
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 1

A Lightweight Collaborative Deep Neural
Network for the Mobile Web in Edge Cloud

Yakun Huang, Xiuquan Qiao, Pei Ren, Ling Liu, Fellow, IEEE, Calton Pu, Fellow, IEEE,
Schahram Dustdar, Fellow, IEEE, and Junliang Chen

Abstract— Enabling deep learning technology on the mobile web can improve the user’s experience for achieving web artificial
intelligence in various fields. However, heavy DNN models and limited computing resources of the mobile web are now unable to
support executing computationally intensive DNNs when deploying in a cloud computing platform. With the help of promising edge
computing, we propose a lightweight collaborative deep neural network for the mobile web, named LcDNN, which contributes to three
aspects: (1) We design a composite collaborative DNN that reduces the model size, accelerates inference, and reduces mobile energy
cost by executing a lightweight binary neural network (BNN) branch on the mobile web. (2) We provide a jointly training method for
LcDNN and implement an energy-efficient inference library for executing the BNN branch on the mobile web. (3) To further promote the
resource utilization of the edge cloud, we develop a DRL-based online scheduling scheme to obtain an optimal allocation for LcDNN.
The experimental results show that LcDNN outperforms existing approaches for reducing the model size by about 16x to 29x. It also
reduces the end-to-end latency and mobile energy cost with acceptable accuracy and improves the throughput and resource utilization
of the edge cloud.

Index Terms—Collaborative DNNs, mobile web, binary neural network, dynamic allcoation, edge computing.

F

1 INTRODUCTION

W ITH the help of some major technologies such as
Artificial Intelligence (AI), Virtual Reality (VR) and

Augmented Reality (AR), lightweight and cross-platform
web applications are growing at a rapid rate with a focus
on enhancing user experience [2], [3]. Deep learning (e.g.,
Deep Neural Networks, DNNs) is currently a representative
way of achieving Web-based Artificial Intelligence (Web AI),
which has set new records in accuracy for many important
problems, such as image recognition [4], speech recognition
[5], recommender systems [6], natural language process-
ing [7] etc. However, the web is now unable to support
advanced DNNs in a performant manner due to limited
computing resources of the web and lack of optimized low-
level APIs [8]. Additionally, heavy DNN models and inten-
sive computations also introduce a high inference latency,
including loading models and inefficient inference. Thus,
the web community group of World Wide Web Consortium
(W3C) is actively promoting innovation, and research of
deep learning web technologies to enable the creation of
deep learning web experiences about the intersection of
augmented reality, deep learning, and the web, or more
simply the augmented web [9], [10].

To achieve the full promise of Web AI for the mobile web,

• Y. Huang, X. Qiao, P. Ren and J. Chen are with State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China. E-mail:{ykhuang, qiaoxq,
renpei, chjl}@bupt.edu.cn. (X. Qiao is the corresponding author.)

• L. Liu and C. Pu are with School of Computer Science, Georgia In-
stitute of Technology, Atlanta, GA 30332, USA E-mail:{ling.liu, cal-
ton.pu}@cc.gatech.edu.

• S. Dustdar is with the Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria. E-mail:dustdar@dsg.tuwien.ac.at.

A preliminary version of this paper appears as the proceedings of the 39th
IEEE International Conference on Distributed Computing Systems (ICDCS
2019) [1].

the majority of existing attempts under the cloud computing
platform take one of the following three approaches to
improve user experience (Fig. 1). The first approach is re-
mote execution, which takes the advantage of resource-rich
infrastructure by offloading the whole DNN computation
to the remote cloud. With this approach, large amounts
of data (e.g., images, audio, and videos) are sent to the
cloud via the wireless network, resulting in high transmis-
sion latency and mobile energy consumption. Moreover,
offloading all computations to the remote cloud may greatly
increase the computational pressure and cost of the remote
cloud. The second approach is mobile-only, which performs

 Cloud

Mobile-only

Partition-
offloading

Cloud-only

 Cloud

 Cloud

Task
Loading

Task
Loading

Task
Loading

Mobile
Device

Mobile
Device

Mobile
Device

Prediction
Results

Prediction
Results

Image
processing

Image
processing

DNN
Inference

Partial DNN
Inference

Image
processing

DNN
Inference

Trained Model
Cache

Prediction
Results

The rest of
DNN Inference

Fig. 1. Cloud-only, mobile-only and partition-offloading.

all computations on the mobile web via JavaScript and
WebAssembly [11]. However, heavy DNN models lead to
high transmission latency and mobile energy consumption
(e.g., Tensorflow.js’s ResNet50 [12] is a deep learning model,
whose size can be up to 97.8 MB) [13]. Besides, executing
DNNs on the mobile web performs worse than that of
app-based applications due to weak computing capability
(i.e., the mobile device performs poor compatibility to use
WebGPU compared with the personal computer for web

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 2

applications currently). Hence, it takes more time and mo-
bile energy to execute computationally intensive DNN in-
ference on the mobile web. The third approach is partition-
offloading, which dynamically distributes the computation
between the mobile web and the remote cloud, that is to
partition and perform the computations that can be done
within the mobile web, reducing the computing pressure of
the remote cloud [14], [15], [16]. Although a small portion
of DNN computations can be offloaded to the mobile web,
the cloud server still has to undertake the most of DNN
computations, which means that additional costs are still
needed to improve the throughput of the remote cloud,
especially in high concurrent requests. In other words, this
approach improves the utilization of mobile web computing
resources, but it is still challenging to improve the through-
put of the remote cloud effectively.

As mobile edge computing (MEC) is becoming an impor-
tant computing infrastructure in 5G era, it is promising to
consider the use of the edge cloud that has the benefit of low
communication costs compared to offloading computations
to the remote cloud and relieves the burdens of the core
network [17], [18]. However, high DNN execution latency
and low throughput have still existed when leveraging edge
clouds instead of remote clouds for providing Web AI ser-
vices. In addition, employing edge computing infrastructure
for Web AI service introduces some new issues such as lim-
ited computing resources and weak resource utilization of
edge clouds. Since the edge cloud is deployed near the base
station with common servers and uses virtualization tech-
nology to provide web services, computing resources (CPU,
memory, hard disk) of the edge cloud is much limited than
that of the remote cloud facing with cluster servers. Also,
the edge cloud’s service scalability is much worse than that
of the remote cloud, making it difficult to provide resilient
service with high concurrent requests. Thus, employing this
kind of edge computing infrastructure to support executing
DNNs for Web AI services is still challenging for a number
of reasons. These include the following:

• No lightweight and collaborative DNNs can be exe-
cuted on the mobile web efficiently. Since most well-
performing DNNs have deeper layers and large amounts
of parameters, it is impractical to execute such heavy
DNNs on the mobile web with limited computing re-
sources. Although some lightweight compressed DNNs
have been successfully operated in the mobile device,
they require extensive expert experience to design inge-
nious and reasonable DNN structures. Besides, existing
compressed DNNs lack good performance in inference
efficiency, especially for mobile web platforms. Addition-
ally, there is currently no heterogeneous DNN inference
framework that can perform collaborative DNN between
the mobile web and the edge server.

• Existing partition-offloading approaches are failed to
perform high throughput for the mobile web. One
reason is that the limited computing resource of the edge
server performs worse on dealing with high concurrent
requests, resulting in low throughput even appearing an
unavailable service. Another reason is that the partition-
offloading mechanism requires the mobile web and the
edge server to participate in every task request, which is

not much different from the cloud-only in the way of pro-
viding web service. This indicates that existing partition-
offloading approaches cannot improve the throughput
effectively, but only reduces partial computing pressure
of edge clouds.

• No online scheduling scheme for integrating multiple
edge servers and improving computing resources can
provide resilient web services in edge clouds. Instant re-
quest characteristics of mobile web applications introduce
occasional high concurrent requests, which can cause edge
servers deployed in a base station to be overwhelmed.
While deploying a lot of spare edge server resources may
make them idle in most cases, which is also an expensive
cost, and unacceptable for network operators in practice.
Therefore, the isolated edge server provisioning mecha-
nism is difficult to cope with high concurrency processing,
thus needs to establish a resilient scheduling scheme that
fully utilizes the computing resources of various bases
station in edge clouds.

To address these concerns, we design a composite deep
neural network, named LcDNN by introducing a binary
neural network as the side branch to acquire an independent
lightweight DNN. First, when compared with existing DNN
compressing methods such as depthwise separable convo-
lution [19], [20], knowledge distilling [21], [22] and network
prunning [23], [24], LcDNN achieves better performance in
both compressing and inference efficiency, requiring less
computing resources and mobile energy. Second, to solve
the contradiction between the model size and accuracy
in compressing DNNs, LcDNN employs the full-precision
network as the backbone to guide the design of the binary
neural network (BNN) branch which quantifies and com-
presses the DNN for executing on the mobile web without
rich expert experience and knowledge. More importantly,
the full-precision backbone network is to provide accuracy
compensation when the BNN branch has accuracy loss
facing with complex tasks. In other words, this collabo-
rative compensation mechanism allows the BNN branch
to focus more on the simple tasks, thereby implementing
a lightweight, efficient, and low-energy inference on the
mobile web. This also illustrates that adding an efficient
lightweight branch is more suitable for the mobile web
than directly compressing DNNs. Last, to further improve
the inference efficiency of LcDNN on the mobile web, we
have implemented an efficient inference library based on
C++ and then converted them to JavaScript and WASM
scripts to execute on the mobile web with optimizations on
latency and mobile energy. The biggest difference between
our inference library and existing web-oriented inference
libraries is that it supports the BNN branch inference and
distributed collaborative inference for LcDNN, reducing the
accuracy loss of complex tasks, optimizing and accelerating
the BNN branch inference on the mobile web. In addition,
to deploy LcDNN in real scenarios, schedule dynamic task
requests, and provide maximum resource utilization of the
edge cloud, we develop a DRL-based scheduling scheme
for LcDNN to serve for multiple edge servers. Specifi-
cally, we create a reinforcement learning framework using
DNN as a function appropriator to solve dynamic task
requests in edge clouds, called DRLoS. In this way, DRLoS

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 3

can provide global scheduling with self-learning capability
under dynamic user requests via adding a buffer queue
on each server. For evaluation, we conduct comprehensive
experiments on different DNNs and datasets, the results
show that LcDNN improves latency performance, reduces
average mobile energy, and improves the throughput of
edge clouds. Especially in a scenario with three edge servers,
DRLoS’s online scheduling can bring LcDNN more than
2.17x resource utilization improvement. The contributions
of this work can be summarized as follows:

• Designing a composite lightweight DNN with a BNN
branch to execute DNN inference on the mobile web,
which can reduce latency and mobile energy, and im-
prove the throughput of edge clouds.

• Proposing a jointly training method for LcDNN and
implementing an energy-efficient inference library for the
BNN branch on the mobile web, which also provides
collaboration with the edge server for accuracy compen-
sation.

• Developing a DRL-based online scheduling scheme to
maximize the resource utilization of the edge cloud for
LcDNN, which also provides resilient web AI services
for mobile web applications in real scenarios.

2 BACKGROUND AND MOTIVATION
In this section, we briefly introduce the background of edge
computing for the mobile web, describe key properties of
executing DNNs on the mobile web compared with the mo-
bile device, and discuss the collaborative DNN technology
that motivates us.

2.1 Edge computing for the mobile web
We present typical scenarios and comparisons when apply-
ing mobile web applications between cloud computing and
edge computing in Fig. 2. Cloud computing is limited by
high transmission delay, which also introduces computa-
tional pressure and cost of cloud servers, and discourages
service providers to invest large computing resource for
developing mobile web applications. With the rapid de-
velopment of 5G networks, edge computing, as the basic
infrastructure, has the benefits of high network bandwidth
and low communication costs. As shown in Fig. 2, the trans-

Cloud

Base Station with
Edge Server

Base Station with
Edge Server

LAN

Cloud Computing

Edge Computing

Core
Network

Fig. 2. Typical scenarios and comparisons between cloud
computing and edge computing.

mission delay of cloud computing is nearly 10 times higher
than that of edge computing, whether accessing with 2.4G

or 5G. Besides, edge servers are deployed at the base station
near mobile users, which can distribute computations to
various regions instead of being centralized in one region.
Hence, with the help of edge computing, we are promising
to introduce AI technology, which is computationally inten-
sive and time-consuming on transmission, into mobile web
applications with a satisfactory experience. However, the
computational cost is still expensive for service providers,
and computing pressure is still high for edge computing
platforms. Thus, it is natural to take full advantage of the
computing capability of the mobile device, then reducing
the computing pressure and cost of the server.

2.2 Executing DNNs on the mobile web

To efficiently execute DNNs on the mobile web for pro-
viding Web AI services, we point out the following key
properties that mobile web required when comparing with
executing DNNs on the mobile device directly.

• Installation-free and deployment-free. Generally, DNN
models can be embedded in app-based applications
and be installed in a mobile device, which performs
DNN inference locally without communication with edge
servers. However, it is unrealistic to use the same deploy-
ment for mobile web applications, which provides service
through instant loading.

• Weak computing capability. Mobile web applications
usually run in various browsers, whose computing ca-
pability is currently performed by JavaScript and ac-
celerated by WebAssembly. However, it performs poor
compatibility to use the WebGPU currently, which is
now supported for computers or app-based applications
better than that of the mobile web. In other words, the
computing capability of the mobile web is much weaker
than that of running on the mobile device.

• Frequent communication. Instant loading characteristic
of the mobile web introduces frequent communication
in existing approaches, including mobile-only, cloud-
only, and partition-offloading. Specifically, mobile-only
requires loading the whole DNN models onto the mobile
web, cloud-only requires transmitting tasks from the mo-
bile web to the remote cloud, and partition-offloading has
to load partial DNN models and transmit intermediate
results between the mobile web and the remote cloud.

• Cross-platform. To better play out the cross-platform
feature of the mobile web, mainstream browsers (e.g.,
Chrome, Firefox, IE, and Safari) and embedded APP
browsers (e.g., web browser in WeChat) require sup-
porting DNN execution and show effective compatibility.
This indicates that we can only use technologies sup-
ported by mainstream browsers such as JavaScript and
WebAssembly when executing DNNs on the mobile web.

2.3 DNNs acceleration and motivation

Compressing DNNs and adding early exit branches are two
representative methods for accelerating DNN inference [19],
[20], [25]. Although the compressing method makes DNNs
smaller and faster and has been successfully applied to app-
based applications on the mobile device, it requires rich
experience in DNNs design and efficient training to acquire

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 4

lightweight DNNs. DNN compression methods such as the
use of deep separable convolution, usually require expert
experience and reasonable structural design to obtain a
lightweight DNN model with a low loss in accuracy. For
executing DNNs on the mobile web, it requires a smaller
and faster DNN model than that of the mobile device, which
causes a large loss in accuracy. Thus, a simple compressing
method is sometimes difficult to meet the needs of mobile
web applications. BranchyNet [25], as a typical DNNs with
early exit branches, accelerates DNN inference via adding
branches into the original DNN. The extra branches allow
the majority of tasks to exit early, thus reducing the needless
inference. However, since BranchyNet adds multi branches
into the main branch, which causes the inference to be more
time-consuming facing complex tasks.

Inspired by the advantages of the mentioned methods, in
this paper, we design a lightweight collaborative DNN for
the mobile web, which uses the feature of an early exit and
the structure of lightweight and fast DNN. Besides, it can be
efficiently executed on the mobile web, easily collaborated
with the edge server, and enhance the user’s experience.

3 LCDNN FOR THE MOBILE WEB IN EDGE CLOUDS

3.1 Design of LcDNN
In this section, we design a composite DNN with a BNN
branch, which can handle DNN tasks independently on
the mobile web. We also provide a jointly training method
consisting of training the main branch, binarizing inputs
and weight filters, and training the BNN branch. Since there
is no existing inference library for the BNN branch on the
mobile web, we are first to implement an inference library
by transforming and optimizing the original BNN into the
JavaScript library for the mobile web. This inference library
provides the capability to run the BNN branch on the mobile
web, which also has a collaborative mechanism with the
edge server.

To better understand the difference and novelty of
LcDNN against existing methods, we introduce the de-
sign and an efficient inference library of LcDNN in de-
tail. Although binary neural networks (BNNs) have been
widely investigated with the advantage of efficient infer-
ence, they perform worse in accuracy compared with other
compressing methods. Instead of directly applying BNNs
to the mobile web, LcDNN puts the BNN as an indepen-
dent branch and proposes a composite network structure
with the following advantages and novelties: (1) From the
perspective of the network structure, LcDNN differs from
traditional BNNs in that it integrates the quantized and
compressed network as a collaborative branch into the full-
precision network for joint training, rather than performing
quantizing and compressing on the full-precision network
directly. (2) For the inference accuracy, LcDNN uses a full-
precision backbone network as accuracy compensation fac-
ing with complex tasks, and thus performing better than
traditional compressed DNNs including BNNs. This also
shows that although it has excellent inference efficiency
by directly employing the BNN on the mobile web, it is
hard to be accepted due to excessive loss in accuracy. (3)
Besides, LcDNN’s collaborative inference library is opti-
mized and compiled for the mobile web platform, while

the traditional inference library for the BNN is mainly for
embedded platforms. Therefore, inference efficiency and
mobile energy consumption of LcDNN are better than that
of directly using the BNN on the mobile web. In summary,
LcDNN effectively combines the advantages of the BNN,
while providing a compound collaborative mechanism to
compensate for the performance of the independent BNN
branch when the accuracy is insufficient.

3.1.1 The architecture of LcDNN
LcDNN adds one BNN branch into the original full-
precision network, which is the benefit of collaboration be-
tween the mobile web and the edge server. This architecture
can also promote DNN inference efficiency, reduce mobile
energy cost, and improve the system throughput.

Input

C
onv1

FC
1

C
onv2

C
onv3

C
onv4

C
onv5

FC
2

FC
3

B
inFC

1

B
inFC

2

FC
3AlexNet

Shared layer

Full-precision
 branch

BN
N

 branch

Inference on the mobile web

Inference on the edge server
B

inC
onv1

B
inC

onv2

B
inC

onv3

B
inC

onv4

(a) Example network on AlexNet.
In

pu
t C

onv1

ResNet-50

Shared layer

M
ax pool

B
lock1

B
lock2

B
lock3

B
lock4

B
lock5

B
lock6

B
lock7

B
lock8

FC

B
inB

lock1

FC

B
inB

lock2

B
inB

lock3

B
inB

lock4

B
inB

lock5

B
inB

lock6

B
inB

lock7

B
inB

lock8

A
vg pool

A
vg pool

Full-precision
 branch

BN
N

 branch

(b) Example network on ResNet50.

Fig. 3. The architecture of LcDNN.

We take AlexNet [4] and ResNet50 as examples that both
the full-precision branch and the BNN branch share the first
convolutional layer in Fig. 3. For one thing, if we binarize all
layers in the BNN branch, which may introduce a dramatic
loss of classification accuracy with few reductions of model
size. For another, when the classification accuracy of the
BNN branch cannot satisfy the tasks, we only need to trans-
mit intermediate outputs of the shared layer to the edge
server rather initial tasks, which also protects the privacy of
mobile users. Taking the advantage of such a shared struc-
ture, the edge server can provide accuracy compensation for
the BNN branch. Note that we have to store intermediate
outputs of the first convolutional layer for the collaboration.
We can free the memory of intermediate outputs when the
BNN branch has the confidence for tasks. Otherwise, the
mobile web frees them after sending them to the edge server.

3.1.2 Jointly training method for LcDNN
We use AlexNet as an example of image classification and
the softmax cross-entropy loss function is used as the opti-
mization objective. To train LcDNN, we aim to minimize the
loss function of all branches that forms a joint optimization
problem as a sum of the loss functions of the full-precision
branch and the BNN branch.

L(ŷ, y; θ) = Lfull(ŷfull, y; θ) + LBNN(ŷBNN , y; θ). (1)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 5

Where y is a one-hot ground-truth label vector, ŷ is the
predicted label vector. For loss function of full-precision
branch, Lfull(ŷfull, y; θ) can be represented as

Lfull(ŷfull, y; θ) = − 1

|C|
∑
c∈C

yc log ŷcfull. (2)

ŷfull = softmax(z) =
ez∑
c∈C e

z
. (3)

Where z=ffull(x; θ) denotes the outputs of full-precision
branch with input sample x. C represents the set of all
possible labels. Hence, we are easy to execute feedforward
pass and backward propagation with gradient descent.

For the BNN branch, we firstly binarize weights of the
neural network and estimate binary weights. During the
updating of parameters, we use high precision weights to
prevent gradient disappears of binarization. The forward
propagation of the training phase is similar to that of stan-
dard forward propagation except for convolutional layers,
which is computed by

I ×W ≈ (sign(I)⊗ sign(W))�K · α. (4)

The following equation exhibits the core convolutional
operation, which approximates the convolution between
input I and weight filter W using binary operations. Here,
α is the scaling factor for the weight and K denotes all sub-
tensors.

During the backward propagation, we follow the same
approach as [25] to compute the gradient for sign(x).

∂sign

∂x
= x1|x|≤1

. (5)

Thus, we calculate the gradient in backward propagation
after the scaled sign function is

∂L
∂Wi

=
∂L
∂W̃i

(
1

n
+
∂sign

∂Wi
α), (6)

where gradients are computed with respect to the estimated
weight filters W̃i.

To train LcDNN, we calculate training datasets through
the whole network including the full-precision branch and
the BNN branch. LcDNN binarizes both inputs and weights
across the BNN branch, which introduces the factor α to
approximate with traditional feedforward of the typical
convolutional layer. Besides, we record the outputs from exit
points of all branches for calculating the error of the joint
network. As for the backward propagation, we update the
weights by the error passed back through the full-precision
branch. Due to tiny changes of parameters in gradient
descent, we only binarize the weights during the forward
pass and backward propagation, which uses high precision
weights to update parameters that are also employed in
[26], [27] and [28]. We present the whole training process
of a N -Layers LcDNN in algorithm 1, which consists of
training the full-precision branch, binarizing weight filters,
and training the BNN branch. Note that we only perform
forward propagation with binarized weights during the
BNN branch inference without keeping the full precision
weights.

Algorithm 1: Training a N -Layers LcDNN

Input: Inputs and labels X , Y , loss function L(Ŷ , Y),
layer weights of full-precision branch W l

full,
learning rate of full-precision branch ηlfull, layer
weights of the BNN branch W l

BNN , learning rate
of the BNN branch ηlBNN .

Output: Updated weights W l+1
full,W

l+1
BNN and learning

rate ηl+1
full, η

l+1
BNN .

/* Training full-precision branch */

1 Ŷfull ⇐ StandardForward(X,Wfull);
2 ∂L

W l
full

⇐ StandardBackward(∂L
Ŷfull

,W l
full);

3 W l+1
full ⇐ Update(W l

full,
∂L

W l
full

, ηlfull);

4 ηl+1
full ⇐ Update(ηlfull, l);
/* Training the BNN branch */

5 //Binarizing weights from the 2th convolutionl layer;
6 for n from 2 to N do
7 W̃ l

n ⇐ 1
n

∥∥W l
n

∥∥
`1
· sign(W l

n);

8 ŶBNN ⇐ BinaryForward(X, sign(W l), 1
n

∥∥W l
n

∥∥
`1

);
9 ∂L

W̃ l
⇐ BinaryBackward(∂L

ŶBNN
, W̃ l);

10 W l+1
binary ⇐ Update(W l

BNN ,
∂L
W̃ l
, ηlBNN);

11 ηl+1
BNN ⇐ Update(ηlBNN , l);

12 return W l+1
full, η

l+1
full,W

l+1
BNN , η

l+1
BNN ;

3.1.3 Collaborative DNN inference between the mobile web
and the edge server
Once the joint network is trained, LcDNN can load and
execute inference efficiently because of tiny BNN branch.
For a given sample x, if the BNN branch is confident to
predict the task and satisfy users, the sample can exit from
the tiny BNN branch directly. Otherwise, we have to transfer
the output of the first convolutional layer to the edge server
for a precise result. Thus, to measure the classification accu-
racy of the BNN branch, we introduce normalized entropy,
S(x)∈[0, 1] for the exit point of the binary branch which is
also employed in [28], where C is the set of labels.

S(x) = −
|C|∑
i=1

xi log xi
log |C|

(7)

Algorithm 2: Seaching for optimal τ value .
Input: Validation sets V , initial τ = 0.5, searching rate

∆S = {0.1, 0.01, 0.001, 0.0001, 0.00001}.
Output: Optimal result of τ .

1 τ ⇐ 0.5;
2 for each sr in ∆S do

/* Search rate from big to small */

3 for each iteration do
4 for each v in V do
5 ns⇐ S(x); // By Eq. (7)
6 ba⇐ BinaryFowrwad(v);
7 if (ns<τ && ba=1)‖(ns>τ&&ba=0) then
8 d⇐ −1;
9 τ ⇐ τ + (−1)·d·∆sr;

10 return τ ;

Then, we compared S(x) against a collaborative thresh-
old to determine whether or not to exit from the BNN

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 6

branch. In practice, the optimal value of the exit threshold
for the BNN branch depends on networks and datasets. To
obtain optimal τ for the highest overall accuracy, a simple
way is to search the ranges of τ and pick the value that
can acquire a maximum accuracy in LcDNN. Generally,
we choose multiple validation sets randomly, set training
iteration as 600, and define 0.5 as the initial τ . Then we start
to search in the range of [0,1] at different searching rates
of 0.1, 0.01, 0.001, 0.0001, and 0.00001 until optimal τ value
is obtained and the searching tends to be convergent. We
describe the whole process of searching τ in algorithm 2.

During the deployment and execution of LcDNN, mo-
bile web users first request the edge server for the BNN
branch model to execute the inference on the mobile web.
Then, we determine whether to exit from the BNN branch or
send the intermediate results to the edge server against the
threshold τ . We also present collaborative inference between
the mobile web and the edge server in algorithm 3 when the
BNN branch can not satisfy the user.

Algorithm 3: Collaborative inference of LcDNN
Input: Input sample x, threshold τ for determining

wether to exit.
Output: Predicted result ŷ.
/* Output of the first Conv layer */

1 t⇐ fConv1full (x);
2 zBNN ⇐ fBNN(t);
3 ŷBNN ⇐ softmax(zBNN);
4 e⇐ S(ŷBNN);
5 if e < τ then
6 return arg max ŷBNN ;

7 zrestfull ⇐ frestfull (t);
8 ŷrestfull ⇐ softmax(zrestfull);
9 return arg max ŷrestfull ;

3.2 Efficient inference of the BNN branch on the mobile
web
Note that existing deep learning frameworks are generally
implemented in Python or C++, which does not support
the mobile web browser. JavaScript and WebAssembly are
dominant methods for executing DNNs on the mobile web.
Thus, we implement the LcDNN inference library in C++
and convert them to JavaScript and WASM files to allow
executing the BNNs on the mobile web browser directly. We
present the whole process for executing the BNN branch of
LcDNN on the mobile web in Fig. 4. To provide an energy-

Model
Definition FC

Trained in
Python

Pooling
Norm
Conv

BinConv

BinFC

Graph Transpiler

Parameters

Graph
Descriptor
(in C++)Generator

Trained
Parameters

Inference

.wasm

Mobile Web BrowserBinActivation
Parmameters
Optimization

Layer-Model
Converter

.js

Fig. 4. Fast inference library for the mobile web

efficient DNN inference with low latency on the mobile web,
we optimize the inference of the BNN branch, including
convolutional layers and fully connection layers, which

effectively improves the inference efficiency and reduces
the energy consumption. Once LcDNN is trained in Python
(e.g., Pytorch), inference scripts that implemented in C++
convert the first convolutional layer and binary convolu-
tional layers into JavaScript and WASM by Emscripten [29].
We also validate the correctness of our implementation by
comparing the outputs with the inference of other frame-
works such as Pytorch and TensorFlow.

3.3 Resilient scheduling scheme for LcDNN

In this section, we formulate web requests scheduling across
multiple edge servers and represent it as a Reinforcement
Learning (RL) task. We then introduce our DRL-based on-
line scheduling algorithm (DRLoS) facing with high concur-
rent service of LcDNN in real scenarios.

3.3.1 Online web requests scheduling for LcDNN with DRL
We first outline a typical reinforcement learning framework
in Fig. 5, which uses the DNN as a function approximator
that has a manageable number of parameters and has been
used successfully for large-scale RL tasks [30], [31]. For a
given environment in Fig. 5, we assume that there is an
agent interacting with it. During each time stamp t, the
agent chooses an action at through observing the state
st. By executing the selected action, the state is changed
from st to st+1. Also, transitions and rewards of each state
are assumed to obey the Markov property [32]. The agent
decides actions according to the policy, which is a probabil-
ity distribution π(s, a) and is performed by a deep neural
network. Since the optimized objective is to maximize the
expected reward, we show the gradient of objective as the
follows [32], [33]:

∆Eθ[
∑

γtrt] = Eπθ [∆θ log πθ(s, a)Qπθ (s, a)]. (8)

Where, Eθ[
∑
γtrt] is the expected cumulative reward

and γ ∈ [0, 1] is to discount reward. Qπθ (s, a) denotes
the expected reward when picks action a in state s. To
updates the parameters of deep neural networks for policy
distribution, gradient-descent is a popular way [32], [34],
which can be described as

θ ⇐ θ + α
∑

t
∆θ log πθ(st, at)vt, (9)

where α is the adjustment size. We then present the design
and details for online web requests scheduling for LcDNN
with DRL.

DNN Policy Network
Agent

Parameters
Observe state s

Take action

Reward r
Environment

t1 t2 … tn
t1 t2 … tn

t1 t2 … tn

Buffer queue

Buffer
queue

Buffer queue

…

…

…

…

…

a

M concurrent
requests

State s

Fig. 5. A typical reinforcement learning framework with
policy represented via DNN

(A) DRLoS Model. Assuming that there evenly dis-
tributes m edge servers in a service area for mobile web
users, which is represented as a vector e = {e1, e2, ..., em}.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 7

We define the task processing capability (i.e., how many
web requests can be processed) as c = {c1, c2, ..., cm}.
The current processing state of edge servers (i.e., how
many tasks are currently processed) at time t can be de-
scribed as gt = {g1

t , g
2
t , ..., g

m
t }. Thus, available computing

capability of edge servers at time t can be expressed as
act={c1−g1

t , c2−g2
t , ..., cm−gmt }. Generally, users’ requests

arrive at nearby edge servers in discrete time steps. Tradi-
tional proximity service may result in uneven distribution of
computing pressure across edge servers due to the mobility
of users. With the help of edge computing infrastructure in
5G, it is promising to offload tasks to idle edge servers via
Remote Procedure Call (RPC) with the benefits of improving
resource utilization, and increasing the throughput of edge
cloud. To this end, DRLoS requires distributing requests to
edge servers in balance according to the real-time status
of all edge servers and the request status of users. We
use the resource usage variance of edge servers as the
system objective. Commonly, the resource usage variance
of gt={g1

t , g
2
t , ..., g

m
t } at time t can be calculated as

S2
t =

∑m
i=1

(git − ḡt)
m− 1

, (10)

where ḡt denotes mean value of the resource usage of edge
servers at time t. A high variance indicates that computing
tasks are allocated unevenly, which means that some edge
servers are facing high computing pressure while others
may be idle.

(B) DRLoS formulation. To formulate online web re-
quests scheduling as a DRL-based question, we emphasize
the state space in Fig. 6.

State space. We present the state space by describing
current resource usage of edge servers and tasks waiting to
be scheduled, which is represented by distinct colors.

t1
t2
t3
t4

Edge server 1 Edge server 2 Task 1 Task 2 Task 3 Task 4

Fig. 6. An example of system state, with two edge servers
and four tasks.

Practically, each edge server may face a different number
of tasks waiting for service at time t. However, a DRL-based
system requires a fixed state representation to apply it as
the input into a neural network for function approximation.
Otherwise, we have to re-train DRLoS for different numbers
of task requests. To this end, we add a buffer queue at the
edge server before providing service, which selectsM tasks
as scheduling input of DRLoS according to the timestamp
order of requests. Generally, adding a request buffer queue
not only makes DRLoS possible to be used in practice
but also improves the robustness, especially facing high
concurrent requests or malicious requests. Note that when
the number of request tasks Mp is less than M , we set
M−Mp tasks as ∅, indicating that these tasks do not need to
be processed.

Action space. Since DRLoS requires scheduling M tasks
on N edge servers at each point in time, thus this would
introduce a large amount of action space of NM , which

is hard to train the neural network of DRLoS. We pro-
vide a small action space using a trick by simplifying the
actions of edge servers that decide whether to handle a
large number of tasks or to handle a small number of
tasks based on the current state. For a DRLoS system with
three edge servers, the action space can be described as
a = {< esh1 , es

h
2 , es

h
3 >,< esl1, es

h
2 , es

h
3 >,< esh1 , es

l
2, es

h
3 >

,< esh1 , es
h
2 , es

l
3 >,< esl1, es

l
2, es

h
3 >,< esl1, es

h
2 , es

l
3 >,<

esl1, es
h
2 , es

l
3>,<es

l
1, es

l
2, es

l
3>}. Where eshi =(1−η)·(ci−gi)

and esli=η ·(ci−gi) denotes edge servers provide a large or a
small portion of available computing resource, respectively.
η ∈ (0, 0.1) is a regulatory factor to prevent edge servers
from getting into maximum computing pressure. Supposed
that the number of edge servers deployed for an area is less
than five, thus the action space of DRLoS is kept within 25.

Rewards To guide the agent of DRLoS towards a good
direction for minimizing resource usage variance, we define
the reward as rt =

∑m
i=1(git−ḡt)

1−m at each time step. Note
that the agent has no rewards of intermediate actions in
a time step. Thus, we can maximize the cumulative reward
to mimic that minimizing the resource usage variance when
setting the discount factor as γ = 1.

3.3.2 Training algorithm for DRLoS
We use the neural network representing the policy to obtain
the probability distribution of actions corresponding to the
task input in Fig. 5. The policy network is trained in various
episodes, which inputting M tasks for each episode for
scheduling according to the policy network until all tasks
are scheduled. In each training epoch for each task set that
simulates N episodes, we compute the probabilistic space
of actions with the policy and improve the policy for all
tasks by the inference results. Note that the state, the action,
and the reward of each episode are used to compute the
cumulative reward of vt. Since our policy gradient of Eq.
(8) has a high variance on gradient estimation, we use the
average value of the return results of the same time step
across all episodes with the same task set, which is also
employed in [32], [35].

3.4 Analysis of LcDNN
In this section, we discuss the detailed design of the added
BNN branch from the number, location, and architecture of
the BNN branch. Specially, we analyze the reasons for such
design by some examples and experiments.

3.4.1 The number of binary neural network branches
In the design of LcDNN, one of the most important prob-
lems is that whether it is also necessary to add multiple BNN
branches to the full-precision network, which is similar
to the BranchyNet [25] that loading and executing more
BNN branches on the mobile web when the accuracy of
the first branch does not meet the demand. To this end,
we analyze whether it is reasonable to add more BNN
branches to the mobile web from the perspective of the
latency. First, we give the following definitions. Assuming
that we adding n BNN branches into full-precision branch,
representing by N = {b1, b2, ..., bn}. Where ith branch is
represented by bm, whose structure is corresponding to the
rest layers after the adding layer of the full-precision branch.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 8

Let M= {m1,m2, . . . ,mn} be the memory usage of each
BNN branch. Next, we define the possibility of exiting from
a BNN branch as

P = { p1

pm
,
p2 − p1

pm
, . . . ,

pn − pn−1

pm
}, (11)

where pi, i ∈ [0, n] and pm denote the accuracies of bi and
the full-precision branch, respectively. For an input sample
x, whose size is wx, we can use W = {w1, w2, . . . , wn} to
denote the input of each BNN branch. Considering the full-
precision branch of LcDNN with l-layers, we use TM =
{t1m, t2m, ..., tlm} and TW = {t1w, t2w, ..., tlw} denote inference
latencies of each layer for the full-precision branch executing
on the edge server and the mobile web, respectively. Thus, if
we add one BNN branch into the full-precision branch, we
can formulate inference latency of the BNN branch as

T 1
b =

m1

Bd
+ t1w +

∑l

i=2
tib, (12)

where TB = {t1b , t2b , ..., tlb} denotes inference latency of each
layer in the BNN branch, and Bu and Bd are the current
wireless network uplink and downlink bandwidths, respec-
tively. Then, we can obtain expectation inference latency of
LcDNN as

E1 =
p1

pm
T 1
b + (1− p1

pm
)(
∑l

i=2
tim +

w1

Bu
+ T 1

b). (13)

Besides, if we add n ∈ [2, l− 1] BNN branches to the
full-precision branch, and use ep={e1, e2, ..., en} to denote
entry points of branches where 0<e1<e2< ...< en< l−1.
Then, the expectation inference latency can be described as

En =
p1

pm
T 1
b + (1− p1

pm
)
p2 − p1

pm
T 2
b + ...+

(

n−1∏
i=1

(1− pi − pi−1

pm
))
pn − pn−1

pm
Tnb +

(

n∏
i=1

(1− pi − pi−1

pm
))(

l∑
i=n

tim +
wn
Bu

+

n∑
i=1

T ib),

(14)

where p0 = 0,

T 2
b = T 1

b +
∑e2

j=e1
tjw +

∑l

k=e2
tkb +

m2

Bd
, (15)

and

Tnb =
∑n

i=1
T ib +

∑en

j=en−1

tjw +
∑l

k=en
tkb +

mn

Bd
. (16)

We expect to find the minimum expectation inference
latency from E1 to En. When n equals 2, which means
adding two BNN branches into the full-precision branch,
thus we have

E2 − E1 =(1− p1

pm
)

[
p2 − p1

pm
T 2
b + (1− p2 − p1

pm
)

(
∑l

i=2
tim +

w2

Bu
+ T 1

b + T 2
b)

− (
∑l

i=2
tim +

w1

Bu
+ T 1

b)

]
.

(17)

Next, we reveal the above expectation inference latency
has a little lifting because the layer distance is close be-
tween two BNN branches (e.g., adding the BNN branch

after the first convolutional layer obtains the largest profit
in AlexNet). This indicates adjacent location of e2 and
e1 has little promotions between p2 and p1, resulting in
a large expectation latency due to more communication
costs for the second BNN branch. If we increase the layer
distance between the first BNN branch and the second BNN
branch, although we can obtain the increase of accuracy,
the memory usage of the second BNN branch introduces
high communication costs which losts the advantage of
adding the binary convolutional networks. Especially, in
practice, the network bandwidth is unstable, resulting in
high communication costs during the interactions between
the mobile web and the edge server. Hence, considering the
communication costs, memory usage, and accuracy lifting
of the BNN branch, we suggest adding one BNN branch
into the full-precision branch for LcDNN.

3.4.2 Location of the BNN branch
The optimal location of the BNN branch is discussed in
the aforementioned definitions. Let e1 = 1 be adding the
BNN branch after the first convolutional layer. Thus, eh,
(2<eh<l) is the BNN branch of the eth

h layer. En represents
the expectation inference latency. We can obtainEeh−Ee1>0
due to communication costs and a small amount of accuracy
lifting. The is because that if eh is close to l, the whole
network degenerates into a traditional deep neural network
with high weights and computations. When eh is close
to e1, the accuracy lifting is slight, while increasing the
communication costs. Thus, if we consider adding only
one BNN branch, it is preferable to add it after the first
convolutional layer.

3.4.3 Structure of the BNN branch
In this paper, the BNN branch mainly consists of the bi-
narized convolutional layer and binarized fully connected
layers. Based on the above discussions, we suggest adding
one BNN branch after the first convolutional layer of the
full-precision network. Using the AlexNet network as an ex-
ample, Fig. 7 shows the performance of accuracy and model
size of various structures of BNN branches. Concretely, we
explore the role and influence of binarized convolutional
layer in Fig. 7(a) with n, (n < l) binarized convolutional
layers and a binaried fully connected layer. In Fig. 7(b), we
use only one binarized convolutional layer and n, (n < l)
binarized fully connected layers to reveal the effectiveness
of the BNN branch. The last layer of all structures is a
common fully connected layer.

1 2 3 4 5 6 70
2 5
5 0
7 5

1 0 0 P r e c i s i o n

Pre
cis

ion
 (%

)

1

2

3 M o d e l S i z e

Mo
del

 Si
ze

(M
B)

1 2 3 4 5 6 70

2 5

5 0

N u m b e r o f b i n a r y f u l l y c o n n e c t e d l a y e r sN u m b e r o f b i n a r y c o n v o l u t i o n a l l a y e r s
(a) A d d i n g c o n v o l u t i o n a l l a y e r s

Pre
cis

ion
 (%

)

(b) A d d i n g f u l l y c o n n e c t e d l a y e r s

 P r e c i s i o n

N u m b e r o f b i n a r y c o n v o l u t i o n a l l a y e r s
(a) A d d i n g c o n v o l u t i o n a l l a y e r s

1

2

3

4
 M o d e l S i z e

Mo
del

 Si
ze

(M
B)

Fig. 7. The structure of the BNN branch.

Experimental results show that it is not a better choice
to add more binary convolutional layers into the full-
precision branch due to the accuracy loss. Similarly, one

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 9

or two binary fully connected layers may introduce higher
accuracy. Hence, we suggest consulting the structure of the
full-precision branch when designing the BNN branch for a
satisfactory experience.

4 EVALUATION

In this section, we evaluate LcDNN’s performance from
the latency, mobile energy cost, and system throughput.
We introduce experimental settings in Section 4.1 and the
training performance of LcDNN in Section 4.2. We describe
improvements of LcDNN in Section 4.3. Then, we aim to
explore the impact of the entropy threshold of LcDNN in
Section 4.4. We also discuss the performance of our resilient
scheduling mechanism, DRLoS of LcDNN in Section 4.5.

4.1 Experiments setup
4.1.1 Benchmarks and datasets
We demonstrate that LcDNN achieves improvements in
terms of average latency, average mobile energy cost, and
system throughput against the state-of-the-art partition-
offloading approaches, Neurosurgeon [14] and Edgent [15].
We also compare LcDNN against mobile-only and edge-
only to illustrate the advantages. We evaluate LcDNN us-
ing typical deep neural networks such as LeNet, AlexNet,
ResNet18 [12], VGG16 and compressed DNNs such as Mo-
bileNet [19], to show the practicality. For datasets, we use a
series of benchmark datasets such as MNIST [36], Fashion-
MNIST [37], CIFAR-10/CIFAR-100 [38], and ImageNet-150K
[39] to present the effectiveness of LcDNN. ImageNet-150K
is the subset of ILSVRC ImageNet, which contains 183K
training images and 7.5K testing images belonging to the
top 150 most popular categories based on the popularity
ranking provided by the official ImageNet website.

4.1.2 Mobile device and edge server setup
We use Pytorch as the deep learning framework to train
LcDNN for various networks and datasets on a GPU server,
which is a fourteen-core Intel Xeon processor running at
2.0 GHz with 128 GB of RAM and dual GTX TITAN Xp
GPU cards with 12 GB of RAM of each card. For the edge
server, which is deployed near the base station, we use a
common server with a six-core Inter processor of 2.9 GHz
and 16 GB RAM running Ubuntu 18.04 LTS. We present
the core network topology with a max uplink bandwidth
of 150 Mbps and a max downlink bandwidth of 600 Mbps,
which is a real-world 5G network at Beijing University of
Posts and Telecommunications in Fig. 8. We use a HUAWEI
Mate 9 smartphone running Andriod 8.0 with 4 GB RAM. To
simulate stable communication conditions such as 3G, 4G,
and WiFi, we use a HUAWEI 5G CPE to connect to the base
station, and use Wonder Shaper [40], which is a script that
allows the user to limit the bandwidth of network adapters,
to control the network on the edge server.

5G Base Station with
 Edge Server

Cloud Server

Mobile web users

 5G CPE

Core
Network

Fig. 8. The network topology in a real scenario.

4.1.3 Measurements
To acquire precise numerical performance of LcDNN, we
introduce tools and methodologies to measure the latency,
mobile energy and system throughput as follows.

• Latency measurement. Since latency components of a
request in LcDNN mainly include downloading data and
DNN inference, it is necessary to measure the whole
latency from requesting a task until getting the final
result to evaluate the real performance. We first record
the timestamp through a JavaScript function when the
web page triggers the request of DNN computation.
Then, once the web page receives the final results from
the edge server or the mobile web, we record the cur-
rent timestamp again. Thus, the entire latency can be
calculated based on two timestamps before and after a
complete DNN computation request. Moreover, we can
also acquire the latency of downloading data from the
edge server in this way if necessary. To reduce random
errors, we repeat the same DNN task request multiple
times and use the average latency as the final latency
performance. Note that we clear the data cache of the
mobile web browser to keep each request independent.

• Mobile energy measurement. To precisely measure the
mobile energy consumption of mobile devices when per-
forming LcDNN via the mobile web browser, we use
a hardware power monitor with a model number of
AAA10F in Fig. 9. We also use it to provide a stable
voltage of 3.7 V for mobile devices and obtain the system
energy cost such as the screen brightness cost in the
standby state. And the high value of the curve in Fig.
9(b) denotes the average energy consumption of running
LcDNN. Then we can easily acquire real mobile energy
consumption based on these two curves.

(a) AAA10F power monitor. (b) Record tool for energy cost.

Fig. 9. The power monitor used for energy measurements.

• System throughput measurement. We define the edge
server throughput as how many units of requests from
mobile web users can be processed at a given time.
For multiple edge servers in DRLoS, we consider the
average processed requests as the system throughput. Es-
pecially, to better describe the throughput improvements
of LcDNN against state quo approaches, we normalize
the throughput of state quo approaches to that of LcDNN.

4.2 Training results of LcDNN

We present the main performance of LcDNN on top-1
accuracy, exit threshold, exit possibility, and model size
respectively in Table 1. F Acc and B Acc represent top-1
accuracies of the full-precision branch and the BNN branch,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 10

respectively. Exit threshold is to determine whether exiting
from the BNN branch or transferring to the full-precision
branch for precise inference. Exit possibility denotes the ra-
tio of exiting from the BNN branch in 100 random samples.
We also compare the model size of branches to highlight the
advantage of adding the BNN branch for the mobile web.

TABLE 1: Training results on various networks and datasets

Network/
Dataset

F Acc.
(%)

B Acc.
(%)

Threshold
(τ)

Exit
(%)

F size
(MB)

B size
(MB)

LeNet-MNIST 99.50 98.81 0.0001 94 1.7 0.103
LeNet-FashionMNIST 99.41 98.67 0.0001 93 1.695 0.102

AlexNet-CIFAR-10 76.85 73.99 0.0251 79 90.911 3.3
AlexNet-CIFAR-100 57.31 54.73 0.0251 76 92.351 3.5

AlexNet-ImageNet-150K 59.60 46.2 0.3031 61 242.3 8
ResNet18-CIFAR-10 93.02 88.89 0.0453 73 43.705 1.6

ResNet18-CIFAR-100 78.32 73.96 0.0453 60 43.885 1.7
ResNet18-ImageNet-150K 69.37 51.2 0.2521 65 44.1 1.9

VGG16-CIFAR-10 92.29 87.76 0.0523 78 59.0 2.0
VGG16-CIFAR-100 70.48 65.32 0.0523 76 59.759 2.1

VGG16-ImageNet-150K 73.44 55.7 0.2036 55 523.8 14.9

We observe that the BNN branch can reduce the model
size about 16x to 30x when compared with the full-precision
branch. Top-1 accuracy of DNN networks with shallow
binary layers has fewer reductions compared with the full-
precision branch. However, a deep neural network such
as VGG16 performs a sharp decrease due to more binary
layers. We also evaluate the exit probability from the BNN
branch with a baseline of 100 random samples. The results
show that the simpler the network is, the more likely it is
to exit from the BNN branch. For example, LeNet’s BNN
branch contributes to about 90 percentages of samples ex-
iting without the collaboration of the full-precision branch.
Meanwhile, the τ value of shallow networks is stricter than
that of deep networks, which means the BNN branch has
similar accuracy to the full-precision branch. However, the
τ value of deep networks such as AlexNet and VGG16 is
larger than LeNet, which indicates more BNN branches may
result in a large loss. In summary, although the accuracy of
the BNN branch has gaps with the full-precision branch,
LcDNN leverages the collaboration of the full-precision
branch located at the edge server to supply the shortage of

the BNN branch. Simultaneously, a lightweight BNN branch
provides a crucial foundation for executing deep neural
networks on the mobile web in real-time.

4.3 Improvements

4.3.1 Latency performance

We present the average latency of LcDNN over different
DNN networks, datasets, and network conditions in Fig.
10. We follow the same communication settings described
in Section 4.1, and threshold settings are described in Table
1. To reduce random error, we choose the average latency
of executing any sample 10 times as the final latency per-
formance. We observe that (1) With the increase of testing
samples, DNN networks with high exit probability perform
stable in latency, and show a small downward trend, which
indicates that most of the samples can be processed by the
BNN branch directly. We note that there is a large fluctuation
when samples increase to 90 in a 4G network of LeNet.
Through the analysis of test samples, it is found that there
are more complex tasks in this set of sampling data that re-
quire the assistance of the edge server. However, for VGG16
on ImageNet-150K, average latency has larger fluctuations
than shallow networks, which is mainly because a large
number of examples rely on edge-assisted inference. (2)
Communication condition has also caused fluctuations in
average latency performance, which has impacts on loading
models, transmitting intermediate results, and other data.
Hence, as the number of samples requiring the assistance of
the edge server increases, communication conditions have
a large impact on average latency, which shows obvious
fluctuations under different states. In summary, although
LcDNN’s BNN branch can not process all samples, the
collaborative mechanism of LcDNN effectively provides
accurate compensation for the BNN branch. Especially in
a long run, the benefits of the BNN branch are considerable.

We discuss the latency performance of LcDNN against
Neurosurgeon, Edgent, mobile-only, and edge-only using an
average latency of 100 random samples under 4G network
in Table 2. We observe that the BNN branch accelerates

0 4 0 8 0
3 6

3 8

4 0

0 4 0 8 0

3 0
3 2
3 4

0 4 0 8 02 8
3 0
3 2
3 4

W i F i4 G

La
ten

cy
(m

s)

3 G
 M N I S T
 F a s h i o n M N I S T

 M N I S T
 F a s h i o n M N I S T

La
ten

cy
(m

s)

La
ten

cy
(m

s) M N I S T
 F a s h i o n M N I S T

(a) LeNet performance on MNIST and FashionMNIST

0 4 0 8 01 . 5
2 . 0

4 . 7 5
6
7

0 4 0 8 01 5 0
1 6 06 0 0
6 7 5
9 0 0

1 2 0 0

0 4 0 8 01 6 0
1 7 0
6 0 0
6 6 0

1 5 0 0

La
ten

cy
(s) 3 G 4 G W i F i

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

La
ten

cy
(m

s)

La
ten

cy
(m

s) C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

(b) AlexNet performance on CIFAR-10 and ImageNet-150K

0 4 0 8 0
1 . 0

1 . 5

2 . 0

0 4 0 8 0
2 7 5
3 0 0
3 2 5
4 0 0
4 2 0

0 4 0 8 02 4 0
2 7 0
3 0 0
3 3 0

La
ten

cy
(s)

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

La
ten

cy
(m

s)

La
ten

cy
(m

s) C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

3 G 4 G W i F i

(c) ResNet18 performance on CIFAR-10 and ImageNet-150K

0 4 0 8 0
1 . 2
1 . 8

8
1 0
1 2

0 4 0 8 00 . 2 4
0 . 2 8
1 . 2
1 . 4

2 . 0 0
2 . 2 5

0 4 0 8 0
0 . 2 5
0 . 3 00 . 8
1 . 2
1 . 6

La
ten

cy
(s)

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

La
ten

cy
(s)

La
ten

cy
(s)

 C I F A R - 1 0
 I m a g e N e t - 1 5 0 K

3 G 4 G W i F i

(d) VGG16 performance on CIFAR-10 and ImageNet-150K

Fig. 10. Average latency performance. The X-axis represents the number of testing samples, and the Y-axis is the
corresponding average latency. The input sample can be processed, and exit from the BNN branch directly or collaborate
with the edge server for more precise inference.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 11

the execution and decreases the whole inference latency.
Especially, for deeper neural networks (e.g., ResNet18 and
VGG16), because the computing capability of the mobile
web is limited, the full-precision branch is unable to be ex-
ecuted directly on the mobile web. Although Neurosurgeon
and Edgent load and execute partial DNN layers pursuing
fast inference, they also become unavailable facing with
deeper networks. This indicates that the model size is still
too large to load and execute efficiently. We note that edge-
only has the lowest latency, but this method has heavy
computing pressure without using the computing resource
of the mobile device, which is essentially different from
distributed and collaborative DNNs proposed in this paper.

TABLE 2: Comparisons on latency performance

Networks LcDNN Neurosurgeon Edgent Mobile-only Edge-only

LeNet 37 110 204 109 15
AlexNet 153 5256 4617 9313 21

ResNet18 261 2820 2613 5882 19
VGG16 264 3421 3231 8205 25

aThe unit of measurement is ms.
bThe parameters of LcDNN are same with those mentioned above.

4.3.2 Mobile energy performance
We use the same measurement in Section 4.1.3 to ac-
curately measure mobile energy consumption of execut-
ing LcDNN in different networks, datasets (e.g., LeNet-
MNIST, AlexNet-ImageNet, ResNet18-ImageNet, VGG16-
ImageNet) and communication conditions in Fig. 11. We

0 . 0

0 . 2

0 . 6
0 . 8

Mo
bil

e e
ner

gy
(J)

 L c D N N N e u r o s u r g e o n E d g e n t M o b i l e - o n l y E d g e - o n l y

(b) A l e x N e t

3 G

0
3
6

8 0
1 6 0
6 2 56 5 0

Mo
bil

e e
ner

gy
(J)

(d) V G G 1 6

3 G 4 G W i F i

0
4
8

4 0
8 0

1 2 0
1 6 0

Mo
bil

e e
ner

gy
(J)

(a) L e N e t

W i F i3 G 4 G04
8

1 0 0
3 0 04 0 0

1 3 0 0
1 4 0 0

W i F i4 G

Mo
bil

e e
ner

gy
(J)

(c) R e s N e t 1 8

W i F i3 G 4 G

Fig. 11. Mobile energy improvements.

randomly sample 10 groups of testing samples, and each
group consists of 10 samples to reduce the random er-
ror. The results show that LcDNN performs better than
existing partition-offloading approaches in mobile energy
consumption, which is a benefit from the lightweight BNN
branch that reduces a large amount of communication cost
on loading the DNN model. The phenomenon is more
pronounced for deep neural networks such as AlexNet and
VGG16, which also shows that loading heavy models onto
the mobile web is not applicable, and lightweight BNN
branches perform the advantage. Besides, it is noted that
the mobile energy cost of the edge-only is lower than the

others, which have a similar performance on latency. This
is because the edge-only approach only consumes mobile
energy on task transmission without loading DNN models.
Although it performs well, it is not the optimal solution,
especially from the perspective of system throughput, com-
puting pressure, and economy.

4.3.3 System throughput performance
In Fig. 12, we describe comparisons and analysis of system
throughput in different networks, datasets, and communi-
cation conditions. The results show that LcDNN has the

3 G 4 G W i F i0 x

2 x

4 x

No
rm

aliz
ed

thr
oug

hpu
t

(a) L e N e t

 M o b i l e - o n l y L c D N N N e u r o s u r g e o n E d g e n t E d g e - o n l y

3 G 4 G W i F i0 x

3 x

6 x

No
rm

aliz
ed

thr
oug

hpu
t

(b) A l e x N e t

3 G 4 G W i F i0 x

3 x

6 x

No
rm

aliz
ed

thr
oug

hpu
t

(c) R e s N e t 1 8
3 G 4 G W i F i0 x

6 x

1 2 x

No
rm

aliz
ed

thr
oug

hpu
t

(d) V G G 1 6
Fig. 12. System throughput improvements. We normalize
LcDNN and other status quo approaches to the mobile-only
approach, which has the lowest throughput than others.

best system throughput in all approaches, it improves the
throughput about 2.9x to 13.1x against the mobile-only ap-
proach. This is because the BNN branch can independently
handle the majority of tasks without the assistance of the
edge server for powerful computing resources, especially
in the LeNet network. However, Neurosurgeon and Edgent
require the collaboration of the edge server to complete a
whole task. Although the computing distribution varies in
different network conditions, the edge server always has to
participate in inference for each task. Thus, such a partition-
offloading approach has large gaps with LcDNN in terms
of system throughput. Besides, for the edge-only, since all
computations are arranged on the edge server, thereby it
performs the lowest system throughput, whether on LeNet
or VGG16. It also shows that centralized service provision
has heavy computing pressure, and resource consumption is
more serious. Hence, it is not economical when considering
the edge serves as the foundation to process such heavy
computations. Finally, we do not compare LcDNN with the
mobile-only approach, because it only consumes the edge
server’s request link resources without extra consumption
on the computing resource of the edge server. Moreover, it
is not a practical approach from the perspective of latency
and mobile energy consumption.

4.3.4 Comparisons of LcDNN with compressed DNNs
We compare the performance among LcDNN and typical
compressing DNN methods such as MobileNet, knowledge

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 12

distillation, and network quantization in terms of the la-
tency, mobile energy, and inference accuracy in Fig. 13.
MobileNet is a well-designed network with high accuracy,
a lightweight model, and fast inference, representing a
new convolution method. The knowledge distillation (KD)
method uses the full-precision network to train a smaller
student network. Besides, we also compare LcDNN with

3 G 4 G W i F i0 . 0

0 . 5

1 . 0

1 . 5

La
ten

cy
(s)

 L c D N N
 M o b i l e N e t
 K D
 B N N

3 G 4 G W i F i0

2

4

6

8
Mo

bil
e e

ner
gy

(J)
 L c D N N
 M o b i l e N e t
 K D
 B N N

L c D N N0
2 5
5 0
7 5

1 0 0

To
p1-

Ac
cur

acy
 (%

)

 L c D N N
 M o b i l e N e t
 K D
 B N N

(a) ResNet18 on CIFAR10

3 G 4 G W i F i0

4

8

1 2

La
ten

cy
(s)

 L c D N N
 M o b i l e N e t
 K D
 B N N

3 G 4 G W i F i0
1 0
2 0
3 0
4 0
5 0
6 0

Mo
bil

e e
ner

gy
(J)

 L c D N N
 M o b i l e N e t
 K D
 B N N

L c D N N0

2 5

5 0

7 5

To
p1-

Ac
cur

acy
 (%

)

 L c D N N
 M o b i l e N e t
 K D
 B N N

(b) VGG16 on ImageNet-150K

Fig. 13. Performance of LcDNN compared with other com-
pressed methods.

binarized neural network (BNN) which is similar to the
BNN branch of LcDNN. We use ResNet18 and VGG16 on
CIFAR10 and ImageNet-150K as examples to reveal com-
parisons among LcDNN and other methods. Experimental
settings and measurements are same to the above subsec-
tions.

We see that (1) LcDNN acquires higher accuracy than
other compressed methods on CIFAR10 of ResNet18 in
Fig. 13(a), which also performs better in the latency and
mobile energy cost. Although MobileNet and KD methods
can reduce the model size and parameters, their inference
efficiency still has some gaps with LcDNN and BNN of
using quantitative technology, especially running on the
mobile web. This is because the 2-bit quantization tech-
nology used in LcDNN and BNN has the advantage in
accelerating inference and reducing the mobile energy. Note
that BNN gains faster inference by sacrificing accuracy,
while LcDNN not only uses the BNN branch to accelerate
inference but also improves accuracy through a collabo-
rative mechanism. Besides, the inference library used by
LcDNN is optimized according to the characteristics of the
quantitative network, whose inference performs faster than
existing libraries such as ONNX.js and TensorFlow.js used
by MobileNet and KD. (2) As for VGG16 on ImageNet-150K,
although the full-precision network of VGG16 has superior
accuracy, parameters of the full-precision branch are too
large to be directly applied to the mobile web. By adding a
BNN branch into the full-precision branch, the model size of
the BNN branch can be greatly reduced, and inference can
be accelerated, which performs advantages on the latency
and mobile energy when compared with MobileNet and KD
methods. More importantly, the accuracy of the BNN branch

is lower than MobileNet and KD, we can still obtain high
accuracy with the help of collaboration of the full-precision
branch in LcDNN. We can conclude that MobileNet and
KD methods are more focused on reducing the model size
and parameters, and lack consideration and optimization in
inference efficiency, especially for the mobile web platform.
And the BNN network of quantization method lacks an
effective balance between inference efficiency and accuracy
loss. Thus, this indicates LcDNN can achieve a good bal-
ance in accuracy, latency, and mobile energy consumption
through a collaboration mechanism. (3) We can also see that
the structure of LcDNN is easy to popularize and can be
directly applied to existing neural networks without the
need for expert knowledge, or a large number of calcula-
tions for automatic neural network structure search. Hence,
if we use ResNet152 as a full-precision branch and apply it
to LcDNN, it will get better performance than the majority
of compressed DNNs, no matter in latency, mobile energy,
and accuracy. In summary, LcDNN is easier to operate than
well-designed DNNs in practical applications and can be
flexibly applied to different datasets and networks.

4.4 Entropy threshold of LcDNN

In LcDNN, the exit judgment of the BNN branch directly af-
fects overall accuracy due to the wrong decision of the BNN
branch. We have given the method of selecting thresholds
based on the validation dataset in algorithm 2 of Section
3.1. Meanwhile, we further analyze the impact of different
thresholds on accuracy of various networks and datasets in
Fig. 14.

0 . 0 0 0 0 0 . 0 0 0 3 0 . 0 0 0 6 0 . 0 0 0 9 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
9 8 . 8

9 9 . 0

9 9 . 2

9 9 . 4

9 9 . 6
 O v e r a l l A c c u r a c y B i n a r y b r a n c h E x i t

(a) L e N e t - M N I S T

Ov
era

ll A
ccu

rac
y (

%)

9 4

9 6

9 8

1 0 0
 Bi

nar
y b

ran
ch

Ex
it (

%)

0 . 2 0 0 . 2 4 0 . 2 8 0 . 3 2 0 . 3 6 0 . 4 0 . 6 0 . 8 1 . 0
4 6
4 8
5 0
5 2
5 4
5 6
5 8
6 0

(b) A l e x N e t - I m a g e N e t - 1 5 0 K

Ov
era

ll A
ccu

rac
y (

%)

4 0
5 0
6 0
7 0
8 0
9 0
1 0 0
1 1 0

 Bi
nar

y b
ran

ch
Ex

it (
%)

0 . 2 0 0 0 . 2 2 5 0 . 2 5 0 0 . 2 7 5 0 . 4 0 . 6 0 . 8 1 . 0
5 2
5 6
6 0
6 4
6 8
7 2

(c) R e s N e t 1 8 - I m a g e N e t - 1 5 0 K

Ov
era

ll A
ccu

rac
y (

%)

4 0

6 0

8 0

1 0 0

 Bi
nar

y b
ran

ch
Ex

it (
%)

0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 8 0 . 2 1 0 . 2 4 0 . 4 0 . 6 0 . 8 1 . 0
5 5

6 0

6 5

7 0

7 5

(d) V G G 1 6 - I m a g e N e t - 1 5 0 K

Ov
era

ll A
ccu

rac
y (

%)

4 0

6 0

8 0

1 0 0

 Bi
nar

y b
ran

ch
Ex

it (
%)

Fig. 14. Discussion of different entropy thresholds.

We observe that the optimal threshold is various and
directly related to the structure of DNN networks and
datasets. The threshold of a high-precision small network
such as LeNet is much stricter than others. This is because
the BNN branch has similar accuracy to the full-precision
branch, which requires a strict threshold to ensure the
overall accuracy. However, the threshold is relatively large
such as AlexNet, ResNet, and VGG16, whose accuracy of
the full-precision branch in these networks is low. Thus,
excessively strict thresholds may cause a large number of
examples to be unable to exit from the BNN branch, which

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 13

requires the collaboration of the edge server, increases the
overall latency, and cannot reduce the computing pressure
of the edge server. In addition, we compare the threshold
between the optimal value found by our algorithm 2 and the
actual optimal threshold. The thresholds obtained using the
validation dataset are close to the actual optimal thresholds.
Therefore, we can use algorithm 2 to quickly obtain an
accurate and reasonable threshold in the actual application.
Then, we can update the threshold value to meet the actual
sample data through feedback from the samples of the
actual application.

4.5 Performance of DRLoS
We first introduce experimental settings for evaluating DR-
LoS, which leverages the same communication and hard-
ware described in Section 4.1. We build a DRLoS testbed
consisting of three edge servers with the same computing
capability and simulate a task requestor that obeys the
Bernoulli distribution with a request frequency range from
10% to 130%. For the policy network, we design a deep
neural network consisting of a fully connection layer with 20
neurons, whose learning rate for training is set as lr=0.001.
We set the output size of the policy network as M = 500,
the number of tasks scheduled at the same time, which also
means the total number of concurrent processing tasks. In
each iterative training, each request dataset is processed in
parallel with N = 20, and the number of training iterations
is 1500. Then, we analyze the effectiveness and novelty of
DRLoS from convergence behavior, scheduling efficiency,
and stability based on the above experimental scenario.
Specifically, we compare DRLoS with some commonly used
scheduling methods such as Q-learning [41], Average, Clos-
est, and Random on indicators of the latency, mobile energy,
and resource usage to illustrate the effectiveness and nov-
elty. The Q-learning method refers to the value-based RL
solution which uses the same definition to [41]. The Average
method refers to the average distribution of task requests
to all edge servers for processing. And the Closest method
is to distribute task requests to the available edge servers
according to the geographical location. The Random method
assigns task requests to any edge server for processing
randomly.

4.5.1 Convergence behavior
To explore the convergence performance of DRLoS’s pol-
icy network with the increase of training iterations, we
show the convergence behaviors on normalized resource
utilization variance over various methods and compare the
convergence of DRLoS and Q-learning method on the total
reward. We set the task request load to 80% and delve into
the system’s resource utilization and total reward. Besides,
non-RL methods have no changes with iterations due to
unnecessary training, thus using an average result of 20
times scheduling to evaluate the performance. We can see
that (1) DRLoS improves with the increase of iterations, and
at the beginning, DRLoS even performs worse than other
methods in resource usage variance in Fig. 15(a). When
the training iteration reaches 500, DRLoS has considerable
performance. Especially, DRLoS’s online scheduling can
bring LcDNN more than 2.17x resource utilization improve-
ment against the Closest approach. DRLoS’s performance

is closer to the Random method at the beginning. With the
increase of training iterations, DRLoS gradually converges
and obtains better performance than all non-RL methods.
Moreover, DRLoS has better convergence speed and con-
vergence performance than the Q-learning method, also
illustrating the effectiveness and advancement. (2) Based on
the convergence performance of DRLoS and the Q-learning
method on total reward in Fig. 15(b), we observe the con-
vergence speed of DRLoS is better than the Q-learning
method, and total reward gradually converges at 700 and
900, respectively. This is because the Q-learning method

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

Re
sou

rce
 us

age
 va

ria
nce

T r a i n i n g i t e r a t i o n

 D R L o S Q - l e a r n i n g
 A v e r a g e C l o s e s t
 R a n d o m

(a) Convergence of the training

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
- 1 6 0

- 1 2 0

- 8 0

- 4 0

0

To
tal

rew
ard

T r a i n i n g i t e r a t i o n

 D R L o S
 Q - l e a r n i n g

(b) Total reward of the training

Fig. 15. Convergence behavior of DRLoS.

usually obtains a deterministic policy while DRLoS’s policy
is a probability distribution over possible actions, thus the
action-value of Q-learning method eventually converges to
the corresponding true values and DRLoS tends to generate
optimal random strategies.

4.5.2 Comparing the efficiency of DRLoS scheduling.
In Fig. 16(a), we compare the performance of different
approaches on the normalized resource usage variance with
the increase of request tasks. As we expect, we see that (1)
the system resource usage variance continues to increase as
the amount of requests increases until it reaches maximum
processing capacity. (2) DRLoS shows the best resource
utilization because it combines the status of all edge servers
and task request status to maximize and optimize schedul-
ing. However, while the method based on the Closest alloca-
tion may only be processed on nearby edge servers, which
will introduce to backlog a large number of tasks while
other servers may be idle, causing the waste of resources.
(3) The Average method also does not take into account the
global status of edge servers and request tasks, resulting in
imbalanced resource utilization, which cannot maximize the
use of computing resources of edge servers and improve
the processing capacity of the system. In Fig. 16(b), we
exhibit the average processing latency of DRLoS and other
methods as the task requests increase. Assuming that all
request tasks require edge assistance in LcDNN, and set
the maximum concurrency of three edge servers to 500. We
know that the RL-based methods perform better in terms
of stability and average latency, while non-RL methods,
especially the Random method, have high fluctuation. This
is due to the fact that random allocation may cause excessive
load on the part of edge servers, introducing the waiting
of tasks and increasing the average processing latency. In
addition, the Closest method performs a certain increase
when the number of task requests reaches 500 and 1000. This

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 14

is because the adjacent edge server is fully loaded, and all
tasks need to be forwarded to other edge servers, resulting
in an increase of average latency. Thus, DRLoS defeats other
methods, which can be summarized that the auto-learning
policy network can dynamically perform global allocation
based on the system’s real-time status and context infor-
mation (available resource status, request status). Besides,

0 4 0 0 8 0 0 1 2 0 0 1 6 0 00 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Re
sou

rce
 us

age
 va

ria
nce

N u m b e r o f r e q u e s t t a s k s

 D R L o S Q - l e a r n i n g
 A v e r a g e C l o s e s t
 R a n d o m

(a) Resource usage comparison.

0 4 0 0 8 0 0 1 2 0 0 1 6 0 0
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

Av
era

ge
late

ncy
 (s)

N u m b e r o f r e q u e s t t a s k s

 D R L o S Q - l e a r n i n g
 A v e r a g e C l o s e s t
 R a n d o m

(b) Average latency comparison.

3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 00

8 0 0
1 6 0

0
2 4 0

0

Ru
nti

me
 re

qui
red

 (u
s)

N u m b e r o f r e q u e s t t a s k s
(c) Runtime analysis of increas-
ing tasks.

2 0 4 0 6 0 8 0 1 0 00
8 0 0

1 6 0
0

2 4 0
0

3 2 0
0

Ru
nti

me
 re

qui
red

 (u
s)

A v a i l a b l e c o m p u t i n g r e s o u r c e (%)
(d) Runtime analysis of various
computing resources.

Fig. 16. Scheduling efficiency of DRLoS.

DRLoS can automatically learn and adjust scheduling policy
to dynamically adapt to different environments according to
historical experience.

We also analyze the runtime performance of DRLoS with
changes in task requests and available computing resources
in Fig. 16(c) and Fig. 16(d), respectively. To measure the
runtime of DRLoS on common edge servers as accurately
as possible, we use the method in the subsection of 4.1.3 to
record logs and control the available computing resource of
edge servers via CPU Usage Limiter [42]. Besides, we follow
the same settings to the above experiments. The results
show that DRLoS can execute real-time task scheduling
within milliseconds with the increase of the number of tasks
and the reduction of available computing resources. On the
one hand, the DRL-based method generally spends time
on training policy network offline. Once the convergent
policy model is obtained, it only needs to be deployed
on the edge server to execute the inference of the policy
network in real-time. On the other hand, the policy network
designed and used by DRLoS is much smaller in terms of
neurons, parameters, and model size. Therefore, running
DRLoS in real-time does not require high hardware configu-
ration and computing resources, and it can still provide real-
time scheduling even on resource-constrained embedded
devices.

4.5.3 Availability analysis
Since the size of action space of DRLoS is affected by the
scale of action states and the number of available edge
servers, we simplify the action state of the edge server to

process each task as process a small batch of tasks or a large
number of tasks (i.e. small capacity and high capacity). It is
important to explain that for a batch of task requests at any
time slot, high capacity actually includes a general number
of task requests between small capacity and high capac-
ity. Hence, to explore the availability of the simplification
method used by DRLoS, we simulate different scales edge
servers N and various task M and analyze the influence
on the resource usage and average processing latency in
Fig. 17. We define the maximum concurrent processing of
any edge server as 1000, and the task request also follows
the same Bernoulli distribution and settings as described at
the beginning of this section.

5 1 0 2 0 1 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

N u m b e r o f e d g e s e r v e r s

Re
sou

rce
 us

age

var
ian

ce M = 1 0 0 0 M = 5 0 0 0 M = 1 0 0 0 0 M = 1 5 0 0 0

(a) Resource usage comparison.

5 1 0 2 0 1 0 00
1 5 0
3 0 0
4 5 0

N u m b e r o f e d g e s e r v e r s
Av

era
ge

late
ncy

 (m
s) M = 1 0 0 0 M = 5 0 0 0 M = 1 0 0 0 0 M = 1 5 0 0 0

(b) Average latency comparison.

Fig. 17. Availability performance of DRLoS.

We observe that (1) Normalized resource usage variance
of DRLoS does not change significantly as the task request
scale increases, which illustrates the effectiveness of our
simplified strategy of action space to execute scheduling
under various task scales in Fig. 17(a). Besides, when there
is deployed with five edge servers and the task scale is
greater than 5000, it has exceeded the limited processing
capacity of the whole system, that is, all edge servers are
in a saturated state. Thus, if we continue to increase the
task scale, the resource usage variance will not change. (2)
We also analyze the effect of the simplified strategy on the
average processing latency in Fig. 17(b). The results show
that there is a slight climbing in the average latency with
the increase of task scale, which is caused by the increase
of forwarding task requests among edge servers. From the
perspective of the increase in latency, DRLoS still performs
well in terms of average latency facing various task scales,
which demonstrates that the simplified strategy of DRLoS
is effective. Also, we observe that the average processing
latency still has an increase when expanding the scale of
edge servers, which can indicate that adding more edge
servers for collaborations in actual deployments does not
always improve performance. Besides, since edge servers in
experiments are supported by China Unicom and usually
cover several tens of kilometers, there is no need for a
large number of edge servers to cooperate, and only a small
number of edge servers within a certain range can meet
the demand. For further considerations, if the scale of the
task request is extremely large under special circumstances,
that is, it cannot be processed at the edge server, the more
conventional approach is to forward the task to a remote

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 15

cluster cloud for collaboration, which is more economical
than using more edge servers for collaboration.

5 RELATED WORK

5.1 Distributed inference of deep neural networks
Partition-offloading is the most fundamental methodology
to execute distributed inference working on traditional deep
neural networks [43]. Recently, Neurosurgeon [14] automat-
ically chooses the partition points pursuing the optimal
latency and energy consumption to offload DNN computa-
tions. Edgent [15] searches the adaptive partitions of DNN
computation and accelerates DNN inference through an
early exit at a proper intermediate DNN layer. Similarly,
there are prior explorations focusing on intelligent collab-
oration between the mobile device and the cloud with-
out combining the granularity of neural network layers.
McDNN [44] investigates the intelligent collaboration to
execute either in the cloud or on the mobile device by
generating alternative DNN models for performance and
energy costs. MoDNN [45] proposes two partition schemes
to minimize non-parallel data delivery latency and accel-
erate DNN inference by alleviating device-level computing
cost and memory usage. Moreover, JointDNN [16] further
proposes efficient DNN inference giving the training process
simultaneously, which also provides various optimizations
in DNNs tackling with resource constraints. However, these
anterior researches only benefit the lightweight DNN mod-
els, and they do not support deeper neural networks due
to massive weights and computations. Thus, it is worthy
of considering lightweight neural networks like binary con-
volutional neural network for reducing the communication
and computation costs.

5.2 Binary deep neural network
As one of the effective compression methods, binary convo-
lutional neural network attempts to address efficient train-
ing and inference by binarizing weights and activations
compared to typical deep neural networks. The directions
are of two kinds: Expectation BackPropagation (EBP) and Bi-
naryConnect. EBP in [46] achieves a neural network with bi-
nary weights and binary activations by variational Bayesian
approach. Esser [47] treats spikes and discrete synapses as
continuous probabilities, which allows to train the network
using the standard backpropagation and shows the advan-
tages in energy efficiency. BinaryConnect [26] trains a DNN
with binary weights during the forward and backward
propagation while retaining precision of the stored weight.
It shows high performance on small datasets while large-
scale datasets are not suitable. XNOR-Network [27] is more
extreme to binarize filters and inputs in convolutional layers
which results in faster and more memory-saving inference.
Undoubtedly, network binarization makes the trade-off be-
tween model size and precision. Nevertheless, it is hard to
acquire satisfactory precision with an efficient compression
of networks in terms of complex datasets (e.g., ImageNet).

5.3 Web-based DNN inference framework
To allow the web to execute DNNs, JavaScript and We-
bassembly are the representative technologies currently.
CaffeJS [48] loads pre-trained deep neural networks entirely

in JavaScript, which aims to execute forward and backward
propagation. All of this runs on mobile devices without in-
stalling any software. Similarly, Keras.js [49] supports GPU
and CPU mode of Keras models in the browser on personal
computers, which can be trained in any backend, including
TensorFlow, CNTK, etc. TensorFlow.js [13] is a JavaScript
library for training and deploying deep learning models in
the browser and on Node.js. WebDNN [50] also provides an
installation-free DNN execution environment by optimiz-
ing the trained DNN model to compress model data and
accelerating the execution. Although the aforementioned
technologies provide the chance to execute the entire DNN
inference on the mobile web browser, they get into trouble
with higher latency, computation constraints, and loss of
accuracy. Our approach in this paper provides lightweight
collaborative DNNs to alleviate the conflict between the
model size and accuracy.

6 CONCLUSIONS

In this work, we proposed LcDNN, a lightweight collabo-
rative deep neural network for the mobile web in the edge
cloud. Towards low-latency, energy-saving, high through-
put, and efficient resource utilization of edge cloud, LcDNN
is the first to introduce binary convolutional neural network
into a typical deep neural network for reducing the model
size and accelerating inference. We also provide a joint train-
ing method and implement an inference library for running
LcDNN on the mobile web. Moreover, we leverage the
collaboration of the full-precision branch located at the edge
server to supply the compensation for the BNN branch.
Last, we develop a DRL-based online scheduling scheme
to obtain an optimal allocation for LcDNN to promote the
resource utilization of the edge cloud. Experimental results
on several well-known networks and datasets give us in-
sightful motivation to expend LcDNN on more complex
networks and applications. In future research, we may do
more simulations in different system environments for more
insightful knowledge.

ACKNOWLEDGMENTS

This research was supported in part by the National Key
R&D Program of China under Grant 2018YFE0205503, in
part by the National Natural Science Foundation of China
(NSFC) under Grant 61671081, in part by the Funds for
International Cooperation and Exchange of NSFC under
Grant 61720106007, in part by the 111 Project under Grant
B18008, in part by the Fundamental Research Funds for the
Central Universities under Grant 2018XKJC01, and in part
by the BUPT Excellent Ph.D. Students Foundation under
Grant CX2019135.

REFERENCES

[1] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A
lightweight collaborative recognition system with binary convolu-
tional neural network for mobile web augmented reality,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019, pp. 1497–1506.

[2] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651–666, 2019.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 16

[3] X. Qiao, P. Ren, S. Dustdar, and J. Chen, “A new era for web ar
with mobile edge computing,” IEEE Internet Computing, vol. 22,
no. 4, pp. 46–55, 2018.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[5] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in 2016 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2016, pp. 4945–4949.

[6] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Computing Surveys (CSUR), vol. 52, no. 1, p. 5, 2019.

[7] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in Interna-
tional conference on machine learning, 2016, pp. 1378–1387.

[8] “Machine learning for the web community group charter,” 2018,
https://webmachinelearning.github.io/charter/.

[9] “Immersive web working group,” 2018, https://www.w3.org/
immersive-web/.

[10] “W3c strategic highlights october 2018,” 2018, https://www.w3.
org/2018/10/w3c-highlights/.

[11] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with webassembly,” in ACM SIGPLAN Notices,
vol. 52, no. 6. ACM, 2017, pp. 185–200.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[13] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu,
K. Zhang, S. Cai, E. Nielsen, D. Soergel et al., “Tensorflow.
js: Machine learning for the web and beyond,” arXiv preprint
arXiv:1901.05350, 2019.

[14] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in ACM SIGARCH Computer Architecture
News, vol. 45, no. 1. ACM, 2017, pp. 615–629.

[15] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand
deep learning model co-inference with device-edge synergy,” in
Proceedings of the 2018 Workshop on Mobile Edge Communications.
ACM, 2018, pp. 31–36.

[16] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, 2019.

[17] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with
nearby mobile devices: a work sharing algorithm for mobile edge-
clouds,” IEEE Transactions on Cloud Computing, 2016.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4510–4520.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6848–6856.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[22] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through
online distillation,” arXiv preprint arXiv:1804.03235, 2018.

[23] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler,
V. Sze, and H. Adam, “Netadapt: Platform-aware neural network
adaptation for mobile applications,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 285–300.

[24] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen,
“Deepadapter: A collaborative deep learning framework for the
mobile web using context-aware network pruning,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 834–843.

[25] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet:
Fast inference via early exiting from deep neural networks,” in
2016 23rd International Conference on Pattern Recognition (ICPR).
IEEE, 2016, pp. 2464–2469.

[26] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propaga-
tions,” in Advances in neural information processing systems, 2015,
pp. 3123–3131.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 525–542.

[28] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed
deep neural networks over the cloud, the edge and end devices,”
in 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2017, pp. 328–339.

[29] A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceed-
ings of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM,
2011, pp. 301–312.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[31] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[32] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceedings of
the 15th ACM Workshop on Hot Topics in Networks. ACM, 2016, pp.
50–56.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[34] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function ap-
proximation,” in Advances in neural information processing systems,
2000, pp. 1057–1063.

[35] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[36] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[37] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[38] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” Citeseer, Tech. Rep., 2009.

[39] H. Liu, R. Wang, S. Shan, and X. Chen, “Learning multifunctional
binary codes for both category and attribute oriented retrieval
tasks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3901–3910.

[40] “Wonder shaper,” 2017, https://github.com/magnific0/wondershaper.
[41] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning

for offloading and resource allocation in vehicle edge computing
and networks,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 11, pp. 11 158–11 168, 2019.

[42] A. Marletta, “Cpu usage limiter,” available: https://github.com/
opsengine/cpulimit.

[43] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed dnn collaborative computing approach for
mobile web augmented reality in 5g networks,” IEEE Network,
vol. 34, no. 2, pp. 254–261, 2020.

[44] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy, “Mcdnn: An approximation-based execution frame-
work for deep stream processing under resource constraints,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016, pp. 123–136.

[45] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural net-
work,” in Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2017. IEEE, 2017, pp. 1396–1401.

[46] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropaga-
tion: Parameter-free training of multilayer neural networks with
continuous or discrete weights,” in Advances in Neural Information
Processing Systems, 2014, pp. 963–971.

[47] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha, “Backpropagation for energy-efficient neuromorphic com-
puting,” in Advances in Neural Information Processing Systems, 2015,
pp. 1117–1125.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2020 17

[48] “Caffe.js framework,” https://chaosmail.github.io/caffejs.
[49] “Keras.js,” 2016, https://github.com/transcranial/keras-js.
[50] M. Hidaka, Y. Kikura, Y. Ushiku, and T. Harada, “Webdnn: Fastest

dnn execution framework on web browser,” in Proceedings of the
25th ACM international conference on Multimedia. ACM, 2017, pp.
1213–1216.

Yakun Huang is currently working toward the
Ph.D. degree at the State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Bei-
jing, China. His current research interests in-
clude mobile computing, distributed systems,
machine learning, augmented reality, edge com-
puting, and 5G networks.

Xiuquan Qiao is currently a Full Professor with
the Beijing University of Posts and Telecom-
munications, Beijing, China, where he is also
the Deputy Director of the Key Laboratory of
Networking and Switching Technology, Network
Service Foundation Research Center of State.
He has authored or co-authored over 60 tech-
nical papers in international journals and at
conferences, including the IEEE Communica-
tions Magazine, Proceedings of IEEE, Computer
Networks, IEEE Internet Computing, the IEEE

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,
and the ACM SIGCOMM Computer Communication Review. His current
research interests include the future Internet, services computing, com-
puter vision, distributed deep learning, augmented reality, virtual reality,
and 5G networks. Dr. Qiao was a recipient of the Beijing Nova Program
in 2008 and the First Prize of the 13th Beijing Youth Outstanding Science
and Technology Paper Award in 2016. He served as the associate editor
for the Computing (Springer) and the editor board of China Communi-
cations Magazine.

Pei Ren is currently working toward the Ph.D.
degree at the State Key Laboratory of Network-
ing and Switching Technology, Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China. His current research interests include the
future Internet architecture, services computing,
computer vision, distributed deep learning, ma-
chine learning, augmented reality, edge comput-
ing, and 5G networks.

Ling Liu (Fellow, IEEE) is currently a Profes-
sor at the School of Computer Science, Geor-
gia Institute of Technology, Atlanta, GA, USA.
She directs the research programs at the Dis-
tributed Data Intensive Systems Lab, examining
various aspects of large-scale big data systems
and analytics, including performance, availability,
security, privacy, and trust. Her current research
is sponsored primarily by the National Science
Foundation and IBM. She has published over
300 international journal and conference arti-

cles. Dr. Liu was a recipient of the IEEE Computer Society Technical
Achievement Award in 2012 and the Best Paper Award from numerous
top venues, including ICDCS, WWW, IEEE Cloud, IEEE ICWS, and
ACM/IEEE CCGrid. She served as the general chair and the PC chair for
numerous IEEE and ACM conferences in big data, distributed comput-
ing, cloud computing, data engineering, very large databases, and the
World Wide Web fields. She served as the Editor-in-Chief for the IEEE
TRANSACTIONS ON SERVICE COMPUTING from 2013 to 2016. She
is the Editor-in-Chief of the ACM Transactions on Internet Technology.

Calton Pu (Fellow, IEEE) is received his PhD
from University of Washington in 1986 and
served on the faculty of Columbia University
and Oregon Graduate Institute. Currently, he
is holding the position of Professor and John
P. Imlay, Jr. Chair in Software in the College
of Computing, Georgia Institute of Technology.
He has worked on several projects in systems
and database research. He has published more
than 70 journal papers and book chapters, 200
conference and refereed workshop papers. He

served on more than 120 program committees. His recent research has
focused on big data in Internet of Things, automated Ntier application
deployment and denial of information. He is an elected IEEE Fellow and
a member of the ACM.

Schahram Dustdar (Fellow, IEEE) was an Hon-
orary Professor of Information Systems at the
Department of Computing Science, University of
Groningen, Groningen, The Netherlands, from
2004 to 2010. From 2016 to 2017, he was a
Visiting Professor at the University of Sevilla,
Sevilla, Spain. In 2017, he was a Visiting Pro-
fessor at the University of California at Berkeley,
Berkeley, CA, USA. He is currently a Profes-
sor of Computer Science with the Distributed
Systems Group, Technische Universität Wien,

Vienna, Austria. Dr. Dustdar was an elected member of the Academy
of Europe, where he is the Chairman of the Informatics Section. He was
a recipient of the ACM Distinguished Scientist Award in 2009, the IBM
Faculty Award in 2012, and the IEEE TCSVC Outstanding Leadership
Award for outstanding leadership in services computing in 2018. He is
the Co-Editor-in-Chief of the ACM Transactions on Internet of Things
and the Editor-in-Chief of Computing (Springer). He is also an Associate
Editor of the IEEE TRANSACTIONS ON SERVICES COMPUTING, the
IEEE TRANSACTIONS ON CLOUD COMPUTING, the ACM Transac-
tions on the Web, and the ACM Transactions on Internet Technology. He
serves on the Editorial Board of IEEE INTERNET COMPUTING and the
IEEE Computer Magazine.

Junliang Chen received the B.S. degree in
electrical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 1955, and the
Ph.D. degree in electrical engineering from the
Moscow Institute of Radio Engineering, Moscow,
Russia, in 1961. He has been with the Bei-
jing University of Posts and Telecommunications
(BUPT), Beijing, China, since 1955, where he
is currently the Chairman and a Professor with
the Research Institute of Networking and Switch-
ing Technology. His current research interests

include communication networks and next-generation service creation
technology. Dr. Chen was elected as a member of the Chinese Academy
of Sciences in 1991 and a member of the Chinese Academy of Engi-
neering in 1994 for his contributions to fault diagnosis in stored program
control exchange. He received the First, Second, and Third prizes of the
National Scientific and Technological Progress Award in 1988, 2004 and
1999 respectively.

