11, c21, c31, and c42. The
same procedure applies to MD2. In addition, there are two
unexpected cases need to be addressed. The first one is that
if a mobile device is covered by no SBS, the response should

TABLE 1
Summary of key notations.

Notation Description

M the number of SBSs, M = |M|
N the number of mobile devices, N = |N |

Q
the number of microservices in the application,
Q = |Q|

tq , q ∈ Q the qth microservice in the application

Mi
the set of SBSs that can be connected by the
ith mobile device

Nj
the set of mobile devices that can be

connected by the jth SBS

Cq
the number of candidates of the qth

microservice, Cq = |Cq |, q ∈ Q
scq , c ∈ Cq the cth candidate of the qth microservice
D(scq) the set of SBSs on which scq is deployed

E(scq)
the random event that for microservice tq , the cth

candidate is selected for execution
j?i the nearest SBS to the ith mobile device
jp(scq) the SBS who actually processes the candidate scq

d(i, j)
the Euclidean distance between the ith mobile

device and the jth SBS

τin(s
c
q)

the data uplink transmission time of the
candidate scq

τexe(jp(scq))
the execution time of the candidate scq on

the jpth SBS

ζ(j1, j2)
the hop-count between the j1th SBS

and the j2th SBS

bj
the maximum number of microservice instances

can be deployed on the jth SBS

be made by the MBS and all the microservices are processed
by cloud. The second one is that if a required candidate is
not deployed on any SBS, then a communication link from
the SBS processing the last candidate to the cloud should be
established. This candidate and all the candidates of the rest
microservices will be processed on cloud. The response time
is calculated in a different way for these cases. Nevertheless,
all the contingencies are taken into account in our system
model, elaborated in Section 3.

Obviously, a better service placement policy can lead
to less time spent. Our job is to find a service placement
policy to minimize the response time of all mobile devices.
What need to determine are not only how many instances
required for each candidate, but also which edge sites to
place them. The next section will demonstrate the rigorous
formulation of system model.

3 SYSTEM MODEL

The HetNet consists of N mobile devices, indexed by N ,
{1, ..., i, ..., N}, M SBSs, indexed by M , {1, ..., j, ...,M},
and one MBS, indexed by 0. Considering that each mobile
device might be covered by many SBSs, let us use Mi to
denote the set of SBSs whose wireless signal covers the
ith mobile devices. Correspondingly, Nj denotes the set of
mobile devices that are covered by the jth SBS. Notice that
the service request from a mobile device is responded by
its nearest available SBS, otherwise the MBS. The MBS here
is to provide ubiquitous signal coverage and is always con-
nectable to each mobile device. Both the SBSs and the MBS
are connected to the backbone. Table 1 lists key notations in
this paper.
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3.1 Describing the Correlated Microservices
We consider an application with Q sequential composite
microservices 〈t1, ..., tQ〉, indexed by Q. ∀q ∈ Q, microser-
vice tq has Cq candidates {s1q, ..., scq, ..., s

Cq
q }, indexed by

Cq . Let us use D(scq) ⊆ M to denote the set of SBSs on
which scq is deployed. Our redundancy mechanism allows
that |D(scq)| > 1, which means one candidate instance could
be dispatched to more than one SBS. Besides, let us use
E(scq), c ∈ Cq to represent that for microservice tq , the cth
candidate is selected for execution. E(scq) can be viewed
as a random event with an unknown distribution. Further,
P(E(scq)) denote the probability that E(scq) happens. Thus,
for each mobile device, its selected candidates can be de-
scribed as a Q-tuple:

E(s) , 〈E(sc11 ), ..., E(s
cQ
Q )〉, (1)

where q ∈ Q, cq ∈ Cq .
The sequential composite application might have corre-

lations between the fore-and-aft candidates. The definition
below gives a rigorous mathematical description.
Definition 3.1. Correlations of Composite Service ∀q ∈
Q\{1}, c1 ∈ Cq−1, and c2 ∈ Cq , candidate sc2q and
sc1q−1 are correlated iff P(E(sc2q )|E(sc1q−1)) ≡ 1, and

∀c′2 ∈ Cq\{c2}, P(E(s
c′2
q )|E(sc1q−1)) ≡ 0.

With the above definition, the probability P(E(s)) can be
calculated by

P(E(s)) =

P(E(sc11 )) ·
Q∏

q=2

P(E(scqq )|E(s
cq−1

q−1 )). (2)

3.2 Calculating the Respone Time
The response time of one candidate consists of data uplink
transmission time, service execution time, and data down-
link transmission time. The data uploaded is mainly en-
coded service requests and configurations while the output
is mainly the feedback on successful service execution or
a request to invoke the next candidate. If all requests are
responded within the access network, most of the time is
spent on routing with multi-hops between SBSs. Notice that
except the last one, each candidate’s data uplink transmis-
sion time is equal to the data downlink transmission time of
the candidate of its previous microservice.

3.2.1 For the Initial Candidate
For the ith mobile device and its selected candidate sc11 (i) of
the initial microservice t1, where c1 ∈ C1, (I) if the ith mobile
device is not covered by any SBSs around, i.e.,Mi = ∅, the
request has to be responded by the MBS and processed by
cloud data-center. (II) If Mi 6= ∅, as we have mentioned
before, the nearest SBS j?i ∈ Mi is chosen and connected.
Under this circumstance, a classified discussion is required.

1) If the candidate sc11 (i) is not deployed on any SBSs
from M, i.e. D(sc11 (i)) = ∅, the request still has
to be forwarded to cloud data-center through back-
bone transmission.

2) If D(sc11 (i)) 6= ∅ and j?i ∈ D(sc11 (i)), the request can
be directly processed by SBS j?i without any hops.

3) If D(sc11 (i)) 6= ∅ and j?i /∈ D(sc11 (i)), the request has
to be responded by j?i and processed by another SBS
from D(sc11 (i)).

We use jp(s) to denote the SBS who actually processes
s. Remember that the routing between two nodes always
selects the nearest path. Thus, for q = 1, jp(s

c1
1 (i)) can be

obatined by (3), where ζ(j1, j2) is the shortest number of
hops from node j1 to node j2.

In this paragragh, we calculate the response time of
sc11 (i). We use d(i, j) to denote the reciprocal of the band-
width between i and j. Obviously, the expenditure of time
on wireless access is inversely proportional to the band-
width of the link. Besides, the expenditure of time on rout-
ing is directly proportional to the number of hops between
the source node and destination node. As a result, the data
uplink transmission time τin(sc11 (i)) is summarized in (4),
where τb is the time on backbone transmission, α is size
of input data stream from each mobile device to the initial
candidate (measured in bits), and β is a positive constant
representing the rate of wired link between SBSs. We use
τexe(jp(s

c1
1 (i))) to denote the microservice execution time

on the SBS jp for the candidate sc11 (i). The data downlink
transmission time is the same as the uplink time of the next
microservice, which is discussed hereinafter.

3.2.2 For the Intermediate Candidates

For the ith mobile device and its selected candidate scqq (i)
of microservice tq , where q ∈ Q\{1, Q}, cq ∈ Cq , the
analysis of its data uplink transmission time is correlated
with jp(s

cq−1

q−1 (i)), i.e. the SBS who processes scq−1

q−1 (i). ∀q ∈
Q\{1}, the calculation of jp(s

cq
q (i)) is summarized in (5).

This formula is closely related to (3).
In this paragragh, we calculate the response time of

s
cq
q (i). (I) If jp(s

cq−1

q−1 (i)) ∈ D(s
cq
q (i)), then the data downlink

transmission time of previous candidate scq−1

q−1 (i), which is
also the data uplink transmission time of current candidate
s
cq
q (i), is zero. That is, τout(s

cq−1

q−1 (i)) = τin(s
cq
q (i)) = 0. It

is because both scq−1

q−1 (i) and scqq (i) are deployed on the SBS
jp(s

cq−1

q−1 (i)), which leads to the number of hops being zero.
(II) If jp(s

cq−1

q−1 (i)) /∈ D(s
cq
q (i)), a classified discussion has to

be launched.

1) If jp(s
cq−1

q−1 (i)) = cloud, which means the request
of tq−1 from the ith mobile device is responded
by cloud data-center. In this case, the invocation
for tq can be directly processed by cloud without
backhaul. Thus, the data uplink transmission time
of tq is zero, too.

2) If jp(s
cq−1

q−1 (i)) 6= 0 and D(s
cq
q (i)) = ∅, which means

s
cq
q (i) is not deployed on any SBSs in the HetNet. As

a result, the invocation for tq has to be responded by
cloud data-center through backbone transmission.

3) If jp(s
cq−1

q−1 (i)) 6= 0, D(s
cq
q (i)) 6= ∅ but jp(s

cq−1

q−1 (i)) /∈
D(s

cq
q (i)), which means both scq−1

q−1 (i) and scqq (i) are
processed by the SBSs in the HetNet but not the
same one. In this case, we can calculate the data
uplink transmission time by finding the shortest
path from jp(s

cq−1

q−1 (i)) to a SBS in D(s
cq
q (i)).

The above analysis is summarized in (6).
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jp(s
c1
1 (i)) =





cloud, Mi = ∅ or D(sc11 (i)) = ∅;
j?i , D(sc11 (i)) 6= ∅, j?i ∈ D(sc11 (i));
argminj•∈D(s

c1
1 (i)) ζ(j?i , j

•), otherwise
(3)

τin(sc11 (i)) =





α · d(i, 0) + τb, Mi = ∅;
α · d(i, j?i ) + τb, Mi 6= ∅,D(sc11 (i)) = ∅;
α · d(i, j?i ), Mi 6= ∅, j?i ∈ D(sc11 (i));
α · d(i, j?i ) + β ·minj•∈D(s

c1
1 (i)) ζ(j?i , j

•), otherwise

(4)

jp(s
cq
q (i)) =





cloud, Mi = ∅ or D(s
cq
q (i)) = ∅;

jp(s
cq−1

q−1 (i)), D(s
cq
q (i)) 6= ∅, jp(s

cq−1

q−1 (i)) ∈ D(s
cq
q (i));

argminj•∈D(s
cq
q (i)) ζ(jp(s

cq−1

q−1 (i)), j•), otherwise
(5)

τin(scqq (i)) =





0, jp(s
cq−1

q−1 (i)) ∈ D(s
cq
q (i)) or jp(s

cq−1

q−1 (i)) = cloud;
τb, jp(s

cq−1

q−1 (i)) 6= 0,D(s
cq
q (i)) = ∅;

β ·minj•∈D(s
cq
q (i)) ζ(jp(s

cq−1

q−1 (i))), j•), otherwise
(6)

τout(s
cQ
Q (i)) =

{
τb + α · d(i, 0), jp(s

cQ
Q (i)) = cloud;

β · ζ(jp(s
cQ
Q (i)), j?i ) + α · d(i, j?i ), otherwise

(7)

3.2.3 For the Last Candidate
For the ith mobile device and its selected candidate scQQ (i)
of the last microservice tQ, where cQ ∈ CQ, the data uplink
transmission time τin(s

cQ
Q (i)) is also calculated by (6), with

every q replaced by Q. However, for the data downlink
transmission time τout(s

cQ
Q (i)), a classified discussion is

required: (I) If jp(s
cQ
Q (i)) = 0, which means the chosen can-

didate of the last microservice is processed by cloud data-
center, the processed result need to be returned from cloud
to the ith mobile device through backhaul transmission4.
(II) If jp(s

cQ
Q (i)) 6= 0, which means the chosen candidate of

the last microservice is processed by a SBS in the HetNet.
In this case, the result should be delivered to the ith mobile
device via jp(s

cQ
Q (i)) and j?i

5. (7) summarizes the calculation
of τout(s

cQ
Q (i)).

Based on the above analysis, the response time of the ith
mobile device is

τ(E(s(i))) =

Q∑

q=1

(
τin(scqq (i)) + τexe

(
jp(s

cq
q (i))

))

+ τout(s
cQ
Q (i)). (8)

So far, the system model has been elaborated. The as-
sumptions in this paper are summarized as follows.

1) We assume that the edge sites can form an undirected
connected graph. In MEC, this assumption is rational and
frequently-used, especially for the research on Network
Slicing [21].

2) We assume that it is the nearest SBS that responses to
the initial microservice of a mobile device. This assumption
is naive and widely-used because it leads to the minimal
first-step communication cost.

4. We assume that the backhaul can only be transferred through the
MBS.

5. jp(s
cQ
Q (i)) and j?i could be the same one. In this case, the number

of hops between them is zero.

3) We only consider the composite application with
linear structure. The model proposed in this paper applies
mainly to chain query, but not suitable for general services.
As we have mentioned, a general DAG can be decomposed
into several linear chains, thus we leave the extension to
future work.

4) We assume that the expenditure of time on routing
is directly proportional to the number of hops. In MEC,
the HetNet is a given region whose range is within tens
of kilometers. The transmission time is mainly spent on
routing and transit. Thus, this assumption is rational.

5) We assume that the backhaul can only be transferred
through the MBS. There are multiple alternatives for back-
haul in 5G communications. We make the assumption to
simplify the problem formulation for the chosen candidate
of the last microservice.

3.3 Problem Formulation

Our job is to find an optimal redundant placement policy to
minimize the overall latency under the limited capability of
SBSs. The heterogeneity of edge sites is directly embodied
in the number of can-be-deployed candidates. Let us use bj
to denote this number for the jth SBS. In the heterogenous
edge, bj could vary considerably. The following constraint
should be satisfied:

∑

q∈Q

∑

c∈Cq
1{j ∈ D(scqq )} ≤ bj ,∀j ∈M, (9)

where 1{·} is the indicator function. Finally, the optimal
placement problem can be formulated as:

P1 : min
D(s

cq
q )

N∑

i=1

τ(E(s(i)))

s.t. (9),
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where the decision variables are D(s
cq
q (i)),∀q ∈ Q, c ∈ Cq ,

and the optimization goal is the sum of response time of all
mobile devices.

4 ALGORITHM DESIGN

In this section, we elaborate our algorithm for P1. Firstly,
we recode the decision variables as x to shrink the size
of feasible region. Based on that, we propose the SAA-
RP framework. It includes a subroutine, named Genetic
Algorithm-based Server Selection (GASS) algorithm. The
details are presented as follows.

4.1 Variable Recoding

Let us use W (i) , (canIdx(t1), ...,canIdx(tQ)) to de-
note the random vector on the chosen service composition
scheme of the ith mobile device, where canIdx(tq) returns
the index of the chosen candidate of the qth microservice.
W (i) and E(s(i)) describe the same thing from different
perspectives. However, the former is more concise. Then, we
use W , (W (1), ...,W (N)) to denote the global random
vector by taking all mobile devices into account. Let us use
x , [x(b1), ...,x(bM )]> to recode the global deploy-or-not
vector. ∀j ∈ M,x(bj) is a deployment vector for SBS j,
whose length is bj . By doing this, the constraint (9) can be
removed because it is reflected in how x encodes. ∀j ∈ M,
each element of x(bj) is chosen from {0, 1, ...,

∑
q=1 Cq}, i.e.

the global index of each candidate. That is, any candidate
can appear in any number of SBSs in the HetNet. Thus, the
redundancy mechanism is also reflected in how x encodes.
∀j ∈ M, x(bj) = 0 means that the jth SBS does not deploy
any candidate.

x is a new encoding of D(s
cq
q (i)). As a result, we can

reconstitute τ(E(s(i))) as τ(x,W (i)). As such, the opti-
mization goal can be written as

g(x) , E[G(x,W )] = E[
N∑

i=1

τ(x,W (i))], (10)

and the optimal placement problem is

P2 : min
x∈X

g(x).

P2 is a stochastic discrete optimization problem with in-
dependent variable x, where X is the feasible region. X ,
although finite, is very large. Therefore, enumeration ap-
proach is inadvisable. Besides, the problem has an uncertain
random vector W with probability distribution P(E(s(i))).

4.2 The SAA-RP Framework

Let us take a closer look at P2. Firstly, the random vector
W is exogenous because the decision on x does not affect
the distribution of W . Secondly, for a given W , G(x,W )
can be easily evaluated for any x. Thus, the observation
of G(x,W ) is constructive. As a result, we can apply the
Sample Average Approximation (SAA) approach to P1 [22]
to handle with the uncertainty.

SAA is a classic Monte Carlo simulation-based method.
In the following section, we elaborate how we apply the
SAA method to P2. Formally, we define the SAA problem

P3. Let W 1,W 2, ...,WR be an independently and identi-
cally distributed (i.i.d.) random sample of R realizations of
the random vector W . The SAA function is defined as

ĝR(x) ,
1

R

R∑

r=1

G(x,W r), (11)

and the SAA problem P3 is defined as

P3 : min
x∈X

ĝR(x).

By Monte Carlo Sampling, with support from the Law of
Large Numbers [23], when R is large enough, the optimal
value of ĝR(x) can converge to the optimal value of g(x)
with probability one (w.p.1). As a result, we only need to
care about how to solve P3 as optimal as possible.

Algorithm 1 SAA-based Redundant Placement (SAA-RP)
1: Choose initial sample size R and R′ (R′ � R)
2: Choose the number of replications L (indexed by L)
3: Set up a gap tolerance ε
4: for l = 1 to L in parallel do
5: Generate R independent samples W 1

l , ...,W
R
l

6: Call GASS to obtain the minimum value of ĝR(xl)
with the form of 1

R

∑R
r=1G(xl,W

r
l )

7: Record the optimal goal ĝR(x̂∗l ) and the correspond-
ing variable x̂∗l returned from GASS

8: end for
9: v̄∗R ← 1

L

∑L
l=1 ĝR(x̂∗l )

10: for l = 1 to L in parallel do
11: Generate R′ independent samples W 1

l , ...,W
R′

l

12: vlR′ ← 1
R′
∑R′

r′=1G(x̂∗l ,W
r′

l )
13: end for
14: Get the worst replication v•R′ ← maxl∈L vlR′
15: if the gap v•R′ − v̄∗R < ε then
16: Choose the best solution x̂∗l among all L replicationss
17: else
18: Increase R (for drill) and R′ (for evaluation)
19: goto Step. 4
20: end if
21: return the best solution x̂∗l

The SAA-RP framework is presented in Algorithm 1.
Firstly, we need to select the sample size R and R′ ap-
propriately. As the sample size R increases, the optimal
solution of the SAA problem P2 converges to its true problem
P1. However, the computational complexity for solving P2

increases at least linearly, even exponentially, in the sample
size R [22]. Therefore, when we choose R, the trade-off
between the quality of the optimality and the computation
effort should be taken into account. Besides, R′ here is used
to obtain an estimate of P1 with the obtained solution of
P2. In order to obtain an accurate estimate, we have every
reason to choose a relatively large sample size R′ (R′ � R).
Secondlly, inspired by [22], we replicate generating and
solving P2 with L i.i.d. replications. From Step. 4 to Step.
8, we call the algorithm GASS to obtain the asymptotically
optimal solution of P2 and record the best-so-far results.
From Step. 10 to Step. 13, we estimate the true value of P1

for each replication. After that, those estimates are compared
with the average of those optimal solutions of P2. If the
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maximum gap is smaller than the tolerance, SAA-RP returns
the best solution among L replications and the algorithm
terminates, otherwise we increase R and R′ and drill again.

4.3 The GASS Algorithm

GASS is implemented based on the well-konwn Genetic
Algorithm (GA). The detailed procedure is demonstrated in
Algorithm 2. Firstly, we initialize the necessary parameters,
including the population size P , the number of iterations
it, and the probability of crossover Pc and mutation Pm,
respectively. After that, we randomly generate the initial
population from the domain X . From Step. 6 to Step. 10,
GASS executes the crossover operation. At the beginning of
this operation, GASS checks whether crossover need to be
executed. If yes, GASS choose the best two chromosomes
according to their fitness values. With that, the latter part of
xp1 and xp2 are exchanged since the position x(bj). From
Step. 11 to Step. 13, GASS executes the mutation operation.
At the beginning of this operation, it checks whether each
chromosome can mutate according to the mutation proba-
bility Pm. At the end, only the chromosome with the best
fitness value can be returned.

Algorithm 2 GA-based Server Selection (GASS)
1: Initialize the population size P , number of iterations it,

the probability of crossover Pc and mutation Pm
2: Randomly generate P chromosomes x1, ...,xP ∈ X
3: for t = 1 to it do
4: ∀p ∈ {1, ..., P}, renew the optimization goal of P2, i.e.

ĝR(xp), according to (11)
5: for p = 1 to P do
6: if rand() < Pc then
7: Choose two chromosomes p1 and p2 according to

the probability distribution:

P(p is chosen) =
1/ĝR(xp)

∑P
p′=1 1/ĝR(xp′)

8: Randomly choose SBS j ∈M
9: Crossover the segement of xp1 and xp2 after the

partitioning point x(bj−1):

[xp1(bj), ...,xp1(bM )]↔ [xp2(bj), ...,xp2(bM )]

10: end if
11: if rand() < Pm then
12: Randomly choose SBS j ∈M and re-generate the

segement xp(bj)
13: end if
14: end for
15: end for
16: return argminp ĝ(xp) from P chromosomes

4.4 Strength and Advantages

This subsection summarizes the strength and advantages of
SAA-RP and GASS.

1) Notice that SAA-RP is not deployed online. It can be
periodically re-run to follow up end users’ service demand
pattern. During each period, for example, a month or a

quarter, end users’ microservice composition preferences
can be collected (under authorization of privacy). Pods can
be reconstructed based on the result from SAA-RP. This
process can be carried out through rolling upgrade with
Kubernetes.

2) With the recoded decision variable x, GASS is simple
to operate and it enjoys a fast convergence rate. In the do-
main of P1, the number of elements is exp{

∑
q∈Q Cq ·lnM},

which exponentially increases with the scale of microservices.
However, after re-encoding, the number of elements in
domain X is

∏
j∈M

(
bj(
∑
q∈Q Cq + 1)− bj

2 (bj − 1)
)
, which

increases polynomially with the scale of microservices. The
conclusion will be proved in Subsection 5.2 and verified in
Subsection 6.3.2.

3) SAA-RP makes up with the shortcoming of the de-
fault scheduler of Kubernetes when encountering the MEC..
Kube-scheduler is a component responsible for the deploy-
ment of configured pods and microservices, which selects
the node for a microservice instance in a two-step operation:
Filtering and Scoring [17]. The filtering step finds the set of
nodes who are feasible to schedule the microservice instance
based on their available resources. In the scoring step, the
kube-scheduler ranks the schedulable nodes to choose
the most suitable one for the placement of the microservice
instance. It places microservices only based on resources
occupancy of nodes. By contrast, SAA-RP takes both the
service request pattern of end users and the heterogeneity
of the distributed nodes into consideration. SAA-RP makes
a progress towards the resource orchestration on the het-
erogenous edge.

5 THEORETICAL ANALYSIS

In this section, we analyze the optimality of SAA-RP and
the complexity of GASS.

5.1 Solution Optimality

Recall that the domain X of problem P2 and P3 is finite,
whose size is

∏
j∈M bj

(∑
q∈Q Cq + 1 − 1

2 (bj − 1)
)
. Thus,

P2 and P3 have nonempty set of optimal solutions, denoted
as X ∗ and X̂R, respectively. We let v∗ and v̂R denote the
optimal values of P2 and P3, respectively. To analysis the
optimality, we also define the set of ε-optimal solutions.
Definition 5.1. ε-optimal Solutions For ε ≥ 0, if x ∈ X

and g(x) ≤ v∗ + ε, then we say that x is an ε-optimal
solution of P1. Similarly, if x ∈ X and g(x) ≤ v̂R + ε, x
is an ε-optimal solution of P3.

We use X ε and X̂ εR to denote the set of ε-optimal solutions
of P2 and P3, respectively. Then we have the following
proposition.
Proposition 5.1. v̂R → v∗ w.p.1 asR→∞; ∀ε ≥ 0, the event
{X̂ εR → X ε} happens w.p.1 for R large enough.

Proof 5.1. It can be directly obtained from Proposition 2.1 of
[22], not tired in words here.

Proposition 5.1 implies that for almost every realization ω =
{W 1,W 2, ...} of the random vector, there exists an integer
R(ω) such that v̂R → v∗ and {X̂ εR → X ε} happen for all
samples {W 1, ...,W r} from ω with r ≥ R(ω).
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The following proposition demonstrates the convergence
rate of SAA method.
Proposition 5.2. ∀ε > 0 small enough and $ ∈ [0, ε), for

the probability P({X̂$R ⊂ X ε}) to be at least 1 − α, the
number of sample size R should satisify

R ≥ 3σ2
max

(ε−$)2
·
∑

j∈M
log
(bj
α
·
(∑

q∈Q
Cq +

3− bj
2

))
,

where

σ2
max , max

x∈X\X ε
Var

[
G(u(x),W )−G(x,W )

]
,

and u(·) is a mapping from X\X ε into X ∗, which satisi-
fies that ∀x ∈ X\X ε, g(u(x)) ≤ g(x)− v∗.

Proof 5.2. It can be directly obtained by combing Proposition
2.2 of [22] with the size of X . For more details, please
consult [22] directly.

Proposition 5.2 implies that the number of samples R de-
pends logarithmically on the feature of domain X and the
tolerance probability α.

5.2 Algorithm Complexity
Obviously, GASS works through a mechanism of decompo-
sition and reassembly. The following proposition holds.
Proposition 5.3. For problem P2 and P3, when the number

of SBSs is fixed as M , no matter how many mobile
devices there are, the convergence time of GASS is

O
(√

R ·
∏
j∈M

(
bj(
∑
q∈Q Cq + 1)− bj

2 (bj − 1)
))

.

Proof 5.3. Notice that each candidate only has to be de-
ployed once on a single SBS. Thus, the number of possi-
ble values of x(bj) is bj(

∑
q∈Q Cq + 1)− bj

2 (bj − 1), and
the number of elements in domain X , i.e. the problem
size, is R ·

∏
j∈M

(
bj(
∑
q∈Q Cq + 1) − bj

2 (bj − 1)
)
. It

follows from the fact that the kth element of x(bj) has∑
q∈Q Cq + 2 − k choices. Considering the processing

building blocks of P3 is of equal salience, the result can
be obtained directly [24] [25].

Proposition 5.3 indicates that the complexity of GASS in-
creases polynomially with the scale of the application, i.e.,∑
q∈Q Cq .

6 EXPERIMENTAL EVALUATION

In this section, we verify the superiority of the proposed
algorithms through simulations.

6.1 Benchmark Policies
Our method is compared with several representative base-
lines and a state-of-the-art algorithm, GenDoc [13]. The
baselines are performed in two scenarios while GenDoc is
performed as it was defined in [13]. In the first scenario,
redundancy is not allowed. Each candidate can only be
dispatched to only one SBS. It is used to evaluate the
superiority of redundant placement. In the second scenario,
redundancy is allowed. It is used to evaluate the optimality
of GASS. Those benchmark policies, including GenDoc, are
used to replace GASS to generate the best-so-far solution of

each sampling. In both scenarios, those benchmark policies
are run R times and the average value is returned. Details
are summarized as follows.

(1) Random Placement in Scenario #1 (RP1): ∀q ∈
Q,∀cq ∈ Cq , dispatch cq to a randomly chosen SBS j and
decrement bj . The procedure terminates if no available SBS.

(2) Random Placement in Scenario #2 (RP2): ∀q ∈
Q,∀cq ∈ Cq , randomly dispatch cq to m SBSs. The number
m ∈ {m′ ∈ N|0 ≤ m′ ≤ M} is generated randomly.
After that, for those SBSs, decrement their bj . The procedure
terminates if no available SBS.

(3) Genetic Algorithm in Scenario #1 (GA1): The chro-
mosome is encoded as [p(s11), ..., p(s

CQ
Q )]>, where p(s) is the

chosen SBS for the placement of the candidate s. This encod-
ing ensures that each candidate can only be dispatched to
one SBS. Based on that, each generation of chromosomes are
created by selection, recombination, and mutation.

(4) Greedy Placement in Scenario #2 (GP2): For each
SBS j ∈ M, bj candidates will be deployed on it. It means
that the feasible region lies in the boundary of the constraint
(9). In each iteration, each end user always chooses the
nearest available SBS to execute its selected candidates.

(5) GenDoc: GenDoc is a configuration-aware placement
and scheduling algorithm, proposed in [13]. To apply Gen-
Doc to our system model, ∀j ∈M, we set Cvirj = bj , where
Cvirj is the maximum virtual capacity of the jth SBS. More
details can be found in Section 4.2 of [13].

6.2 Experimental Settings
All the experiments are implemented in MATLAB R2019b
on macOS Catalina equipped with 3.1 GHz Quad-Core
Intel Core i7 and 16 GB RAM. The parameter settings are
discussed as follows.

TABLE 2
Parameter settings.

Parameter Value Parameter Value
Q 10 ∀q, Cq [2, 5]

N 500 M 40

bl 3 bu 5

α [1, 8] kbits β 5 ms
τb 0.1 s L 5

∀s, τexe(jp(s)) [1, 2] ms signal radius [200, 600] m

R 500 R′ 100000

L 10 ε 2× 10−4

P 10 it 300

Pm 10% Pc 80%

The microservices and candidates: The number of microser-
vices in the application Q is set as 10 in default. For each
microservice q, the number of its candidates is uniformly
sampled from the integer interval [2, 5]. In each replication
W r , the service composition scheme of the ith end user is
sampled according to P(E(s(i))). Considering that there is
no commonly used dataset for microservice composition,
∀q ∈ Q,∀c ∈ Cq , we generate P(E(scq)) uniformly to avoid
any bias.

The pre-5G HetNet: The experiment is conducted based
on the geolocation information of base stations and end
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users within the Melbourne CBD area contained in the
EUA dataset [18]. In our simulations, we choose 500 end
users and 40 SBSs uniformly from the dataset in default.
The coverage radius of each SBS is sampled from [200, 600]
meters uniformly. ∀i ∈ N , ∀j ∈ M, 1

d(i,j) = 1 MHz. In
addition, the maximum hops between any two SBSs can not
larger than 4. ∀j ∈M, bj is chosen from the integer interval
[bl, bu]. We set bl = 3, bu = 5 in default.

6.3 Experiment Results

The experiments are conducted to analyze the optimality
and scalability of the proposed algorithm.

6.3.1 Optimality

As shown in Fig. 4(a), GASS outperforms all the other algo-
rithms in the overall response time, i.e.,

∑
i∈N τ(E(s(i))).

Specifically, within 300 iterations, GASS outperforms Gen-
Doc, GP2, RS2, GA1, and RS1 by 10.81%, 16.20%, 44.81%,
67.66%, and 196.43%, respectively. The result verifies both
the rationality of redundant placement and the optimality of
our algorithm. As for the former, it is verified by that all the
algorithms implemented in scenario #2 perform better than
the algorithms implemented in scenario #1. The superiority
of redundant placement lies in that it takes full advantage
of the distributed SBSs’ limited resources. In this case, the
processing of end users’ service requests can surely be
balanced. As for the latter, it is verified by that GASS can
converge to an approximate optimal solution, i.e. 111.1040
ms at a very rapid rate. The solution achieved at the 21th

iteration is already better than all the other algorithms.
In addition to the above phenomena, it is interesting to

see that GP2 can obtain a relatively good result. We can
verify that for each deployment, what GP2 adopts is the
optimal operation. For each microservice, only the most
frequently requested candidate has the privilege to be de-
ployed, which ensures that the maximum number of mobile
devices can enjoy their optimal situation. In comparison,
GenDoc consists of greedy placement (server configuration)
and dynamic programming-based microservice scheduling,
which is not overbearing.

Fig. 4(b) shows that GASS can keep on top under dif-
ferent conditions. In this figure, the horizontal axis is the
mean value of can-be-deployed candidates of each SBS j,
i.e. bj . We can find that for those algorithms which are
implemented in scenario #1, b has no significant effect on
their performance. The reason is that whatever bj takes,
only one candidate can be deployed on each SBS j. It
is also why GA1 can achieve a similar result with GASS
when b = 1. By contrast, with the increase in b, all the
algorithms implemented in scenario #2 enjoy less response
time. The result is obvious because bj decides the upper
limit of resources, which is the key influence factor of
time consumption. It is also worth noting that when b
increases, the gap between GASS, GP2, and GenDoc is likely
to narrow. This is exactly the embodiment of the trade-off
between algorithm improvement and resource promotion.
When resources are rich, even poorly performing algorithms
can produce good results.

6.3.2 Scalability

Scalability is embodied in two aspects, the HetNet and the
application (microservices and candidates).

The HetNet: the scale of the HetNet is embodied in two
variables, the number of SBSs M and the number of mobile
devices N . The left of Fig. 5 demonstrates the impact of
M on the overall response time. Generally, as M increases,
the response time decreases. This is because more SBSs can
provide more resources, which greatly helps to realize near-
request processing. Even so, the superiority of GASS is obvi-
ous, as it is always the best of five algorithms whatever M
takes (RS1 is discarded). Thus, the scalability of GASS holds.
Besides, there are some noteworthy phenomena. Firstly, the
response time of GA1 has a slightly rising trend when M in-
creases from 40 to 80. This is because when M increases, the
dimension of feasible solution increases, which greatly ex-
pands the solution space. Meanwhile, the connected graph
of SBSs become sparse, which leads to more hops to transfer
data streams. Under this circumstances, 300 iterations might
not be enough to achieve an optimal enough solution.
However, GASS is not effected because the solution space of
GASS is much smaller. The phenomenon verifies the second
advantage displayed in Subsection 4.4. Secondly, when M
increases, the gap between GASS, GP2, and GenDoc is likely
to narrow. This phenomenon has been captured in Fig. 4(b).
No matter increasing M or b, the resources of SBSs are
increasing, and poorly performing algorithms can produce
good results.

The right of Fig. 5 demonstrates the impact of M on the
overall response time. For all the implemented algorithms,
the overall response time increases as N increases while
the solution achieved by GASS is always the best. It is
interesting that the gaps between those benchmark policies
and GASS increase as N increases. It indicates that GASS is
robust to the computation complexity of the fitness function.
Thus, the scalability of GASS holds.

The application: the scale of the application is em-
bodied in two variables, the number of microservices Q
and the average number of candidates per microservice
C , 1

Q

∑
q∈Q Cq . It can be concluded that GenDoc and

GP2 are competitive while RS1, RS2 and GA1 are obviously
lagging behind. Thus, in the following analysis, we only
compare GASS with GenDoc and GP2 in terms of the
average completion time.

Fig. 6 and Fig. 7 demonstrates the impact of the scale of
microservices. From Fig. 6 we can find that GASS can keep
on top whatever Q is. Correspondingly, Fig. 7 demonstrates
the involution of the average completion time per mobile
device when Q is 5, 10, 15, and 20, respectively. In all
cases, GASS achieves the minimum average completion
time no matter how many microservices have been finished.
In our experiments, the maximum E[

∑
q∈Q Cq] is 70 while

E[
∑
j∈M bj ] is 160. Theoretically, if the expected number

of all candidates E[
∑
q∈Q Cq] does not exceed the expected

number of all the can-be-deployed candidates E[
∑
j∈M bj ],

GASS can maintain its competitive edge. This is because
no requests from end users need to be processed by cloud,
and the time-consuming backbone can be saved. This ad-
vantage is not held by the benchmark policies. Fig. 8 and
Fig. 9 demonstrates the impact of the scale of candidates.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on November 09,2020 at 09:16:41 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3013600, IEEE
Transactions on Services Computing

11

0 50 100 150 200 250 300
Iteration

100

150

200

250

300

350
O

ve
ra

ll r
es

po
ns

e 
tim

e GASS
GA1
RS1
RS2
GP2
GenDoc

X

i2N
⌧(E(~s(i))) = 111.1040, it = 21

<latexit sha1_base64="XYRRDbjFAOnUNuLJaH4mo9hWxc4="></latexit><latexit sha1_base64="XYRRDbjFAOnUNuLJaH4mo9hWxc4="></latexit><latexit sha1_base64="XYRRDbjFAOnUNuLJaH4mo9hWxc4="></latexit><latexit sha1_base64="XYRRDbjFAOnUNuLJaH4mo9hWxc4="></latexit>

X

i2N
⌧(E(~s(i))) = 126.2227, it = 121

<latexit sha1_base64="5s9NMDZgmE35el6od7nuHoDPB8g="></latexit><latexit sha1_base64="5s9NMDZgmE35el6od7nuHoDPB8g="></latexit><latexit sha1_base64="5s9NMDZgmE35el6od7nuHoDPB8g="></latexit><latexit sha1_base64="5s9NMDZgmE35el6od7nuHoDPB8g="></latexit> X

i2N
⌧(E(~s(i))) = 120.3701

<latexit sha1_base64="rXmx+6gxmiEv/oIgUwlLSyjnEMs="></latexit><latexit sha1_base64="rXmx+6gxmiEv/oIgUwlLSyjnEMs="></latexit><latexit sha1_base64="rXmx+6gxmiEv/oIgUwlLSyjnEMs="></latexit><latexit sha1_base64="rXmx+6gxmiEv/oIgUwlLSyjnEMs=">AAACIXicbVDLSsNAFJ3UV62vqks3g0VINyGphXYjFERwJRXsA5pSJtNJO3QyCTOTQgn5FTf+ihsXinQn/oyTtgttPTBwOOde7pzjRYxKZdtfRm5re2d3L79fODg8Oj4pnp61ZRgLTFo4ZKHoekgSRjlpKaoY6UaCoMBjpONNbjO/MyVC0pA/qVlE+gEacepTjJSWBsW6K+NgkFDoUg7dAKkxRix5SFPoKhRD8850pwQnMjVpuVyGN9Cp2NZ1zXYGxZJt2QvATeKsSAms0BwU5+4wxHFAuMIMSdlz7Ej1EyQUxYykBTeWJEJ4gkakpylHAZH9ZJEwhVdaGUI/FPpxBRfq740EBVLOAk9PZhnkupeJ/3m9WPn1fkJ5FCvC8fKQHzOoQpjVBYdUEKzYTBOEBdV/hXiMBMJKl1rQJTjrkTdJu2I5tuU8VkuN6qqOPLgAl8AEDqiBBrgHTdACGDyDV/AOPowX4834NObL0Zyx2jkHf2B8/wAFJqDC</latexit>

(a) The convergence rate of all the algorithms with N = 500, M = 40.
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(b) The overall response time vs. b.

Fig. 4. Algorithm performace comparison.
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Fig. 5. Overall response time vs. scale of the HetNet.
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Fig. 6. Overall response time vs. number of the microservices.

Similarly, from Fig. 8, we can find that GASS outperforms
GP2 and GenDoc in most cases. From Fig. 9 we can find that
GASS always achieves the minimum average completion
time when C is 2, 3, 4, and 5.
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Fig. 7. Average response time vs. number of the microservices.
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Fig. 8. Overall response time vs. C.

Fig. 6 ∼ Fig. 9 verifies that the scalability of GASS holds
in terms of the number of microservices and candidates.

Ths superparameters of GASS: Table 3 demonstrates
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Fig. 9. Average response time vs. C.

TABLE 3
Impact of population size, crossover probability, and mutation

probability.

P
∑

i∈N τi Pc
∑

i∈N τi Pm
∑

i∈N τi

5 114.6762 20% 114.5866 20% 110.4808

10 109.9742 40% 112.2296 40% 105.8360

15 109.6814 60% 116.8252 60% 112.7771

20 113.4527 80% 111.4439 80% 109.2450

25 111.8812 100% 116.1299 100% 112.6478

the overall response time of GASS under different popu-
lation size, probability of mutation Pm, and probability of
crossover Pc, respectively. We can find that their impact
is minor on the optimality of GASS. As a result, no more
detailed discussion is launched.

7 RELATED WORKS

Service computing based on traditional cloud data-centers
has been extensively studied in the last several years,
especially service selection for composition [26] [27] [28],
service provision [29], discovery [30], scheduling [31] and so
on. However, putting everything about services onto the dis-
tributed and heterogenous edge is still an area waiting for
exploration. Multi-access Edge computing, as a increasingly
popular computation paradigm, is facing the transition from
theory to practice. The key to the transition is the placement
and deployment of service instances.

In the last two years, service placement at the distributed
edge has been tentatively explored from the perspective of
Quality of Experience (QoE) of end users or the budget
of ASPs [32] [33]. For example, Ouyang et al. study the
problem in a mobility-aware and dynamic way [7]. Their
goal is to optimize the long-term time averaged migration
cost triggered by user mobility. They develop two efficient
heuristic schemes based on the Markov approximation and
best response update techniques to approach a near-optimal
solution. System stability is also guaranteed by Laypunov
optimization technique. Chen et al. study the problem in
a spatio-temporal way, under a limited budget of ASPs
[10]. They pose the problem as a combinatorial contextual

bandit learning problem and utilize Multi-armed Bandit
(MAB) theory to learn the optimal placement policy. How-
ever, the proposed algorithm is time-consuming and faces
the curse of dimensionality. A low-complex particle-swarm-
optimization-based metaheuristic and a greedy heuristic are
proposed for solving the joint container placement and task
provisioning problem in dynamic fog computing environ-
ment [34]. Hu et al. proposed an algorithm to adjust the
task placement and resource allocation by making a good
tradeoff between energy consumption and task execution
time [35]. This paper demonstrates a feasible placement
scheme with much lower energy consumption. Except for
the typical examples listed above, there also exist works
dedicated on joint resource allocation and load balancing
in service placement [8] [9] [11] [36]. However, as we have
mentioned before, those works only study the to-be-placed
services in an atomic way. The correlated and composite
property of services is not taken into consideration. Besides,
those works do not tell us how to apply their algorithms
to the service deployment in a practical system. To address
these deficiencies, we navigate the service placement and
deployment from the view of production practices. Specif-
ically, we adopt redundant placement to the correlated mi-
croservices, which can be unified managed by Kubernetes.

The idea of redundancy has been studied in parallel-
server systems and computing clusters [37] [38] [39]. The
basic idea of redundancy is dispatching the same job to
multiple servers. The job is considered done as soon as it
completes service on any one server [16]. Typical job redun-
dancy model is the S&X model, where X is the job’s inher-
ent size, and S is the server slowdown. It is designed based
on the weakness of the traditional Independent Runtimes
(IR) model, where a job’s replicas experience independent
runtimes across servers. Unfortunately, although the S&X
model indeed captures the practical characteristics of real
systems, it still face great challenges to put it into use in
service deployment at the edge bacause the geographically
distribution and heterogeneity of edge sites are not consid-
ered. To solve the problem, in this paper we redesign the
entire model while the idea of redundancy is kept.

This work significantly extends our preliminary work
[40]. To improve the practicability, we analyze the response
time of each mobile device in a more rigorous manner, and
improve it by always finding the nearest available edge
site. We also take the uncertainty of end users’ service
composition scheme into consideration. It greatly increases
the complexity but is of signality. Most important of all, we
embedd the idea of redundancy into the problem and design
an algorithm with a faster convergence rate.

8 CONCLUSION

In this paper, we study a redundant placement policy for
the deployment of microservice-based applications at the
distributed edge. We first demonstrate the typical HetNet
in the near future, and then explore the possibilities of the
deployment of composite microservices with containers and
Kubernetes. After that, we model the redundant placement
as a stochastic optimization problem. For the application
with composite and correlated microservices, we design the
SAA-based framework SAA-RP and the GASS algorithm to
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dispatch microservice instances into edge sites. By creating
multiple access to services, our policy boosts a faster re-
sponse for mobile devices significantly. SAA-RP not only
take the uncertainty of microservice composition schemes of
end users, but also the heterogeneity of edge sites into con-
sideration. The experimental results based on a real-world
dataset show both the optimality of redundant placement
and the efficiency of GASS. In addition, we give guidance
on the implementation of SAA-RP with Kubernetes. In our
future work, we will hammer at the implementation of the
redundant deployment of complex DAGs with arbitrary
shape.
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